SPIRV-Tools/test/fuzz/fuzz_test_util.cpp
Alastair Donaldson 0afe1f2b3f
spirv-fuzz: Cover protobuf message creation in tests (#4285)
The Transformation class tests did not cover the (trivial) ToMessage
methods of each transformation, nor the constructors that take a
protobuf message. This lac of coverage makes it hard to see which more
interesting pieces of code are not covered when looking at coverage
percentages. This change adapts the helper function for applying a
transformation and checking fresh ids so that it turns a
transformation into a protobuf message and back, thus covering
ToMessage and the protobuf constructor for every transformation. The
runtime overhead of doing this is very small.
2021-05-22 17:45:09 +01:00

195 lines
6.8 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test/fuzz/fuzz_test_util.h"
#include "gtest/gtest.h"
#include <fstream>
#include <iostream>
#include "source/opt/def_use_manager.h"
#include "tools/io.h"
namespace spvtools {
namespace fuzz {
const spvtools::MessageConsumer kConsoleMessageConsumer =
[](spv_message_level_t level, const char*, const spv_position_t& position,
const char* message) -> void {
switch (level) {
case SPV_MSG_FATAL:
case SPV_MSG_INTERNAL_ERROR:
case SPV_MSG_ERROR:
std::cerr << "error: line " << position.index << ": " << message
<< std::endl;
break;
case SPV_MSG_WARNING:
std::cout << "warning: line " << position.index << ": " << message
<< std::endl;
break;
case SPV_MSG_INFO:
std::cout << "info: line " << position.index << ": " << message
<< std::endl;
break;
default:
break;
}
};
bool IsEqual(const spv_target_env env,
const std::vector<uint32_t>& expected_binary,
const std::vector<uint32_t>& actual_binary) {
if (expected_binary == actual_binary) {
return true;
}
SpirvTools t(env);
std::string expected_disassembled;
std::string actual_disassembled;
if (!t.Disassemble(expected_binary, &expected_disassembled,
kFuzzDisassembleOption)) {
return false;
}
if (!t.Disassemble(actual_binary, &actual_disassembled,
kFuzzDisassembleOption)) {
return false;
}
// Using expect gives us a string diff if the strings are not the same.
EXPECT_EQ(expected_disassembled, actual_disassembled);
// We then return the result of the equality comparison, to be used by an
// assertion in the test root function.
return expected_disassembled == actual_disassembled;
}
bool IsEqual(const spv_target_env env, const std::string& expected_text,
const std::vector<uint32_t>& actual_binary) {
std::vector<uint32_t> expected_binary;
SpirvTools t(env);
if (!t.Assemble(expected_text, &expected_binary, kFuzzAssembleOption)) {
return false;
}
return IsEqual(env, expected_binary, actual_binary);
}
bool IsEqual(const spv_target_env env, const std::string& expected_text,
const opt::IRContext* actual_ir) {
std::vector<uint32_t> actual_binary;
actual_ir->module()->ToBinary(&actual_binary, false);
return IsEqual(env, expected_text, actual_binary);
}
bool IsEqual(const spv_target_env env, const opt::IRContext* ir_1,
const opt::IRContext* ir_2) {
std::vector<uint32_t> binary_1;
ir_1->module()->ToBinary(&binary_1, false);
std::vector<uint32_t> binary_2;
ir_2->module()->ToBinary(&binary_2, false);
return IsEqual(env, binary_1, binary_2);
}
bool IsEqual(const spv_target_env env, const std::vector<uint32_t>& binary_1,
const opt::IRContext* ir_2) {
std::vector<uint32_t> binary_2;
ir_2->module()->ToBinary(&binary_2, false);
return IsEqual(env, binary_1, binary_2);
}
std::string ToString(spv_target_env env, const opt::IRContext* ir) {
std::vector<uint32_t> binary;
ir->module()->ToBinary(&binary, false);
return ToString(env, binary);
}
std::string ToString(spv_target_env env, const std::vector<uint32_t>& binary) {
SpirvTools t(env);
std::string result;
t.Disassemble(binary, &result, kFuzzDisassembleOption);
return result;
}
void DumpShader(opt::IRContext* context, const char* filename) {
std::vector<uint32_t> binary;
context->module()->ToBinary(&binary, false);
DumpShader(binary, filename);
}
void DumpShader(const std::vector<uint32_t>& binary, const char* filename) {
auto write_file_succeeded =
WriteFile(filename, "wb", &binary[0], binary.size());
if (!write_file_succeeded) {
std::cerr << "Failed to dump shader" << std::endl;
}
}
void DumpTransformationsBinary(
const protobufs::TransformationSequence& transformations,
const char* filename) {
std::ofstream transformations_file;
transformations_file.open(filename, std::ios::out | std::ios::binary);
transformations.SerializeToOstream(&transformations_file);
transformations_file.close();
}
void DumpTransformationsJson(
const protobufs::TransformationSequence& transformations,
const char* filename) {
std::string json_string;
auto json_options = google::protobuf::util::JsonOptions();
json_options.add_whitespace = true;
auto json_generation_status = google::protobuf::util::MessageToJsonString(
transformations, &json_string, json_options);
if (json_generation_status == google::protobuf::util::Status::OK) {
std::ofstream transformations_json_file(filename);
transformations_json_file << json_string;
transformations_json_file.close();
}
}
void ApplyAndCheckFreshIds(
const Transformation& transformation, opt::IRContext* ir_context,
TransformationContext* transformation_context,
const std::unordered_set<uint32_t>& issued_overflow_ids) {
// To ensure that we cover all ToMessage and message-based constructor methods
// in our tests, we turn this into a message and back into a transformation,
// and use the reconstructed transformation in the rest of the function.
auto message = transformation.ToMessage();
auto reconstructed_transformation = Transformation::FromMessage(message);
opt::analysis::DefUseManager::IdToDefMap before_transformation =
ir_context->get_def_use_mgr()->id_to_defs();
reconstructed_transformation->Apply(ir_context, transformation_context);
opt::analysis::DefUseManager::IdToDefMap after_transformation =
ir_context->get_def_use_mgr()->id_to_defs();
std::unordered_set<uint32_t> fresh_ids_for_transformation =
reconstructed_transformation->GetFreshIds();
for (auto& entry : after_transformation) {
uint32_t id = entry.first;
bool introduced_by_transformation_message =
fresh_ids_for_transformation.count(id);
bool introduced_by_overflow_ids = issued_overflow_ids.count(id);
ASSERT_FALSE(introduced_by_transformation_message &&
introduced_by_overflow_ids);
if (before_transformation.count(entry.first)) {
ASSERT_FALSE(introduced_by_transformation_message ||
introduced_by_overflow_ids);
} else {
ASSERT_TRUE(introduced_by_transformation_message ||
introduced_by_overflow_ids);
}
}
}
} // namespace fuzz
} // namespace spvtools