SPIRV-Tools/include/spirv-tools/libspirv.h
Shahbaz Youssefi 07d361b675
spirv-val: Add an option to use friendly names or not (#4951)
The always-friendly messages make it harder to debug when the
disassembly is later generated without friendly names.

Additionally, the friendly-name-mapper is slow.  Disabling it improves
performance of an ANGLE test that creates numerous shaders by ~5%.
2022-09-30 12:22:00 -04:00

908 lines
41 KiB
C

// Copyright (c) 2015-2020 The Khronos Group Inc.
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
// reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_
#define INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_
#ifdef __cplusplus
extern "C" {
#else
#include <stdbool.h>
#endif
#include <stddef.h>
#include <stdint.h>
#if defined(SPIRV_TOOLS_SHAREDLIB)
#if defined(_WIN32)
#if defined(SPIRV_TOOLS_IMPLEMENTATION)
#define SPIRV_TOOLS_EXPORT __declspec(dllexport)
#else
#define SPIRV_TOOLS_EXPORT __declspec(dllimport)
#endif
#else
#if defined(SPIRV_TOOLS_IMPLEMENTATION)
#define SPIRV_TOOLS_EXPORT __attribute__((visibility("default")))
#else
#define SPIRV_TOOLS_EXPORT
#endif
#endif
#else
#define SPIRV_TOOLS_EXPORT
#endif
// Helpers
#define SPV_BIT(shift) (1 << (shift))
#define SPV_FORCE_16_BIT_ENUM(name) SPV_FORCE_16BIT_##name = 0x7fff
#define SPV_FORCE_32_BIT_ENUM(name) SPV_FORCE_32BIT_##name = 0x7fffffff
// Enumerations
typedef enum spv_result_t {
SPV_SUCCESS = 0,
SPV_UNSUPPORTED = 1,
SPV_END_OF_STREAM = 2,
SPV_WARNING = 3,
SPV_FAILED_MATCH = 4,
SPV_REQUESTED_TERMINATION = 5, // Success, but signals early termination.
SPV_ERROR_INTERNAL = -1,
SPV_ERROR_OUT_OF_MEMORY = -2,
SPV_ERROR_INVALID_POINTER = -3,
SPV_ERROR_INVALID_BINARY = -4,
SPV_ERROR_INVALID_TEXT = -5,
SPV_ERROR_INVALID_TABLE = -6,
SPV_ERROR_INVALID_VALUE = -7,
SPV_ERROR_INVALID_DIAGNOSTIC = -8,
SPV_ERROR_INVALID_LOOKUP = -9,
SPV_ERROR_INVALID_ID = -10,
SPV_ERROR_INVALID_CFG = -11,
SPV_ERROR_INVALID_LAYOUT = -12,
SPV_ERROR_INVALID_CAPABILITY = -13,
SPV_ERROR_INVALID_DATA = -14, // Indicates data rules validation failure.
SPV_ERROR_MISSING_EXTENSION = -15,
SPV_ERROR_WRONG_VERSION = -16, // Indicates wrong SPIR-V version
SPV_FORCE_32_BIT_ENUM(spv_result_t)
} spv_result_t;
// Severity levels of messages communicated to the consumer.
typedef enum spv_message_level_t {
SPV_MSG_FATAL, // Unrecoverable error due to environment.
// Will exit the program immediately. E.g.,
// out of memory.
SPV_MSG_INTERNAL_ERROR, // Unrecoverable error due to SPIRV-Tools
// internals.
// Will exit the program immediately. E.g.,
// unimplemented feature.
SPV_MSG_ERROR, // Normal error due to user input.
SPV_MSG_WARNING, // Warning information.
SPV_MSG_INFO, // General information.
SPV_MSG_DEBUG, // Debug information.
} spv_message_level_t;
typedef enum spv_endianness_t {
SPV_ENDIANNESS_LITTLE,
SPV_ENDIANNESS_BIG,
SPV_FORCE_32_BIT_ENUM(spv_endianness_t)
} spv_endianness_t;
// The kinds of operands that an instruction may have.
//
// Some operand types are "concrete". The binary parser uses a concrete
// operand type to describe an operand of a parsed instruction.
//
// The assembler uses all operand types. In addition to determining what
// kind of value an operand may be, non-concrete operand types capture the
// fact that an operand might be optional (may be absent, or present exactly
// once), or might occur zero or more times.
//
// Sometimes we also need to be able to express the fact that an operand
// is a member of an optional tuple of values. In that case the first member
// would be optional, and the subsequent members would be required.
//
// NOTE: Although we don't promise binary compatibility, as a courtesy, please
// add new enum values at the end.
typedef enum spv_operand_type_t {
// A sentinel value.
SPV_OPERAND_TYPE_NONE = 0,
// Set 1: Operands that are IDs.
SPV_OPERAND_TYPE_ID,
SPV_OPERAND_TYPE_TYPE_ID,
SPV_OPERAND_TYPE_RESULT_ID,
SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, // SPIR-V Sec 3.25
SPV_OPERAND_TYPE_SCOPE_ID, // SPIR-V Sec 3.27
// Set 2: Operands that are literal numbers.
SPV_OPERAND_TYPE_LITERAL_INTEGER, // Always unsigned 32-bits.
// The Instruction argument to OpExtInst. It's an unsigned 32-bit literal
// number indicating which instruction to use from an extended instruction
// set.
SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER,
// The Opcode argument to OpSpecConstantOp. It determines the operation
// to be performed on constant operands to compute a specialization constant
// result.
SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER,
// A literal number whose format and size are determined by a previous operand
// in the same instruction. It's a signed integer, an unsigned integer, or a
// floating point number. It also has a specified bit width. The width
// may be larger than 32, which would require such a typed literal value to
// occupy multiple SPIR-V words.
SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER,
// Set 3: The literal string operand type.
SPV_OPERAND_TYPE_LITERAL_STRING,
// Set 4: Operands that are a single word enumerated value.
SPV_OPERAND_TYPE_SOURCE_LANGUAGE, // SPIR-V Sec 3.2
SPV_OPERAND_TYPE_EXECUTION_MODEL, // SPIR-V Sec 3.3
SPV_OPERAND_TYPE_ADDRESSING_MODEL, // SPIR-V Sec 3.4
SPV_OPERAND_TYPE_MEMORY_MODEL, // SPIR-V Sec 3.5
SPV_OPERAND_TYPE_EXECUTION_MODE, // SPIR-V Sec 3.6
SPV_OPERAND_TYPE_STORAGE_CLASS, // SPIR-V Sec 3.7
SPV_OPERAND_TYPE_DIMENSIONALITY, // SPIR-V Sec 3.8
SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE, // SPIR-V Sec 3.9
SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE, // SPIR-V Sec 3.10
SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT, // SPIR-V Sec 3.11
SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER, // SPIR-V Sec 3.12
SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE, // SPIR-V Sec 3.13
SPV_OPERAND_TYPE_FP_ROUNDING_MODE, // SPIR-V Sec 3.16
SPV_OPERAND_TYPE_LINKAGE_TYPE, // SPIR-V Sec 3.17
SPV_OPERAND_TYPE_ACCESS_QUALIFIER, // SPIR-V Sec 3.18
SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE, // SPIR-V Sec 3.19
SPV_OPERAND_TYPE_DECORATION, // SPIR-V Sec 3.20
SPV_OPERAND_TYPE_BUILT_IN, // SPIR-V Sec 3.21
SPV_OPERAND_TYPE_GROUP_OPERATION, // SPIR-V Sec 3.28
SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS, // SPIR-V Sec 3.29
SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO, // SPIR-V Sec 3.30
SPV_OPERAND_TYPE_CAPABILITY, // SPIR-V Sec 3.31
// NOTE: New concrete enum values should be added at the end.
// Set 5: Operands that are a single word bitmask.
// Sometimes a set bit indicates the instruction requires still more operands.
SPV_OPERAND_TYPE_IMAGE, // SPIR-V Sec 3.14
SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, // SPIR-V Sec 3.15
SPV_OPERAND_TYPE_SELECTION_CONTROL, // SPIR-V Sec 3.22
SPV_OPERAND_TYPE_LOOP_CONTROL, // SPIR-V Sec 3.23
SPV_OPERAND_TYPE_FUNCTION_CONTROL, // SPIR-V Sec 3.24
SPV_OPERAND_TYPE_MEMORY_ACCESS, // SPIR-V Sec 3.26
SPV_OPERAND_TYPE_FRAGMENT_SHADING_RATE, // SPIR-V Sec 3.FSR
// NOTE: New concrete enum values should be added at the end.
// The "optional" and "variable" operand types are only used internally by
// the assembler and the binary parser.
// There are two categories:
// Optional : expands to 0 or 1 operand, like ? in regular expressions.
// Variable : expands to 0, 1 or many operands or pairs of operands.
// This is similar to * in regular expressions.
// NOTE: These FIRST_* and LAST_* enum values are DEPRECATED.
// The concept of "optional" and "variable" operand types are only intended
// for use as an implementation detail of parsing SPIR-V, either in text or
// binary form. Instead of using enum ranges, use characteristic function
// spvOperandIsConcrete.
// The use of enum value ranges in a public API makes it difficult to insert
// new values into a range without also breaking binary compatibility.
//
// Macros for defining bounds on optional and variable operand types.
// Any variable operand type is also optional.
// TODO(dneto): Remove SPV_OPERAND_TYPE_FIRST_* and SPV_OPERAND_TYPE_LAST_*
#define FIRST_OPTIONAL(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_OPTIONAL_TYPE = ENUM
#define FIRST_VARIABLE(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_VARIABLE_TYPE = ENUM
#define LAST_VARIABLE(ENUM) \
ENUM, SPV_OPERAND_TYPE_LAST_VARIABLE_TYPE = ENUM, \
SPV_OPERAND_TYPE_LAST_OPTIONAL_TYPE = ENUM
// An optional operand represents zero or one logical operands.
// In an instruction definition, this may only appear at the end of the
// operand types.
FIRST_OPTIONAL(SPV_OPERAND_TYPE_OPTIONAL_ID),
// An optional image operand type.
SPV_OPERAND_TYPE_OPTIONAL_IMAGE,
// An optional memory access type.
SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS,
// An optional literal integer.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER,
// An optional literal number, which may be either integer or floating point.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER,
// Like SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER, but optional, and integral.
SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER,
// An optional literal string.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING,
// An optional access qualifier
SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER,
// An optional context-independent value, or CIV. CIVs are tokens that we can
// assemble regardless of where they occur -- literals, IDs, immediate
// integers, etc.
SPV_OPERAND_TYPE_OPTIONAL_CIV,
// A variable operand represents zero or more logical operands.
// In an instruction definition, this may only appear at the end of the
// operand types.
FIRST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID),
SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER,
// A sequence of zero or more pairs of (typed literal integer, Id).
// Expands to zero or more:
// (SPV_OPERAND_TYPE_TYPED_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID)
// where the literal number must always be an integer of some sort.
SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER_ID,
// A sequence of zero or more pairs of (Id, Literal integer)
LAST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_INTEGER),
// The following are concrete enum types from the DebugInfo extended
// instruction set.
SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, // DebugInfo Sec 3.2. A mask.
SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, // DebugInfo Sec 3.3
SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE, // DebugInfo Sec 3.4
SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER, // DebugInfo Sec 3.5
SPV_OPERAND_TYPE_DEBUG_OPERATION, // DebugInfo Sec 3.6
// The following are concrete enum types from the OpenCL.DebugInfo.100
// extended instruction set.
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS, // Sec 3.2. A Mask
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, // Sec 3.3
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE, // Sec 3.4
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER, // Sec 3.5
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION, // Sec 3.6
SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY, // Sec 3.7
// The following are concrete enum types from SPV_INTEL_float_controls2
// https://github.com/intel/llvm/blob/39fa9b0cbfbae88327118990a05c5b387b56d2ef/sycl/doc/extensions/SPIRV/SPV_INTEL_float_controls2.asciidoc
SPV_OPERAND_TYPE_FPDENORM_MODE, // Sec 3.17 FP Denorm Mode
SPV_OPERAND_TYPE_FPOPERATION_MODE, // Sec 3.18 FP Operation Mode
// A value enum from https://github.com/KhronosGroup/SPIRV-Headers/pull/177
SPV_OPERAND_TYPE_QUANTIZATION_MODES,
// A value enum from https://github.com/KhronosGroup/SPIRV-Headers/pull/177
SPV_OPERAND_TYPE_OVERFLOW_MODES,
// Concrete operand types for the provisional Vulkan ray tracing feature.
SPV_OPERAND_TYPE_RAY_FLAGS, // SPIR-V Sec 3.RF
SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION, // SPIR-V Sec 3.RQIntersection
SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE, // SPIR-V Sec
// 3.RQCommitted
SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE, // SPIR-V Sec
// 3.RQCandidate
// Concrete operand types for integer dot product.
// Packed vector format
SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT, // SPIR-V Sec 3.x
// An optional packed vector format
SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT,
// This is a sentinel value, and does not represent an operand type.
// It should come last.
SPV_OPERAND_TYPE_NUM_OPERAND_TYPES,
SPV_FORCE_32_BIT_ENUM(spv_operand_type_t)
} spv_operand_type_t;
// Returns true if the given type is concrete.
bool spvOperandIsConcrete(spv_operand_type_t type);
// Returns true if the given type is concrete and also a mask.
bool spvOperandIsConcreteMask(spv_operand_type_t type);
typedef enum spv_ext_inst_type_t {
SPV_EXT_INST_TYPE_NONE = 0,
SPV_EXT_INST_TYPE_GLSL_STD_450,
SPV_EXT_INST_TYPE_OPENCL_STD,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_TRINARY_MINMAX,
SPV_EXT_INST_TYPE_SPV_AMD_GCN_SHADER,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_BALLOT,
SPV_EXT_INST_TYPE_DEBUGINFO,
SPV_EXT_INST_TYPE_OPENCL_DEBUGINFO_100,
SPV_EXT_INST_TYPE_NONSEMANTIC_CLSPVREFLECTION,
SPV_EXT_INST_TYPE_NONSEMANTIC_SHADER_DEBUGINFO_100,
// Multiple distinct extended instruction set types could return this
// value, if they are prefixed with NonSemantic. and are otherwise
// unrecognised
SPV_EXT_INST_TYPE_NONSEMANTIC_UNKNOWN,
SPV_FORCE_32_BIT_ENUM(spv_ext_inst_type_t)
} spv_ext_inst_type_t;
// This determines at a high level the kind of a binary-encoded literal
// number, but not the bit width.
// In principle, these could probably be folded into new entries in
// spv_operand_type_t. But then we'd have some special case differences
// between the assembler and disassembler.
typedef enum spv_number_kind_t {
SPV_NUMBER_NONE = 0, // The default for value initialization.
SPV_NUMBER_UNSIGNED_INT,
SPV_NUMBER_SIGNED_INT,
SPV_NUMBER_FLOATING,
} spv_number_kind_t;
typedef enum spv_text_to_binary_options_t {
SPV_TEXT_TO_BINARY_OPTION_NONE = SPV_BIT(0),
// Numeric IDs in the binary will have the same values as in the source.
// Non-numeric IDs are allocated by filling in the gaps, starting with 1
// and going up.
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS = SPV_BIT(1),
SPV_FORCE_32_BIT_ENUM(spv_text_to_binary_options_t)
} spv_text_to_binary_options_t;
typedef enum spv_binary_to_text_options_t {
SPV_BINARY_TO_TEXT_OPTION_NONE = SPV_BIT(0),
SPV_BINARY_TO_TEXT_OPTION_PRINT = SPV_BIT(1),
SPV_BINARY_TO_TEXT_OPTION_COLOR = SPV_BIT(2),
SPV_BINARY_TO_TEXT_OPTION_INDENT = SPV_BIT(3),
SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET = SPV_BIT(4),
// Do not output the module header as leading comments in the assembly.
SPV_BINARY_TO_TEXT_OPTION_NO_HEADER = SPV_BIT(5),
// Use friendly names where possible. The heuristic may expand over
// time, but will use common names for scalar types, and debug names from
// OpName instructions.
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES = SPV_BIT(6),
// Add some comments to the generated assembly
SPV_BINARY_TO_TEXT_OPTION_COMMENT = SPV_BIT(7),
SPV_FORCE_32_BIT_ENUM(spv_binary_to_text_options_t)
} spv_binary_to_text_options_t;
// Constants
// The default id bound is to the minimum value for the id limit
// in the spir-v specification under the section "Universal Limits".
const uint32_t kDefaultMaxIdBound = 0x3FFFFF;
// Structures
// Information about an operand parsed from a binary SPIR-V module.
// Note that the values are not included. You still need access to the binary
// to extract the values.
typedef struct spv_parsed_operand_t {
// Location of the operand, in words from the start of the instruction.
uint16_t offset;
// Number of words occupied by this operand.
uint16_t num_words;
// The "concrete" operand type. See the definition of spv_operand_type_t
// for details.
spv_operand_type_t type;
// If type is a literal number type, then number_kind says whether it's
// a signed integer, an unsigned integer, or a floating point number.
spv_number_kind_t number_kind;
// The number of bits for a literal number type.
uint32_t number_bit_width;
} spv_parsed_operand_t;
// An instruction parsed from a binary SPIR-V module.
typedef struct spv_parsed_instruction_t {
// An array of words for this instruction, in native endianness.
const uint32_t* words;
// The number of words in this instruction.
uint16_t num_words;
uint16_t opcode;
// The extended instruction type, if opcode is OpExtInst. Otherwise
// this is the "none" value.
spv_ext_inst_type_t ext_inst_type;
// The type id, or 0 if this instruction doesn't have one.
uint32_t type_id;
// The result id, or 0 if this instruction doesn't have one.
uint32_t result_id;
// The array of parsed operands.
const spv_parsed_operand_t* operands;
uint16_t num_operands;
} spv_parsed_instruction_t;
typedef struct spv_const_binary_t {
const uint32_t* code;
const size_t wordCount;
} spv_const_binary_t;
typedef struct spv_binary_t {
uint32_t* code;
size_t wordCount;
} spv_binary_t;
typedef struct spv_text_t {
const char* str;
size_t length;
} spv_text_t;
typedef struct spv_position_t {
size_t line;
size_t column;
size_t index;
} spv_position_t;
typedef struct spv_diagnostic_t {
spv_position_t position;
char* error;
bool isTextSource;
} spv_diagnostic_t;
// Opaque struct containing the context used to operate on a SPIR-V module.
// Its object is used by various translation API functions.
typedef struct spv_context_t spv_context_t;
typedef struct spv_validator_options_t spv_validator_options_t;
typedef struct spv_optimizer_options_t spv_optimizer_options_t;
typedef struct spv_reducer_options_t spv_reducer_options_t;
typedef struct spv_fuzzer_options_t spv_fuzzer_options_t;
// Type Definitions
typedef spv_const_binary_t* spv_const_binary;
typedef spv_binary_t* spv_binary;
typedef spv_text_t* spv_text;
typedef spv_position_t* spv_position;
typedef spv_diagnostic_t* spv_diagnostic;
typedef const spv_context_t* spv_const_context;
typedef spv_context_t* spv_context;
typedef spv_validator_options_t* spv_validator_options;
typedef const spv_validator_options_t* spv_const_validator_options;
typedef spv_optimizer_options_t* spv_optimizer_options;
typedef const spv_optimizer_options_t* spv_const_optimizer_options;
typedef spv_reducer_options_t* spv_reducer_options;
typedef const spv_reducer_options_t* spv_const_reducer_options;
typedef spv_fuzzer_options_t* spv_fuzzer_options;
typedef const spv_fuzzer_options_t* spv_const_fuzzer_options;
// Platform API
// Returns the SPIRV-Tools software version as a null-terminated string.
// The contents of the underlying storage is valid for the remainder of
// the process.
SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionString(void);
// Returns a null-terminated string containing the name of the project,
// the software version string, and commit details.
// The contents of the underlying storage is valid for the remainder of
// the process.
SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionDetailsString(void);
// Certain target environments impose additional restrictions on SPIR-V, so it's
// often necessary to specify which one applies. SPV_ENV_UNIVERSAL_* implies an
// environment-agnostic SPIR-V.
//
// When an API method needs to derive a SPIR-V version from a target environment
// (from the spv_context object), the method will choose the highest version of
// SPIR-V supported by the target environment. Examples:
// SPV_ENV_VULKAN_1_0 -> SPIR-V 1.0
// SPV_ENV_VULKAN_1_1 -> SPIR-V 1.3
// SPV_ENV_VULKAN_1_1_SPIRV_1_4 -> SPIR-V 1.4
// SPV_ENV_VULKAN_1_2 -> SPIR-V 1.5
// SPV_ENV_VULKAN_1_3 -> SPIR-V 1.6
// Consult the description of API entry points for specific rules.
typedef enum {
SPV_ENV_UNIVERSAL_1_0, // SPIR-V 1.0 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_0, // Vulkan 1.0 latest revision.
SPV_ENV_UNIVERSAL_1_1, // SPIR-V 1.1 latest revision, no other restrictions.
SPV_ENV_OPENCL_2_1, // OpenCL Full Profile 2.1 latest revision.
SPV_ENV_OPENCL_2_2, // OpenCL Full Profile 2.2 latest revision.
SPV_ENV_OPENGL_4_0, // OpenGL 4.0 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_1, // OpenGL 4.1 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_2, // OpenGL 4.2 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_3, // OpenGL 4.3 plus GL_ARB_gl_spirv, latest revisions.
// There is no variant for OpenGL 4.4.
SPV_ENV_OPENGL_4_5, // OpenGL 4.5 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_UNIVERSAL_1_2, // SPIR-V 1.2, latest revision, no other restrictions.
SPV_ENV_OPENCL_1_2, // OpenCL Full Profile 1.2 plus cl_khr_il_program,
// latest revision.
SPV_ENV_OPENCL_EMBEDDED_1_2, // OpenCL Embedded Profile 1.2 plus
// cl_khr_il_program, latest revision.
SPV_ENV_OPENCL_2_0, // OpenCL Full Profile 2.0 plus cl_khr_il_program,
// latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_0, // OpenCL Embedded Profile 2.0 plus
// cl_khr_il_program, latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_1, // OpenCL Embedded Profile 2.1 latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_2, // OpenCL Embedded Profile 2.2 latest revision.
SPV_ENV_UNIVERSAL_1_3, // SPIR-V 1.3 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_1, // Vulkan 1.1 latest revision.
SPV_ENV_WEBGPU_0, // DEPRECATED, may be removed in the future.
SPV_ENV_UNIVERSAL_1_4, // SPIR-V 1.4 latest revision, no other restrictions.
// Vulkan 1.1 with VK_KHR_spirv_1_4, i.e. SPIR-V 1.4 binary.
SPV_ENV_VULKAN_1_1_SPIRV_1_4,
SPV_ENV_UNIVERSAL_1_5, // SPIR-V 1.5 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_2, // Vulkan 1.2 latest revision.
SPV_ENV_UNIVERSAL_1_6, // SPIR-V 1.6 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_3, // Vulkan 1.3 latest revision.
SPV_ENV_MAX // Keep this as the last enum value.
} spv_target_env;
// SPIR-V Validator can be parameterized with the following Universal Limits.
typedef enum {
spv_validator_limit_max_struct_members,
spv_validator_limit_max_struct_depth,
spv_validator_limit_max_local_variables,
spv_validator_limit_max_global_variables,
spv_validator_limit_max_switch_branches,
spv_validator_limit_max_function_args,
spv_validator_limit_max_control_flow_nesting_depth,
spv_validator_limit_max_access_chain_indexes,
spv_validator_limit_max_id_bound,
} spv_validator_limit;
// Returns a string describing the given SPIR-V target environment.
SPIRV_TOOLS_EXPORT const char* spvTargetEnvDescription(spv_target_env env);
// Parses s into *env and returns true if successful. If unparsable, returns
// false and sets *env to SPV_ENV_UNIVERSAL_1_0.
SPIRV_TOOLS_EXPORT bool spvParseTargetEnv(const char* s, spv_target_env* env);
// Determines the target env value with the least features but which enables
// the given Vulkan and SPIR-V versions. If such a target is supported, returns
// true and writes the value to |env|, otherwise returns false.
//
// The Vulkan version is given as an unsigned 32-bit number as specified in
// Vulkan section "29.2.1 Version Numbers": the major version number appears
// in bits 22 to 21, and the minor version is in bits 12 to 21. The SPIR-V
// version is given in the SPIR-V version header word: major version in bits
// 16 to 23, and minor version in bits 8 to 15.
SPIRV_TOOLS_EXPORT bool spvParseVulkanEnv(uint32_t vulkan_ver,
uint32_t spirv_ver,
spv_target_env* env);
// Creates a context object for most of the SPIRV-Tools API.
// Returns null if env is invalid.
//
// See specific API calls for how the target environment is interpreted
// (particularly assembly and validation).
SPIRV_TOOLS_EXPORT spv_context spvContextCreate(spv_target_env env);
// Destroys the given context object.
SPIRV_TOOLS_EXPORT void spvContextDestroy(spv_context context);
// Creates a Validator options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// spvValidatorOptionsDestroy.
SPIRV_TOOLS_EXPORT spv_validator_options spvValidatorOptionsCreate(void);
// Destroys the given Validator options object.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsDestroy(
spv_validator_options options);
// Records the maximum Universal Limit that is considered valid in the given
// Validator options object. <options> argument must be a valid options object.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniversalLimit(
spv_validator_options options, spv_validator_limit limit_type,
uint32_t limit);
// Record whether or not the validator should relax the rules on types for
// stores to structs. When relaxed, it will allow a type mismatch as long as
// the types are structs with the same layout. Two structs have the same layout
// if
//
// 1) the members of the structs are either the same type or are structs with
// same layout, and
//
// 2) the decorations that affect the memory layout are identical for both
// types. Other decorations are not relevant.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxStoreStruct(
spv_validator_options options, bool val);
// Records whether or not the validator should relax the rules on pointer usage
// in logical addressing mode.
//
// When relaxed, it will allow the following usage cases of pointers:
// 1) OpVariable allocating an object whose type is a pointer type
// 2) OpReturnValue returning a pointer value
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxLogicalPointer(
spv_validator_options options, bool val);
// Records whether or not the validator should relax the rules because it is
// expected that the optimizations will make the code legal.
//
// When relaxed, it will allow the following:
// 1) It will allow relaxed logical pointers. Setting this option will also
// set that option.
// 2) Pointers that are pass as parameters to function calls do not have to
// match the storage class of the formal parameter.
// 3) Pointers that are actual parameters on function calls do not have to point
// to the same type pointed as the formal parameter. The types just need to
// logically match.
// 4) GLSLstd450 Interpolate* instructions can have a load of an interpolant
// for a first argument.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetBeforeHlslLegalization(
spv_validator_options options, bool val);
// Records whether the validator should use "relaxed" block layout rules.
// Relaxed layout rules are described by Vulkan extension
// VK_KHR_relaxed_block_layout, and they affect uniform blocks, storage blocks,
// and push constants.
//
// This is enabled by default when targeting Vulkan 1.1 or later.
// Relaxed layout is more permissive than the default rules in Vulkan 1.0.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxBlockLayout(
spv_validator_options options, bool val);
// Records whether the validator should use standard block layout rules for
// uniform blocks.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniformBufferStandardLayout(
spv_validator_options options, bool val);
// Records whether the validator should use "scalar" block layout rules.
// Scalar layout rules are more permissive than relaxed block layout.
//
// See Vulkan extension VK_EXT_scalar_block_layout. The scalar alignment is
// defined as follows:
// - scalar alignment of a scalar is the scalar size
// - scalar alignment of a vector is the scalar alignment of its component
// - scalar alignment of a matrix is the scalar alignment of its component
// - scalar alignment of an array is the scalar alignment of its element
// - scalar alignment of a struct is the max scalar alignment among its
// members
//
// For a struct in Uniform, StorageClass, or PushConstant:
// - a member Offset must be a multiple of the member's scalar alignment
// - ArrayStride or MatrixStride must be a multiple of the array or matrix
// scalar alignment
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetScalarBlockLayout(
spv_validator_options options, bool val);
// Records whether the validator should use "scalar" block layout
// rules (as defined above) for Workgroup blocks. See Vulkan
// extension VK_KHR_workgroup_memory_explicit_layout.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetWorkgroupScalarBlockLayout(
spv_validator_options options, bool val);
// Records whether or not the validator should skip validating standard
// uniform/storage block layout.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetSkipBlockLayout(
spv_validator_options options, bool val);
// Records whether or not the validator should allow the LocalSizeId
// decoration where the environment otherwise would not allow it.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetAllowLocalSizeId(
spv_validator_options options, bool val);
// Whether friendly names should be used in validation error messages.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetFriendlyNames(
spv_validator_options options, bool val);
// Creates an optimizer options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// |spvOptimizerOptionsDestroy|.
SPIRV_TOOLS_EXPORT spv_optimizer_options spvOptimizerOptionsCreate(void);
// Destroys the given optimizer options object.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsDestroy(
spv_optimizer_options options);
// Records whether or not the optimizer should run the validator before
// optimizing. If |val| is true, the validator will be run.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetRunValidator(
spv_optimizer_options options, bool val);
// Records the validator options that should be passed to the validator if it is
// run.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetValidatorOptions(
spv_optimizer_options options, spv_validator_options val);
// Records the maximum possible value for the id bound.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetMaxIdBound(
spv_optimizer_options options, uint32_t val);
// Records whether all bindings within the module should be preserved.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetPreserveBindings(
spv_optimizer_options options, bool val);
// Records whether all specialization constants within the module
// should be preserved.
SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetPreserveSpecConstants(
spv_optimizer_options options, bool val);
// Creates a reducer options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// |spvReducerOptionsDestroy|.
SPIRV_TOOLS_EXPORT spv_reducer_options spvReducerOptionsCreate(void);
// Destroys the given reducer options object.
SPIRV_TOOLS_EXPORT void spvReducerOptionsDestroy(spv_reducer_options options);
// Sets the maximum number of reduction steps that should run before the reducer
// gives up.
SPIRV_TOOLS_EXPORT void spvReducerOptionsSetStepLimit(
spv_reducer_options options, uint32_t step_limit);
// Sets the fail-on-validation-error option; if true, the reducer will return
// kStateInvalid if a reduction step yields a state that fails SPIR-V
// validation. Otherwise, an invalid state is treated as uninteresting and the
// reduction backtracks and continues.
SPIRV_TOOLS_EXPORT void spvReducerOptionsSetFailOnValidationError(
spv_reducer_options options, bool fail_on_validation_error);
// Sets the function that the reducer should target. If set to zero the reducer
// will target all functions as well as parts of the module that lie outside
// functions. Otherwise the reducer will restrict reduction to the function
// with result id |target_function|, which is required to exist.
SPIRV_TOOLS_EXPORT void spvReducerOptionsSetTargetFunction(
spv_reducer_options options, uint32_t target_function);
// Creates a fuzzer options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// |spvFuzzerOptionsDestroy|.
SPIRV_TOOLS_EXPORT spv_fuzzer_options spvFuzzerOptionsCreate(void);
// Destroys the given fuzzer options object.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsDestroy(spv_fuzzer_options options);
// Enables running the validator after every transformation is applied during
// a replay.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableReplayValidation(
spv_fuzzer_options options);
// Sets the seed with which the random number generator used by the fuzzer
// should be initialized.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetRandomSeed(
spv_fuzzer_options options, uint32_t seed);
// Sets the range of transformations that should be applied during replay: 0
// means all transformations, +N means the first N transformations, -N means all
// except the final N transformations.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetReplayRange(
spv_fuzzer_options options, int32_t replay_range);
// Sets the maximum number of steps that the shrinker should take before giving
// up.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetShrinkerStepLimit(
spv_fuzzer_options options, uint32_t shrinker_step_limit);
// Enables running the validator after every pass is applied during a fuzzing
// run.
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableFuzzerPassValidation(
spv_fuzzer_options options);
// Enables all fuzzer passes during a fuzzing run (instead of a random subset
// of passes).
SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableAllPasses(
spv_fuzzer_options options);
// Encodes the given SPIR-V assembly text to its binary representation. The
// length parameter specifies the number of bytes for text. Encoded binary will
// be stored into *binary. Any error will be written into *diagnostic if
// diagnostic is non-null, otherwise the context's message consumer will be
// used. The generated binary is independent of the context and may outlive it.
// The SPIR-V binary version is set to the highest version of SPIR-V supported
// by the context's target environment.
SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinary(const spv_const_context context,
const char* text,
const size_t length,
spv_binary* binary,
spv_diagnostic* diagnostic);
// Encodes the given SPIR-V assembly text to its binary representation. Same as
// spvTextToBinary but with options. The options parameter is a bit field of
// spv_text_to_binary_options_t.
SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinaryWithOptions(
const spv_const_context context, const char* text, const size_t length,
const uint32_t options, spv_binary* binary, spv_diagnostic* diagnostic);
// Frees an allocated text stream. This is a no-op if the text parameter
// is a null pointer.
SPIRV_TOOLS_EXPORT void spvTextDestroy(spv_text text);
// Decodes the given SPIR-V binary representation to its assembly text. The
// word_count parameter specifies the number of words for binary. The options
// parameter is a bit field of spv_binary_to_text_options_t. Decoded text will
// be stored into *text. Any error will be written into *diagnostic if
// diagnostic is non-null, otherwise the context's message consumer will be
// used.
SPIRV_TOOLS_EXPORT spv_result_t spvBinaryToText(const spv_const_context context,
const uint32_t* binary,
const size_t word_count,
const uint32_t options,
spv_text* text,
spv_diagnostic* diagnostic);
// Frees a binary stream from memory. This is a no-op if binary is a null
// pointer.
SPIRV_TOOLS_EXPORT void spvBinaryDestroy(spv_binary binary);
// Validates a SPIR-V binary for correctness. Any errors will be written into
// *diagnostic if diagnostic is non-null, otherwise the context's message
// consumer will be used.
//
// Validate for SPIR-V spec rules for the SPIR-V version named in the
// binary's header (at word offset 1). Additionally, if the context target
// environment is a client API (such as Vulkan 1.1), then validate for that
// client API version, to the extent that it is verifiable from data in the
// binary itself.
SPIRV_TOOLS_EXPORT spv_result_t spvValidate(const spv_const_context context,
const spv_const_binary binary,
spv_diagnostic* diagnostic);
// Validates a SPIR-V binary for correctness. Uses the provided Validator
// options. Any errors will be written into *diagnostic if diagnostic is
// non-null, otherwise the context's message consumer will be used.
//
// Validate for SPIR-V spec rules for the SPIR-V version named in the
// binary's header (at word offset 1). Additionally, if the context target
// environment is a client API (such as Vulkan 1.1), then validate for that
// client API version, to the extent that it is verifiable from data in the
// binary itself, or in the validator options.
SPIRV_TOOLS_EXPORT spv_result_t spvValidateWithOptions(
const spv_const_context context, const spv_const_validator_options options,
const spv_const_binary binary, spv_diagnostic* diagnostic);
// Validates a raw SPIR-V binary for correctness. Any errors will be written
// into *diagnostic if diagnostic is non-null, otherwise the context's message
// consumer will be used.
SPIRV_TOOLS_EXPORT spv_result_t
spvValidateBinary(const spv_const_context context, const uint32_t* words,
const size_t num_words, spv_diagnostic* diagnostic);
// Creates a diagnostic object. The position parameter specifies the location in
// the text/binary stream. The message parameter, copied into the diagnostic
// object, contains the error message to display.
SPIRV_TOOLS_EXPORT spv_diagnostic
spvDiagnosticCreate(const spv_position position, const char* message);
// Destroys a diagnostic object. This is a no-op if diagnostic is a null
// pointer.
SPIRV_TOOLS_EXPORT void spvDiagnosticDestroy(spv_diagnostic diagnostic);
// Prints the diagnostic to stderr.
SPIRV_TOOLS_EXPORT spv_result_t
spvDiagnosticPrint(const spv_diagnostic diagnostic);
// Gets the name of an instruction, without the "Op" prefix.
SPIRV_TOOLS_EXPORT const char* spvOpcodeString(const uint32_t opcode);
// The binary parser interface.
// A pointer to a function that accepts a parsed SPIR-V header.
// The integer arguments are the 32-bit words from the header, as specified
// in SPIR-V 1.0 Section 2.3 Table 1.
// The function should return SPV_SUCCESS if parsing should continue.
typedef spv_result_t (*spv_parsed_header_fn_t)(
void* user_data, spv_endianness_t endian, uint32_t magic, uint32_t version,
uint32_t generator, uint32_t id_bound, uint32_t reserved);
// A pointer to a function that accepts a parsed SPIR-V instruction.
// The parsed_instruction value is transient: it may be overwritten
// or released immediately after the function has returned. That also
// applies to the words array member of the parsed instruction. The
// function should return SPV_SUCCESS if and only if parsing should
// continue.
typedef spv_result_t (*spv_parsed_instruction_fn_t)(
void* user_data, const spv_parsed_instruction_t* parsed_instruction);
// Parses a SPIR-V binary, specified as counted sequence of 32-bit words.
// Parsing feedback is provided via two callbacks provided as function
// pointers. Each callback function pointer can be a null pointer, in
// which case it is never called. Otherwise, in a valid parse the
// parsed-header callback is called once, and then the parsed-instruction
// callback once for each instruction in the stream. The user_data parameter
// is supplied as context to the callbacks. Returns SPV_SUCCESS on successful
// parse where the callbacks always return SPV_SUCCESS. For an invalid parse,
// returns a status code other than SPV_SUCCESS, and if diagnostic is non-null
// also emits a diagnostic. If diagnostic is null the context's message consumer
// will be used to emit any errors. If a callback returns anything other than
// SPV_SUCCESS, then that status code is returned, no further callbacks are
// issued, and no additional diagnostics are emitted.
SPIRV_TOOLS_EXPORT spv_result_t spvBinaryParse(
const spv_const_context context, void* user_data, const uint32_t* words,
const size_t num_words, spv_parsed_header_fn_t parse_header,
spv_parsed_instruction_fn_t parse_instruction, spv_diagnostic* diagnostic);
#ifdef __cplusplus
}
#endif
#endif // INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_