SPIRV-Tools/source/opt/scalar_replacement_pass.cpp
Steven Perron 5b371918b9
Have scalar replacement use undef instead of null (#4691)
Scalar replacement generates a null when there value for a member will
not be used.  The null is used to make sure things are
deterministic in case there is an error.

However, some type cannot be null, so we will change that to use undef.
To keep the code simpler we will always use the undef.

Fixes #3996
2022-02-03 15:51:15 +00:00

1010 lines
34 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/scalar_replacement_pass.h"
#include <algorithm>
#include <queue>
#include <tuple>
#include <utility>
#include "source/enum_string_mapping.h"
#include "source/extensions.h"
#include "source/opt/reflect.h"
#include "source/opt/types.h"
#include "source/util/make_unique.h"
#include "types.h"
static const uint32_t kDebugValueOperandValueIndex = 5;
static const uint32_t kDebugValueOperandExpressionIndex = 6;
static const uint32_t kDebugDeclareOperandVariableIndex = 5;
namespace spvtools {
namespace opt {
Pass::Status ScalarReplacementPass::Process() {
Status status = Status::SuccessWithoutChange;
for (auto& f : *get_module()) {
if (f.IsDeclaration()) {
continue;
}
Status functionStatus = ProcessFunction(&f);
if (functionStatus == Status::Failure)
return functionStatus;
else if (functionStatus == Status::SuccessWithChange)
status = functionStatus;
}
return status;
}
Pass::Status ScalarReplacementPass::ProcessFunction(Function* function) {
std::queue<Instruction*> worklist;
BasicBlock& entry = *function->begin();
for (auto iter = entry.begin(); iter != entry.end(); ++iter) {
// Function storage class OpVariables must appear as the first instructions
// of the entry block.
if (iter->opcode() != SpvOpVariable) break;
Instruction* varInst = &*iter;
if (CanReplaceVariable(varInst)) {
worklist.push(varInst);
}
}
Status status = Status::SuccessWithoutChange;
while (!worklist.empty()) {
Instruction* varInst = worklist.front();
worklist.pop();
Status var_status = ReplaceVariable(varInst, &worklist);
if (var_status == Status::Failure)
return var_status;
else if (var_status == Status::SuccessWithChange)
status = var_status;
}
return status;
}
Pass::Status ScalarReplacementPass::ReplaceVariable(
Instruction* inst, std::queue<Instruction*>* worklist) {
std::vector<Instruction*> replacements;
if (!CreateReplacementVariables(inst, &replacements)) {
return Status::Failure;
}
std::vector<Instruction*> dead;
bool replaced_all_uses = get_def_use_mgr()->WhileEachUser(
inst, [this, &replacements, &dead](Instruction* user) {
if (user->GetCommonDebugOpcode() == CommonDebugInfoDebugDeclare) {
if (ReplaceWholeDebugDeclare(user, replacements)) {
dead.push_back(user);
return true;
}
return false;
}
if (user->GetCommonDebugOpcode() == CommonDebugInfoDebugValue) {
if (ReplaceWholeDebugValue(user, replacements)) {
dead.push_back(user);
return true;
}
return false;
}
if (!IsAnnotationInst(user->opcode())) {
switch (user->opcode()) {
case SpvOpLoad:
if (ReplaceWholeLoad(user, replacements)) {
dead.push_back(user);
} else {
return false;
}
break;
case SpvOpStore:
if (ReplaceWholeStore(user, replacements)) {
dead.push_back(user);
} else {
return false;
}
break;
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
if (ReplaceAccessChain(user, replacements))
dead.push_back(user);
else
return false;
break;
case SpvOpName:
case SpvOpMemberName:
break;
default:
assert(false && "Unexpected opcode");
break;
}
}
return true;
});
if (replaced_all_uses) {
dead.push_back(inst);
} else {
return Status::Failure;
}
// If there are no dead instructions to clean up, return with no changes.
if (dead.empty()) return Status::SuccessWithoutChange;
// Clean up some dead code.
while (!dead.empty()) {
Instruction* toKill = dead.back();
dead.pop_back();
context()->KillInst(toKill);
}
// Attempt to further scalarize.
for (auto var : replacements) {
if (var->opcode() == SpvOpVariable) {
if (get_def_use_mgr()->NumUsers(var) == 0) {
context()->KillInst(var);
} else if (CanReplaceVariable(var)) {
worklist->push(var);
}
}
}
return Status::SuccessWithChange;
}
bool ScalarReplacementPass::ReplaceWholeDebugDeclare(
Instruction* dbg_decl, const std::vector<Instruction*>& replacements) {
// Insert Deref operation to the front of the operation list of |dbg_decl|.
Instruction* dbg_expr = context()->get_def_use_mgr()->GetDef(
dbg_decl->GetSingleWordOperand(kDebugValueOperandExpressionIndex));
auto* deref_expr =
context()->get_debug_info_mgr()->DerefDebugExpression(dbg_expr);
// Add DebugValue instruction with Indexes operand and Deref operation.
int32_t idx = 0;
for (const auto* var : replacements) {
Instruction* insert_before = var->NextNode();
while (insert_before->opcode() == SpvOpVariable)
insert_before = insert_before->NextNode();
assert(insert_before != nullptr && "unexpected end of list");
Instruction* added_dbg_value =
context()->get_debug_info_mgr()->AddDebugValueForDecl(
dbg_decl, /*value_id=*/var->result_id(),
/*insert_before=*/insert_before, /*scope_and_line=*/dbg_decl);
if (added_dbg_value == nullptr) return false;
added_dbg_value->AddOperand(
{SPV_OPERAND_TYPE_ID,
{context()->get_constant_mgr()->GetSIntConst(idx)}});
added_dbg_value->SetOperand(kDebugValueOperandExpressionIndex,
{deref_expr->result_id()});
if (context()->AreAnalysesValid(IRContext::Analysis::kAnalysisDefUse)) {
context()->get_def_use_mgr()->AnalyzeInstUse(added_dbg_value);
}
++idx;
}
return true;
}
bool ScalarReplacementPass::ReplaceWholeDebugValue(
Instruction* dbg_value, const std::vector<Instruction*>& replacements) {
int32_t idx = 0;
BasicBlock* block = context()->get_instr_block(dbg_value);
for (auto var : replacements) {
// Clone the DebugValue.
std::unique_ptr<Instruction> new_dbg_value(dbg_value->Clone(context()));
uint32_t new_id = TakeNextId();
if (new_id == 0) return false;
new_dbg_value->SetResultId(new_id);
// Update 'Value' operand to the |replacements|.
new_dbg_value->SetOperand(kDebugValueOperandValueIndex, {var->result_id()});
// Append 'Indexes' operand.
new_dbg_value->AddOperand(
{SPV_OPERAND_TYPE_ID,
{context()->get_constant_mgr()->GetSIntConst(idx)}});
// Insert the new DebugValue to the basic block.
auto* added_instr = dbg_value->InsertBefore(std::move(new_dbg_value));
get_def_use_mgr()->AnalyzeInstDefUse(added_instr);
context()->set_instr_block(added_instr, block);
++idx;
}
return true;
}
bool ScalarReplacementPass::ReplaceWholeLoad(
Instruction* load, const std::vector<Instruction*>& replacements) {
// Replaces the load of the entire composite with a load from each replacement
// variable followed by a composite construction.
BasicBlock* block = context()->get_instr_block(load);
std::vector<Instruction*> loads;
loads.reserve(replacements.size());
BasicBlock::iterator where(load);
for (auto var : replacements) {
// Create a load of each replacement variable.
if (var->opcode() != SpvOpVariable) {
loads.push_back(var);
continue;
}
Instruction* type = GetStorageType(var);
uint32_t loadId = TakeNextId();
if (loadId == 0) {
return false;
}
std::unique_ptr<Instruction> newLoad(
new Instruction(context(), SpvOpLoad, type->result_id(), loadId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {var->result_id()}}}));
// Copy memory access attributes which start at index 1. Index 0 is the
// pointer to load.
for (uint32_t i = 1; i < load->NumInOperands(); ++i) {
Operand copy(load->GetInOperand(i));
newLoad->AddOperand(std::move(copy));
}
where = where.InsertBefore(std::move(newLoad));
get_def_use_mgr()->AnalyzeInstDefUse(&*where);
context()->set_instr_block(&*where, block);
where->UpdateDebugInfoFrom(load);
loads.push_back(&*where);
}
// Construct a new composite.
uint32_t compositeId = TakeNextId();
if (compositeId == 0) {
return false;
}
where = load;
std::unique_ptr<Instruction> compositeConstruct(new Instruction(
context(), SpvOpCompositeConstruct, load->type_id(), compositeId, {}));
for (auto l : loads) {
Operand op(SPV_OPERAND_TYPE_ID,
std::initializer_list<uint32_t>{l->result_id()});
compositeConstruct->AddOperand(std::move(op));
}
where = where.InsertBefore(std::move(compositeConstruct));
get_def_use_mgr()->AnalyzeInstDefUse(&*where);
where->UpdateDebugInfoFrom(load);
context()->set_instr_block(&*where, block);
context()->ReplaceAllUsesWith(load->result_id(), compositeId);
return true;
}
bool ScalarReplacementPass::ReplaceWholeStore(
Instruction* store, const std::vector<Instruction*>& replacements) {
// Replaces a store to the whole composite with a series of extract and stores
// to each element.
uint32_t storeInput = store->GetSingleWordInOperand(1u);
BasicBlock* block = context()->get_instr_block(store);
BasicBlock::iterator where(store);
uint32_t elementIndex = 0;
for (auto var : replacements) {
// Create the extract.
if (var->opcode() != SpvOpVariable) {
elementIndex++;
continue;
}
Instruction* type = GetStorageType(var);
uint32_t extractId = TakeNextId();
if (extractId == 0) {
return false;
}
std::unique_ptr<Instruction> extract(new Instruction(
context(), SpvOpCompositeExtract, type->result_id(), extractId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {storeInput}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {elementIndex++}}}));
auto iter = where.InsertBefore(std::move(extract));
iter->UpdateDebugInfoFrom(store);
get_def_use_mgr()->AnalyzeInstDefUse(&*iter);
context()->set_instr_block(&*iter, block);
// Create the store.
std::unique_ptr<Instruction> newStore(
new Instruction(context(), SpvOpStore, 0, 0,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {var->result_id()}},
{SPV_OPERAND_TYPE_ID, {extractId}}}));
// Copy memory access attributes which start at index 2. Index 0 is the
// pointer and index 1 is the data.
for (uint32_t i = 2; i < store->NumInOperands(); ++i) {
Operand copy(store->GetInOperand(i));
newStore->AddOperand(std::move(copy));
}
iter = where.InsertBefore(std::move(newStore));
iter->UpdateDebugInfoFrom(store);
get_def_use_mgr()->AnalyzeInstDefUse(&*iter);
context()->set_instr_block(&*iter, block);
}
return true;
}
bool ScalarReplacementPass::ReplaceAccessChain(
Instruction* chain, const std::vector<Instruction*>& replacements) {
// Replaces the access chain with either another access chain (with one fewer
// indexes) or a direct use of the replacement variable.
uint32_t indexId = chain->GetSingleWordInOperand(1u);
const Instruction* index = get_def_use_mgr()->GetDef(indexId);
int64_t indexValue = context()
->get_constant_mgr()
->GetConstantFromInst(index)
->GetSignExtendedValue();
if (indexValue < 0 ||
indexValue >= static_cast<int64_t>(replacements.size())) {
// Out of bounds access, this is illegal IR. Notice that OpAccessChain
// indexing is 0-based, so we should also reject index == size-of-array.
return false;
} else {
const Instruction* var = replacements[static_cast<size_t>(indexValue)];
if (chain->NumInOperands() > 2) {
// Replace input access chain with another access chain.
BasicBlock::iterator chainIter(chain);
uint32_t replacementId = TakeNextId();
if (replacementId == 0) {
return false;
}
std::unique_ptr<Instruction> replacementChain(new Instruction(
context(), chain->opcode(), chain->type_id(), replacementId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {var->result_id()}}}));
// Add the remaining indexes.
for (uint32_t i = 2; i < chain->NumInOperands(); ++i) {
Operand copy(chain->GetInOperand(i));
replacementChain->AddOperand(std::move(copy));
}
replacementChain->UpdateDebugInfoFrom(chain);
auto iter = chainIter.InsertBefore(std::move(replacementChain));
get_def_use_mgr()->AnalyzeInstDefUse(&*iter);
context()->set_instr_block(&*iter, context()->get_instr_block(chain));
context()->ReplaceAllUsesWith(chain->result_id(), replacementId);
} else {
// Replace with a use of the variable.
context()->ReplaceAllUsesWith(chain->result_id(), var->result_id());
}
}
return true;
}
bool ScalarReplacementPass::CreateReplacementVariables(
Instruction* inst, std::vector<Instruction*>* replacements) {
Instruction* type = GetStorageType(inst);
std::unique_ptr<std::unordered_set<int64_t>> components_used =
GetUsedComponents(inst);
uint32_t elem = 0;
switch (type->opcode()) {
case SpvOpTypeStruct:
type->ForEachInOperand(
[this, inst, &elem, replacements, &components_used](uint32_t* id) {
if (!components_used || components_used->count(elem)) {
CreateVariable(*id, inst, elem, replacements);
} else {
replacements->push_back(GetUndef(*id));
}
elem++;
});
break;
case SpvOpTypeArray:
for (uint32_t i = 0; i != GetArrayLength(type); ++i) {
if (!components_used || components_used->count(i)) {
CreateVariable(type->GetSingleWordInOperand(0u), inst, i,
replacements);
} else {
uint32_t element_type_id = type->GetSingleWordInOperand(0);
replacements->push_back(GetUndef(element_type_id));
}
}
break;
case SpvOpTypeMatrix:
case SpvOpTypeVector:
for (uint32_t i = 0; i != GetNumElements(type); ++i) {
CreateVariable(type->GetSingleWordInOperand(0u), inst, i, replacements);
}
break;
default:
assert(false && "Unexpected type.");
break;
}
TransferAnnotations(inst, replacements);
return std::find(replacements->begin(), replacements->end(), nullptr) ==
replacements->end();
}
Instruction* ScalarReplacementPass::GetUndef(uint32_t type_id) {
return get_def_use_mgr()->GetDef(Type2Undef(type_id));
}
void ScalarReplacementPass::TransferAnnotations(
const Instruction* source, std::vector<Instruction*>* replacements) {
// Only transfer invariant and restrict decorations on the variable. There are
// no type or member decorations that are necessary to transfer.
for (auto inst :
get_decoration_mgr()->GetDecorationsFor(source->result_id(), false)) {
assert(inst->opcode() == SpvOpDecorate);
uint32_t decoration = inst->GetSingleWordInOperand(1u);
if (decoration == SpvDecorationInvariant ||
decoration == SpvDecorationRestrict) {
for (auto var : *replacements) {
if (var == nullptr) {
continue;
}
std::unique_ptr<Instruction> annotation(
new Instruction(context(), SpvOpDecorate, 0, 0,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {var->result_id()}},
{SPV_OPERAND_TYPE_DECORATION, {decoration}}}));
for (uint32_t i = 2; i < inst->NumInOperands(); ++i) {
Operand copy(inst->GetInOperand(i));
annotation->AddOperand(std::move(copy));
}
context()->AddAnnotationInst(std::move(annotation));
get_def_use_mgr()->AnalyzeInstUse(&*--context()->annotation_end());
}
}
}
}
void ScalarReplacementPass::CreateVariable(
uint32_t typeId, Instruction* varInst, uint32_t index,
std::vector<Instruction*>* replacements) {
uint32_t ptrId = GetOrCreatePointerType(typeId);
uint32_t id = TakeNextId();
if (id == 0) {
replacements->push_back(nullptr);
}
std::unique_ptr<Instruction> variable(new Instruction(
context(), SpvOpVariable, ptrId, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}}}));
BasicBlock* block = context()->get_instr_block(varInst);
block->begin().InsertBefore(std::move(variable));
Instruction* inst = &*block->begin();
// If varInst was initialized, make sure to initialize its replacement.
GetOrCreateInitialValue(varInst, index, inst);
get_def_use_mgr()->AnalyzeInstDefUse(inst);
context()->set_instr_block(inst, block);
// Copy decorations from the member to the new variable.
Instruction* typeInst = GetStorageType(varInst);
for (auto dec_inst :
get_decoration_mgr()->GetDecorationsFor(typeInst->result_id(), false)) {
uint32_t decoration;
if (dec_inst->opcode() != SpvOpMemberDecorate) {
continue;
}
if (dec_inst->GetSingleWordInOperand(1) != index) {
continue;
}
decoration = dec_inst->GetSingleWordInOperand(2u);
switch (decoration) {
case SpvDecorationRelaxedPrecision: {
std::unique_ptr<Instruction> new_dec_inst(
new Instruction(context(), SpvOpDecorate, 0, 0, {}));
new_dec_inst->AddOperand(Operand(SPV_OPERAND_TYPE_ID, {id}));
for (uint32_t i = 2; i < dec_inst->NumInOperandWords(); ++i) {
new_dec_inst->AddOperand(Operand(dec_inst->GetInOperand(i)));
}
context()->AddAnnotationInst(std::move(new_dec_inst));
} break;
default:
break;
}
}
// Update the DebugInfo debug information.
inst->UpdateDebugInfoFrom(varInst);
replacements->push_back(inst);
}
uint32_t ScalarReplacementPass::GetOrCreatePointerType(uint32_t id) {
auto iter = pointee_to_pointer_.find(id);
if (iter != pointee_to_pointer_.end()) return iter->second;
analysis::Type* pointeeTy;
std::unique_ptr<analysis::Pointer> pointerTy;
std::tie(pointeeTy, pointerTy) =
context()->get_type_mgr()->GetTypeAndPointerType(id,
SpvStorageClassFunction);
uint32_t ptrId = 0;
if (pointeeTy->IsUniqueType()) {
// Non-ambiguous type, just ask the type manager for an id.
ptrId = context()->get_type_mgr()->GetTypeInstruction(pointerTy.get());
pointee_to_pointer_[id] = ptrId;
return ptrId;
}
// Ambiguous type. We must perform a linear search to try and find the right
// type.
for (auto global : context()->types_values()) {
if (global.opcode() == SpvOpTypePointer &&
global.GetSingleWordInOperand(0u) == SpvStorageClassFunction &&
global.GetSingleWordInOperand(1u) == id) {
if (get_decoration_mgr()->GetDecorationsFor(id, false).empty()) {
// Only reuse a decoration-less pointer of the correct type.
ptrId = global.result_id();
break;
}
}
}
if (ptrId != 0) {
pointee_to_pointer_[id] = ptrId;
return ptrId;
}
ptrId = TakeNextId();
context()->AddType(MakeUnique<Instruction>(
context(), SpvOpTypePointer, 0, ptrId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}},
{SPV_OPERAND_TYPE_ID, {id}}}));
Instruction* ptr = &*--context()->types_values_end();
get_def_use_mgr()->AnalyzeInstDefUse(ptr);
pointee_to_pointer_[id] = ptrId;
// Register with the type manager if necessary.
context()->get_type_mgr()->RegisterType(ptrId, *pointerTy);
return ptrId;
}
void ScalarReplacementPass::GetOrCreateInitialValue(Instruction* source,
uint32_t index,
Instruction* newVar) {
assert(source->opcode() == SpvOpVariable);
if (source->NumInOperands() < 2) return;
uint32_t initId = source->GetSingleWordInOperand(1u);
uint32_t storageId = GetStorageType(newVar)->result_id();
Instruction* init = get_def_use_mgr()->GetDef(initId);
uint32_t newInitId = 0;
// TODO(dnovillo): Refactor this with constant propagation.
if (init->opcode() == SpvOpConstantNull) {
// Initialize to appropriate NULL.
auto iter = type_to_null_.find(storageId);
if (iter == type_to_null_.end()) {
newInitId = TakeNextId();
type_to_null_[storageId] = newInitId;
context()->AddGlobalValue(
MakeUnique<Instruction>(context(), SpvOpConstantNull, storageId,
newInitId, std::initializer_list<Operand>{}));
Instruction* newNull = &*--context()->types_values_end();
get_def_use_mgr()->AnalyzeInstDefUse(newNull);
} else {
newInitId = iter->second;
}
} else if (IsSpecConstantInst(init->opcode())) {
// Create a new constant extract.
newInitId = TakeNextId();
context()->AddGlobalValue(MakeUnique<Instruction>(
context(), SpvOpSpecConstantOp, storageId, newInitId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER, {SpvOpCompositeExtract}},
{SPV_OPERAND_TYPE_ID, {init->result_id()}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {index}}}));
Instruction* newSpecConst = &*--context()->types_values_end();
get_def_use_mgr()->AnalyzeInstDefUse(newSpecConst);
} else if (init->opcode() == SpvOpConstantComposite) {
// Get the appropriate index constant.
newInitId = init->GetSingleWordInOperand(index);
Instruction* element = get_def_use_mgr()->GetDef(newInitId);
if (element->opcode() == SpvOpUndef) {
// Undef is not a valid initializer for a variable.
newInitId = 0;
}
} else {
assert(false);
}
if (newInitId != 0) {
newVar->AddOperand({SPV_OPERAND_TYPE_ID, {newInitId}});
}
}
uint64_t ScalarReplacementPass::GetArrayLength(
const Instruction* arrayType) const {
assert(arrayType->opcode() == SpvOpTypeArray);
const Instruction* length =
get_def_use_mgr()->GetDef(arrayType->GetSingleWordInOperand(1u));
return context()
->get_constant_mgr()
->GetConstantFromInst(length)
->GetZeroExtendedValue();
}
uint64_t ScalarReplacementPass::GetNumElements(const Instruction* type) const {
assert(type->opcode() == SpvOpTypeVector ||
type->opcode() == SpvOpTypeMatrix);
const Operand& op = type->GetInOperand(1u);
assert(op.words.size() <= 2);
uint64_t len = 0;
for (size_t i = 0; i != op.words.size(); ++i) {
len |= (static_cast<uint64_t>(op.words[i]) << (32ull * i));
}
return len;
}
bool ScalarReplacementPass::IsSpecConstant(uint32_t id) const {
const Instruction* inst = get_def_use_mgr()->GetDef(id);
assert(inst);
return spvOpcodeIsSpecConstant(inst->opcode());
}
Instruction* ScalarReplacementPass::GetStorageType(
const Instruction* inst) const {
assert(inst->opcode() == SpvOpVariable);
uint32_t ptrTypeId = inst->type_id();
uint32_t typeId =
get_def_use_mgr()->GetDef(ptrTypeId)->GetSingleWordInOperand(1u);
return get_def_use_mgr()->GetDef(typeId);
}
bool ScalarReplacementPass::CanReplaceVariable(
const Instruction* varInst) const {
assert(varInst->opcode() == SpvOpVariable);
// Can only replace function scope variables.
if (varInst->GetSingleWordInOperand(0u) != SpvStorageClassFunction) {
return false;
}
if (!CheckTypeAnnotations(get_def_use_mgr()->GetDef(varInst->type_id()))) {
return false;
}
const Instruction* typeInst = GetStorageType(varInst);
if (!CheckType(typeInst)) {
return false;
}
if (!CheckAnnotations(varInst)) {
return false;
}
if (!CheckUses(varInst)) {
return false;
}
return true;
}
bool ScalarReplacementPass::CheckType(const Instruction* typeInst) const {
if (!CheckTypeAnnotations(typeInst)) {
return false;
}
switch (typeInst->opcode()) {
case SpvOpTypeStruct:
// Don't bother with empty structs or very large structs.
if (typeInst->NumInOperands() == 0 ||
IsLargerThanSizeLimit(typeInst->NumInOperands())) {
return false;
}
return true;
case SpvOpTypeArray:
if (IsSpecConstant(typeInst->GetSingleWordInOperand(1u))) {
return false;
}
if (IsLargerThanSizeLimit(GetArrayLength(typeInst))) {
return false;
}
return true;
// TODO(alanbaker): Develop some heuristics for when this should be
// re-enabled.
//// Specifically including matrix and vector in an attempt to reduce the
//// number of vector registers required.
// case SpvOpTypeMatrix:
// case SpvOpTypeVector:
// if (IsLargerThanSizeLimit(GetNumElements(typeInst))) return false;
// return true;
case SpvOpTypeRuntimeArray:
default:
return false;
}
}
bool ScalarReplacementPass::CheckTypeAnnotations(
const Instruction* typeInst) const {
for (auto inst :
get_decoration_mgr()->GetDecorationsFor(typeInst->result_id(), false)) {
uint32_t decoration;
if (inst->opcode() == SpvOpDecorate) {
decoration = inst->GetSingleWordInOperand(1u);
} else {
assert(inst->opcode() == SpvOpMemberDecorate);
decoration = inst->GetSingleWordInOperand(2u);
}
switch (decoration) {
case SpvDecorationRowMajor:
case SpvDecorationColMajor:
case SpvDecorationArrayStride:
case SpvDecorationMatrixStride:
case SpvDecorationCPacked:
case SpvDecorationInvariant:
case SpvDecorationRestrict:
case SpvDecorationOffset:
case SpvDecorationAlignment:
case SpvDecorationAlignmentId:
case SpvDecorationMaxByteOffset:
case SpvDecorationRelaxedPrecision:
break;
default:
return false;
}
}
return true;
}
bool ScalarReplacementPass::CheckAnnotations(const Instruction* varInst) const {
for (auto inst :
get_decoration_mgr()->GetDecorationsFor(varInst->result_id(), false)) {
assert(inst->opcode() == SpvOpDecorate);
uint32_t decoration = inst->GetSingleWordInOperand(1u);
switch (decoration) {
case SpvDecorationInvariant:
case SpvDecorationRestrict:
case SpvDecorationAlignment:
case SpvDecorationAlignmentId:
case SpvDecorationMaxByteOffset:
break;
default:
return false;
}
}
return true;
}
bool ScalarReplacementPass::CheckUses(const Instruction* inst) const {
VariableStats stats = {0, 0};
bool ok = CheckUses(inst, &stats);
// TODO(alanbaker/greg-lunarg): Add some meaningful heuristics about when
// SRoA is costly, such as when the structure has many (unaccessed?)
// members.
return ok;
}
bool ScalarReplacementPass::CheckUses(const Instruction* inst,
VariableStats* stats) const {
uint64_t max_legal_index = GetMaxLegalIndex(inst);
bool ok = true;
get_def_use_mgr()->ForEachUse(inst, [this, max_legal_index, stats, &ok](
const Instruction* user,
uint32_t index) {
if (user->GetCommonDebugOpcode() == CommonDebugInfoDebugDeclare ||
user->GetCommonDebugOpcode() == CommonDebugInfoDebugValue) {
// TODO: include num_partial_accesses if it uses Fragment operation or
// DebugValue has Indexes operand.
stats->num_full_accesses++;
return;
}
// Annotations are check as a group separately.
if (!IsAnnotationInst(user->opcode())) {
switch (user->opcode()) {
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
if (index == 2u && user->NumInOperands() > 1) {
uint32_t id = user->GetSingleWordInOperand(1u);
const Instruction* opInst = get_def_use_mgr()->GetDef(id);
const auto* constant =
context()->get_constant_mgr()->GetConstantFromInst(opInst);
if (!constant) {
ok = false;
} else if (constant->GetZeroExtendedValue() >= max_legal_index) {
ok = false;
} else {
if (!CheckUsesRelaxed(user)) ok = false;
}
stats->num_partial_accesses++;
} else {
ok = false;
}
break;
case SpvOpLoad:
if (!CheckLoad(user, index)) ok = false;
stats->num_full_accesses++;
break;
case SpvOpStore:
if (!CheckStore(user, index)) ok = false;
stats->num_full_accesses++;
break;
case SpvOpName:
case SpvOpMemberName:
break;
default:
ok = false;
break;
}
}
});
return ok;
}
bool ScalarReplacementPass::CheckUsesRelaxed(const Instruction* inst) const {
bool ok = true;
get_def_use_mgr()->ForEachUse(
inst, [this, &ok](const Instruction* user, uint32_t index) {
switch (user->opcode()) {
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
if (index != 2u) {
ok = false;
} else {
if (!CheckUsesRelaxed(user)) ok = false;
}
break;
case SpvOpLoad:
if (!CheckLoad(user, index)) ok = false;
break;
case SpvOpStore:
if (!CheckStore(user, index)) ok = false;
break;
case SpvOpImageTexelPointer:
if (!CheckImageTexelPointer(index)) ok = false;
break;
case SpvOpExtInst:
if (user->GetCommonDebugOpcode() != CommonDebugInfoDebugDeclare ||
!CheckDebugDeclare(index))
ok = false;
break;
default:
ok = false;
break;
}
});
return ok;
}
bool ScalarReplacementPass::CheckImageTexelPointer(uint32_t index) const {
return index == 2u;
}
bool ScalarReplacementPass::CheckLoad(const Instruction* inst,
uint32_t index) const {
if (index != 2u) return false;
if (inst->NumInOperands() >= 2 &&
inst->GetSingleWordInOperand(1u) & SpvMemoryAccessVolatileMask)
return false;
return true;
}
bool ScalarReplacementPass::CheckStore(const Instruction* inst,
uint32_t index) const {
if (index != 0u) return false;
if (inst->NumInOperands() >= 3 &&
inst->GetSingleWordInOperand(2u) & SpvMemoryAccessVolatileMask)
return false;
return true;
}
bool ScalarReplacementPass::CheckDebugDeclare(uint32_t index) const {
if (index != kDebugDeclareOperandVariableIndex) return false;
return true;
}
bool ScalarReplacementPass::IsLargerThanSizeLimit(uint64_t length) const {
if (max_num_elements_ == 0) {
return false;
}
return length > max_num_elements_;
}
std::unique_ptr<std::unordered_set<int64_t>>
ScalarReplacementPass::GetUsedComponents(Instruction* inst) {
std::unique_ptr<std::unordered_set<int64_t>> result(
new std::unordered_set<int64_t>());
analysis::DefUseManager* def_use_mgr = context()->get_def_use_mgr();
def_use_mgr->WhileEachUser(inst, [&result, def_use_mgr,
this](Instruction* use) {
switch (use->opcode()) {
case SpvOpLoad: {
// Look for extract from the load.
std::vector<uint32_t> t;
if (def_use_mgr->WhileEachUser(use, [&t](Instruction* use2) {
if (use2->opcode() != SpvOpCompositeExtract ||
use2->NumInOperands() <= 1) {
return false;
}
t.push_back(use2->GetSingleWordInOperand(1));
return true;
})) {
result->insert(t.begin(), t.end());
return true;
} else {
result.reset(nullptr);
return false;
}
}
case SpvOpName:
case SpvOpMemberName:
case SpvOpStore:
// No components are used.
return true;
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain: {
// Add the first index it if is a constant.
// TODO: Could be improved by checking if the address is used in a load.
analysis::ConstantManager* const_mgr = context()->get_constant_mgr();
uint32_t index_id = use->GetSingleWordInOperand(1);
const analysis::Constant* index_const =
const_mgr->FindDeclaredConstant(index_id);
if (index_const) {
result->insert(index_const->GetSignExtendedValue());
return true;
} else {
// Could be any element. Assuming all are used.
result.reset(nullptr);
return false;
}
}
default:
// We do not know what is happening. Have to assume the worst.
result.reset(nullptr);
return false;
}
});
return result;
}
uint64_t ScalarReplacementPass::GetMaxLegalIndex(
const Instruction* var_inst) const {
assert(var_inst->opcode() == SpvOpVariable &&
"|var_inst| must be a variable instruction.");
Instruction* type = GetStorageType(var_inst);
switch (type->opcode()) {
case SpvOpTypeStruct:
return type->NumInOperands();
case SpvOpTypeArray:
return GetArrayLength(type);
case SpvOpTypeMatrix:
case SpvOpTypeVector:
return GetNumElements(type);
default:
return 0;
}
return 0;
}
} // namespace opt
} // namespace spvtools