SPIRV-Tools/source/fuzz/fuzzer_pass_wrap_vector_synonym.cpp
Alastair Donaldson 9c4481419e
spirv-fuzz: Allow inapplicable transformations to be ignored (#4407)
spirv-fuzz features transformations that should be applicable by
construction. Assertions are used to detect when such transformations
turn out to be inapplicable. Failures of such assertions indicate bugs
in the fuzzer. However, when using the fuzzer at scale (e.g. in
ClusterFuzz) reports of these assertion failures create noise, and
cause the fuzzer to exit early. This change adds an option whereby
inapplicable transformations can be ignored. This reduces noise and
allows fuzzing to continue even when a transformation that should be
applicable but is not has been erroneously created.
2021-07-28 22:59:37 +01:00

138 lines
5.8 KiB
C++

// Copyright (c) 2021 Shiyu Liu
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_wrap_vector_synonym.h"
#include "source/fuzz/fuzzer_context.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/transformation_composite_construct.h"
#include "source/fuzz/transformation_wrap_vector_synonym.h"
namespace spvtools {
namespace fuzz {
FuzzerPassWrapVectorSynonym::FuzzerPassWrapVectorSynonym(
opt::IRContext* ir_context, TransformationContext* transformation_context,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations,
bool ignore_inapplicable_transformations)
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
transformations, ignore_inapplicable_transformations) {}
void FuzzerPassWrapVectorSynonym::Apply() {
ForEachInstructionWithInstructionDescriptor(
[this](opt::Function* /*unused*/, opt::BasicBlock* /*unused*/,
opt::BasicBlock::iterator instruction_iterator,
const protobufs::InstructionDescriptor& instruction_descriptor)
-> void {
// Randomly decide whether to wrap it to a vector operation.
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfWrappingVectorSynonym())) {
return;
}
// The transformation is not applicable if the instruction has missing
// result id, type id, or is not supported type.
if (!TransformationWrapVectorSynonym::IsInstructionSupported(
GetIRContext(), *instruction_iterator)) {
return;
}
// It must be valid to insert an OpCompositeConstruct instruction
// before |instruction_iterator|.
if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(
SpvOpCompositeConstruct, instruction_iterator)) {
return;
}
// Get the scalar type represented by the targeted instruction id.
uint32_t operand_type_id = instruction_iterator->type_id();
// Get a random vector size from 2 to 4.
uint32_t vector_size = GetFuzzerContext()->GetWidthOfWrappingVector();
// Randomly choose a position that target ids should be placed at.
// The position is in range [0, n - 1], where n is the size of the
// vector.
uint32_t position =
GetFuzzerContext()->GetRandomIndexForWrappingVector(vector_size);
// Target ids are the two scalar ids from the original instruction.
uint32_t target_id1 = instruction_iterator->GetSingleWordInOperand(0);
uint32_t target_id2 = instruction_iterator->GetSingleWordInOperand(1);
// We need to be able to make a synonym of the scalar operation's result
// id, as well as the operand ids (for example, they cannot be
// irrelevant).
if (!fuzzerutil::CanMakeSynonymOf(GetIRContext(),
*GetTransformationContext(),
*instruction_iterator)) {
return;
}
if (!fuzzerutil::CanMakeSynonymOf(
GetIRContext(), *GetTransformationContext(),
*GetIRContext()->get_def_use_mgr()->GetDef(target_id1))) {
return;
}
if (!fuzzerutil::CanMakeSynonymOf(
GetIRContext(), *GetTransformationContext(),
*GetIRContext()->get_def_use_mgr()->GetDef(target_id2))) {
return;
}
// Stores the ids of scalar constants.
std::vector<uint32_t> vec1_components;
std::vector<uint32_t> vec2_components;
// Populate components based on vector type and size.
for (uint32_t i = 0; i < vector_size; ++i) {
if (i == position) {
vec1_components.emplace_back(target_id1);
vec2_components.emplace_back(target_id2);
} else {
vec1_components.emplace_back(
FindOrCreateZeroConstant(operand_type_id, true));
vec2_components.emplace_back(
FindOrCreateZeroConstant(operand_type_id, true));
}
}
// Add two OpCompositeConstruct to the module with result id returned.
const uint32_t vector_type_id =
FindOrCreateVectorType(operand_type_id, vector_size);
// Add the first OpCompositeConstruct that wraps the id of the first
// operand.
uint32_t result_id1 = GetFuzzerContext()->GetFreshId();
ApplyTransformation(TransformationCompositeConstruct(
vector_type_id, vec1_components, instruction_descriptor,
result_id1));
// Add the second OpCompositeConstruct that wraps the id of the second
// operand.
uint32_t result_id2 = GetFuzzerContext()->GetFreshId();
ApplyTransformation(TransformationCompositeConstruct(
vector_type_id, vec2_components, instruction_descriptor,
result_id2));
// Apply transformation to do vector operation and add synonym between
// the result vector id and the id of the original instruction.
ApplyTransformation(TransformationWrapVectorSynonym(
instruction_iterator->result_id(), result_id1, result_id2,
GetFuzzerContext()->GetFreshId(), position));
});
}
} // namespace fuzz
} // namespace spvtools