mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2024-11-25 13:00:04 +00:00
709 lines
24 KiB
C++
709 lines
24 KiB
C++
// Copyright (c) 2018 Google LLC.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// This file implements the SSA rewriting algorithm proposed in
|
|
//
|
|
// Simple and Efficient Construction of Static Single Assignment Form.
|
|
// Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
|
|
// In: Jhala R., De Bosschere K. (eds)
|
|
// Compiler Construction. CC 2013.
|
|
// Lecture Notes in Computer Science, vol 7791.
|
|
// Springer, Berlin, Heidelberg
|
|
//
|
|
// https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
|
|
//
|
|
// In contrast to common eager algorithms based on dominance and dominance
|
|
// frontier information, this algorithm works backwards from load operations.
|
|
//
|
|
// When a target variable is loaded, it queries the variable's reaching
|
|
// definition. If the reaching definition is unknown at the current location,
|
|
// it searches backwards in the CFG, inserting Phi instructions at join points
|
|
// in the CFG along the way until it finds the desired store instruction.
|
|
//
|
|
// The algorithm avoids repeated lookups using memoization.
|
|
//
|
|
// For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
|
|
// this algorithm is proven to produce minimal SSA. That is, it inserts the
|
|
// minimal number of Phi instructions required to ensure the SSA property, but
|
|
// some Phi instructions may be dead
|
|
// (https://en.wikipedia.org/wiki/Static_single_assignment_form).
|
|
|
|
#include "source/opt/ssa_rewrite_pass.h"
|
|
|
|
#include <memory>
|
|
#include <sstream>
|
|
|
|
#include "source/opcode.h"
|
|
#include "source/opt/cfg.h"
|
|
#include "source/opt/mem_pass.h"
|
|
#include "source/opt/types.h"
|
|
|
|
// Debug logging (0: Off, 1-N: Verbosity level). Replace this with the
|
|
// implementation done for
|
|
// https://github.com/KhronosGroup/SPIRV-Tools/issues/1351
|
|
// #define SSA_REWRITE_DEBUGGING_LEVEL 3
|
|
|
|
#ifdef SSA_REWRITE_DEBUGGING_LEVEL
|
|
#include <ostream>
|
|
#else
|
|
#define SSA_REWRITE_DEBUGGING_LEVEL 0
|
|
#endif
|
|
|
|
namespace spvtools {
|
|
namespace opt {
|
|
namespace {
|
|
constexpr uint32_t kStoreValIdInIdx = 1;
|
|
constexpr uint32_t kVariableInitIdInIdx = 1;
|
|
} // namespace
|
|
|
|
std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const {
|
|
std::ostringstream str;
|
|
str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id()
|
|
<< "](";
|
|
if (phi_args_.size() > 0) {
|
|
uint32_t arg_ix = 0;
|
|
for (uint32_t pred_label : cfg->preds(bb_->id())) {
|
|
uint32_t arg_id = phi_args_[arg_ix++];
|
|
str << "[%" << arg_id << ", bb(%" << pred_label << ")] ";
|
|
}
|
|
}
|
|
str << ")";
|
|
if (copy_of_ != 0) {
|
|
str << " [COPY OF " << copy_of_ << "]";
|
|
}
|
|
str << ((is_complete_) ? " [COMPLETE]" : " [INCOMPLETE]");
|
|
|
|
return str.str();
|
|
}
|
|
|
|
SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id,
|
|
BasicBlock* bb) {
|
|
// TODO(1841): Handle id overflow.
|
|
uint32_t phi_result_id = pass_->context()->TakeNextId();
|
|
auto result = phi_candidates_.emplace(
|
|
phi_result_id, PhiCandidate(var_id, phi_result_id, bb));
|
|
PhiCandidate& phi_candidate = result.first->second;
|
|
return phi_candidate;
|
|
}
|
|
|
|
void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove,
|
|
uint32_t repl_id) {
|
|
for (uint32_t user_id : phi_to_remove.users()) {
|
|
PhiCandidate* user_phi = GetPhiCandidate(user_id);
|
|
BasicBlock* bb = pass_->context()->get_instr_block(user_id);
|
|
if (user_phi) {
|
|
// If the user is a Phi candidate, replace all arguments that refer to
|
|
// |phi_to_remove.result_id()| with |repl_id|.
|
|
for (uint32_t& arg : user_phi->phi_args()) {
|
|
if (arg == phi_to_remove.result_id()) {
|
|
arg = repl_id;
|
|
}
|
|
}
|
|
} else if (bb->id() == user_id) {
|
|
// The phi candidate is the definition of the variable at basic block
|
|
// |bb|. We must change this to the replacement.
|
|
WriteVariable(phi_to_remove.var_id(), bb, repl_id);
|
|
} else {
|
|
// For regular loads, traverse the |load_replacement_| table looking for
|
|
// instances of |phi_to_remove|.
|
|
for (auto& it : load_replacement_) {
|
|
if (it.second == phi_to_remove.result_id()) {
|
|
it.second = repl_id;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) {
|
|
uint32_t same_id = 0;
|
|
for (uint32_t arg_id : phi_candidate->phi_args()) {
|
|
if (arg_id == same_id || arg_id == phi_candidate->result_id()) {
|
|
// This is a self-reference operand or a reference to the same value ID.
|
|
continue;
|
|
}
|
|
if (same_id != 0) {
|
|
// This Phi candidate merges at least two values. Therefore, it is not
|
|
// trivial.
|
|
assert(phi_candidate->copy_of() == 0 &&
|
|
"Phi candidate transitioning from copy to non-copy.");
|
|
return phi_candidate->result_id();
|
|
}
|
|
same_id = arg_id;
|
|
}
|
|
|
|
// The previous logic has determined that this Phi candidate |phi_candidate|
|
|
// is trivial. It is essentially the copy operation phi_candidate->phi_result
|
|
// = Phi(same, same, same, ...). Since it is not necessary, we can re-route
|
|
// all the users of |phi_candidate->phi_result| to all its users, and remove
|
|
// |phi_candidate|.
|
|
|
|
// Mark the Phi candidate as a trivial copy of |same_id|, so it won't be
|
|
// generated.
|
|
phi_candidate->MarkCopyOf(same_id);
|
|
|
|
assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments");
|
|
|
|
// Since |phi_candidate| always produces |same_id|, replace all the users of
|
|
// |phi_candidate| with |same_id|.
|
|
ReplacePhiUsersWith(*phi_candidate, same_id);
|
|
|
|
return same_id;
|
|
}
|
|
|
|
uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) {
|
|
assert(phi_candidate->phi_args().size() == 0 &&
|
|
"Phi candidate already has arguments");
|
|
|
|
bool found_0_arg = false;
|
|
for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
|
|
BasicBlock* pred_bb = pass_->cfg()->block(pred);
|
|
|
|
// If |pred_bb| is not sealed, use %0 to indicate that
|
|
// |phi_candidate| needs to be completed after the whole CFG has
|
|
// been processed.
|
|
//
|
|
// Note that we cannot call GetReachingDef() in these cases
|
|
// because this would generate an empty Phi candidate in
|
|
// |pred_bb|. When |pred_bb| is later processed, a new definition
|
|
// for |phi_candidate->var_id_| will be lost because
|
|
// |phi_candidate| will still be reached by the empty Phi.
|
|
//
|
|
// Consider:
|
|
//
|
|
// BB %23:
|
|
// %38 = Phi[%i](%int_0[%1], %39[%25])
|
|
//
|
|
// ...
|
|
//
|
|
// BB %25: [Starts unsealed]
|
|
// %39 = Phi[%i]()
|
|
// %34 = ...
|
|
// OpStore %i %34 -> Currdef(%i) at %25 is %34
|
|
// OpBranch %23
|
|
//
|
|
// When we first create the Phi in %38, we add an operandless Phi in
|
|
// %39 to hold the unknown reaching def for %i.
|
|
//
|
|
// But then, when we go to complete %39 at the end. The reaching def
|
|
// for %i in %25's predecessor is %38 itself. So we miss the fact
|
|
// that %25 has a def for %i that should be used.
|
|
//
|
|
// By making the argument %0, we make |phi_candidate| incomplete,
|
|
// which will cause it to be completed after the whole CFG has
|
|
// been scanned.
|
|
uint32_t arg_id = IsBlockSealed(pred_bb)
|
|
? GetReachingDef(phi_candidate->var_id(), pred_bb)
|
|
: 0;
|
|
phi_candidate->phi_args().push_back(arg_id);
|
|
|
|
if (arg_id == 0) {
|
|
found_0_arg = true;
|
|
} else {
|
|
// If this argument is another Phi candidate, add |phi_candidate| to the
|
|
// list of users for the defining Phi.
|
|
PhiCandidate* defining_phi = GetPhiCandidate(arg_id);
|
|
if (defining_phi && defining_phi != phi_candidate) {
|
|
defining_phi->AddUser(phi_candidate->result_id());
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we could not fill-in all the arguments of this Phi, mark it incomplete
|
|
// so it gets completed after the whole CFG has been processed.
|
|
if (found_0_arg) {
|
|
phi_candidate->MarkIncomplete();
|
|
incomplete_phis_.push(phi_candidate);
|
|
return phi_candidate->result_id();
|
|
}
|
|
|
|
// Try to remove |phi_candidate|, if it's trivial.
|
|
uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate);
|
|
if (repl_id == phi_candidate->result_id()) {
|
|
// |phi_candidate| is complete and not trivial. Add it to the
|
|
// list of Phi candidates to generate.
|
|
phi_candidate->MarkComplete();
|
|
phis_to_generate_.push_back(phi_candidate);
|
|
}
|
|
|
|
return repl_id;
|
|
}
|
|
|
|
uint32_t SSARewriter::GetValueAtBlock(uint32_t var_id, BasicBlock* bb) {
|
|
assert(bb != nullptr);
|
|
const auto& bb_it = defs_at_block_.find(bb);
|
|
if (bb_it != defs_at_block_.end()) {
|
|
const auto& current_defs = bb_it->second;
|
|
const auto& var_it = current_defs.find(var_id);
|
|
if (var_it != current_defs.end()) {
|
|
return var_it->second;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) {
|
|
// If |var_id| has a definition in |bb|, return it.
|
|
uint32_t val_id = GetValueAtBlock(var_id, bb);
|
|
if (val_id != 0) return val_id;
|
|
|
|
// Otherwise, look up the value for |var_id| in |bb|'s predecessors.
|
|
auto& predecessors = pass_->cfg()->preds(bb->id());
|
|
if (predecessors.size() == 1) {
|
|
// If |bb| has exactly one predecessor, we look for |var_id|'s definition
|
|
// there.
|
|
val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0]));
|
|
} else if (predecessors.size() > 1) {
|
|
// If there is more than one predecessor, this is a join block which may
|
|
// require a Phi instruction. This will act as |var_id|'s current
|
|
// definition to break potential cycles.
|
|
PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb);
|
|
|
|
// Set the value for |bb| to avoid an infinite recursion.
|
|
WriteVariable(var_id, bb, phi_candidate.result_id());
|
|
val_id = AddPhiOperands(&phi_candidate);
|
|
}
|
|
|
|
// If we could not find a store for this variable in the path from the root
|
|
// of the CFG, the variable is not defined, so we use undef.
|
|
if (val_id == 0) {
|
|
val_id = pass_->GetUndefVal(var_id);
|
|
if (val_id == 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
WriteVariable(var_id, bb, val_id);
|
|
|
|
return val_id;
|
|
}
|
|
|
|
void SSARewriter::SealBlock(BasicBlock* bb) {
|
|
auto result = sealed_blocks_.insert(bb);
|
|
(void)result;
|
|
assert(result.second == true &&
|
|
"Tried to seal the same basic block more than once.");
|
|
}
|
|
|
|
void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) {
|
|
auto opcode = inst->opcode();
|
|
assert((opcode == spv::Op::OpStore || opcode == spv::Op::OpVariable) &&
|
|
"Expecting a store or a variable definition instruction.");
|
|
|
|
uint32_t var_id = 0;
|
|
uint32_t val_id = 0;
|
|
if (opcode == spv::Op::OpStore) {
|
|
(void)pass_->GetPtr(inst, &var_id);
|
|
val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx);
|
|
} else if (inst->NumInOperands() >= 2) {
|
|
var_id = inst->result_id();
|
|
val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx);
|
|
}
|
|
if (pass_->IsTargetVar(var_id)) {
|
|
WriteVariable(var_id, bb, val_id);
|
|
pass_->context()->get_debug_info_mgr()->AddDebugValueForVariable(
|
|
inst, var_id, val_id, inst);
|
|
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
|
|
std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': "
|
|
<< inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
|
|
<< "\n";
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) {
|
|
// Get the pointer that we are using to load from.
|
|
uint32_t var_id = 0;
|
|
(void)pass_->GetPtr(inst, &var_id);
|
|
|
|
// Get the immediate reaching definition for |var_id|.
|
|
//
|
|
// In the presence of variable pointers, the reaching definition may be
|
|
// another pointer. For example, the following fragment:
|
|
//
|
|
// %2 = OpVariable %_ptr_Input_float Input
|
|
// %11 = OpVariable %_ptr_Function__ptr_Input_float Function
|
|
// OpStore %11 %2
|
|
// %12 = OpLoad %_ptr_Input_float %11
|
|
// %13 = OpLoad %float %12
|
|
//
|
|
// corresponds to the pseudo-code:
|
|
//
|
|
// layout(location = 0) in flat float *%2
|
|
// float %13;
|
|
// float *%12;
|
|
// float **%11;
|
|
// *%11 = %2;
|
|
// %12 = *%11;
|
|
// %13 = *%12;
|
|
//
|
|
// which ultimately, should correspond to:
|
|
//
|
|
// %13 = *%2;
|
|
//
|
|
// During rewriting, the pointer %12 is found to be replaceable by %2 (i.e.,
|
|
// load_replacement_[12] is 2). However, when processing the load
|
|
// %13 = *%12, the type of %12's reaching definition is another float
|
|
// pointer (%2), instead of a float value.
|
|
//
|
|
// When this happens, we need to continue looking up the reaching definition
|
|
// chain until we get to a float value or a non-target var (i.e. a variable
|
|
// that cannot be SSA replaced, like %2 in this case since it is a function
|
|
// argument).
|
|
analysis::DefUseManager* def_use_mgr = pass_->context()->get_def_use_mgr();
|
|
analysis::TypeManager* type_mgr = pass_->context()->get_type_mgr();
|
|
analysis::Type* load_type = type_mgr->GetType(inst->type_id());
|
|
uint32_t val_id = 0;
|
|
bool found_reaching_def = false;
|
|
while (!found_reaching_def) {
|
|
if (!pass_->IsTargetVar(var_id)) {
|
|
// If the variable we are loading from is not an SSA target (globals,
|
|
// function parameters), do nothing.
|
|
return true;
|
|
}
|
|
|
|
val_id = GetReachingDef(var_id, bb);
|
|
if (val_id == 0) {
|
|
return false;
|
|
}
|
|
|
|
// If the reaching definition is a pointer type different than the type of
|
|
// the instruction we are analyzing, then it must be a reference to another
|
|
// pointer (otherwise, this would be invalid SPIRV). We continue
|
|
// de-referencing it by making |val_id| be |var_id|.
|
|
//
|
|
// NOTE: if there is no reaching definition instruction, it means |val_id|
|
|
// is an undef.
|
|
Instruction* reaching_def_inst = def_use_mgr->GetDef(val_id);
|
|
if (reaching_def_inst &&
|
|
!type_mgr->GetType(reaching_def_inst->type_id())->IsSame(load_type)) {
|
|
var_id = val_id;
|
|
} else {
|
|
found_reaching_def = true;
|
|
}
|
|
}
|
|
|
|
// Schedule a replacement for the result of this load instruction with
|
|
// |val_id|. After all the rewriting decisions are made, every use of
|
|
// this load will be replaced with |val_id|.
|
|
uint32_t load_id = inst->result_id();
|
|
assert(load_replacement_.count(load_id) == 0);
|
|
load_replacement_[load_id] = val_id;
|
|
PhiCandidate* defining_phi = GetPhiCandidate(val_id);
|
|
if (defining_phi) {
|
|
defining_phi->AddUser(load_id);
|
|
}
|
|
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
|
|
std::cerr << "\tFound load: "
|
|
<< inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
|
|
<< " (replacement for %" << load_id << " is %" << val_id << ")\n";
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
void SSARewriter::PrintPhiCandidates() const {
|
|
std::cerr << "\nPhi candidates:\n";
|
|
for (const auto& phi_it : phi_candidates_) {
|
|
std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": "
|
|
<< phi_it.second.PrettyPrint(pass_->cfg()) << "\n";
|
|
}
|
|
std::cerr << "\n";
|
|
}
|
|
|
|
void SSARewriter::PrintReplacementTable() const {
|
|
std::cerr << "\nLoad replacement table\n";
|
|
for (const auto& it : load_replacement_) {
|
|
std::cerr << "\t%" << it.first << " -> %" << it.second << "\n";
|
|
}
|
|
std::cerr << "\n";
|
|
}
|
|
|
|
bool SSARewriter::GenerateSSAReplacements(BasicBlock* bb) {
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
|
|
std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n";
|
|
std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
|
|
<< "\n";
|
|
#endif
|
|
|
|
for (auto& inst : *bb) {
|
|
auto opcode = inst.opcode();
|
|
if (opcode == spv::Op::OpStore || opcode == spv::Op::OpVariable) {
|
|
ProcessStore(&inst, bb);
|
|
} else if (inst.opcode() == spv::Op::OpLoad) {
|
|
if (!ProcessLoad(&inst, bb)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Seal |bb|. This means that all the stores in it have been scanned and
|
|
// it's ready to feed them into its successors.
|
|
SealBlock(bb);
|
|
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
|
|
PrintPhiCandidates();
|
|
PrintReplacementTable();
|
|
std::cerr << "\n\n";
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) {
|
|
uint32_t val_id = repl.second;
|
|
auto it = load_replacement_.find(val_id);
|
|
while (it != load_replacement_.end()) {
|
|
val_id = it->second;
|
|
it = load_replacement_.find(val_id);
|
|
}
|
|
return val_id;
|
|
}
|
|
|
|
uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate,
|
|
uint32_t ix) {
|
|
assert(phi_candidate->IsReady() &&
|
|
"Tried to get the final argument from an incomplete/trivial Phi");
|
|
|
|
uint32_t arg_id = phi_candidate->phi_args()[ix];
|
|
while (arg_id != 0) {
|
|
PhiCandidate* phi_user = GetPhiCandidate(arg_id);
|
|
if (phi_user == nullptr || phi_user->IsReady()) {
|
|
// If the argument is not a Phi or it's a Phi candidate ready to be
|
|
// emitted, return it.
|
|
return arg_id;
|
|
}
|
|
arg_id = phi_user->copy_of();
|
|
}
|
|
|
|
assert(false &&
|
|
"No Phi candidates in the copy-of chain are ready to be generated");
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool SSARewriter::ApplyReplacements() {
|
|
bool modified = false;
|
|
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 2
|
|
std::cerr << "\n\nApplying replacement decisions to IR\n\n";
|
|
PrintPhiCandidates();
|
|
PrintReplacementTable();
|
|
std::cerr << "\n\n";
|
|
#endif
|
|
|
|
// Add Phi instructions from completed Phi candidates.
|
|
std::vector<Instruction*> generated_phis;
|
|
for (const PhiCandidate* phi_candidate : phis_to_generate_) {
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 2
|
|
std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg())
|
|
<< "\n";
|
|
#endif
|
|
|
|
assert(phi_candidate->is_complete() &&
|
|
"Tried to instantiate a Phi instruction from an incomplete Phi "
|
|
"candidate");
|
|
|
|
auto* local_var = pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id());
|
|
|
|
// Build the vector of operands for the new OpPhi instruction.
|
|
uint32_t type_id = pass_->GetPointeeTypeId(local_var);
|
|
std::vector<Operand> phi_operands;
|
|
uint32_t arg_ix = 0;
|
|
std::unordered_map<uint32_t, uint32_t> already_seen;
|
|
for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) {
|
|
uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++);
|
|
if (already_seen.count(pred_label) == 0) {
|
|
phi_operands.push_back(
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}});
|
|
phi_operands.push_back(
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}});
|
|
already_seen[pred_label] = op_val_id;
|
|
} else {
|
|
// It is possible that there are two edges from the same parent block.
|
|
// Since the OpPhi can have only one entry for each parent, we have to
|
|
// make sure the two edges are consistent with each other.
|
|
assert(already_seen[pred_label] == op_val_id &&
|
|
"Inconsistent value for duplicate edges.");
|
|
}
|
|
}
|
|
|
|
// Generate a new OpPhi instruction and insert it in its basic
|
|
// block.
|
|
std::unique_ptr<Instruction> phi_inst(
|
|
new Instruction(pass_->context(), spv::Op::OpPhi, type_id,
|
|
phi_candidate->result_id(), phi_operands));
|
|
generated_phis.push_back(phi_inst.get());
|
|
pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst);
|
|
pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb());
|
|
auto insert_it = phi_candidate->bb()->begin();
|
|
insert_it = insert_it.InsertBefore(std::move(phi_inst));
|
|
pass_->context()->get_decoration_mgr()->CloneDecorations(
|
|
phi_candidate->var_id(), phi_candidate->result_id(),
|
|
{spv::Decoration::RelaxedPrecision});
|
|
|
|
// Add DebugValue for the new OpPhi instruction.
|
|
insert_it->SetDebugScope(local_var->GetDebugScope());
|
|
pass_->context()->get_debug_info_mgr()->AddDebugValueForVariable(
|
|
&*insert_it, phi_candidate->var_id(), phi_candidate->result_id(),
|
|
&*insert_it);
|
|
|
|
modified = true;
|
|
}
|
|
|
|
// Scan uses for all inserted Phi instructions. Do this separately from the
|
|
// registration of the Phi instruction itself to avoid trying to analyze
|
|
// uses of Phi instructions that have not been registered yet.
|
|
for (Instruction* phi_inst : generated_phis) {
|
|
pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst);
|
|
}
|
|
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
|
|
std::cerr << "\n\nReplacing the result of load instructions with the "
|
|
"corresponding SSA id\n\n";
|
|
#endif
|
|
|
|
// Apply replacements from the load replacement table.
|
|
for (auto& repl : load_replacement_) {
|
|
uint32_t load_id = repl.first;
|
|
uint32_t val_id = GetReplacement(repl);
|
|
Instruction* load_inst =
|
|
pass_->context()->get_def_use_mgr()->GetDef(load_id);
|
|
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 2
|
|
std::cerr << "\t"
|
|
<< load_inst->PrettyPrint(
|
|
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
|
|
<< " (%" << load_id << " -> %" << val_id << ")\n";
|
|
#endif
|
|
|
|
// Remove the load instruction and replace all the uses of this load's
|
|
// result with |val_id|. Kill any names or decorates using the load's
|
|
// result before replacing to prevent incorrect replacement in those
|
|
// instructions.
|
|
pass_->context()->KillNamesAndDecorates(load_id);
|
|
pass_->context()->ReplaceAllUsesWith(load_id, val_id);
|
|
pass_->context()->KillInst(load_inst);
|
|
modified = true;
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) {
|
|
assert(phi_candidate->phi_args().size() > 0 &&
|
|
"Phi candidate should have arguments");
|
|
|
|
uint32_t ix = 0;
|
|
for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
|
|
BasicBlock* pred_bb = pass_->cfg()->block(pred);
|
|
uint32_t& arg_id = phi_candidate->phi_args()[ix++];
|
|
if (arg_id == 0) {
|
|
// If |pred_bb| is still not sealed, it means it's unreachable. In this
|
|
// case, we just use Undef as an argument.
|
|
arg_id = IsBlockSealed(pred_bb)
|
|
? GetReachingDef(phi_candidate->var_id(), pred_bb)
|
|
: pass_->GetUndefVal(phi_candidate->var_id());
|
|
}
|
|
}
|
|
|
|
// This candidate is now completed.
|
|
phi_candidate->MarkComplete();
|
|
|
|
// If |phi_candidate| is not trivial, add it to the list of Phis to
|
|
// generate.
|
|
if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) {
|
|
// If we could not remove |phi_candidate|, it means that it is complete
|
|
// and not trivial. Add it to the list of Phis to generate.
|
|
assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial.");
|
|
phis_to_generate_.push_back(phi_candidate);
|
|
}
|
|
}
|
|
|
|
void SSARewriter::FinalizePhiCandidates() {
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 1
|
|
std::cerr << "Finalizing Phi candidates:\n\n";
|
|
PrintPhiCandidates();
|
|
std::cerr << "\n";
|
|
#endif
|
|
|
|
// Now, complete the collected candidates.
|
|
while (incomplete_phis_.size() > 0) {
|
|
PhiCandidate* phi_candidate = incomplete_phis_.front();
|
|
incomplete_phis_.pop();
|
|
FinalizePhiCandidate(phi_candidate);
|
|
}
|
|
}
|
|
|
|
Pass::Status SSARewriter::RewriteFunctionIntoSSA(Function* fp) {
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 0
|
|
std::cerr << "Function before SSA rewrite:\n"
|
|
<< fp->PrettyPrint(0) << "\n\n\n";
|
|
#endif
|
|
|
|
// Collect variables that can be converted into SSA IDs.
|
|
pass_->CollectTargetVars(fp);
|
|
|
|
// Generate all the SSA replacements and Phi candidates. This will
|
|
// generate incomplete and trivial Phis.
|
|
bool succeeded = pass_->cfg()->WhileEachBlockInReversePostOrder(
|
|
fp->entry().get(), [this](BasicBlock* bb) {
|
|
if (!GenerateSSAReplacements(bb)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
|
|
if (!succeeded) {
|
|
return Pass::Status::Failure;
|
|
}
|
|
|
|
// Remove trivial Phis and add arguments to incomplete Phis.
|
|
FinalizePhiCandidates();
|
|
|
|
// Finally, apply all the replacements in the IR.
|
|
bool modified = ApplyReplacements();
|
|
|
|
#if SSA_REWRITE_DEBUGGING_LEVEL > 0
|
|
std::cerr << "\n\n\nFunction after SSA rewrite:\n"
|
|
<< fp->PrettyPrint(0) << "\n";
|
|
#endif
|
|
|
|
return modified ? Pass::Status::SuccessWithChange
|
|
: Pass::Status::SuccessWithoutChange;
|
|
}
|
|
|
|
Pass::Status SSARewritePass::Process() {
|
|
Status status = Status::SuccessWithoutChange;
|
|
for (auto& fn : *get_module()) {
|
|
if (fn.IsDeclaration()) {
|
|
continue;
|
|
}
|
|
status =
|
|
CombineStatus(status, SSARewriter(this).RewriteFunctionIntoSSA(&fn));
|
|
// Kill DebugDeclares for target variables.
|
|
for (auto var_id : seen_target_vars_) {
|
|
context()->get_debug_info_mgr()->KillDebugDeclares(var_id);
|
|
}
|
|
if (status == Status::Failure) {
|
|
break;
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
} // namespace opt
|
|
} // namespace spvtools
|