SPIRV-Tools/source/validate.cpp

301 lines
12 KiB
C++

// Copyright (c) 2015 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include <libspirv/libspirv.h>
#include "binary.h"
#include "diagnostic.h"
#include "opcode.h"
#include "operand.h"
#include "validate.h"
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <vector>
spv_result_t spvValidateOperandsString(const uint32_t *words,
const uint16_t wordCount,
spv_position position,
spv_diagnostic *pDiagnostic) {
const char *str = (const char *)words;
uint64_t strWordCount = strlen(str) / sizeof(uint32_t) + 1;
spvCheck(strWordCount < wordCount, DIAGNOSTIC << "Instruction word count is "
"too short, string extends "
"past end of instruction.";
return SPV_WARNING);
return SPV_SUCCESS;
}
spv_result_t spvValidateOperandsLiteral(const uint32_t *words,
const uint32_t length,
const uint16_t maxLength,
spv_position position,
spv_diagnostic *pDiagnostic) {
// NOTE: A literal could either be a number consuming up to 2 words or a
// null terminated string.
(void)words;
(void)length;
(void)maxLength;
(void)position;
(void)pDiagnostic;
return SPV_UNSUPPORTED;
}
spv_result_t spvValidateOperandValue(const spv_operand_type_t type,
const uint32_t word,
const spv_operand_table operandTable,
spv_position position,
spv_diagnostic *pDiagnostic) {
switch (type) {
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_RESULT_ID: {
// NOTE: ID's are validated in SPV_VALIDATION_LEVEL_1, this is
// SPV_VALIDATION_LEVEL_0
} break;
case SPV_OPERAND_TYPE_LITERAL_NUMBER: {
// NOTE: Implicitly valid as they are encoded as 32 bit value
} break;
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS:
case SPV_OPERAND_TYPE_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_EXECUTION_SCOPE:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: {
spv_operand_desc operandEntry = nullptr;
spv_result_t error =
spvOperandTableValueLookup(operandTable, type, word, &operandEntry);
spvCheck(error, DIAGNOSTIC << "Invalid '" << spvOperandTypeStr(type)
<< "' operand '" << word << "'.";
return error);
} break;
default:
assert(0 && "Invalid operand types should already have been caught!");
}
return SPV_SUCCESS;
}
spv_result_t spvValidateBasic(const spv_instruction_t *pInsts,
const uint64_t instCount,
const spv_opcode_table opcodeTable,
const spv_operand_table operandTable,
spv_position position,
spv_diagnostic *pDiagnostic) {
for (uint64_t instIndex = 0; instIndex < instCount; ++instIndex) {
const uint32_t *words = pInsts[instIndex].words;
uint16_t wordCount;
Op opcode;
spvOpcodeSplit(words[0], &wordCount, &opcode);
spv_opcode_desc opcodeEntry = nullptr;
spvCheck(spvOpcodeTableValueLookup(opcodeTable, opcode, &opcodeEntry),
DIAGNOSTIC << "Invalid Opcode '" << opcode << "'.";
return SPV_ERROR_INVALID_BINARY);
position->index++;
spvCheck(opcodeEntry->wordCount > wordCount,
DIAGNOSTIC << "Instruction word count '" << wordCount
<< "' is not small, expected at least '"
<< opcodeEntry->wordCount << "'.";
return SPV_ERROR_INVALID_BINARY);
spv_operand_desc operandEntry = nullptr;
for (uint16_t index = 1; index < pInsts[instIndex].wordCount;
++index, position->index++) {
const uint32_t word = words[index];
spv_operand_type_t type = spvBinaryOperandInfo(
word, index, opcodeEntry, operandTable, &operandEntry);
if (SPV_OPERAND_TYPE_LITERAL_STRING == type) {
spvCheckReturn(spvValidateOperandsString(
words + index, wordCount - index, position, pDiagnostic));
// NOTE: String literals are always at the end of Opcodes
break;
} else if (SPV_OPERAND_TYPE_LITERAL == type) {
spvCheckReturn(spvValidateOperandsLiteral(
words + index, wordCount - index, 2, position, pDiagnostic));
} else {
spvCheckReturn(spvValidateOperandValue(type, word, operandTable,
position, pDiagnostic));
}
}
}
return SPV_SUCCESS;
}
spv_result_t spvValidateIDs(const spv_instruction_t *pInsts,
const uint64_t count, const uint32_t bound,
const spv_opcode_table opcodeTable,
const spv_operand_table operandTable,
const spv_ext_inst_table extInstTable,
spv_position position,
spv_diagnostic *pDiagnostic) {
std::vector<spv_id_info_t> idUses;
std::vector<spv_id_info_t> idDefs;
for (uint64_t instIndex = 0; instIndex < count; ++instIndex) {
const uint32_t *words = pInsts[instIndex].words;
Op opcode;
spvOpcodeSplit(words[0], nullptr, &opcode);
spv_opcode_desc opcodeEntry = nullptr;
spvCheck(spvOpcodeTableValueLookup(opcodeTable, opcode, &opcodeEntry),
DIAGNOSTIC << "Invalid Opcode '" << opcode << "'.";
return SPV_ERROR_INVALID_BINARY);
spv_operand_desc operandEntry = nullptr;
position->index++; // NOTE: Account for Opcode word
for (uint16_t index = 1; index < pInsts[instIndex].wordCount;
++index, position->index++) {
const uint32_t word = words[index];
spv_operand_type_t type = spvBinaryOperandInfo(
word, index, opcodeEntry, operandTable, &operandEntry);
if (SPV_OPERAND_TYPE_RESULT_ID == type || SPV_OPERAND_TYPE_ID == type) {
spvCheck(0 == word, DIAGNOSTIC << "Invalid ID of '0' is not allowed.";
return SPV_ERROR_INVALID_ID);
spvCheck(bound < word, DIAGNOSTIC << "Invalid ID '" << word
<< "' exceeds the bound '" << bound
<< "'.";
return SPV_ERROR_INVALID_ID);
}
if (SPV_OPERAND_TYPE_RESULT_ID == type) {
idDefs.push_back(
{word, opcodeEntry->opcode, &pInsts[instIndex], *position});
}
if (SPV_OPERAND_TYPE_ID == type) {
idUses.push_back({word, opcodeEntry->opcode, nullptr, *position});
}
}
}
// NOTE: Error on redefined ID
for (size_t outerIndex = 0; outerIndex < idDefs.size(); ++outerIndex) {
for (size_t innerIndex = 0; innerIndex < idDefs.size(); ++innerIndex) {
if (outerIndex == innerIndex) {
continue;
}
if (idDefs[outerIndex].id == idDefs[innerIndex].id) {
DIAGNOSTIC << "Multiply defined ID '" << idDefs[outerIndex].id << "'.";
return SPV_ERROR_INVALID_ID;
}
}
}
// NOTE: Validate ID usage, including use of undefined ID's
position->index = SPV_INDEX_INSTRUCTION;
spvCheck(spvValidateInstructionIDs(pInsts, count, idUses.data(),
idUses.size(), idDefs.data(),
idDefs.size(), opcodeTable, operandTable,
extInstTable, position, pDiagnostic),
return SPV_ERROR_INVALID_ID);
return SPV_SUCCESS;
}
spv_result_t spvValidate(const spv_binary binary,
const spv_opcode_table opcodeTable,
const spv_operand_table operandTable,
const spv_ext_inst_table extInstTable,
const uint32_t options, spv_diagnostic *pDiagnostic) {
spvCheck(!opcodeTable || !operandTable, return SPV_ERROR_INVALID_TABLE);
spvCheck(!pDiagnostic, return SPV_ERROR_INVALID_DIAGNOSTIC);
spv_endianness_t endian;
spv_position_t position = {};
spvCheck(spvBinaryEndianness(binary, &endian),
DIAGNOSTIC << "Invalid SPIR-V magic number.";
return SPV_ERROR_INVALID_BINARY);
spv_header_t header;
spvCheck(spvBinaryHeaderGet(binary, endian, &header),
DIAGNOSTIC << "Invalid SPIR-V header.";
return SPV_ERROR_INVALID_BINARY);
// NOTE: Copy each instruction for easier processing
std::vector<spv_instruction_t> instructions;
uint64_t index = SPV_INDEX_INSTRUCTION;
while (index < binary->wordCount) {
uint16_t wordCount;
Op opcode;
spvOpcodeSplit(spvFixWord(binary->code[index], endian), &wordCount,
&opcode);
spv_instruction_t inst;
spvInstructionCopy(&binary->code[index], opcode, wordCount, endian, &inst);
instructions.push_back(inst);
index += wordCount;
}
if (spvIsInBitfield(SPV_VALIDATE_BASIC_BIT, options)) {
position.index = SPV_INDEX_INSTRUCTION;
// TODO: Imcomplete implementation
spvCheckReturn(spvValidateBasic(instructions.data(), instructions.size(),
opcodeTable, operandTable, &position,
pDiagnostic));
}
if (spvIsInBitfield(SPV_VALIDATE_LAYOUT_BIT, options)) {
position.index = SPV_INDEX_INSTRUCTION;
// TODO: spvBinaryValidateLayout
}
if (spvIsInBitfield(SPV_VALIDATE_ID_BIT, options)) {
position.index = SPV_INDEX_INSTRUCTION;
spvCheckReturn(spvValidateIDs(instructions.data(), instructions.size(),
header.bound, opcodeTable, operandTable,
extInstTable, &position, pDiagnostic));
}
if (spvIsInBitfield(SPV_VALIDATE_RULES_BIT, options)) {
position.index = SPV_INDEX_INSTRUCTION;
// TODO: Specified validation rules...
}
return SPV_SUCCESS;
}