SPIRV-Tools/source/opt/ir_builder.h
greg-lunarg d11725b1d4 Add --relax-float-ops and --convert-relaxed-to-half (#2808)
The first pass applies the RelaxedPrecision decoration to all executable
instructions with float32 based type results. The second pass converts
all executable instructions with RelaxedPrecision result to the equivalent
float16 type, inserting converts where necessary.
2019-09-03 13:22:13 -04:00

584 lines
24 KiB
C++

// Copyright (c) 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SOURCE_OPT_IR_BUILDER_H_
#define SOURCE_OPT_IR_BUILDER_H_
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "source/opt/basic_block.h"
#include "source/opt/constants.h"
#include "source/opt/instruction.h"
#include "source/opt/ir_context.h"
namespace spvtools {
namespace opt {
// In SPIR-V, ids are encoded as uint16_t, this id is guaranteed to be always
// invalid.
const uint32_t kInvalidId = std::numeric_limits<uint32_t>::max();
// Helper class to abstract instruction construction and insertion.
// The instruction builder can preserve the following analyses (specified via
// the constructors):
// - Def-use analysis
// - Instruction to block analysis
class InstructionBuilder {
public:
using InsertionPointTy = BasicBlock::iterator;
// Creates an InstructionBuilder, all new instructions will be inserted before
// the instruction |insert_before|.
InstructionBuilder(
IRContext* context, Instruction* insert_before,
IRContext::Analysis preserved_analyses = IRContext::kAnalysisNone)
: InstructionBuilder(context, context->get_instr_block(insert_before),
InsertionPointTy(insert_before),
preserved_analyses) {}
// Creates an InstructionBuilder, all new instructions will be inserted at the
// end of the basic block |parent_block|.
InstructionBuilder(
IRContext* context, BasicBlock* parent_block,
IRContext::Analysis preserved_analyses = IRContext::kAnalysisNone)
: InstructionBuilder(context, parent_block, parent_block->end(),
preserved_analyses) {}
Instruction* AddNullaryOp(uint32_t type_id, SpvOp opcode) {
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> newUnOp(new Instruction(
GetContext(), opcode, type_id,
opcode == SpvOpReturn ? 0 : GetContext()->TakeNextId(), {}));
return AddInstruction(std::move(newUnOp));
}
Instruction* AddUnaryOp(uint32_t type_id, SpvOp opcode, uint32_t operand1) {
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> newUnOp(new Instruction(
GetContext(), opcode, type_id, GetContext()->TakeNextId(),
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand1}}}));
return AddInstruction(std::move(newUnOp));
}
Instruction* AddBinaryOp(uint32_t type_id, SpvOp opcode, uint32_t operand1,
uint32_t operand2) {
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> newBinOp(new Instruction(
GetContext(), opcode, type_id,
opcode == SpvOpStore ? 0 : GetContext()->TakeNextId(),
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand1}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand2}}}));
return AddInstruction(std::move(newBinOp));
}
Instruction* AddTernaryOp(uint32_t type_id, SpvOp opcode, uint32_t operand1,
uint32_t operand2, uint32_t operand3) {
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> newTernOp(new Instruction(
GetContext(), opcode, type_id, GetContext()->TakeNextId(),
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand1}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand2}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand3}}}));
return AddInstruction(std::move(newTernOp));
}
Instruction* AddQuadOp(uint32_t type_id, SpvOp opcode, uint32_t operand1,
uint32_t operand2, uint32_t operand3,
uint32_t operand4) {
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> newQuadOp(new Instruction(
GetContext(), opcode, type_id, GetContext()->TakeNextId(),
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand1}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand2}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand3}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {operand4}}}));
return AddInstruction(std::move(newQuadOp));
}
Instruction* AddIdLiteralOp(uint32_t type_id, SpvOp opcode, uint32_t id,
uint32_t uliteral) {
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> newBinOp(new Instruction(
GetContext(), opcode, type_id, GetContext()->TakeNextId(),
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER, {uliteral}}}));
return AddInstruction(std::move(newBinOp));
}
// Creates an N-ary instruction of |opcode|.
// |typid| must be the id of the instruction's type.
// |operands| must be a sequence of operand ids.
// Use |result| for the result id if non-zero.
Instruction* AddNaryOp(uint32_t type_id, SpvOp opcode,
const std::vector<uint32_t>& operands,
uint32_t result = 0) {
std::vector<Operand> ops;
for (size_t i = 0; i < operands.size(); i++) {
ops.push_back({SPV_OPERAND_TYPE_ID, {operands[i]}});
}
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> new_inst(new Instruction(
GetContext(), opcode, type_id,
result != 0 ? result : GetContext()->TakeNextId(), ops));
return AddInstruction(std::move(new_inst));
}
// Creates a new selection merge instruction.
// The id |merge_id| is the merge basic block id.
Instruction* AddSelectionMerge(
uint32_t merge_id,
uint32_t selection_control = SpvSelectionControlMaskNone) {
std::unique_ptr<Instruction> new_branch_merge(new Instruction(
GetContext(), SpvOpSelectionMerge, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {merge_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_SELECTION_CONTROL,
{selection_control}}}));
return AddInstruction(std::move(new_branch_merge));
}
// Creates a new loop merge instruction.
// The id |merge_id| is the basic block id of the merge block.
// |continue_id| is the id of the continue block.
// |loop_control| are the loop control flags to be added to the instruction.
Instruction* AddLoopMerge(uint32_t merge_id, uint32_t continue_id,
uint32_t loop_control = SpvLoopControlMaskNone) {
std::unique_ptr<Instruction> new_branch_merge(new Instruction(
GetContext(), SpvOpLoopMerge, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {merge_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {continue_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_LOOP_CONTROL, {loop_control}}}));
return AddInstruction(std::move(new_branch_merge));
}
// Creates a new branch instruction to |label_id|.
// Note that the user must make sure the final basic block is
// well formed.
Instruction* AddBranch(uint32_t label_id) {
std::unique_ptr<Instruction> new_branch(new Instruction(
GetContext(), SpvOpBranch, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {label_id}}}));
return AddInstruction(std::move(new_branch));
}
// Creates a new conditional instruction and the associated selection merge
// instruction if requested.
// The id |cond_id| is the id of the condition instruction, must be of
// type bool.
// The id |true_id| is the id of the basic block to branch to if the condition
// is true.
// The id |false_id| is the id of the basic block to branch to if the
// condition is false.
// The id |merge_id| is the id of the merge basic block for the selection
// merge instruction. If |merge_id| equals kInvalidId then no selection merge
// instruction will be created.
// The value |selection_control| is the selection control flag for the
// selection merge instruction.
// Note that the user must make sure the final basic block is
// well formed.
Instruction* AddConditionalBranch(
uint32_t cond_id, uint32_t true_id, uint32_t false_id,
uint32_t merge_id = kInvalidId,
uint32_t selection_control = SpvSelectionControlMaskNone) {
if (merge_id != kInvalidId) {
AddSelectionMerge(merge_id, selection_control);
}
std::unique_ptr<Instruction> new_branch(new Instruction(
GetContext(), SpvOpBranchConditional, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {cond_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {true_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {false_id}}}));
return AddInstruction(std::move(new_branch));
}
// Creates a new switch instruction and the associated selection merge
// instruction if requested.
// The id |selector_id| is the id of the selector instruction, must be of
// type int.
// The id |default_id| is the id of the default basic block to branch to.
// The vector |targets| is the pair of literal/branch id.
// The id |merge_id| is the id of the merge basic block for the selection
// merge instruction. If |merge_id| equals kInvalidId then no selection merge
// instruction will be created.
// The value |selection_control| is the selection control flag for the
// selection merge instruction.
// Note that the user must make sure the final basic block is
// well formed.
Instruction* AddSwitch(
uint32_t selector_id, uint32_t default_id,
const std::vector<std::pair<Operand::OperandData, uint32_t>>& targets,
uint32_t merge_id = kInvalidId,
uint32_t selection_control = SpvSelectionControlMaskNone) {
if (merge_id != kInvalidId) {
AddSelectionMerge(merge_id, selection_control);
}
std::vector<Operand> operands;
operands.emplace_back(
Operand{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {selector_id}});
operands.emplace_back(
Operand{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {default_id}});
for (auto& target : targets) {
operands.emplace_back(
Operand{spv_operand_type_t::SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER,
target.first});
operands.emplace_back(
Operand{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {target.second}});
}
std::unique_ptr<Instruction> new_switch(
new Instruction(GetContext(), SpvOpSwitch, 0, 0, operands));
return AddInstruction(std::move(new_switch));
}
// Creates a phi instruction.
// The id |type| must be the id of the phi instruction's type.
// The vector |incomings| must be a sequence of pairs of <definition id,
// parent id>.
Instruction* AddPhi(uint32_t type, const std::vector<uint32_t>& incomings,
uint32_t result = 0) {
assert(incomings.size() % 2 == 0 && "A sequence of pairs is expected");
return AddNaryOp(type, SpvOpPhi, incomings, result);
}
// Creates an addition instruction.
// The id |type| must be the id of the instruction's type, must be the same as
// |op1| and |op2| types.
// The id |op1| is the left hand side of the operation.
// The id |op2| is the right hand side of the operation.
Instruction* AddIAdd(uint32_t type, uint32_t op1, uint32_t op2) {
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> inst(new Instruction(
GetContext(), SpvOpIAdd, type, GetContext()->TakeNextId(),
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}));
return AddInstruction(std::move(inst));
}
// Creates a less than instruction for unsigned integer.
// The id |op1| is the left hand side of the operation.
// The id |op2| is the right hand side of the operation.
// It is assumed that |op1| and |op2| have the same underlying type.
Instruction* AddULessThan(uint32_t op1, uint32_t op2) {
analysis::Bool bool_type;
uint32_t type = GetContext()->get_type_mgr()->GetId(&bool_type);
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> inst(new Instruction(
GetContext(), SpvOpULessThan, type, GetContext()->TakeNextId(),
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}));
return AddInstruction(std::move(inst));
}
// Creates a less than instruction for signed integer.
// The id |op1| is the left hand side of the operation.
// The id |op2| is the right hand side of the operation.
// It is assumed that |op1| and |op2| have the same underlying type.
Instruction* AddSLessThan(uint32_t op1, uint32_t op2) {
analysis::Bool bool_type;
uint32_t type = GetContext()->get_type_mgr()->GetId(&bool_type);
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> inst(new Instruction(
GetContext(), SpvOpSLessThan, type, GetContext()->TakeNextId(),
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}));
return AddInstruction(std::move(inst));
}
// Creates an OpILessThan or OpULessThen instruction depending on the sign of
// |op1|. The id |op1| is the left hand side of the operation. The id |op2| is
// the right hand side of the operation. It is assumed that |op1| and |op2|
// have the same underlying type.
Instruction* AddLessThan(uint32_t op1, uint32_t op2) {
Instruction* op1_insn = context_->get_def_use_mgr()->GetDef(op1);
analysis::Type* type =
GetContext()->get_type_mgr()->GetType(op1_insn->type_id());
analysis::Integer* int_type = type->AsInteger();
assert(int_type && "Operand is not of int type");
if (int_type->IsSigned())
return AddSLessThan(op1, op2);
else
return AddULessThan(op1, op2);
}
// Creates a select instruction.
// |type| must match the types of |true_value| and |false_value|. It is up to
// the caller to ensure that |cond| is a correct type (bool or vector of
// bool) for |type|.
Instruction* AddSelect(uint32_t type, uint32_t cond, uint32_t true_value,
uint32_t false_value) {
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> select(new Instruction(
GetContext(), SpvOpSelect, type, GetContext()->TakeNextId(),
std::initializer_list<Operand>{{SPV_OPERAND_TYPE_ID, {cond}},
{SPV_OPERAND_TYPE_ID, {true_value}},
{SPV_OPERAND_TYPE_ID, {false_value}}}));
return AddInstruction(std::move(select));
}
// Adds a signed int32 constant to the binary.
// The |value| parameter is the constant value to be added.
Instruction* GetSintConstant(int32_t value) {
return GetIntConstant<int32_t>(value, true);
}
// Create a composite construct.
// |type| should be a composite type and the number of elements it has should
// match the size od |ids|.
Instruction* AddCompositeConstruct(uint32_t type,
const std::vector<uint32_t>& ids) {
std::vector<Operand> ops;
for (auto id : ids) {
ops.emplace_back(SPV_OPERAND_TYPE_ID,
std::initializer_list<uint32_t>{id});
}
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> construct(
new Instruction(GetContext(), SpvOpCompositeConstruct, type,
GetContext()->TakeNextId(), ops));
return AddInstruction(std::move(construct));
}
// Adds an unsigned int32 constant to the binary.
// The |value| parameter is the constant value to be added.
Instruction* GetUintConstant(uint32_t value) {
return GetIntConstant<uint32_t>(value, false);
}
uint32_t GetUintConstantId(uint32_t value) {
Instruction* uint_inst = GetUintConstant(value);
return uint_inst->result_id();
}
uint32_t GetNullId(uint32_t type_id) {
analysis::TypeManager* type_mgr = GetContext()->get_type_mgr();
analysis::ConstantManager* const_mgr = GetContext()->get_constant_mgr();
const analysis::Type* type = type_mgr->GetType(type_id);
const analysis::Constant* null_const = const_mgr->GetConstant(type, {});
Instruction* null_inst =
const_mgr->GetDefiningInstruction(null_const, type_id);
return null_inst->result_id();
}
// Adds either a signed or unsigned 32 bit integer constant to the binary
// depedning on the |sign|. If |sign| is true then the value is added as a
// signed constant otherwise as an unsigned constant. If |sign| is false the
// value must not be a negative number.
template <typename T>
Instruction* GetIntConstant(T value, bool sign) {
// Assert that we are not trying to store a negative number in an unsigned
// type.
if (!sign)
assert(value >= 0 &&
"Trying to add a signed integer with an unsigned type!");
analysis::Integer int_type{32, sign};
// Get or create the integer type. This rebuilds the type and manages the
// memory for the rebuilt type.
uint32_t type_id =
GetContext()->get_type_mgr()->GetTypeInstruction(&int_type);
// Get the memory managed type so that it is safe to be stored by
// GetConstant.
analysis::Type* rebuilt_type =
GetContext()->get_type_mgr()->GetType(type_id);
// Even if the value is negative we need to pass the bit pattern as a
// uint32_t to GetConstant.
uint32_t word = value;
// Create the constant value.
const analysis::Constant* constant =
GetContext()->get_constant_mgr()->GetConstant(rebuilt_type, {word});
// Create the OpConstant instruction using the type and the value.
return GetContext()->get_constant_mgr()->GetDefiningInstruction(constant);
}
Instruction* AddCompositeExtract(uint32_t type, uint32_t id_of_composite,
const std::vector<uint32_t>& index_list) {
std::vector<Operand> operands;
operands.push_back({SPV_OPERAND_TYPE_ID, {id_of_composite}});
for (uint32_t index : index_list) {
operands.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, {index}});
}
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> new_inst(
new Instruction(GetContext(), SpvOpCompositeExtract, type,
GetContext()->TakeNextId(), operands));
return AddInstruction(std::move(new_inst));
}
// Creates an unreachable instruction.
Instruction* AddUnreachable() {
std::unique_ptr<Instruction> select(
new Instruction(GetContext(), SpvOpUnreachable, 0, 0,
std::initializer_list<Operand>{}));
return AddInstruction(std::move(select));
}
Instruction* AddAccessChain(uint32_t type_id, uint32_t base_ptr_id,
std::vector<uint32_t> ids) {
std::vector<Operand> operands;
operands.push_back({SPV_OPERAND_TYPE_ID, {base_ptr_id}});
for (uint32_t index_id : ids) {
operands.push_back({SPV_OPERAND_TYPE_ID, {index_id}});
}
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> new_inst(
new Instruction(GetContext(), SpvOpAccessChain, type_id,
GetContext()->TakeNextId(), operands));
return AddInstruction(std::move(new_inst));
}
Instruction* AddLoad(uint32_t type_id, uint32_t base_ptr_id) {
std::vector<Operand> operands;
operands.push_back({SPV_OPERAND_TYPE_ID, {base_ptr_id}});
// TODO(1841): Handle id overflow.
std::unique_ptr<Instruction> new_inst(
new Instruction(GetContext(), SpvOpLoad, type_id,
GetContext()->TakeNextId(), operands));
return AddInstruction(std::move(new_inst));
}
Instruction* AddStore(uint32_t ptr_id, uint32_t obj_id) {
std::vector<Operand> operands;
operands.push_back({SPV_OPERAND_TYPE_ID, {ptr_id}});
operands.push_back({SPV_OPERAND_TYPE_ID, {obj_id}});
std::unique_ptr<Instruction> new_inst(
new Instruction(GetContext(), SpvOpStore, 0, 0, operands));
return AddInstruction(std::move(new_inst));
}
Instruction* AddFunctionCall(uint32_t result_type, uint32_t function,
const std::vector<uint32_t>& parameters) {
std::vector<Operand> operands;
operands.push_back({SPV_OPERAND_TYPE_ID, {function}});
for (uint32_t id : parameters) {
operands.push_back({SPV_OPERAND_TYPE_ID, {id}});
}
uint32_t result_id = GetContext()->TakeNextId();
if (result_id == 0) {
return nullptr;
}
std::unique_ptr<Instruction> new_inst(new Instruction(
GetContext(), SpvOpFunctionCall, result_type, result_id, operands));
return AddInstruction(std::move(new_inst));
}
Instruction* AddVectorShuffle(uint32_t result_type, uint32_t vec1,
uint32_t vec2,
const std::vector<uint32_t>& components) {
std::vector<Operand> operands;
operands.push_back({SPV_OPERAND_TYPE_ID, {vec1}});
operands.push_back({SPV_OPERAND_TYPE_ID, {vec2}});
for (uint32_t id : components) {
operands.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, {id}});
}
uint32_t result_id = GetContext()->TakeNextId();
if (result_id == 0) {
return nullptr;
}
std::unique_ptr<Instruction> new_inst(new Instruction(
GetContext(), SpvOpVectorShuffle, result_type, result_id, operands));
return AddInstruction(std::move(new_inst));
}
// Inserts the new instruction before the insertion point.
Instruction* AddInstruction(std::unique_ptr<Instruction>&& insn) {
Instruction* insn_ptr = &*insert_before_.InsertBefore(std::move(insn));
UpdateInstrToBlockMapping(insn_ptr);
UpdateDefUseMgr(insn_ptr);
return insn_ptr;
}
// Returns the insertion point iterator.
InsertionPointTy GetInsertPoint() { return insert_before_; }
// Change the insertion point to insert before the instruction
// |insert_before|.
void SetInsertPoint(Instruction* insert_before) {
parent_ = context_->get_instr_block(insert_before);
insert_before_ = InsertionPointTy(insert_before);
}
// Change the insertion point to insert at the end of the basic block
// |parent_block|.
void SetInsertPoint(BasicBlock* parent_block) {
parent_ = parent_block;
insert_before_ = parent_block->end();
}
// Returns the context which instructions are constructed for.
IRContext* GetContext() const { return context_; }
// Returns the set of preserved analyses.
inline IRContext::Analysis GetPreservedAnalysis() const {
return preserved_analyses_;
}
private:
InstructionBuilder(IRContext* context, BasicBlock* parent,
InsertionPointTy insert_before,
IRContext::Analysis preserved_analyses)
: context_(context),
parent_(parent),
insert_before_(insert_before),
preserved_analyses_(preserved_analyses) {
assert(!(preserved_analyses_ & ~(IRContext::kAnalysisDefUse |
IRContext::kAnalysisInstrToBlockMapping)));
}
// Returns true if the users requested to update |analysis|.
inline bool IsAnalysisUpdateRequested(IRContext::Analysis analysis) const {
if (!GetContext()->AreAnalysesValid(analysis)) {
// Do not try to update something that is not built.
return false;
}
return preserved_analyses_ & analysis;
}
// Updates the def/use manager if the user requested it. If he did not request
// an update, this function does nothing.
inline void UpdateDefUseMgr(Instruction* insn) {
if (IsAnalysisUpdateRequested(IRContext::kAnalysisDefUse))
GetContext()->get_def_use_mgr()->AnalyzeInstDefUse(insn);
}
// Updates the instruction to block analysis if the user requested it. If he
// did not request an update, this function does nothing.
inline void UpdateInstrToBlockMapping(Instruction* insn) {
if (IsAnalysisUpdateRequested(IRContext::kAnalysisInstrToBlockMapping) &&
parent_)
GetContext()->set_instr_block(insn, parent_);
}
IRContext* context_;
BasicBlock* parent_;
InsertionPointTy insert_before_;
const IRContext::Analysis preserved_analyses_;
};
} // namespace opt
} // namespace spvtools
#endif // SOURCE_OPT_IR_BUILDER_H_