SPIRV-Tools/source/opt/ir_context.cpp
alelenv f33d152400
Add validation support for SPV_NV_shader_invocation_reorder. (#4979)
Co-authored-by: Pankaj Mistry <pmistry@nvidia.com>
2022-11-24 09:50:45 -05:00

1093 lines
36 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/ir_context.h"
#include <cstring>
#include "OpenCLDebugInfo100.h"
#include "source/latest_version_glsl_std_450_header.h"
#include "source/opt/log.h"
#include "source/opt/mem_pass.h"
#include "source/opt/reflect.h"
namespace spvtools {
namespace opt {
namespace {
constexpr int kSpvDecorateTargetIdInIdx = 0;
constexpr int kSpvDecorateDecorationInIdx = 1;
constexpr int kSpvDecorateBuiltinInIdx = 2;
constexpr int kEntryPointInterfaceInIdx = 3;
constexpr int kEntryPointFunctionIdInIdx = 1;
constexpr int kEntryPointExecutionModelInIdx = 0;
// Constants for OpenCL.DebugInfo.100 / NonSemantic.Shader.DebugInfo.100
// extension instructions.
constexpr uint32_t kDebugFunctionOperandFunctionIndex = 13;
constexpr uint32_t kDebugGlobalVariableOperandVariableIndex = 11;
} // namespace
void IRContext::BuildInvalidAnalyses(IRContext::Analysis set) {
set = Analysis(set & ~valid_analyses_);
if (set & kAnalysisDefUse) {
BuildDefUseManager();
}
if (set & kAnalysisInstrToBlockMapping) {
BuildInstrToBlockMapping();
}
if (set & kAnalysisDecorations) {
BuildDecorationManager();
}
if (set & kAnalysisCFG) {
BuildCFG();
}
if (set & kAnalysisDominatorAnalysis) {
ResetDominatorAnalysis();
}
if (set & kAnalysisLoopAnalysis) {
ResetLoopAnalysis();
}
if (set & kAnalysisBuiltinVarId) {
ResetBuiltinAnalysis();
}
if (set & kAnalysisNameMap) {
BuildIdToNameMap();
}
if (set & kAnalysisScalarEvolution) {
BuildScalarEvolutionAnalysis();
}
if (set & kAnalysisRegisterPressure) {
BuildRegPressureAnalysis();
}
if (set & kAnalysisValueNumberTable) {
BuildValueNumberTable();
}
if (set & kAnalysisStructuredCFG) {
BuildStructuredCFGAnalysis();
}
if (set & kAnalysisIdToFuncMapping) {
BuildIdToFuncMapping();
}
if (set & kAnalysisConstants) {
BuildConstantManager();
}
if (set & kAnalysisTypes) {
BuildTypeManager();
}
if (set & kAnalysisDebugInfo) {
BuildDebugInfoManager();
}
}
void IRContext::InvalidateAnalysesExceptFor(
IRContext::Analysis preserved_analyses) {
uint32_t analyses_to_invalidate = valid_analyses_ & (~preserved_analyses);
InvalidateAnalyses(static_cast<IRContext::Analysis>(analyses_to_invalidate));
}
void IRContext::InvalidateAnalyses(IRContext::Analysis analyses_to_invalidate) {
// The ConstantManager and DebugInfoManager contain Type pointers. If the
// TypeManager goes away, the ConstantManager and DebugInfoManager have to
// go away.
if (analyses_to_invalidate & kAnalysisTypes) {
analyses_to_invalidate |= kAnalysisConstants;
analyses_to_invalidate |= kAnalysisDebugInfo;
}
// The dominator analysis hold the pseudo entry and exit nodes from the CFG.
// Also if the CFG change the dominators many changed as well, so the
// dominator analysis should be invalidated as well.
if (analyses_to_invalidate & kAnalysisCFG) {
analyses_to_invalidate |= kAnalysisDominatorAnalysis;
}
if (analyses_to_invalidate & kAnalysisDefUse) {
def_use_mgr_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisInstrToBlockMapping) {
instr_to_block_.clear();
}
if (analyses_to_invalidate & kAnalysisDecorations) {
decoration_mgr_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisCombinators) {
combinator_ops_.clear();
}
if (analyses_to_invalidate & kAnalysisBuiltinVarId) {
builtin_var_id_map_.clear();
}
if (analyses_to_invalidate & kAnalysisCFG) {
cfg_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisDominatorAnalysis) {
dominator_trees_.clear();
post_dominator_trees_.clear();
}
if (analyses_to_invalidate & kAnalysisNameMap) {
id_to_name_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisValueNumberTable) {
vn_table_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisStructuredCFG) {
struct_cfg_analysis_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisIdToFuncMapping) {
id_to_func_.clear();
}
if (analyses_to_invalidate & kAnalysisConstants) {
constant_mgr_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisLiveness) {
liveness_mgr_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisTypes) {
type_mgr_.reset(nullptr);
}
if (analyses_to_invalidate & kAnalysisDebugInfo) {
debug_info_mgr_.reset(nullptr);
}
valid_analyses_ = Analysis(valid_analyses_ & ~analyses_to_invalidate);
}
Instruction* IRContext::KillInst(Instruction* inst) {
if (!inst) {
return nullptr;
}
KillNamesAndDecorates(inst);
KillOperandFromDebugInstructions(inst);
if (AreAnalysesValid(kAnalysisDefUse)) {
analysis::DefUseManager* def_use_mgr = get_def_use_mgr();
def_use_mgr->ClearInst(inst);
for (auto& l_inst : inst->dbg_line_insts()) def_use_mgr->ClearInst(&l_inst);
}
if (AreAnalysesValid(kAnalysisInstrToBlockMapping)) {
instr_to_block_.erase(inst);
}
if (AreAnalysesValid(kAnalysisDecorations)) {
if (inst->IsDecoration()) {
decoration_mgr_->RemoveDecoration(inst);
}
}
if (AreAnalysesValid(kAnalysisDebugInfo)) {
get_debug_info_mgr()->ClearDebugScopeAndInlinedAtUses(inst);
get_debug_info_mgr()->ClearDebugInfo(inst);
}
if (type_mgr_ && IsTypeInst(inst->opcode())) {
type_mgr_->RemoveId(inst->result_id());
}
if (constant_mgr_ && IsConstantInst(inst->opcode())) {
constant_mgr_->RemoveId(inst->result_id());
}
if (inst->opcode() == spv::Op::OpCapability ||
inst->opcode() == spv::Op::OpExtension) {
// We reset the feature manager, instead of updating it, because it is just
// as much work. We would have to remove all capabilities implied by this
// capability that are not also implied by the remaining OpCapability
// instructions. We could update extensions, but we will see if it is
// needed.
ResetFeatureManager();
}
RemoveFromIdToName(inst);
Instruction* next_instruction = nullptr;
if (inst->IsInAList()) {
next_instruction = inst->NextNode();
inst->RemoveFromList();
delete inst;
} else {
// Needed for instructions that are not part of a list like OpLabels,
// OpFunction, OpFunctionEnd, etc..
inst->ToNop();
}
return next_instruction;
}
void IRContext::CollectNonSemanticTree(
Instruction* inst, std::unordered_set<Instruction*>* to_kill) {
if (!inst->HasResultId()) return;
// Debug[No]Line result id is not used, so we are done
if (inst->IsDebugLineInst()) return;
std::vector<Instruction*> work_list;
std::unordered_set<Instruction*> seen;
work_list.push_back(inst);
while (!work_list.empty()) {
auto* i = work_list.back();
work_list.pop_back();
get_def_use_mgr()->ForEachUser(
i, [&work_list, to_kill, &seen](Instruction* user) {
if (user->IsNonSemanticInstruction() && seen.insert(user).second) {
work_list.push_back(user);
to_kill->insert(user);
}
});
}
}
bool IRContext::KillDef(uint32_t id) {
Instruction* def = get_def_use_mgr()->GetDef(id);
if (def != nullptr) {
KillInst(def);
return true;
}
return false;
}
bool IRContext::ReplaceAllUsesWith(uint32_t before, uint32_t after) {
return ReplaceAllUsesWithPredicate(before, after,
[](Instruction*) { return true; });
}
bool IRContext::ReplaceAllUsesWithPredicate(
uint32_t before, uint32_t after,
const std::function<bool(Instruction*)>& predicate) {
if (before == after) return false;
if (AreAnalysesValid(kAnalysisDebugInfo)) {
get_debug_info_mgr()->ReplaceAllUsesInDebugScopeWithPredicate(before, after,
predicate);
}
// Ensure that |after| has been registered as def.
assert(get_def_use_mgr()->GetDef(after) &&
"'after' is not a registered def.");
std::vector<std::pair<Instruction*, uint32_t>> uses_to_update;
get_def_use_mgr()->ForEachUse(
before, [&predicate, &uses_to_update](Instruction* user, uint32_t index) {
if (predicate(user)) {
uses_to_update.emplace_back(user, index);
}
});
Instruction* prev = nullptr;
for (auto p : uses_to_update) {
Instruction* user = p.first;
uint32_t index = p.second;
if (prev == nullptr || prev != user) {
ForgetUses(user);
prev = user;
}
const uint32_t type_result_id_count =
(user->result_id() != 0) + (user->type_id() != 0);
if (index < type_result_id_count) {
// Update the type_id. Note that result id is immutable so it should
// never be updated.
if (user->type_id() != 0 && index == 0) {
user->SetResultType(after);
} else if (user->type_id() == 0) {
SPIRV_ASSERT(consumer_, false,
"Result type id considered as use while the instruction "
"doesn't have a result type id.");
(void)consumer_; // Makes the compiler happy for release build.
} else {
SPIRV_ASSERT(consumer_, false,
"Trying setting the immutable result id.");
}
} else {
// Update an in-operand.
uint32_t in_operand_pos = index - type_result_id_count;
// Make the modification in the instruction.
user->SetInOperand(in_operand_pos, {after});
}
AnalyzeUses(user);
}
return true;
}
bool IRContext::IsConsistent() {
#ifndef SPIRV_CHECK_CONTEXT
return true;
#else
if (AreAnalysesValid(kAnalysisDefUse)) {
analysis::DefUseManager new_def_use(module());
if (!CompareAndPrintDifferences(*get_def_use_mgr(), new_def_use)) {
return false;
}
}
if (AreAnalysesValid(kAnalysisIdToFuncMapping)) {
for (auto& fn : *module_) {
if (id_to_func_[fn.result_id()] != &fn) {
return false;
}
}
}
if (AreAnalysesValid(kAnalysisInstrToBlockMapping)) {
for (auto& func : *module()) {
for (auto& block : func) {
if (!block.WhileEachInst([this, &block](Instruction* inst) {
if (get_instr_block(inst) != &block) {
return false;
}
return true;
}))
return false;
}
}
}
if (!CheckCFG()) {
return false;
}
if (AreAnalysesValid(kAnalysisDecorations)) {
analysis::DecorationManager* dec_mgr = get_decoration_mgr();
analysis::DecorationManager current(module());
if (*dec_mgr != current) {
return false;
}
}
if (feature_mgr_ != nullptr) {
FeatureManager current(grammar_);
current.Analyze(module());
if (current != *feature_mgr_) {
return false;
}
}
return true;
#endif
}
void IRContext::ForgetUses(Instruction* inst) {
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->EraseUseRecordsOfOperandIds(inst);
}
if (AreAnalysesValid(kAnalysisDecorations)) {
if (inst->IsDecoration()) {
get_decoration_mgr()->RemoveDecoration(inst);
}
}
if (AreAnalysesValid(kAnalysisDebugInfo)) {
get_debug_info_mgr()->ClearDebugInfo(inst);
}
RemoveFromIdToName(inst);
}
void IRContext::AnalyzeUses(Instruction* inst) {
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->AnalyzeInstUse(inst);
}
if (AreAnalysesValid(kAnalysisDecorations)) {
if (inst->IsDecoration()) {
get_decoration_mgr()->AddDecoration(inst);
}
}
if (AreAnalysesValid(kAnalysisDebugInfo)) {
get_debug_info_mgr()->AnalyzeDebugInst(inst);
}
if (id_to_name_ && (inst->opcode() == spv::Op::OpName ||
inst->opcode() == spv::Op::OpMemberName)) {
id_to_name_->insert({inst->GetSingleWordInOperand(0), inst});
}
}
void IRContext::KillNamesAndDecorates(uint32_t id) {
analysis::DecorationManager* dec_mgr = get_decoration_mgr();
dec_mgr->RemoveDecorationsFrom(id);
std::vector<Instruction*> name_to_kill;
for (auto name : GetNames(id)) {
name_to_kill.push_back(name.second);
}
for (Instruction* name_inst : name_to_kill) {
KillInst(name_inst);
}
}
void IRContext::KillNamesAndDecorates(Instruction* inst) {
const uint32_t rId = inst->result_id();
if (rId == 0) return;
KillNamesAndDecorates(rId);
}
void IRContext::KillOperandFromDebugInstructions(Instruction* inst) {
const auto opcode = inst->opcode();
const uint32_t id = inst->result_id();
// Kill id of OpFunction from DebugFunction.
if (opcode == spv::Op::OpFunction) {
for (auto it = module()->ext_inst_debuginfo_begin();
it != module()->ext_inst_debuginfo_end(); ++it) {
if (it->GetOpenCL100DebugOpcode() != OpenCLDebugInfo100DebugFunction)
continue;
auto& operand = it->GetOperand(kDebugFunctionOperandFunctionIndex);
if (operand.words[0] == id) {
operand.words[0] =
get_debug_info_mgr()->GetDebugInfoNone()->result_id();
get_def_use_mgr()->AnalyzeInstUse(&*it);
}
}
}
// Kill id of OpVariable for global variable from DebugGlobalVariable.
if (opcode == spv::Op::OpVariable || IsConstantInst(opcode)) {
for (auto it = module()->ext_inst_debuginfo_begin();
it != module()->ext_inst_debuginfo_end(); ++it) {
if (it->GetCommonDebugOpcode() != CommonDebugInfoDebugGlobalVariable)
continue;
auto& operand = it->GetOperand(kDebugGlobalVariableOperandVariableIndex);
if (operand.words[0] == id) {
operand.words[0] =
get_debug_info_mgr()->GetDebugInfoNone()->result_id();
get_def_use_mgr()->AnalyzeInstUse(&*it);
}
}
}
}
void IRContext::AddCombinatorsForCapability(uint32_t capability) {
spv::Capability cap = spv::Capability(capability);
if (cap == spv::Capability::Shader) {
combinator_ops_[0].insert(
{(uint32_t)spv::Op::OpNop,
(uint32_t)spv::Op::OpUndef,
(uint32_t)spv::Op::OpConstant,
(uint32_t)spv::Op::OpConstantTrue,
(uint32_t)spv::Op::OpConstantFalse,
(uint32_t)spv::Op::OpConstantComposite,
(uint32_t)spv::Op::OpConstantSampler,
(uint32_t)spv::Op::OpConstantNull,
(uint32_t)spv::Op::OpTypeVoid,
(uint32_t)spv::Op::OpTypeBool,
(uint32_t)spv::Op::OpTypeInt,
(uint32_t)spv::Op::OpTypeFloat,
(uint32_t)spv::Op::OpTypeVector,
(uint32_t)spv::Op::OpTypeMatrix,
(uint32_t)spv::Op::OpTypeImage,
(uint32_t)spv::Op::OpTypeSampler,
(uint32_t)spv::Op::OpTypeSampledImage,
(uint32_t)spv::Op::OpTypeAccelerationStructureNV,
(uint32_t)spv::Op::OpTypeAccelerationStructureKHR,
(uint32_t)spv::Op::OpTypeRayQueryKHR,
(uint32_t)spv::Op::OpTypeHitObjectNV,
(uint32_t)spv::Op::OpTypeArray,
(uint32_t)spv::Op::OpTypeRuntimeArray,
(uint32_t)spv::Op::OpTypeStruct,
(uint32_t)spv::Op::OpTypeOpaque,
(uint32_t)spv::Op::OpTypePointer,
(uint32_t)spv::Op::OpTypeFunction,
(uint32_t)spv::Op::OpTypeEvent,
(uint32_t)spv::Op::OpTypeDeviceEvent,
(uint32_t)spv::Op::OpTypeReserveId,
(uint32_t)spv::Op::OpTypeQueue,
(uint32_t)spv::Op::OpTypePipe,
(uint32_t)spv::Op::OpTypeForwardPointer,
(uint32_t)spv::Op::OpVariable,
(uint32_t)spv::Op::OpImageTexelPointer,
(uint32_t)spv::Op::OpLoad,
(uint32_t)spv::Op::OpAccessChain,
(uint32_t)spv::Op::OpInBoundsAccessChain,
(uint32_t)spv::Op::OpArrayLength,
(uint32_t)spv::Op::OpVectorExtractDynamic,
(uint32_t)spv::Op::OpVectorInsertDynamic,
(uint32_t)spv::Op::OpVectorShuffle,
(uint32_t)spv::Op::OpCompositeConstruct,
(uint32_t)spv::Op::OpCompositeExtract,
(uint32_t)spv::Op::OpCompositeInsert,
(uint32_t)spv::Op::OpCopyObject,
(uint32_t)spv::Op::OpTranspose,
(uint32_t)spv::Op::OpSampledImage,
(uint32_t)spv::Op::OpImageSampleImplicitLod,
(uint32_t)spv::Op::OpImageSampleExplicitLod,
(uint32_t)spv::Op::OpImageSampleDrefImplicitLod,
(uint32_t)spv::Op::OpImageSampleDrefExplicitLod,
(uint32_t)spv::Op::OpImageSampleProjImplicitLod,
(uint32_t)spv::Op::OpImageSampleProjExplicitLod,
(uint32_t)spv::Op::OpImageSampleProjDrefImplicitLod,
(uint32_t)spv::Op::OpImageSampleProjDrefExplicitLod,
(uint32_t)spv::Op::OpImageFetch,
(uint32_t)spv::Op::OpImageGather,
(uint32_t)spv::Op::OpImageDrefGather,
(uint32_t)spv::Op::OpImageRead,
(uint32_t)spv::Op::OpImage,
(uint32_t)spv::Op::OpImageQueryFormat,
(uint32_t)spv::Op::OpImageQueryOrder,
(uint32_t)spv::Op::OpImageQuerySizeLod,
(uint32_t)spv::Op::OpImageQuerySize,
(uint32_t)spv::Op::OpImageQueryLevels,
(uint32_t)spv::Op::OpImageQuerySamples,
(uint32_t)spv::Op::OpConvertFToU,
(uint32_t)spv::Op::OpConvertFToS,
(uint32_t)spv::Op::OpConvertSToF,
(uint32_t)spv::Op::OpConvertUToF,
(uint32_t)spv::Op::OpUConvert,
(uint32_t)spv::Op::OpSConvert,
(uint32_t)spv::Op::OpFConvert,
(uint32_t)spv::Op::OpQuantizeToF16,
(uint32_t)spv::Op::OpBitcast,
(uint32_t)spv::Op::OpSNegate,
(uint32_t)spv::Op::OpFNegate,
(uint32_t)spv::Op::OpIAdd,
(uint32_t)spv::Op::OpFAdd,
(uint32_t)spv::Op::OpISub,
(uint32_t)spv::Op::OpFSub,
(uint32_t)spv::Op::OpIMul,
(uint32_t)spv::Op::OpFMul,
(uint32_t)spv::Op::OpUDiv,
(uint32_t)spv::Op::OpSDiv,
(uint32_t)spv::Op::OpFDiv,
(uint32_t)spv::Op::OpUMod,
(uint32_t)spv::Op::OpSRem,
(uint32_t)spv::Op::OpSMod,
(uint32_t)spv::Op::OpFRem,
(uint32_t)spv::Op::OpFMod,
(uint32_t)spv::Op::OpVectorTimesScalar,
(uint32_t)spv::Op::OpMatrixTimesScalar,
(uint32_t)spv::Op::OpVectorTimesMatrix,
(uint32_t)spv::Op::OpMatrixTimesVector,
(uint32_t)spv::Op::OpMatrixTimesMatrix,
(uint32_t)spv::Op::OpOuterProduct,
(uint32_t)spv::Op::OpDot,
(uint32_t)spv::Op::OpIAddCarry,
(uint32_t)spv::Op::OpISubBorrow,
(uint32_t)spv::Op::OpUMulExtended,
(uint32_t)spv::Op::OpSMulExtended,
(uint32_t)spv::Op::OpAny,
(uint32_t)spv::Op::OpAll,
(uint32_t)spv::Op::OpIsNan,
(uint32_t)spv::Op::OpIsInf,
(uint32_t)spv::Op::OpLogicalEqual,
(uint32_t)spv::Op::OpLogicalNotEqual,
(uint32_t)spv::Op::OpLogicalOr,
(uint32_t)spv::Op::OpLogicalAnd,
(uint32_t)spv::Op::OpLogicalNot,
(uint32_t)spv::Op::OpSelect,
(uint32_t)spv::Op::OpIEqual,
(uint32_t)spv::Op::OpINotEqual,
(uint32_t)spv::Op::OpUGreaterThan,
(uint32_t)spv::Op::OpSGreaterThan,
(uint32_t)spv::Op::OpUGreaterThanEqual,
(uint32_t)spv::Op::OpSGreaterThanEqual,
(uint32_t)spv::Op::OpULessThan,
(uint32_t)spv::Op::OpSLessThan,
(uint32_t)spv::Op::OpULessThanEqual,
(uint32_t)spv::Op::OpSLessThanEqual,
(uint32_t)spv::Op::OpFOrdEqual,
(uint32_t)spv::Op::OpFUnordEqual,
(uint32_t)spv::Op::OpFOrdNotEqual,
(uint32_t)spv::Op::OpFUnordNotEqual,
(uint32_t)spv::Op::OpFOrdLessThan,
(uint32_t)spv::Op::OpFUnordLessThan,
(uint32_t)spv::Op::OpFOrdGreaterThan,
(uint32_t)spv::Op::OpFUnordGreaterThan,
(uint32_t)spv::Op::OpFOrdLessThanEqual,
(uint32_t)spv::Op::OpFUnordLessThanEqual,
(uint32_t)spv::Op::OpFOrdGreaterThanEqual,
(uint32_t)spv::Op::OpFUnordGreaterThanEqual,
(uint32_t)spv::Op::OpShiftRightLogical,
(uint32_t)spv::Op::OpShiftRightArithmetic,
(uint32_t)spv::Op::OpShiftLeftLogical,
(uint32_t)spv::Op::OpBitwiseOr,
(uint32_t)spv::Op::OpBitwiseXor,
(uint32_t)spv::Op::OpBitwiseAnd,
(uint32_t)spv::Op::OpNot,
(uint32_t)spv::Op::OpBitFieldInsert,
(uint32_t)spv::Op::OpBitFieldSExtract,
(uint32_t)spv::Op::OpBitFieldUExtract,
(uint32_t)spv::Op::OpBitReverse,
(uint32_t)spv::Op::OpBitCount,
(uint32_t)spv::Op::OpPhi,
(uint32_t)spv::Op::OpImageSparseSampleImplicitLod,
(uint32_t)spv::Op::OpImageSparseSampleExplicitLod,
(uint32_t)spv::Op::OpImageSparseSampleDrefImplicitLod,
(uint32_t)spv::Op::OpImageSparseSampleDrefExplicitLod,
(uint32_t)spv::Op::OpImageSparseSampleProjImplicitLod,
(uint32_t)spv::Op::OpImageSparseSampleProjExplicitLod,
(uint32_t)spv::Op::OpImageSparseSampleProjDrefImplicitLod,
(uint32_t)spv::Op::OpImageSparseSampleProjDrefExplicitLod,
(uint32_t)spv::Op::OpImageSparseFetch,
(uint32_t)spv::Op::OpImageSparseGather,
(uint32_t)spv::Op::OpImageSparseDrefGather,
(uint32_t)spv::Op::OpImageSparseTexelsResident,
(uint32_t)spv::Op::OpImageSparseRead,
(uint32_t)spv::Op::OpSizeOf});
}
}
void IRContext::AddCombinatorsForExtension(Instruction* extension) {
assert(extension->opcode() == spv::Op::OpExtInstImport &&
"Expecting an import of an extension's instruction set.");
const std::string extension_name = extension->GetInOperand(0).AsString();
if (extension_name == "GLSL.std.450") {
combinator_ops_[extension->result_id()] = {
(uint32_t)GLSLstd450Round,
(uint32_t)GLSLstd450RoundEven,
(uint32_t)GLSLstd450Trunc,
(uint32_t)GLSLstd450FAbs,
(uint32_t)GLSLstd450SAbs,
(uint32_t)GLSLstd450FSign,
(uint32_t)GLSLstd450SSign,
(uint32_t)GLSLstd450Floor,
(uint32_t)GLSLstd450Ceil,
(uint32_t)GLSLstd450Fract,
(uint32_t)GLSLstd450Radians,
(uint32_t)GLSLstd450Degrees,
(uint32_t)GLSLstd450Sin,
(uint32_t)GLSLstd450Cos,
(uint32_t)GLSLstd450Tan,
(uint32_t)GLSLstd450Asin,
(uint32_t)GLSLstd450Acos,
(uint32_t)GLSLstd450Atan,
(uint32_t)GLSLstd450Sinh,
(uint32_t)GLSLstd450Cosh,
(uint32_t)GLSLstd450Tanh,
(uint32_t)GLSLstd450Asinh,
(uint32_t)GLSLstd450Acosh,
(uint32_t)GLSLstd450Atanh,
(uint32_t)GLSLstd450Atan2,
(uint32_t)GLSLstd450Pow,
(uint32_t)GLSLstd450Exp,
(uint32_t)GLSLstd450Log,
(uint32_t)GLSLstd450Exp2,
(uint32_t)GLSLstd450Log2,
(uint32_t)GLSLstd450Sqrt,
(uint32_t)GLSLstd450InverseSqrt,
(uint32_t)GLSLstd450Determinant,
(uint32_t)GLSLstd450MatrixInverse,
(uint32_t)GLSLstd450ModfStruct,
(uint32_t)GLSLstd450FMin,
(uint32_t)GLSLstd450UMin,
(uint32_t)GLSLstd450SMin,
(uint32_t)GLSLstd450FMax,
(uint32_t)GLSLstd450UMax,
(uint32_t)GLSLstd450SMax,
(uint32_t)GLSLstd450FClamp,
(uint32_t)GLSLstd450UClamp,
(uint32_t)GLSLstd450SClamp,
(uint32_t)GLSLstd450FMix,
(uint32_t)GLSLstd450IMix,
(uint32_t)GLSLstd450Step,
(uint32_t)GLSLstd450SmoothStep,
(uint32_t)GLSLstd450Fma,
(uint32_t)GLSLstd450FrexpStruct,
(uint32_t)GLSLstd450Ldexp,
(uint32_t)GLSLstd450PackSnorm4x8,
(uint32_t)GLSLstd450PackUnorm4x8,
(uint32_t)GLSLstd450PackSnorm2x16,
(uint32_t)GLSLstd450PackUnorm2x16,
(uint32_t)GLSLstd450PackHalf2x16,
(uint32_t)GLSLstd450PackDouble2x32,
(uint32_t)GLSLstd450UnpackSnorm2x16,
(uint32_t)GLSLstd450UnpackUnorm2x16,
(uint32_t)GLSLstd450UnpackHalf2x16,
(uint32_t)GLSLstd450UnpackSnorm4x8,
(uint32_t)GLSLstd450UnpackUnorm4x8,
(uint32_t)GLSLstd450UnpackDouble2x32,
(uint32_t)GLSLstd450Length,
(uint32_t)GLSLstd450Distance,
(uint32_t)GLSLstd450Cross,
(uint32_t)GLSLstd450Normalize,
(uint32_t)GLSLstd450FaceForward,
(uint32_t)GLSLstd450Reflect,
(uint32_t)GLSLstd450Refract,
(uint32_t)GLSLstd450FindILsb,
(uint32_t)GLSLstd450FindSMsb,
(uint32_t)GLSLstd450FindUMsb,
(uint32_t)GLSLstd450InterpolateAtCentroid,
(uint32_t)GLSLstd450InterpolateAtSample,
(uint32_t)GLSLstd450InterpolateAtOffset,
(uint32_t)GLSLstd450NMin,
(uint32_t)GLSLstd450NMax,
(uint32_t)GLSLstd450NClamp};
} else {
// Map the result id to the empty set.
combinator_ops_[extension->result_id()];
}
}
void IRContext::InitializeCombinators() {
get_feature_mgr()->GetCapabilities()->ForEach([this](spv::Capability cap) {
AddCombinatorsForCapability(uint32_t(cap));
});
for (auto& extension : module()->ext_inst_imports()) {
AddCombinatorsForExtension(&extension);
}
valid_analyses_ |= kAnalysisCombinators;
}
void IRContext::RemoveFromIdToName(const Instruction* inst) {
if (id_to_name_ && (inst->opcode() == spv::Op::OpName ||
inst->opcode() == spv::Op::OpMemberName)) {
auto range = id_to_name_->equal_range(inst->GetSingleWordInOperand(0));
for (auto it = range.first; it != range.second; ++it) {
if (it->second == inst) {
id_to_name_->erase(it);
break;
}
}
}
}
LoopDescriptor* IRContext::GetLoopDescriptor(const Function* f) {
if (!AreAnalysesValid(kAnalysisLoopAnalysis)) {
ResetLoopAnalysis();
}
std::unordered_map<const Function*, LoopDescriptor>::iterator it =
loop_descriptors_.find(f);
if (it == loop_descriptors_.end()) {
return &loop_descriptors_
.emplace(std::make_pair(f, LoopDescriptor(this, f)))
.first->second;
}
return &it->second;
}
uint32_t IRContext::FindBuiltinInputVar(uint32_t builtin) {
for (auto& a : module_->annotations()) {
if (spv::Op(a.opcode()) != spv::Op::OpDecorate) continue;
if (spv::Decoration(a.GetSingleWordInOperand(
kSpvDecorateDecorationInIdx)) != spv::Decoration::BuiltIn)
continue;
if (a.GetSingleWordInOperand(kSpvDecorateBuiltinInIdx) != builtin) continue;
uint32_t target_id = a.GetSingleWordInOperand(kSpvDecorateTargetIdInIdx);
Instruction* b_var = get_def_use_mgr()->GetDef(target_id);
if (b_var->opcode() != spv::Op::OpVariable) continue;
if (spv::StorageClass(b_var->GetSingleWordInOperand(0)) !=
spv::StorageClass::Input)
continue;
return target_id;
}
return 0;
}
void IRContext::AddVarToEntryPoints(uint32_t var_id) {
uint32_t ocnt = 0;
for (auto& e : module()->entry_points()) {
bool found = false;
e.ForEachInOperand([&ocnt, &found, &var_id](const uint32_t* idp) {
if (ocnt >= kEntryPointInterfaceInIdx) {
if (*idp == var_id) found = true;
}
++ocnt;
});
if (!found) {
e.AddOperand({SPV_OPERAND_TYPE_ID, {var_id}});
get_def_use_mgr()->AnalyzeInstDefUse(&e);
}
}
}
uint32_t IRContext::GetBuiltinInputVarId(uint32_t builtin) {
if (!AreAnalysesValid(kAnalysisBuiltinVarId)) ResetBuiltinAnalysis();
// If cached, return it.
std::unordered_map<uint32_t, uint32_t>::iterator it =
builtin_var_id_map_.find(builtin);
if (it != builtin_var_id_map_.end()) return it->second;
// Look for one in shader
uint32_t var_id = FindBuiltinInputVar(builtin);
if (var_id == 0) {
// If not found, create it
// TODO(greg-lunarg): Add support for all builtins
analysis::TypeManager* type_mgr = get_type_mgr();
analysis::Type* reg_type;
switch (spv::BuiltIn(builtin)) {
case spv::BuiltIn::FragCoord: {
analysis::Float float_ty(32);
analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty);
analysis::Vector v4float_ty(reg_float_ty, 4);
reg_type = type_mgr->GetRegisteredType(&v4float_ty);
break;
}
case spv::BuiltIn::VertexIndex:
case spv::BuiltIn::InstanceIndex:
case spv::BuiltIn::PrimitiveId:
case spv::BuiltIn::InvocationId:
case spv::BuiltIn::SubgroupLocalInvocationId: {
analysis::Integer uint_ty(32, false);
reg_type = type_mgr->GetRegisteredType(&uint_ty);
break;
}
case spv::BuiltIn::GlobalInvocationId:
case spv::BuiltIn::LaunchIdNV: {
analysis::Integer uint_ty(32, false);
analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
analysis::Vector v3uint_ty(reg_uint_ty, 3);
reg_type = type_mgr->GetRegisteredType(&v3uint_ty);
break;
}
case spv::BuiltIn::TessCoord: {
analysis::Float float_ty(32);
analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty);
analysis::Vector v3float_ty(reg_float_ty, 3);
reg_type = type_mgr->GetRegisteredType(&v3float_ty);
break;
}
case spv::BuiltIn::SubgroupLtMask: {
analysis::Integer uint_ty(32, false);
analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
analysis::Vector v4uint_ty(reg_uint_ty, 4);
reg_type = type_mgr->GetRegisteredType(&v4uint_ty);
break;
}
default: {
assert(false && "unhandled builtin");
return 0;
}
}
uint32_t type_id = type_mgr->GetTypeInstruction(reg_type);
uint32_t varTyPtrId =
type_mgr->FindPointerToType(type_id, spv::StorageClass::Input);
// TODO(1841): Handle id overflow.
var_id = TakeNextId();
std::unique_ptr<Instruction> newVarOp(
new Instruction(this, spv::Op::OpVariable, varTyPtrId, var_id,
{{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
{uint32_t(spv::StorageClass::Input)}}}));
get_def_use_mgr()->AnalyzeInstDefUse(&*newVarOp);
module()->AddGlobalValue(std::move(newVarOp));
get_decoration_mgr()->AddDecorationVal(
var_id, uint32_t(spv::Decoration::BuiltIn), builtin);
AddVarToEntryPoints(var_id);
}
builtin_var_id_map_[builtin] = var_id;
return var_id;
}
void IRContext::AddCalls(const Function* func, std::queue<uint32_t>* todo) {
for (auto bi = func->begin(); bi != func->end(); ++bi)
for (auto ii = bi->begin(); ii != bi->end(); ++ii)
if (ii->opcode() == spv::Op::OpFunctionCall)
todo->push(ii->GetSingleWordInOperand(0));
}
bool IRContext::ProcessEntryPointCallTree(ProcessFunction& pfn) {
// Collect all of the entry points as the roots.
std::queue<uint32_t> roots;
for (auto& e : module()->entry_points()) {
roots.push(e.GetSingleWordInOperand(kEntryPointFunctionIdInIdx));
}
return ProcessCallTreeFromRoots(pfn, &roots);
}
bool IRContext::ProcessReachableCallTree(ProcessFunction& pfn) {
std::queue<uint32_t> roots;
// Add all entry points since they can be reached from outside the module.
for (auto& e : module()->entry_points())
roots.push(e.GetSingleWordInOperand(kEntryPointFunctionIdInIdx));
// Add all exported functions since they can be reached from outside the
// module.
for (auto& a : annotations()) {
// TODO: Handle group decorations as well. Currently not generate by any
// front-end, but could be coming.
if (a.opcode() == spv::Op::OpDecorate) {
if (spv::Decoration(a.GetSingleWordOperand(1)) ==
spv::Decoration::LinkageAttributes) {
uint32_t lastOperand = a.NumOperands() - 1;
if (spv::LinkageType(a.GetSingleWordOperand(lastOperand)) ==
spv::LinkageType::Export) {
uint32_t id = a.GetSingleWordOperand(0);
if (GetFunction(id)) {
roots.push(id);
}
}
}
}
}
return ProcessCallTreeFromRoots(pfn, &roots);
}
bool IRContext::ProcessCallTreeFromRoots(ProcessFunction& pfn,
std::queue<uint32_t>* roots) {
// Process call tree
bool modified = false;
std::unordered_set<uint32_t> done;
while (!roots->empty()) {
const uint32_t fi = roots->front();
roots->pop();
if (done.insert(fi).second) {
Function* fn = GetFunction(fi);
assert(fn && "Trying to process a function that does not exist.");
modified = pfn(fn) || modified;
AddCalls(fn, roots);
}
}
return modified;
}
void IRContext::CollectCallTreeFromRoots(unsigned entryId,
std::unordered_set<uint32_t>* funcs) {
std::queue<uint32_t> roots;
roots.push(entryId);
while (!roots.empty()) {
const uint32_t fi = roots.front();
roots.pop();
funcs->insert(fi);
Function* fn = GetFunction(fi);
AddCalls(fn, &roots);
}
}
void IRContext::EmitErrorMessage(std::string message, Instruction* inst) {
if (!consumer()) {
return;
}
Instruction* line_inst = inst;
while (line_inst != nullptr) { // Stop at the beginning of the basic block.
if (!line_inst->dbg_line_insts().empty()) {
line_inst = &line_inst->dbg_line_insts().back();
if (line_inst->IsNoLine()) {
line_inst = nullptr;
}
break;
}
line_inst = line_inst->PreviousNode();
}
uint32_t line_number = 0;
uint32_t col_number = 0;
std::string source;
if (line_inst != nullptr) {
Instruction* file_name =
get_def_use_mgr()->GetDef(line_inst->GetSingleWordInOperand(0));
source = file_name->GetInOperand(0).AsString();
// Get the line number and column number.
line_number = line_inst->GetSingleWordInOperand(1);
col_number = line_inst->GetSingleWordInOperand(2);
}
message +=
"\n " + inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
consumer()(SPV_MSG_ERROR, source.c_str(), {line_number, col_number, 0},
message.c_str());
}
// Gets the dominator analysis for function |f|.
DominatorAnalysis* IRContext::GetDominatorAnalysis(const Function* f) {
if (!AreAnalysesValid(kAnalysisDominatorAnalysis)) {
ResetDominatorAnalysis();
}
if (dominator_trees_.find(f) == dominator_trees_.end()) {
dominator_trees_[f].InitializeTree(*cfg(), f);
}
return &dominator_trees_[f];
}
// Gets the postdominator analysis for function |f|.
PostDominatorAnalysis* IRContext::GetPostDominatorAnalysis(const Function* f) {
if (!AreAnalysesValid(kAnalysisDominatorAnalysis)) {
ResetDominatorAnalysis();
}
if (post_dominator_trees_.find(f) == post_dominator_trees_.end()) {
post_dominator_trees_[f].InitializeTree(*cfg(), f);
}
return &post_dominator_trees_[f];
}
bool IRContext::CheckCFG() {
std::unordered_map<uint32_t, std::vector<uint32_t>> real_preds;
if (!AreAnalysesValid(kAnalysisCFG)) {
return true;
}
for (Function& function : *module()) {
for (const auto& bb : function) {
bb.ForEachSuccessorLabel([&bb, &real_preds](const uint32_t lab_id) {
real_preds[lab_id].push_back(bb.id());
});
}
for (auto& bb : function) {
std::vector<uint32_t> preds = cfg()->preds(bb.id());
std::vector<uint32_t> real = real_preds[bb.id()];
std::sort(preds.begin(), preds.end());
std::sort(real.begin(), real.end());
bool same = true;
if (preds.size() != real.size()) {
same = false;
}
for (size_t i = 0; i < real.size() && same; i++) {
if (preds[i] != real[i]) {
same = false;
}
}
if (!same) {
std::cerr << "Predecessors for " << bb.id() << " are different:\n";
std::cerr << "Real:";
for (uint32_t i : real) {
std::cerr << ' ' << i;
}
std::cerr << std::endl;
std::cerr << "Recorded:";
for (uint32_t i : preds) {
std::cerr << ' ' << i;
}
std::cerr << std::endl;
}
if (!same) return false;
}
}
return true;
}
bool IRContext::IsReachable(const opt::BasicBlock& bb) {
auto enclosing_function = bb.GetParent();
return GetDominatorAnalysis(enclosing_function)
->Dominates(enclosing_function->entry().get(), &bb);
}
spv::ExecutionModel IRContext::GetStage() {
const auto& entry_points = module()->entry_points();
if (entry_points.empty()) {
return spv::ExecutionModel::Max;
}
uint32_t stage = entry_points.begin()->GetSingleWordInOperand(
kEntryPointExecutionModelInIdx);
auto it = std::find_if(
entry_points.begin(), entry_points.end(), [stage](const Instruction& x) {
return x.GetSingleWordInOperand(kEntryPointExecutionModelInIdx) !=
stage;
});
if (it != entry_points.end()) {
EmitErrorMessage("Mixed stage shader module not supported", &(*it));
}
return static_cast<spv::ExecutionModel>(stage);
}
} // namespace opt
} // namespace spvtools