mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2025-01-13 09:50:06 +00:00
441 lines
16 KiB
C++
441 lines
16 KiB
C++
// Copyright (c) 2015 The Khronos Group Inc.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a
|
|
// copy of this software and/or associated documentation files (the
|
|
// "Materials"), to deal in the Materials without restriction, including
|
|
// without limitation the rights to use, copy, modify, merge, publish,
|
|
// distribute, sublicense, and/or sell copies of the Materials, and to
|
|
// permit persons to whom the Materials are furnished to do so, subject to
|
|
// the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included
|
|
// in all copies or substantial portions of the Materials.
|
|
//
|
|
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
|
|
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
|
|
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
|
|
// https://www.khronos.org/registry/
|
|
//
|
|
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
|
|
|
|
#include <utils/bitwisecast.h>
|
|
#include "TestFixture.h"
|
|
#include "UnitSPIRV.h"
|
|
#include <algorithm>
|
|
#include <iomanip>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace {
|
|
|
|
using spvutils::BitwiseCast;
|
|
using test_fixture::TextToBinaryTest;
|
|
|
|
union char_word_t {
|
|
char cs[4];
|
|
uint32_t u;
|
|
};
|
|
|
|
TEST(TextToBinary, Default) {
|
|
// TODO: Ensure that on big endian systems that this converts the word to
|
|
// little endian for encoding comparison!
|
|
spv_endianness_t endian = SPV_ENDIANNESS_LITTLE;
|
|
|
|
const char *textStr = R"(
|
|
OpSource OpenCL 12
|
|
OpMemoryModel Physical64 OpenCL
|
|
OpSourceExtension "PlaceholderExtensionName"
|
|
OpEntryPoint Kernel %1 "foo"
|
|
OpExecutionMode %1 LocalSizeHint 1 1 1
|
|
%2 = OpTypeVoid
|
|
%3 = OpTypeBool
|
|
; commment
|
|
%4 = OpTypeInt 8 0 ; comment
|
|
%5 = OpTypeInt 8 1
|
|
%6 = OpTypeInt 16 0
|
|
%7 = OpTypeInt 16 1
|
|
%8 = OpTypeInt 32 0
|
|
%9 = OpTypeInt 32 1
|
|
%10 = OpTypeInt 64 0
|
|
%11 = OpTypeInt 64 1
|
|
%12 = OpTypeFloat 16
|
|
%13 = OpTypeFloat 32
|
|
%14 = OpTypeFloat 64
|
|
%15 = OpTypeVector 4 2
|
|
)";
|
|
|
|
spv_opcode_table opcodeTable;
|
|
ASSERT_EQ(SPV_SUCCESS, spvOpcodeTableGet(&opcodeTable));
|
|
|
|
spv_operand_table operandTable;
|
|
ASSERT_EQ(SPV_SUCCESS, spvOperandTableGet(&operandTable));
|
|
|
|
spv_ext_inst_table extInstTable;
|
|
ASSERT_EQ(SPV_SUCCESS, spvExtInstTableGet(&extInstTable));
|
|
|
|
spv_binary binary;
|
|
spv_diagnostic diagnostic = nullptr;
|
|
spv_result_t error = spvTextToBinary(textStr, strlen(textStr), opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic);
|
|
|
|
if (error) {
|
|
spvDiagnosticPrint(diagnostic);
|
|
spvDiagnosticDestroy(diagnostic);
|
|
ASSERT_EQ(SPV_SUCCESS, error);
|
|
}
|
|
|
|
EXPECT_NE(nullptr, binary->code);
|
|
EXPECT_NE(0, binary->wordCount);
|
|
|
|
// TODO: Verify binary
|
|
ASSERT_EQ(SPV_MAGIC_NUMBER, binary->code[SPV_INDEX_MAGIC_NUMBER]);
|
|
ASSERT_EQ(SPV_VERSION_NUMBER, binary->code[SPV_INDEX_VERSION_NUMBER]);
|
|
ASSERT_EQ(SPV_GENERATOR_KHRONOS, binary->code[SPV_INDEX_GENERATOR_NUMBER]);
|
|
ASSERT_EQ(16, binary->code[SPV_INDEX_BOUND]); // TODO: Bound?
|
|
ASSERT_EQ(0, binary->code[SPV_INDEX_SCHEMA]); // Reserved: schema
|
|
|
|
uint64_t instIndex = SPV_INDEX_INSTRUCTION;
|
|
|
|
ASSERT_EQ(spvOpcodeMake(3, OpSource), binary->code[instIndex++]);
|
|
ASSERT_EQ(SourceLanguageOpenCL, binary->code[instIndex++]);
|
|
ASSERT_EQ(12, binary->code[instIndex++]);
|
|
|
|
ASSERT_EQ(spvOpcodeMake(3, OpMemoryModel), binary->code[instIndex++]);
|
|
ASSERT_EQ(AddressingModelPhysical64, binary->code[instIndex++]);
|
|
ASSERT_EQ(MemoryModelOpenCL, binary->code[instIndex++]);
|
|
|
|
uint16_t sourceExtensionWordCount =
|
|
(uint16_t)((strlen("PlaceholderExtensionName") / sizeof(uint32_t)) + 2);
|
|
ASSERT_EQ(spvOpcodeMake(sourceExtensionWordCount, OpSourceExtension),
|
|
binary->code[instIndex++]);
|
|
// TODO: This only works on little endian systems!
|
|
char_word_t cw = {{'P', 'l', 'a', 'c'}};
|
|
ASSERT_EQ(spvFixWord(cw.u, endian), binary->code[instIndex++]);
|
|
cw = {{'e', 'h', 'o', 'l'}};
|
|
ASSERT_EQ(spvFixWord(cw.u, endian), binary->code[instIndex++]);
|
|
cw = {{'d', 'e', 'r', 'E'}};
|
|
ASSERT_EQ(spvFixWord(cw.u, endian), binary->code[instIndex++]);
|
|
cw = {{'x', 't', 'e', 'n'}};
|
|
ASSERT_EQ(spvFixWord(cw.u, endian), binary->code[instIndex++]);
|
|
cw = {{'s', 'i', 'o', 'n'}};
|
|
ASSERT_EQ(spvFixWord(cw.u, endian), binary->code[instIndex++]);
|
|
cw = {{'N', 'a', 'm', 'e'}};
|
|
ASSERT_EQ(spvFixWord(cw.u, endian), binary->code[instIndex++]);
|
|
ASSERT_EQ(0, binary->code[instIndex++]);
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpEntryPoint), binary->code[instIndex++]);
|
|
ASSERT_EQ(ExecutionModelKernel, binary->code[instIndex++]);
|
|
ASSERT_EQ(1, binary->code[instIndex++]);
|
|
cw = {{'f', 'o', 'o', 0}};
|
|
ASSERT_EQ(spvFixWord(cw.u, endian), binary->code[instIndex++]);
|
|
|
|
ASSERT_EQ(spvOpcodeMake(6, OpExecutionMode), binary->code[instIndex++]);
|
|
ASSERT_EQ(1, binary->code[instIndex++]);
|
|
ASSERT_EQ(ExecutionModeLocalSizeHint, binary->code[instIndex++]);
|
|
ASSERT_EQ(1, binary->code[instIndex++]);
|
|
ASSERT_EQ(1, binary->code[instIndex++]);
|
|
ASSERT_EQ(1, binary->code[instIndex++]);
|
|
|
|
ASSERT_EQ(spvOpcodeMake(2, OpTypeVoid), binary->code[instIndex++]);
|
|
ASSERT_EQ(2, binary->code[instIndex++]);
|
|
|
|
ASSERT_EQ(spvOpcodeMake(2, OpTypeBool), binary->code[instIndex++]);
|
|
ASSERT_EQ(3, binary->code[instIndex++]);
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeInt), binary->code[instIndex++]);
|
|
ASSERT_EQ(4, binary->code[instIndex++]);
|
|
ASSERT_EQ(8, binary->code[instIndex++]); // NOTE: 8 bits wide
|
|
ASSERT_EQ(0, binary->code[instIndex++]); // NOTE: Unsigned
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeInt), binary->code[instIndex++]);
|
|
ASSERT_EQ(5, binary->code[instIndex++]);
|
|
ASSERT_EQ(8, binary->code[instIndex++]); // NOTE: 8 bits wide
|
|
ASSERT_EQ(1, binary->code[instIndex++]); // NOTE: Signed
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeInt), binary->code[instIndex++]);
|
|
ASSERT_EQ(6, binary->code[instIndex++]);
|
|
ASSERT_EQ(16, binary->code[instIndex++]); // NOTE: 16 bits wide
|
|
ASSERT_EQ(0, binary->code[instIndex++]); // NOTE: Unsigned
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeInt), binary->code[instIndex++]);
|
|
ASSERT_EQ(7, binary->code[instIndex++]);
|
|
ASSERT_EQ(16, binary->code[instIndex++]); // NOTE: 16 bits wide
|
|
ASSERT_EQ(1, binary->code[instIndex++]); // NOTE: Signed
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeInt), binary->code[instIndex++]);
|
|
ASSERT_EQ(8, binary->code[instIndex++]);
|
|
ASSERT_EQ(32, binary->code[instIndex++]); // NOTE: 32 bits wide
|
|
ASSERT_EQ(0, binary->code[instIndex++]); // NOTE: Unsigned
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeInt), binary->code[instIndex++]);
|
|
ASSERT_EQ(9, binary->code[instIndex++]);
|
|
ASSERT_EQ(32, binary->code[instIndex++]); // NOTE: 32 bits wide
|
|
ASSERT_EQ(1, binary->code[instIndex++]); // NOTE: Signed
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeInt), binary->code[instIndex++]);
|
|
ASSERT_EQ(10, binary->code[instIndex++]);
|
|
ASSERT_EQ(64, binary->code[instIndex++]); // NOTE: 64 bits wide
|
|
ASSERT_EQ(0, binary->code[instIndex++]); // NOTE: Unsigned
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeInt), binary->code[instIndex++]);
|
|
ASSERT_EQ(11, binary->code[instIndex++]);
|
|
ASSERT_EQ(64, binary->code[instIndex++]); // NOTE: 64 bits wide
|
|
ASSERT_EQ(1, binary->code[instIndex++]); // NOTE: Signed
|
|
|
|
ASSERT_EQ(spvOpcodeMake(3, OpTypeFloat), binary->code[instIndex++]);
|
|
ASSERT_EQ(12, binary->code[instIndex++]);
|
|
ASSERT_EQ(16, binary->code[instIndex++]); // NOTE: 16 bits wide
|
|
|
|
ASSERT_EQ(spvOpcodeMake(3, OpTypeFloat), binary->code[instIndex++]);
|
|
ASSERT_EQ(13, binary->code[instIndex++]);
|
|
ASSERT_EQ(32, binary->code[instIndex++]); // NOTE: 32 bits wide
|
|
|
|
ASSERT_EQ(spvOpcodeMake(3, OpTypeFloat), binary->code[instIndex++]);
|
|
ASSERT_EQ(14, binary->code[instIndex++]);
|
|
ASSERT_EQ(64, binary->code[instIndex++]); // NOTE: 64 bits wide
|
|
|
|
ASSERT_EQ(spvOpcodeMake(4, OpTypeVector), binary->code[instIndex++]);
|
|
ASSERT_EQ(15, binary->code[instIndex++]);
|
|
ASSERT_EQ(4, binary->code[instIndex++]);
|
|
ASSERT_EQ(2, binary->code[instIndex++]);
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, InvalidText) {
|
|
spv_binary binary;
|
|
ASSERT_EQ(SPV_ERROR_INVALID_TEXT,
|
|
spvTextToBinary(nullptr, 0, opcodeTable, operandTable, extInstTable,
|
|
&binary, &diagnostic));
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, InvalidTable) {
|
|
SetText(
|
|
"OpEntryPoint Kernel 0 \"\"\nOpExecutionMode 0 LocalSizeHint 1 1 1\n");
|
|
ASSERT_EQ(SPV_ERROR_INVALID_TABLE,
|
|
spvTextToBinary(text.str, text.length, nullptr, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
ASSERT_EQ(SPV_ERROR_INVALID_TABLE,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, nullptr,
|
|
extInstTable, &binary, &diagnostic));
|
|
ASSERT_EQ(SPV_ERROR_INVALID_TABLE,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
nullptr, &binary, &diagnostic));
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, InvalidPointer) {
|
|
SetText("OpEntryPoint Kernel 0 \"\"\nOpExecutionMode 0 LocalSizeHint 1 1 1\n");
|
|
ASSERT_EQ(SPV_ERROR_INVALID_POINTER,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, nullptr, &diagnostic));
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, InvalidDiagnostic) {
|
|
SetText("OpEntryPoint Kernel 0 \"\"\nOpExecutionMode 0 LocalSizeHint 1 1 1\n");
|
|
spv_binary binary;
|
|
ASSERT_EQ(SPV_ERROR_INVALID_DIAGNOSTIC,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, nullptr));
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, InvalidPrefix) {
|
|
SetText("Invalid");
|
|
ASSERT_EQ(SPV_ERROR_INVALID_TEXT,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
if (diagnostic) {
|
|
spvDiagnosticPrint(diagnostic);
|
|
}
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, StringSpace) {
|
|
SetText("OpSourceExtension \"string with spaces\"");
|
|
EXPECT_EQ(SPV_SUCCESS,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
if (diagnostic) {
|
|
spvDiagnosticPrint(diagnostic);
|
|
}
|
|
}
|
|
|
|
// TODO(antiagainst): we might not want to support both instruction formats in
|
|
// the future. Only the "<result-id> = <opcode> <operand>.." one may survive.
|
|
TEST_F(TextToBinaryTest, InstructionTwoFormats) {
|
|
SetText(R"(
|
|
OpCapability Shader
|
|
%glsl450 = OpExtInstImport "GLSL.std.450"
|
|
OpMemoryModel Logical Simple
|
|
OpTypeBool %3
|
|
%4 = OpTypeInt 8 0
|
|
OpTypeInt %5 8 1
|
|
%6 = OpTypeInt 16 0
|
|
OpTypeInt %7 16 1
|
|
%void = OpTypeVoid
|
|
OpTypeFloat %float 32
|
|
%const1.5 = OpConstant %float 1.5
|
|
OpTypeFunction %fnMain %void
|
|
%main = OpFunction %void None %fnMain
|
|
OpLabel %lbMain
|
|
%result = OpExtInst $float $glsl450 Round $const1.5
|
|
OpReturn
|
|
OpFunctionEnd
|
|
)");
|
|
|
|
EXPECT_EQ(SPV_SUCCESS,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
if (diagnostic) {
|
|
spvDiagnosticPrint(diagnostic);
|
|
}
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, UnknownBeginningOfInstruction) {
|
|
SetText(R"(
|
|
OpSource OpenCL 12
|
|
OpMemoryModel Physical64 OpenCL
|
|
Google
|
|
)");
|
|
|
|
EXPECT_EQ(SPV_ERROR_INVALID_TEXT,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
EXPECT_EQ(4, diagnostic->position.line + 1);
|
|
EXPECT_EQ(1, diagnostic->position.column + 1);
|
|
EXPECT_STREQ(
|
|
"Expected <opcode> or <result-id> at the beginning of an instruction, "
|
|
"found 'Google'.",
|
|
diagnostic->error);
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, NoEqualSign) {
|
|
SetText(R"(
|
|
OpSource OpenCL 12
|
|
OpMemoryModel Physical64 OpenCL
|
|
%2
|
|
)");
|
|
|
|
EXPECT_EQ(SPV_ERROR_INVALID_TEXT,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
EXPECT_EQ(5, diagnostic->position.line + 1);
|
|
EXPECT_EQ(1, diagnostic->position.column + 1);
|
|
EXPECT_STREQ("Expected '=', found end of stream.", diagnostic->error);
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, NoOpCode) {
|
|
SetText(R"(
|
|
OpSource OpenCL 12
|
|
OpMemoryModel Physical64 OpenCL
|
|
%2 =
|
|
)");
|
|
|
|
EXPECT_EQ(SPV_ERROR_INVALID_TEXT,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
EXPECT_EQ(5, diagnostic->position.line + 1);
|
|
EXPECT_EQ(1, diagnostic->position.column + 1);
|
|
EXPECT_STREQ("Expected opcode, found end of stream.", diagnostic->error);
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, WrongOpCode) {
|
|
SetText(R"(
|
|
OpSource OpenCL 12
|
|
OpMemoryModel Physical64 OpenCL
|
|
%2 = Wahahaha
|
|
)");
|
|
|
|
EXPECT_EQ(SPV_ERROR_INVALID_TEXT,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
EXPECT_EQ(4, diagnostic->position.line + 1);
|
|
EXPECT_EQ(6, diagnostic->position.column + 1);
|
|
EXPECT_STREQ("Invalid Opcode prefix 'Wahahaha'.", diagnostic->error);
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, GoodSwitch) {
|
|
const SpirvVector code = CompileSuccessfully(
|
|
R"(
|
|
%i32 = OpTypeInt 32 0
|
|
%fortytwo = OpConstant %i32 42
|
|
%twelve = OpConstant %i32 12
|
|
%entry = OpLabel
|
|
OpSwitch %fortytwo %default 42 %go42 12 %go12
|
|
%go42 = OpLabel
|
|
OpBranch %default
|
|
%go12 = OpLabel
|
|
OpBranch %default
|
|
%default = OpLabel
|
|
)");
|
|
|
|
// Minimal check: The OpSwitch opcode word is correct.
|
|
EXPECT_EQ(int(spv::OpSwitch) || (7<<16) , code[14]);
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, GoodSwitchZeroCasesOneDefault) {
|
|
const SpirvVector code = CompileSuccessfully(R"(
|
|
%i32 = OpTypeInt 32 0
|
|
%fortytwo = OpConstant %i32 42
|
|
%entry = OpLabel
|
|
OpSwitch %fortytwo %default
|
|
%default = OpLabel
|
|
)");
|
|
|
|
// Minimal check: The OpSwitch opcode word is correct.
|
|
EXPECT_EQ(int(spv::OpSwitch) || (3<<16) , code[10]);
|
|
}
|
|
|
|
TEST_F(TextToBinaryTest, BadSwitchTruncatedCase) {
|
|
SetText(R"(
|
|
%i32 = OpTypeInt 32 0
|
|
%fortytwo = OpConstant %i32 42
|
|
%entry = OpLabel
|
|
OpSwitch %fortytwo %default 42 ; missing target!
|
|
%default = OpLabel
|
|
)");
|
|
|
|
EXPECT_EQ(SPV_ERROR_INVALID_TEXT,
|
|
spvTextToBinary(text.str, text.length, opcodeTable, operandTable,
|
|
extInstTable, &binary, &diagnostic));
|
|
EXPECT_EQ(6, diagnostic->position.line + 1);
|
|
EXPECT_EQ(1, diagnostic->position.column + 1);
|
|
EXPECT_STREQ("Expected operand, found next instruction instead.", diagnostic->error);
|
|
}
|
|
|
|
using TextToBinaryFloatValueTest = test_fixture::TextToBinaryTestBase<
|
|
::testing::TestWithParam<std::pair<std::string, uint32_t>>>;
|
|
|
|
TEST_P(TextToBinaryFloatValueTest, NormalValues) {
|
|
const std::string assembly = "%1 = OpTypeFloat 32\n%2 = OpConstant %1 ";
|
|
const std::string input_string = assembly + GetParam().first;
|
|
const std::string expected_string =
|
|
"; SPIR-V\n; Version: 99\n; Generator: Khronos\n; "
|
|
"Bound: 3\n; Schema: 0\n" +
|
|
assembly + std::to_string(GetParam().second) + "\n";
|
|
const std::string decoded_string = EncodeAndDecodeSuccessfully(input_string);
|
|
EXPECT_EQ(expected_string, decoded_string);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
FloatValues, TextToBinaryFloatValueTest,
|
|
::testing::ValuesIn(std::vector<std::pair<std::string, uint32_t>>{
|
|
{"0.0", 0x00000000}, // +0
|
|
{"!0x00000001", 0x00000001}, // +denorm
|
|
{"!0x00800000", 0x00800000}, // +norm
|
|
{"1.5", 0x3fc00000},
|
|
{"!0x7f800000", 0x7f800000}, // +inf
|
|
{"!0x7f800001", 0x7f800001}, // NaN
|
|
|
|
{"-0.0", 0x80000000}, // -0
|
|
{"!0x80000001", 0x80000001}, // -denorm
|
|
{"!0x80800000", 0x80800000}, // -norm
|
|
{"-2.5", 0xc0200000},
|
|
{"!0xff800000", 0xff800000}, // -inf
|
|
{"!0xff800001", 0xff800001}, // NaN
|
|
}));
|
|
|
|
} // anonymous namespace
|