mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2024-12-31 20:21:06 +00:00
b334829a91
* Validate that if a construct contains a header and it's merge is reachable, the construct also contains the merge * updated block merging to not merge into the continue * update inlining to mark the original block of a single block loop as the continue * updated some tests * remove dead code * rename kBlockTypeHeader to kBlockTypeSelection for clarity
420 lines
14 KiB
C++
420 lines
14 KiB
C++
// Copyright (c) 2015-2016 The Khronos Group Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/val/function.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <sstream>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
#include "source/cfa.h"
|
|
#include "source/val/basic_block.h"
|
|
#include "source/val/construct.h"
|
|
#include "source/val/validate.h"
|
|
|
|
namespace spvtools {
|
|
namespace val {
|
|
|
|
// Universal Limit of ResultID + 1
|
|
static const uint32_t kInvalidId = 0x400000;
|
|
|
|
Function::Function(uint32_t function_id, uint32_t result_type_id,
|
|
SpvFunctionControlMask function_control,
|
|
uint32_t function_type_id)
|
|
: id_(function_id),
|
|
function_type_id_(function_type_id),
|
|
result_type_id_(result_type_id),
|
|
function_control_(function_control),
|
|
declaration_type_(FunctionDecl::kFunctionDeclUnknown),
|
|
end_has_been_registered_(false),
|
|
blocks_(),
|
|
current_block_(nullptr),
|
|
pseudo_entry_block_(0),
|
|
pseudo_exit_block_(kInvalidId),
|
|
cfg_constructs_(),
|
|
variable_ids_(),
|
|
parameter_ids_() {}
|
|
|
|
bool Function::IsFirstBlock(uint32_t block_id) const {
|
|
return !ordered_blocks_.empty() && *first_block() == block_id;
|
|
}
|
|
|
|
spv_result_t Function::RegisterFunctionParameter(uint32_t parameter_id,
|
|
uint32_t type_id) {
|
|
assert(current_block_ == nullptr &&
|
|
"RegisterFunctionParameter can only be called when parsing the binary "
|
|
"ouside of a block");
|
|
// TODO(umar): Validate function parameter type order and count
|
|
// TODO(umar): Use these variables to validate parameter type
|
|
(void)parameter_id;
|
|
(void)type_id;
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t Function::RegisterLoopMerge(uint32_t merge_id,
|
|
uint32_t continue_id) {
|
|
RegisterBlock(merge_id, false);
|
|
RegisterBlock(continue_id, false);
|
|
BasicBlock& merge_block = blocks_.at(merge_id);
|
|
BasicBlock& continue_target_block = blocks_.at(continue_id);
|
|
assert(current_block_ &&
|
|
"RegisterLoopMerge must be called when called within a block");
|
|
|
|
current_block_->set_type(kBlockTypeLoop);
|
|
merge_block.set_type(kBlockTypeMerge);
|
|
continue_target_block.set_type(kBlockTypeContinue);
|
|
Construct& loop_construct =
|
|
AddConstruct({ConstructType::kLoop, current_block_, &merge_block});
|
|
Construct& continue_construct =
|
|
AddConstruct({ConstructType::kContinue, &continue_target_block});
|
|
|
|
continue_construct.set_corresponding_constructs({&loop_construct});
|
|
loop_construct.set_corresponding_constructs({&continue_construct});
|
|
merge_block_header_[&merge_block] = current_block_;
|
|
if (continue_target_headers_.find(&continue_target_block) ==
|
|
continue_target_headers_.end()) {
|
|
continue_target_headers_[&continue_target_block] = {current_block_};
|
|
} else {
|
|
continue_target_headers_[&continue_target_block].push_back(current_block_);
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t Function::RegisterSelectionMerge(uint32_t merge_id) {
|
|
RegisterBlock(merge_id, false);
|
|
BasicBlock& merge_block = blocks_.at(merge_id);
|
|
current_block_->set_type(kBlockTypeSelection);
|
|
merge_block.set_type(kBlockTypeMerge);
|
|
merge_block_header_[&merge_block] = current_block_;
|
|
|
|
AddConstruct({ConstructType::kSelection, current_block(), &merge_block});
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t Function::RegisterSetFunctionDeclType(FunctionDecl type) {
|
|
assert(declaration_type_ == FunctionDecl::kFunctionDeclUnknown);
|
|
declaration_type_ = type;
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t Function::RegisterBlock(uint32_t block_id, bool is_definition) {
|
|
assert(
|
|
declaration_type_ == FunctionDecl::kFunctionDeclDefinition &&
|
|
"RegisterBlocks can only be called after declaration_type_ is defined");
|
|
|
|
std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
|
|
bool success = false;
|
|
tie(inserted_block, success) =
|
|
blocks_.insert({block_id, BasicBlock(block_id)});
|
|
if (is_definition) { // new block definition
|
|
assert(current_block_ == nullptr &&
|
|
"Register Block can only be called when parsing a binary outside of "
|
|
"a BasicBlock");
|
|
|
|
undefined_blocks_.erase(block_id);
|
|
current_block_ = &inserted_block->second;
|
|
ordered_blocks_.push_back(current_block_);
|
|
if (IsFirstBlock(block_id)) current_block_->set_reachable(true);
|
|
} else if (success) { // Block doesn't exsist but this is not a definition
|
|
undefined_blocks_.insert(block_id);
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
void Function::RegisterBlockEnd(std::vector<uint32_t> next_list,
|
|
SpvOp branch_instruction) {
|
|
assert(
|
|
current_block_ &&
|
|
"RegisterBlockEnd can only be called when parsing a binary in a block");
|
|
std::vector<BasicBlock*> next_blocks;
|
|
next_blocks.reserve(next_list.size());
|
|
|
|
std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
|
|
bool success;
|
|
for (uint32_t successor_id : next_list) {
|
|
tie(inserted_block, success) =
|
|
blocks_.insert({successor_id, BasicBlock(successor_id)});
|
|
if (success) {
|
|
undefined_blocks_.insert(successor_id);
|
|
}
|
|
next_blocks.push_back(&inserted_block->second);
|
|
}
|
|
|
|
if (current_block_->is_type(kBlockTypeLoop)) {
|
|
// For each loop header, record the set of its successors, and include
|
|
// its continue target if the continue target is not the loop header
|
|
// itself.
|
|
std::vector<BasicBlock*>& next_blocks_plus_continue_target =
|
|
loop_header_successors_plus_continue_target_map_[current_block_];
|
|
next_blocks_plus_continue_target = next_blocks;
|
|
auto continue_target =
|
|
FindConstructForEntryBlock(current_block_, ConstructType::kLoop)
|
|
.corresponding_constructs()
|
|
.back()
|
|
->entry_block();
|
|
if (continue_target != current_block_) {
|
|
next_blocks_plus_continue_target.push_back(continue_target);
|
|
}
|
|
}
|
|
|
|
current_block_->RegisterBranchInstruction(branch_instruction);
|
|
current_block_->RegisterSuccessors(next_blocks);
|
|
current_block_ = nullptr;
|
|
return;
|
|
}
|
|
|
|
void Function::RegisterFunctionEnd() {
|
|
if (!end_has_been_registered_) {
|
|
end_has_been_registered_ = true;
|
|
|
|
ComputeAugmentedCFG();
|
|
}
|
|
}
|
|
|
|
size_t Function::block_count() const { return blocks_.size(); }
|
|
|
|
size_t Function::undefined_block_count() const {
|
|
return undefined_blocks_.size();
|
|
}
|
|
|
|
const std::vector<BasicBlock*>& Function::ordered_blocks() const {
|
|
return ordered_blocks_;
|
|
}
|
|
std::vector<BasicBlock*>& Function::ordered_blocks() { return ordered_blocks_; }
|
|
|
|
const BasicBlock* Function::current_block() const { return current_block_; }
|
|
BasicBlock* Function::current_block() { return current_block_; }
|
|
|
|
const std::list<Construct>& Function::constructs() const {
|
|
return cfg_constructs_;
|
|
}
|
|
std::list<Construct>& Function::constructs() { return cfg_constructs_; }
|
|
|
|
const BasicBlock* Function::first_block() const {
|
|
if (ordered_blocks_.empty()) return nullptr;
|
|
return ordered_blocks_[0];
|
|
}
|
|
BasicBlock* Function::first_block() {
|
|
if (ordered_blocks_.empty()) return nullptr;
|
|
return ordered_blocks_[0];
|
|
}
|
|
|
|
bool Function::IsBlockType(uint32_t merge_block_id, BlockType type) const {
|
|
bool ret = false;
|
|
const BasicBlock* block;
|
|
std::tie(block, std::ignore) = GetBlock(merge_block_id);
|
|
if (block) {
|
|
ret = block->is_type(type);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::pair<const BasicBlock*, bool> Function::GetBlock(uint32_t block_id) const {
|
|
const auto b = blocks_.find(block_id);
|
|
if (b != end(blocks_)) {
|
|
const BasicBlock* block = &(b->second);
|
|
bool defined =
|
|
undefined_blocks_.find(block->id()) == std::end(undefined_blocks_);
|
|
return std::make_pair(block, defined);
|
|
} else {
|
|
return std::make_pair(nullptr, false);
|
|
}
|
|
}
|
|
|
|
std::pair<BasicBlock*, bool> Function::GetBlock(uint32_t block_id) {
|
|
const BasicBlock* out;
|
|
bool defined;
|
|
std::tie(out, defined) =
|
|
const_cast<const Function*>(this)->GetBlock(block_id);
|
|
return std::make_pair(const_cast<BasicBlock*>(out), defined);
|
|
}
|
|
|
|
Function::GetBlocksFunction Function::AugmentedCFGSuccessorsFunction() const {
|
|
return [this](const BasicBlock* block) {
|
|
auto where = augmented_successors_map_.find(block);
|
|
return where == augmented_successors_map_.end() ? block->successors()
|
|
: &(*where).second;
|
|
};
|
|
}
|
|
|
|
Function::GetBlocksFunction
|
|
Function::AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const {
|
|
return [this](const BasicBlock* block) {
|
|
auto where = loop_header_successors_plus_continue_target_map_.find(block);
|
|
return where == loop_header_successors_plus_continue_target_map_.end()
|
|
? AugmentedCFGSuccessorsFunction()(block)
|
|
: &(*where).second;
|
|
};
|
|
}
|
|
|
|
Function::GetBlocksFunction Function::AugmentedCFGPredecessorsFunction() const {
|
|
return [this](const BasicBlock* block) {
|
|
auto where = augmented_predecessors_map_.find(block);
|
|
return where == augmented_predecessors_map_.end() ? block->predecessors()
|
|
: &(*where).second;
|
|
};
|
|
}
|
|
|
|
void Function::ComputeAugmentedCFG() {
|
|
// Compute the successors of the pseudo-entry block, and
|
|
// the predecessors of the pseudo exit block.
|
|
auto succ_func = [](const BasicBlock* b) { return b->successors(); };
|
|
auto pred_func = [](const BasicBlock* b) { return b->predecessors(); };
|
|
CFA<BasicBlock>::ComputeAugmentedCFG(
|
|
ordered_blocks_, &pseudo_entry_block_, &pseudo_exit_block_,
|
|
&augmented_successors_map_, &augmented_predecessors_map_, succ_func,
|
|
pred_func);
|
|
}
|
|
|
|
Construct& Function::AddConstruct(const Construct& new_construct) {
|
|
cfg_constructs_.push_back(new_construct);
|
|
auto& result = cfg_constructs_.back();
|
|
entry_block_to_construct_[std::make_pair(new_construct.entry_block(),
|
|
new_construct.type())] = &result;
|
|
return result;
|
|
}
|
|
|
|
Construct& Function::FindConstructForEntryBlock(const BasicBlock* entry_block,
|
|
ConstructType type) {
|
|
auto where =
|
|
entry_block_to_construct_.find(std::make_pair(entry_block, type));
|
|
assert(where != entry_block_to_construct_.end());
|
|
auto construct_ptr = (*where).second;
|
|
assert(construct_ptr);
|
|
return *construct_ptr;
|
|
}
|
|
|
|
int Function::GetBlockDepth(BasicBlock* bb) {
|
|
// Guard against nullptr.
|
|
if (!bb) {
|
|
return 0;
|
|
}
|
|
// Only calculate the depth if it's not already calculated.
|
|
// This function uses memoization to avoid duplicate CFG depth calculations.
|
|
if (block_depth_.find(bb) != block_depth_.end()) {
|
|
return block_depth_[bb];
|
|
}
|
|
|
|
BasicBlock* bb_dom = bb->immediate_dominator();
|
|
if (!bb_dom || bb == bb_dom) {
|
|
// This block has no dominator, so it's at depth 0.
|
|
block_depth_[bb] = 0;
|
|
} else if (bb->is_type(kBlockTypeContinue)) {
|
|
// This rule must precede the rule for merge blocks in order to set up
|
|
// depths correctly. If a block is both a merge and continue then the merge
|
|
// is nested within the continue's loop (or the graph is incorrect).
|
|
// The depth of the continue block entry point is 1 + loop header depth.
|
|
Construct* continue_construct =
|
|
entry_block_to_construct_[std::make_pair(bb, ConstructType::kContinue)];
|
|
assert(continue_construct);
|
|
// Continue construct has only 1 corresponding construct (loop header).
|
|
Construct* loop_construct =
|
|
continue_construct->corresponding_constructs()[0];
|
|
assert(loop_construct);
|
|
BasicBlock* loop_header = loop_construct->entry_block();
|
|
// The continue target may be the loop itself (while 1).
|
|
// In such cases, the depth of the continue block is: 1 + depth of the
|
|
// loop's dominator block.
|
|
if (loop_header == bb) {
|
|
block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
|
|
} else {
|
|
block_depth_[bb] = 1 + GetBlockDepth(loop_header);
|
|
}
|
|
} else if (bb->is_type(kBlockTypeMerge)) {
|
|
// If this is a merge block, its depth is equal to the block before
|
|
// branching.
|
|
BasicBlock* header = merge_block_header_[bb];
|
|
assert(header);
|
|
block_depth_[bb] = GetBlockDepth(header);
|
|
} else if (bb_dom->is_type(kBlockTypeSelection) ||
|
|
bb_dom->is_type(kBlockTypeLoop)) {
|
|
// The dominator of the given block is a header block. So, the nesting
|
|
// depth of this block is: 1 + nesting depth of the header.
|
|
block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
|
|
} else {
|
|
block_depth_[bb] = GetBlockDepth(bb_dom);
|
|
}
|
|
return block_depth_[bb];
|
|
}
|
|
|
|
void Function::RegisterExecutionModelLimitation(SpvExecutionModel model,
|
|
const std::string& message) {
|
|
execution_model_limitations_.push_back(
|
|
[model, message](SpvExecutionModel in_model, std::string* out_message) {
|
|
if (model != in_model) {
|
|
if (out_message) {
|
|
*out_message = message;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool Function::IsCompatibleWithExecutionModel(SpvExecutionModel model,
|
|
std::string* reason) const {
|
|
bool return_value = true;
|
|
std::stringstream ss_reason;
|
|
|
|
for (const auto& is_compatible : execution_model_limitations_) {
|
|
std::string message;
|
|
if (!is_compatible(model, &message)) {
|
|
if (!reason) return false;
|
|
return_value = false;
|
|
if (!message.empty()) {
|
|
ss_reason << message << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!return_value && reason) {
|
|
*reason = ss_reason.str();
|
|
}
|
|
|
|
return return_value;
|
|
}
|
|
|
|
bool Function::CheckLimitations(const ValidationState_t& _,
|
|
const Function* entry_point,
|
|
std::string* reason) const {
|
|
bool return_value = true;
|
|
std::stringstream ss_reason;
|
|
|
|
for (const auto& is_compatible : limitations_) {
|
|
std::string message;
|
|
if (!is_compatible(_, entry_point, &message)) {
|
|
if (!reason) return false;
|
|
return_value = false;
|
|
if (!message.empty()) {
|
|
ss_reason << message << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!return_value && reason) {
|
|
*reason = ss_reason.str();
|
|
}
|
|
|
|
return return_value;
|
|
}
|
|
|
|
} // namespace val
|
|
} // namespace spvtools
|