SPIRV-Tools/source/fuzz/fuzzer_pass_add_dead_breaks.cpp
Alastair Donaldson e2e95172df
Rework management of probabilities in spirv-fuzz (#2839)
Before this change there was quite a lot of duplication in the code
being used to choose random percentages, and some of it was incorrect
so that a percentage chance of (100-N)% instead of N% was being used.
Also there was a lot of duplicate code to choose a random index into a
vector.  This change eliminates that duplication (fixing up the
percentage problem), and gets rid of direct access to the random
number generator being used for fuzzing, so that all randomization
requests must go through the FuzzerContext class, discouraging future
ad-hoc uses of the random number generator.
2019-09-10 15:02:25 +01:00

96 lines
4.3 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_add_dead_breaks.h"
#include "source/fuzz/transformation_add_dead_break.h"
#include "source/opt/ir_context.h"
namespace spvtools {
namespace fuzz {
FuzzerPassAddDeadBreaks::FuzzerPassAddDeadBreaks(
opt::IRContext* ir_context, FactManager* fact_manager,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations)
: FuzzerPass(ir_context, fact_manager, fuzzer_context, transformations) {}
FuzzerPassAddDeadBreaks::~FuzzerPassAddDeadBreaks() = default;
void FuzzerPassAddDeadBreaks::Apply() {
// We first collect up lots of possibly-applicable transformations.
std::vector<TransformationAddDeadBreak> candidate_transformations;
// We consider each function separately.
for (auto& function : *GetIRContext()->module()) {
// For a given function, we find all the merge blocks in that function.
std::vector<uint32_t> merge_block_ids;
for (auto& block : function) {
auto maybe_merge_id = block.MergeBlockIdIfAny();
if (maybe_merge_id) {
merge_block_ids.push_back(maybe_merge_id);
}
}
// We rather aggressively consider the possibility of adding a break from
// every block in the function to every merge block. Many of these will be
// inapplicable as they would be illegal. That's OK - we later discard the
// ones that turn out to be no good.
for (auto& block : function) {
for (auto merge_block_id : merge_block_ids) {
// TODO(afd): right now we completely ignore OpPhi instructions at
// merge blocks. This will lead to interesting opportunities being
// missed.
auto candidate_transformation = TransformationAddDeadBreak(
block.id(), merge_block_id, GetFuzzerContext()->ChooseEven(), {});
if (candidate_transformation.IsApplicable(GetIRContext(),
*GetFactManager())) {
// Only consider a transformation as a candidate if it is applicable.
candidate_transformations.push_back(
std::move(candidate_transformation));
}
}
}
}
// Go through the candidate transformations that were accumulated,
// probabilistically deciding whether to consider each one further and
// applying the still-applicable ones that are considered further.
//
// We iterate through the candidate transformations in a random order by
// repeatedly removing a random candidate transformation from the sequence
// until no candidate transformations remain. This is done because
// transformations can potentially disable one another, so that iterating
// through them in order would lead to a higher probability of
// transformations appearing early in the sequence being applied compared
// with later transformations.
while (!candidate_transformations.empty()) {
// Choose a random index into the sequence of remaining candidate
// transformations.
auto index = GetFuzzerContext()->RandomIndex(candidate_transformations);
// Remove the transformation at the chosen index from the sequence.
auto transformation = std::move(candidate_transformations[index]);
candidate_transformations.erase(candidate_transformations.begin() + index);
// Probabilistically decide whether to try to apply it vs. ignore it, in the
// case that it is applicable.
if (transformation.IsApplicable(GetIRContext(), *GetFactManager()) &&
GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfAddingDeadBreak())) {
transformation.Apply(GetIRContext(), GetFactManager());
*GetTransformations()->add_transformation() = transformation.ToMessage();
}
}
}
} // namespace fuzz
} // namespace spvtools