SPIRV-Tools/include/spirv-tools/libspirv.hpp
Alastair Donaldson 60ce96e2ff
spirv-fuzz: Add pass recommendations (#3757)
This change introduces various strategies for controlling the manner
in which fuzzer passes are applied repeatedly, including infrastructure
to allow fuzzer passes to be recommended based on which passes ran
previously.
2020-09-18 15:51:35 +01:00

357 lines
14 KiB
C++

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef INCLUDE_SPIRV_TOOLS_LIBSPIRV_HPP_
#define INCLUDE_SPIRV_TOOLS_LIBSPIRV_HPP_
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include "spirv-tools/libspirv.h"
namespace spvtools {
// Message consumer. The C strings for source and message are only alive for the
// specific invocation.
using MessageConsumer = std::function<void(
spv_message_level_t /* level */, const char* /* source */,
const spv_position_t& /* position */, const char* /* message */
)>;
// C++ RAII wrapper around the C context object spv_context.
class Context {
public:
// Constructs a context targeting the given environment |env|.
//
// See specific API calls for how the target environment is interpeted
// (particularly assembly and validation).
//
// The constructed instance will have an empty message consumer, which just
// ignores all messages from the library. Use SetMessageConsumer() to supply
// one if messages are of concern.
explicit Context(spv_target_env env);
// Enables move constructor/assignment operations.
Context(Context&& other);
Context& operator=(Context&& other);
// Disables copy constructor/assignment operations.
Context(const Context&) = delete;
Context& operator=(const Context&) = delete;
// Destructs this instance.
~Context();
// Sets the message consumer to the given |consumer|. The |consumer| will be
// invoked once for each message communicated from the library.
void SetMessageConsumer(MessageConsumer consumer);
// Returns the underlying spv_context.
spv_context& CContext();
const spv_context& CContext() const;
private:
spv_context context_;
};
// A RAII wrapper around a validator options object.
class ValidatorOptions {
public:
ValidatorOptions() : options_(spvValidatorOptionsCreate()) {}
~ValidatorOptions() { spvValidatorOptionsDestroy(options_); }
// Allow implicit conversion to the underlying object.
operator spv_validator_options() const { return options_; }
// Sets a limit.
void SetUniversalLimit(spv_validator_limit limit_type, uint32_t limit) {
spvValidatorOptionsSetUniversalLimit(options_, limit_type, limit);
}
void SetRelaxStructStore(bool val) {
spvValidatorOptionsSetRelaxStoreStruct(options_, val);
}
// Enables VK_KHR_relaxed_block_layout when validating standard
// uniform/storage buffer/push-constant layout. If true, disables
// scalar block layout rules.
void SetRelaxBlockLayout(bool val) {
spvValidatorOptionsSetRelaxBlockLayout(options_, val);
}
// Enables VK_KHR_uniform_buffer_standard_layout when validating standard
// uniform layout. If true, disables scalar block layout rules.
void SetUniformBufferStandardLayout(bool val) {
spvValidatorOptionsSetUniformBufferStandardLayout(options_, val);
}
// Enables VK_EXT_scalar_block_layout when validating standard
// uniform/storage buffer/push-constant layout. If true, disables
// relaxed block layout rules.
void SetScalarBlockLayout(bool val) {
spvValidatorOptionsSetScalarBlockLayout(options_, val);
}
// Skips validating standard uniform/storage buffer/push-constant layout.
void SetSkipBlockLayout(bool val) {
spvValidatorOptionsSetSkipBlockLayout(options_, val);
}
// Records whether or not the validator should relax the rules on pointer
// usage in logical addressing mode.
//
// When relaxed, it will allow the following usage cases of pointers:
// 1) OpVariable allocating an object whose type is a pointer type
// 2) OpReturnValue returning a pointer value
void SetRelaxLogicalPointer(bool val) {
spvValidatorOptionsSetRelaxLogicalPointer(options_, val);
}
// Records whether or not the validator should relax the rules because it is
// expected that the optimizations will make the code legal.
//
// When relaxed, it will allow the following:
// 1) It will allow relaxed logical pointers. Setting this option will also
// set that option.
// 2) Pointers that are pass as parameters to function calls do not have to
// match the storage class of the formal parameter.
// 3) Pointers that are actaul parameters on function calls do not have to
// point to the same type pointed as the formal parameter. The types just
// need to logically match.
void SetBeforeHlslLegalization(bool val) {
spvValidatorOptionsSetBeforeHlslLegalization(options_, val);
}
private:
spv_validator_options options_;
};
// A C++ wrapper around an optimization options object.
class OptimizerOptions {
public:
OptimizerOptions() : options_(spvOptimizerOptionsCreate()) {}
~OptimizerOptions() { spvOptimizerOptionsDestroy(options_); }
// Allow implicit conversion to the underlying object.
operator spv_optimizer_options() const { return options_; }
// Records whether or not the optimizer should run the validator before
// optimizing. If |run| is true, the validator will be run.
void set_run_validator(bool run) {
spvOptimizerOptionsSetRunValidator(options_, run);
}
// Records the validator options that should be passed to the validator if it
// is run.
void set_validator_options(const ValidatorOptions& val_options) {
spvOptimizerOptionsSetValidatorOptions(options_, val_options);
}
// Records the maximum possible value for the id bound.
void set_max_id_bound(uint32_t new_bound) {
spvOptimizerOptionsSetMaxIdBound(options_, new_bound);
}
// Records whether all bindings within the module should be preserved.
void set_preserve_bindings(bool preserve_bindings) {
spvOptimizerOptionsSetPreserveBindings(options_, preserve_bindings);
}
// Records whether all specialization constants within the module
// should be preserved.
void set_preserve_spec_constants(bool preserve_spec_constants) {
spvOptimizerOptionsSetPreserveSpecConstants(options_,
preserve_spec_constants);
}
private:
spv_optimizer_options options_;
};
// A C++ wrapper around a reducer options object.
class ReducerOptions {
public:
ReducerOptions() : options_(spvReducerOptionsCreate()) {}
~ReducerOptions() { spvReducerOptionsDestroy(options_); }
// Allow implicit conversion to the underlying object.
operator spv_reducer_options() const { // NOLINT(google-explicit-constructor)
return options_;
}
// See spvReducerOptionsSetStepLimit.
void set_step_limit(uint32_t step_limit) {
spvReducerOptionsSetStepLimit(options_, step_limit);
}
// See spvReducerOptionsSetFailOnValidationError.
void set_fail_on_validation_error(bool fail_on_validation_error) {
spvReducerOptionsSetFailOnValidationError(options_,
fail_on_validation_error);
}
// See spvReducerOptionsSetTargetFunction.
void set_target_function(uint32_t target_function) {
spvReducerOptionsSetTargetFunction(options_, target_function);
}
private:
spv_reducer_options options_;
};
// A C++ wrapper around a fuzzer options object.
class FuzzerOptions {
public:
FuzzerOptions() : options_(spvFuzzerOptionsCreate()) {}
~FuzzerOptions() { spvFuzzerOptionsDestroy(options_); }
// Allow implicit conversion to the underlying object.
operator spv_fuzzer_options() const { // NOLINT(google-explicit-constructor)
return options_;
}
// See spvFuzzerOptionsEnableReplayValidation.
void enable_replay_validation() {
spvFuzzerOptionsEnableReplayValidation(options_);
}
// See spvFuzzerOptionsSetRandomSeed.
void set_random_seed(uint32_t seed) {
spvFuzzerOptionsSetRandomSeed(options_, seed);
}
// See spvFuzzerOptionsSetReplayRange.
void set_replay_range(int32_t replay_range) {
spvFuzzerOptionsSetReplayRange(options_, replay_range);
}
// See spvFuzzerOptionsSetShrinkerStepLimit.
void set_shrinker_step_limit(uint32_t shrinker_step_limit) {
spvFuzzerOptionsSetShrinkerStepLimit(options_, shrinker_step_limit);
}
// See spvFuzzerOptionsEnableFuzzerPassValidation.
void enable_fuzzer_pass_validation() {
spvFuzzerOptionsEnableFuzzerPassValidation(options_);
}
// See spvFuzzerOptionsEnableAllPasses.
void enable_all_passes() { spvFuzzerOptionsEnableAllPasses(options_); }
private:
spv_fuzzer_options options_;
};
// C++ interface for SPIRV-Tools functionalities. It wraps the context
// (including target environment and the corresponding SPIR-V grammar) and
// provides methods for assembling, disassembling, and validating.
//
// Instances of this class provide basic thread-safety guarantee.
class SpirvTools {
public:
enum {
// Default assembling option used by assemble():
kDefaultAssembleOption = SPV_TEXT_TO_BINARY_OPTION_NONE,
// Default disassembling option used by Disassemble():
// * Avoid prefix comments from decoding the SPIR-V module header, and
// * Use friendly names for variables.
kDefaultDisassembleOption = SPV_BINARY_TO_TEXT_OPTION_NO_HEADER |
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES
};
// Constructs an instance targeting the given environment |env|.
//
// The constructed instance will have an empty message consumer, which just
// ignores all messages from the library. Use SetMessageConsumer() to supply
// one if messages are of concern.
explicit SpirvTools(spv_target_env env);
// Disables copy/move constructor/assignment operations.
SpirvTools(const SpirvTools&) = delete;
SpirvTools(SpirvTools&&) = delete;
SpirvTools& operator=(const SpirvTools&) = delete;
SpirvTools& operator=(SpirvTools&&) = delete;
// Destructs this instance.
~SpirvTools();
// Sets the message consumer to the given |consumer|. The |consumer| will be
// invoked once for each message communicated from the library.
void SetMessageConsumer(MessageConsumer consumer);
// Assembles the given assembly |text| and writes the result to |binary|.
// Returns true on successful assembling. |binary| will be kept untouched if
// assembling is unsuccessful.
// The SPIR-V binary version is set to the highest version of SPIR-V supported
// by the target environment with which this SpirvTools object was created.
bool Assemble(const std::string& text, std::vector<uint32_t>* binary,
uint32_t options = kDefaultAssembleOption) const;
// |text_size| specifies the number of bytes in |text|. A terminating null
// character is not required to present in |text| as long as |text| is valid.
// The SPIR-V binary version is set to the highest version of SPIR-V supported
// by the target environment with which this SpirvTools object was created.
bool Assemble(const char* text, size_t text_size,
std::vector<uint32_t>* binary,
uint32_t options = kDefaultAssembleOption) const;
// Disassembles the given SPIR-V |binary| with the given |options| and writes
// the assembly to |text|. Returns true on successful disassembling. |text|
// will be kept untouched if diassembling is unsuccessful.
bool Disassemble(const std::vector<uint32_t>& binary, std::string* text,
uint32_t options = kDefaultDisassembleOption) const;
// |binary_size| specifies the number of words in |binary|.
bool Disassemble(const uint32_t* binary, size_t binary_size,
std::string* text,
uint32_t options = kDefaultDisassembleOption) const;
// Validates the given SPIR-V |binary|. Returns true if no issues are found.
// Otherwise, returns false and communicates issues via the message consumer
// registered.
// Validates for SPIR-V spec rules for the SPIR-V version named in the
// binary's header (at word offset 1). Additionally, if the target
// environment is a client API (such as Vulkan 1.1), then validate for that
// client API version, to the extent that it is verifiable from data in the
// binary itself.
bool Validate(const std::vector<uint32_t>& binary) const;
// Like the previous overload, but provides the binary as a pointer and size:
// |binary_size| specifies the number of words in |binary|.
// Validates for SPIR-V spec rules for the SPIR-V version named in the
// binary's header (at word offset 1). Additionally, if the target
// environment is a client API (such as Vulkan 1.1), then validate for that
// client API version, to the extent that it is verifiable from data in the
// binary itself.
bool Validate(const uint32_t* binary, size_t binary_size) const;
// Like the previous overload, but takes an options object.
// Validates for SPIR-V spec rules for the SPIR-V version named in the
// binary's header (at word offset 1). Additionally, if the target
// environment is a client API (such as Vulkan 1.1), then validate for that
// client API version, to the extent that it is verifiable from data in the
// binary itself, or in the validator options.
bool Validate(const uint32_t* binary, size_t binary_size,
spv_validator_options options) const;
// Was this object successfully constructed.
bool IsValid() const;
private:
struct Impl; // Opaque struct for holding the data fields used by this class.
std::unique_ptr<Impl> impl_; // Unique pointer to implementation data.
};
} // namespace spvtools
#endif // INCLUDE_SPIRV_TOOLS_LIBSPIRV_HPP_