SPIRV-Tools/test/binary_parse_test.cpp
Sven van Haastregt 6a5fa5f70a
Fix SPRIV -> SPIRV typos (#5735)
Fix all occurrences of "spriv" typos (irrespective of case).

Signed-off-by: Sven van Haastregt <sven.vanhaastregt@arm.com>
2024-07-15 20:10:06 -04:00

1196 lines
53 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <limits>
#include <sstream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "source/latest_version_opencl_std_header.h"
#include "source/table.h"
#include "source/util/string_utils.h"
#include "test/test_fixture.h"
#include "test/unit_spirv.h"
// Returns true if two spv_parsed_operand_t values are equal.
// To use this operator, this definition must appear in the same namespace
// as spv_parsed_operand_t.
static bool operator==(const spv_parsed_operand_t& a,
const spv_parsed_operand_t& b) {
return a.offset == b.offset && a.num_words == b.num_words &&
a.type == b.type && a.number_kind == b.number_kind &&
a.number_bit_width == b.number_bit_width;
}
namespace spvtools {
namespace {
using ::spvtest::Concatenate;
using ::spvtest::MakeInstruction;
using utils::MakeVector;
using ::spvtest::ScopedContext;
using ::testing::_;
using ::testing::AnyOf;
using ::testing::Eq;
using ::testing::InSequence;
using ::testing::Return;
// An easily-constructible and comparable object for the contents of an
// spv_parsed_instruction_t. Unlike spv_parsed_instruction_t, owns the memory
// of its components.
struct ParsedInstruction {
explicit ParsedInstruction(const spv_parsed_instruction_t& inst)
: words(inst.words, inst.words + inst.num_words),
opcode(static_cast<spv::Op>(inst.opcode)),
ext_inst_type(inst.ext_inst_type),
type_id(inst.type_id),
result_id(inst.result_id),
operands(inst.operands, inst.operands + inst.num_operands) {}
std::vector<uint32_t> words;
spv::Op opcode;
spv_ext_inst_type_t ext_inst_type;
uint32_t type_id;
uint32_t result_id;
std::vector<spv_parsed_operand_t> operands;
bool operator==(const ParsedInstruction& b) const {
return words == b.words && opcode == b.opcode &&
ext_inst_type == b.ext_inst_type && type_id == b.type_id &&
result_id == b.result_id && operands == b.operands;
}
};
// Prints a ParsedInstruction object to the given output stream, and returns
// the stream.
std::ostream& operator<<(std::ostream& os, const ParsedInstruction& inst) {
os << "\nParsedInstruction( {";
spvtest::PrintTo(spvtest::WordVector(inst.words), &os);
os << "}, opcode: " << int(inst.opcode)
<< " ext_inst_type: " << int(inst.ext_inst_type)
<< " type_id: " << inst.type_id << " result_id: " << inst.result_id;
for (const auto& operand : inst.operands) {
os << " { offset: " << operand.offset << " num_words: " << operand.num_words
<< " type: " << int(operand.type)
<< " number_kind: " << int(operand.number_kind)
<< " number_bit_width: " << int(operand.number_bit_width) << "}";
}
os << ")";
return os;
}
// Basic check for the equality operator on ParsedInstruction.
TEST(ParsedInstruction, ZeroInitializedAreEqual) {
spv_parsed_instruction_t pi = {};
ParsedInstruction a(pi);
ParsedInstruction b(pi);
EXPECT_THAT(a, ::testing::TypedEq<ParsedInstruction>(b));
}
// Googlemock class receiving Header/Instruction calls from spvBinaryParse().
class MockParseClient {
public:
MOCK_METHOD6(Header, spv_result_t(spv_endianness_t endian, uint32_t magic,
uint32_t version, uint32_t generator,
uint32_t id_bound, uint32_t reserved));
MOCK_METHOD1(Instruction, spv_result_t(const ParsedInstruction&));
};
// Casts user_data as MockParseClient and invokes its Header().
spv_result_t invoke_header(void* user_data, spv_endianness_t endian,
uint32_t magic, uint32_t version, uint32_t generator,
uint32_t id_bound, uint32_t reserved) {
return static_cast<MockParseClient*>(user_data)->Header(
endian, magic, version, generator, id_bound, reserved);
}
// Casts user_data as MockParseClient and invokes its Instruction().
spv_result_t invoke_instruction(
void* user_data, const spv_parsed_instruction_t* parsed_instruction) {
return static_cast<MockParseClient*>(user_data)->Instruction(
ParsedInstruction(*parsed_instruction));
}
// The SPIR-V module header words for the Khronos Assembler generator,
// for a module with an ID bound of 1.
const uint32_t kHeaderForBound1[] = {
spv::MagicNumber, spv::Version,
SPV_GENERATOR_WORD(SPV_GENERATOR_KHRONOS_ASSEMBLER, 0), 1 /*bound*/,
0 /*schema*/};
// Returns the expected SPIR-V module header words for the Khronos
// Assembler generator, and with a given Id bound.
std::vector<uint32_t> ExpectedHeaderForBound(uint32_t bound) {
return {spv::MagicNumber, 0x10000,
SPV_GENERATOR_WORD(SPV_GENERATOR_KHRONOS_ASSEMBLER, 0), bound, 0};
}
// Returns a parsed operand for a non-number value at the given word offset
// within an instruction.
spv_parsed_operand_t MakeSimpleOperand(uint16_t offset,
spv_operand_type_t type) {
return {offset, 1, type, SPV_NUMBER_NONE, 0};
}
// Returns a parsed operand for a literal unsigned integer value at the given
// word offset within an instruction.
spv_parsed_operand_t MakeLiteralNumberOperand(uint16_t offset) {
return {offset, 1, SPV_OPERAND_TYPE_LITERAL_INTEGER, SPV_NUMBER_UNSIGNED_INT,
32};
}
// Returns a parsed operand for a literal string value at the given
// word offset within an instruction.
spv_parsed_operand_t MakeLiteralStringOperand(uint16_t offset,
uint16_t length) {
return {offset, length, SPV_OPERAND_TYPE_LITERAL_STRING, SPV_NUMBER_NONE, 0};
}
// Returns a ParsedInstruction for an OpTypeVoid instruction that would
// generate the given result Id.
ParsedInstruction MakeParsedVoidTypeInstruction(uint32_t result_id) {
const auto void_inst = MakeInstruction(spv::Op::OpTypeVoid, {result_id});
const auto void_operands = std::vector<spv_parsed_operand_t>{
MakeSimpleOperand(1, SPV_OPERAND_TYPE_RESULT_ID)};
const spv_parsed_instruction_t parsed_void_inst = {
void_inst.data(),
static_cast<uint16_t>(void_inst.size()),
uint16_t(spv::Op::OpTypeVoid),
SPV_EXT_INST_TYPE_NONE,
0, // type id
result_id,
void_operands.data(),
static_cast<uint16_t>(void_operands.size())};
return ParsedInstruction(parsed_void_inst);
}
// Returns a ParsedInstruction for an OpTypeInt instruction that generates
// the given result Id for a 32-bit signed integer scalar type.
ParsedInstruction MakeParsedInt32TypeInstruction(uint32_t result_id) {
const auto i32_inst = MakeInstruction(spv::Op::OpTypeInt, {result_id, 32, 1});
const auto i32_operands = std::vector<spv_parsed_operand_t>{
MakeSimpleOperand(1, SPV_OPERAND_TYPE_RESULT_ID),
MakeLiteralNumberOperand(2), MakeLiteralNumberOperand(3)};
spv_parsed_instruction_t parsed_i32_inst = {
i32_inst.data(),
static_cast<uint16_t>(i32_inst.size()),
uint16_t(spv::Op::OpTypeInt),
SPV_EXT_INST_TYPE_NONE,
0, // type id
result_id,
i32_operands.data(),
static_cast<uint16_t>(i32_operands.size())};
return ParsedInstruction(parsed_i32_inst);
}
class BinaryParseTest : public spvtest::TextToBinaryTestBase<::testing::Test> {
protected:
~BinaryParseTest() override { spvDiagnosticDestroy(diagnostic_); }
void Parse(const SpirvVector& words, spv_result_t expected_result,
bool flip_words = false) {
SpirvVector flipped_words(words);
MaybeFlipWords(flip_words, flipped_words.begin(), flipped_words.end());
EXPECT_EQ(expected_result,
spvBinaryParse(ScopedContext().context, &client_,
flipped_words.data(), flipped_words.size(),
invoke_header, invoke_instruction, &diagnostic_));
}
spv_diagnostic diagnostic_ = nullptr;
MockParseClient client_;
};
class CxxBinaryParseTest
: public spvtest::TextToBinaryTestBase<::testing::Test> {
protected:
CxxBinaryParseTest() {
header_parser_ = [this](const spv_endianness_t endianness,
const spv_parsed_header_t& header) {
return this->client_.Header(endianness, header.magic, header.version,
header.generator, header.bound,
header.reserved);
};
instruction_parser_ = [this](const spv_parsed_instruction_t& instruction) {
return this->client_.Instruction(ParsedInstruction(instruction));
};
}
~CxxBinaryParseTest() override { spvDiagnosticDestroy(diagnostic_); }
void Parse(const SpirvVector& words, bool expected_result,
bool flip_words = false,
spv_target_env env = SPV_ENV_UNIVERSAL_1_0) {
SpirvVector flipped_words(words);
MaybeFlipWords(flip_words, flipped_words.begin(), flipped_words.end());
spvtools::SpirvTools tools(env);
EXPECT_EQ(expected_result, tools.Parse(flipped_words, header_parser_,
instruction_parser_, &diagnostic_));
}
spv_diagnostic diagnostic_ = nullptr;
MockParseClient client_;
HeaderParser header_parser_;
InstructionParser instruction_parser_;
};
// Adds an EXPECT_CALL to client_->Header() with appropriate parameters,
// including bound. Returns the EXPECT_CALL result.
#define EXPECT_HEADER(bound) \
EXPECT_CALL(client_, \
Header(AnyOf(SPV_ENDIANNESS_LITTLE, SPV_ENDIANNESS_BIG), \
spv::MagicNumber, 0x10000, \
SPV_GENERATOR_WORD(SPV_GENERATOR_KHRONOS_ASSEMBLER, 0), \
bound, 0 /*reserved*/))
static const bool kSwapEndians[] = {false, true};
TEST_F(BinaryParseTest, EmptyModuleHasValidHeaderAndNoInstructionCallbacks) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully("");
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
Parse(words, SPV_SUCCESS, endian_swap);
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(CxxBinaryParseTest, EmptyModuleHasValidHeaderAndNoInstructionCallbacks) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully("");
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
Parse(words, true, endian_swap);
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(BinaryParseTest, NullDiagnosticsIsOkForGoodParse) {
const auto words = CompileSuccessfully("");
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(
SPV_SUCCESS,
spvBinaryParse(ScopedContext().context, &client_, words.data(),
words.size(), invoke_header, invoke_instruction, nullptr));
}
TEST_F(CxxBinaryParseTest, NullDiagnosticsIsOkForGoodParse) {
const auto words = CompileSuccessfully("");
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_0);
EXPECT_EQ(true,
tools.Parse(words, header_parser_, instruction_parser_, nullptr));
}
TEST_F(BinaryParseTest, NullDiagnosticsIsOkForBadParse) {
auto words = CompileSuccessfully("");
words.push_back(0xffffffff); // Certainly invalid instruction header.
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(
SPV_ERROR_INVALID_BINARY,
spvBinaryParse(ScopedContext().context, &client_, words.data(),
words.size(), invoke_header, invoke_instruction, nullptr));
}
TEST_F(CxxBinaryParseTest, NullDiagnosticsIsOkForBadParse) {
auto words = CompileSuccessfully("");
words.push_back(0xffffffff); // Certainly invalid instruction header.
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_0);
EXPECT_EQ(false,
tools.Parse(words, header_parser_, instruction_parser_, nullptr));
}
// Make sure that we don't blow up when both the consumer and the diagnostic are
// null.
TEST_F(BinaryParseTest, NullConsumerNullDiagnosticsForBadParse) {
auto words = CompileSuccessfully("");
auto ctx = spvtools::Context(SPV_ENV_UNIVERSAL_1_1);
ctx.SetMessageConsumer(nullptr);
words.push_back(0xffffffff); // Certainly invalid instruction header.
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(SPV_ERROR_INVALID_BINARY,
spvBinaryParse(ctx.CContext(), &client_, words.data(), words.size(),
invoke_header, invoke_instruction, nullptr));
}
TEST_F(CxxBinaryParseTest, NullConsumerNullDiagnosticsForBadParse) {
spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_1);
tools.SetMessageConsumer(nullptr);
auto words = CompileSuccessfully("");
words.push_back(0xffffffff); // Certainly invalid instruction header.
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(false,
tools.Parse(words, header_parser_, instruction_parser_, nullptr));
}
TEST_F(BinaryParseTest, SpecifyConsumerNullDiagnosticsForGoodParse) {
const auto words = CompileSuccessfully("");
auto ctx = spvtools::Context(SPV_ENV_UNIVERSAL_1_1);
int invocation = 0;
ctx.SetMessageConsumer([&invocation](spv_message_level_t, const char*,
const spv_position_t&,
const char*) { ++invocation; });
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(SPV_SUCCESS,
spvBinaryParse(ctx.CContext(), &client_, words.data(), words.size(),
invoke_header, invoke_instruction, nullptr));
EXPECT_EQ(0, invocation);
}
TEST_F(CxxBinaryParseTest, SpecifyConsumerNullDiagnosticsForGoodParse) {
const auto words = CompileSuccessfully("");
spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_1);
int invocation = 0;
tools.SetMessageConsumer([&invocation](spv_message_level_t, const char*,
const spv_position_t&,
const char*) { ++invocation; });
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(true,
tools.Parse(words, header_parser_, instruction_parser_, nullptr));
EXPECT_EQ(0, invocation);
}
TEST_F(BinaryParseTest, SpecifyConsumerNullDiagnosticsForBadParse) {
auto words = CompileSuccessfully("");
auto ctx = spvtools::Context(SPV_ENV_UNIVERSAL_1_1);
int invocation = 0;
ctx.SetMessageConsumer(
[&invocation](spv_message_level_t level, const char* source,
const spv_position_t& position, const char* message) {
++invocation;
EXPECT_EQ(SPV_MSG_ERROR, level);
EXPECT_STREQ("input", source);
EXPECT_EQ(0u, position.line);
EXPECT_EQ(0u, position.column);
EXPECT_EQ(1u, position.index);
EXPECT_STREQ("Invalid opcode: 65535", message);
});
words.push_back(0xffffffff); // Certainly invalid instruction header.
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(SPV_ERROR_INVALID_BINARY,
spvBinaryParse(ctx.CContext(), &client_, words.data(), words.size(),
invoke_header, invoke_instruction, nullptr));
EXPECT_EQ(1, invocation);
}
TEST_F(CxxBinaryParseTest, SpecifyConsumerNullDiagnosticsForBadParse) {
auto words = CompileSuccessfully("");
spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_1);
int invocation = 0;
tools.SetMessageConsumer(
[&invocation](spv_message_level_t level, const char* source,
const spv_position_t& position, const char* message) {
++invocation;
EXPECT_EQ(SPV_MSG_ERROR, level);
EXPECT_STREQ("input", source);
EXPECT_EQ(0u, position.line);
EXPECT_EQ(0u, position.column);
EXPECT_EQ(1u, position.index);
EXPECT_STREQ("Invalid opcode: 65535", message);
});
words.push_back(0xffffffff); // Certainly invalid instruction header.
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(false,
tools.Parse(words, header_parser_, instruction_parser_, nullptr));
EXPECT_EQ(1, invocation);
}
TEST_F(BinaryParseTest, SpecifyConsumerSpecifyDiagnosticsForGoodParse) {
const auto words = CompileSuccessfully("");
auto ctx = spvtools::Context(SPV_ENV_UNIVERSAL_1_1);
int invocation = 0;
ctx.SetMessageConsumer([&invocation](spv_message_level_t, const char*,
const spv_position_t&,
const char*) { ++invocation; });
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(SPV_SUCCESS,
spvBinaryParse(ctx.CContext(), &client_, words.data(), words.size(),
invoke_header, invoke_instruction, &diagnostic_));
EXPECT_EQ(0, invocation);
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(CxxBinaryParseTest, SpecifyConsumerSpecifyDiagnosticsForGoodParse) {
const auto words = CompileSuccessfully("");
spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_1);
int invocation = 0;
tools.SetMessageConsumer([&invocation](spv_message_level_t, const char*,
const spv_position_t&,
const char*) { ++invocation; });
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(true, tools.Parse(words, header_parser_, instruction_parser_,
&diagnostic_));
EXPECT_EQ(0, invocation);
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest, SpecifyConsumerSpecifyDiagnosticsForBadParse) {
auto words = CompileSuccessfully("");
auto ctx = spvtools::Context(SPV_ENV_UNIVERSAL_1_1);
int invocation = 0;
ctx.SetMessageConsumer([&invocation](spv_message_level_t, const char*,
const spv_position_t&,
const char*) { ++invocation; });
words.push_back(0xffffffff); // Certainly invalid instruction header.
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(SPV_ERROR_INVALID_BINARY,
spvBinaryParse(ctx.CContext(), &client_, words.data(), words.size(),
invoke_header, invoke_instruction, &diagnostic_));
EXPECT_EQ(0, invocation);
EXPECT_STREQ("Invalid opcode: 65535", diagnostic_->error);
}
TEST_F(CxxBinaryParseTest, SpecifyConsumerSpecifyDiagnosticsForBadParse) {
auto words = CompileSuccessfully("");
spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_1);
int invocation = 0;
tools.SetMessageConsumer([&invocation](spv_message_level_t, const char*,
const spv_position_t&,
const char*) { ++invocation; });
words.push_back(0xffffffff); // Certainly invalid instruction header.
EXPECT_HEADER(1).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(false, tools.Parse(words, header_parser_, instruction_parser_,
&diagnostic_));
EXPECT_EQ(0, invocation);
EXPECT_STREQ("Invalid opcode: 65535", diagnostic_->error);
}
TEST_F(BinaryParseTest,
ModuleWithSingleInstructionHasValidHeaderAndInstructionCallback) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully("%1 = OpTypeVoid");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(2).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
Parse(words, SPV_SUCCESS, endian_swap);
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(CxxBinaryParseTest,
ModuleWithSingleInstructionHasValidHeaderAndInstructionCallback) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully("%1 = OpTypeVoid");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(2).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
Parse(words, true, endian_swap);
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(BinaryParseTest, NullHeaderCallbackIsIgnored) {
const auto words = CompileSuccessfully("%1 = OpTypeVoid");
EXPECT_CALL(client_, Header(_, _, _, _, _, _))
.Times(0); // No header callback.
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
EXPECT_EQ(SPV_SUCCESS, spvBinaryParse(ScopedContext().context, &client_,
words.data(), words.size(), nullptr,
invoke_instruction, &diagnostic_));
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(BinaryParseTest, NullInstructionCallbackIsIgnored) {
const auto words = CompileSuccessfully("%1 = OpTypeVoid");
EXPECT_HEADER((2)).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).Times(0); // No instruction callback.
EXPECT_EQ(SPV_SUCCESS,
spvBinaryParse(ScopedContext().context, &client_, words.data(),
words.size(), invoke_header, nullptr, &diagnostic_));
EXPECT_EQ(nullptr, diagnostic_);
}
// Check the result of multiple instruction callbacks.
//
// This test exercises non-default values for the following members of the
// spv_parsed_instruction_t struct: words, num_words, opcode, result_id,
// operands, num_operands.
TEST_F(BinaryParseTest, TwoScalarTypesGenerateTwoInstructionCallbacks) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(3).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedInt32TypeInstruction(2)))
.WillOnce(Return(SPV_SUCCESS));
Parse(words, SPV_SUCCESS, endian_swap);
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(CxxBinaryParseTest, TwoScalarTypesGenerateTwoInstructionCallbacks) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(3).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedInt32TypeInstruction(2)))
.WillOnce(Return(SPV_SUCCESS));
Parse(words, true, endian_swap);
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(BinaryParseTest, EarlyReturnWithZeroPassingCallbacks) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(3).WillOnce(Return(SPV_ERROR_INVALID_BINARY));
// Early exit means no calls to Instruction().
EXPECT_CALL(client_, Instruction(_)).Times(0);
Parse(words, SPV_ERROR_INVALID_BINARY, endian_swap);
// On error, the binary parser doesn't generate its own diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(CxxBinaryParseTest, EarlyReturnWithZeroPassingCallbacks) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(3).WillOnce(Return(SPV_ERROR_INVALID_BINARY));
// Early exit means no calls to Instruction().
EXPECT_CALL(client_, Instruction(_)).Times(0);
Parse(words, false, endian_swap);
// On error, the binary parser doesn't generate its own diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(BinaryParseTest,
EarlyReturnWithZeroPassingCallbacksAndSpecifiedResultCode) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(3).WillOnce(Return(SPV_REQUESTED_TERMINATION));
// Early exit means no calls to Instruction().
EXPECT_CALL(client_, Instruction(_)).Times(0);
Parse(words, SPV_REQUESTED_TERMINATION, endian_swap);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(CxxBinaryParseTest,
EarlyReturnWithZeroPassingCallbacksAndSpecifiedResultCode) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(3).WillOnce(Return(SPV_REQUESTED_TERMINATION));
// Early exit means no calls to Instruction().
EXPECT_CALL(client_, Instruction(_)).Times(0);
Parse(words, false, endian_swap);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(BinaryParseTest, EarlyReturnWithOnePassingCallback) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1 "
"%3 = OpTypeFloat 32");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(4).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_REQUESTED_TERMINATION));
Parse(words, SPV_REQUESTED_TERMINATION, endian_swap);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(CxxBinaryParseTest, EarlyReturnWithOnePassingCallback) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1 "
"%3 = OpTypeFloat 32");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(4).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_REQUESTED_TERMINATION));
Parse(words, false, endian_swap);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(BinaryParseTest, EarlyReturnWithTwoPassingCallbacks) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1 "
"%3 = OpTypeFloat 32");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(4).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedInt32TypeInstruction(2)))
.WillOnce(Return(SPV_REQUESTED_TERMINATION));
Parse(words, SPV_REQUESTED_TERMINATION, endian_swap);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(CxxBinaryParseTest, EarlyReturnWithTwoPassingCallbacks) {
for (bool endian_swap : kSwapEndians) {
const auto words = CompileSuccessfully(
"%1 = OpTypeVoid "
"%2 = OpTypeInt 32 1 "
"%3 = OpTypeFloat 32");
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(4).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedVoidTypeInstruction(1)))
.WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(MakeParsedInt32TypeInstruction(2)))
.WillOnce(Return(SPV_REQUESTED_TERMINATION));
Parse(words, false, endian_swap);
// On early termination, the binary parser doesn't generate its own
// diagnostics.
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(BinaryParseTest, InstructionWithStringOperand) {
for (bool endian_swap : kSwapEndians) {
const std::string str =
"the future is already here, it's just not evenly distributed";
const auto str_words = MakeVector(str);
const auto instruction = MakeInstruction(spv::Op::OpName, {99}, str_words);
const auto words = Concatenate({ExpectedHeaderForBound(100), instruction});
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(100).WillOnce(Return(SPV_SUCCESS));
const auto operands = std::vector<spv_parsed_operand_t>{
MakeSimpleOperand(1, SPV_OPERAND_TYPE_ID),
MakeLiteralStringOperand(2, static_cast<uint16_t>(str_words.size()))};
EXPECT_CALL(
client_,
Instruction(ParsedInstruction(spv_parsed_instruction_t{
instruction.data(), static_cast<uint16_t>(instruction.size()),
uint16_t(spv::Op::OpName), SPV_EXT_INST_TYPE_NONE, 0 /*type id*/,
0 /* No result id for OpName*/, operands.data(),
static_cast<uint16_t>(operands.size())})))
.WillOnce(Return(SPV_SUCCESS));
Parse(words, SPV_SUCCESS, endian_swap);
EXPECT_EQ(nullptr, diagnostic_);
}
}
TEST_F(CxxBinaryParseTest, InstructionWithStringOperand) {
for (bool endian_swap : kSwapEndians) {
const std::string str =
"the future is already here, it's just not evenly distributed";
const auto str_words = MakeVector(str);
const auto instruction = MakeInstruction(spv::Op::OpName, {99}, str_words);
const auto words = Concatenate({ExpectedHeaderForBound(100), instruction});
InSequence calls_expected_in_specific_order;
EXPECT_HEADER(100).WillOnce(Return(SPV_SUCCESS));
const auto operands = std::vector<spv_parsed_operand_t>{
MakeSimpleOperand(1, SPV_OPERAND_TYPE_ID),
MakeLiteralStringOperand(2, static_cast<uint16_t>(str_words.size()))};
EXPECT_CALL(
client_,
Instruction(ParsedInstruction(spv_parsed_instruction_t{
instruction.data(), static_cast<uint16_t>(instruction.size()),
uint16_t(spv::Op::OpName), SPV_EXT_INST_TYPE_NONE, 0 /*type id*/,
0 /* No result id for OpName*/, operands.data(),
static_cast<uint16_t>(operands.size())})))
.WillOnce(Return(SPV_SUCCESS));
Parse(words, true, endian_swap);
EXPECT_EQ(nullptr, diagnostic_);
}
}
// Checks for non-zero values for the result_id and ext_inst_type members
// spv_parsed_instruction_t.
TEST_F(BinaryParseTest, ExtendedInstruction) {
const auto words = CompileSuccessfully(
"%extcl = OpExtInstImport \"OpenCL.std\" "
"%result = OpExtInst %float %extcl sqrt %x");
EXPECT_HEADER(5).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).WillOnce(Return(SPV_SUCCESS));
// We're only interested in the second call to Instruction():
const auto operands = std::vector<spv_parsed_operand_t>{
MakeSimpleOperand(1, SPV_OPERAND_TYPE_TYPE_ID),
MakeSimpleOperand(2, SPV_OPERAND_TYPE_RESULT_ID),
MakeSimpleOperand(3,
SPV_OPERAND_TYPE_ID), // Extended instruction set Id
MakeSimpleOperand(4, SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER),
MakeSimpleOperand(5, SPV_OPERAND_TYPE_ID), // Id of the argument
};
const auto instruction = MakeInstruction(
spv::Op::OpExtInst,
{2, 3, 1, static_cast<uint32_t>(OpenCLLIB::Entrypoints::Sqrt), 4});
EXPECT_CALL(client_,
Instruction(ParsedInstruction(spv_parsed_instruction_t{
instruction.data(), static_cast<uint16_t>(instruction.size()),
uint16_t(spv::Op::OpExtInst), SPV_EXT_INST_TYPE_OPENCL_STD,
2 /*type id*/, 3 /*result id*/, operands.data(),
static_cast<uint16_t>(operands.size())})))
.WillOnce(Return(SPV_SUCCESS));
// Since we are actually checking the output, don't test the
// endian-swapped version.
Parse(words, SPV_SUCCESS, false);
EXPECT_EQ(nullptr, diagnostic_);
}
TEST_F(CxxBinaryParseTest, ExtendedInstruction) {
const auto words = CompileSuccessfully(
"%extcl = OpExtInstImport \"OpenCL.std\" "
"%result = OpExtInst %float %extcl sqrt %x");
EXPECT_HEADER(5).WillOnce(Return(SPV_SUCCESS));
EXPECT_CALL(client_, Instruction(_)).WillOnce(Return(SPV_SUCCESS));
// We're only interested in the second call to Instruction():
const auto operands = std::vector<spv_parsed_operand_t>{
MakeSimpleOperand(1, SPV_OPERAND_TYPE_TYPE_ID),
MakeSimpleOperand(2, SPV_OPERAND_TYPE_RESULT_ID),
MakeSimpleOperand(3,
SPV_OPERAND_TYPE_ID), // Extended instruction set Id
MakeSimpleOperand(4, SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER),
MakeSimpleOperand(5, SPV_OPERAND_TYPE_ID), // Id of the argument
};
const auto instruction = MakeInstruction(
spv::Op::OpExtInst,
{2, 3, 1, static_cast<uint32_t>(OpenCLLIB::Entrypoints::Sqrt), 4});
EXPECT_CALL(client_,
Instruction(ParsedInstruction(spv_parsed_instruction_t{
instruction.data(), static_cast<uint16_t>(instruction.size()),
uint16_t(spv::Op::OpExtInst), SPV_EXT_INST_TYPE_OPENCL_STD,
2 /*type id*/, 3 /*result id*/, operands.data(),
static_cast<uint16_t>(operands.size())})))
.WillOnce(Return(SPV_SUCCESS));
// Since we are actually checking the output, don't test the
// endian-swapped version.
Parse(words, true, false);
EXPECT_EQ(nullptr, diagnostic_);
}
// A binary parser diagnostic test case where we provide the words array
// pointer and word count explicitly.
struct WordsAndCountDiagnosticCase {
const uint32_t* words;
size_t num_words;
std::string expected_diagnostic;
};
using BinaryParseWordsAndCountDiagnosticTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<WordsAndCountDiagnosticCase>>;
TEST_P(BinaryParseWordsAndCountDiagnosticTest, WordAndCountCases) {
EXPECT_EQ(
SPV_ERROR_INVALID_BINARY,
spvBinaryParse(ScopedContext().context, nullptr, GetParam().words,
GetParam().num_words, nullptr, nullptr, &diagnostic));
ASSERT_NE(nullptr, diagnostic);
EXPECT_THAT(diagnostic->error, Eq(GetParam().expected_diagnostic));
}
INSTANTIATE_TEST_SUITE_P(
BinaryParseDiagnostic, BinaryParseWordsAndCountDiagnosticTest,
::testing::ValuesIn(std::vector<WordsAndCountDiagnosticCase>{
{nullptr, 0, "Missing module."},
{kHeaderForBound1, 0,
"Module has incomplete header: only 0 words instead of 5"},
{kHeaderForBound1, 1,
"Module has incomplete header: only 1 words instead of 5"},
{kHeaderForBound1, 2,
"Module has incomplete header: only 2 words instead of 5"},
{kHeaderForBound1, 3,
"Module has incomplete header: only 3 words instead of 5"},
{kHeaderForBound1, 4,
"Module has incomplete header: only 4 words instead of 5"},
}));
// A binary parser diagnostic test case where a vector of words is
// provided. We'll use this to express cases that can't be created
// via the assembler. Either we want to make a malformed instruction,
// or an invalid case the assembler would reject.
struct WordVectorDiagnosticCase {
std::vector<uint32_t> words;
std::string expected_diagnostic;
};
using BinaryParseWordVectorDiagnosticTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<WordVectorDiagnosticCase>>;
TEST_P(BinaryParseWordVectorDiagnosticTest, WordVectorCases) {
const auto& words = GetParam().words;
EXPECT_THAT(spvBinaryParse(ScopedContext().context, nullptr, words.data(),
words.size(), nullptr, nullptr, &diagnostic),
AnyOf(SPV_ERROR_INVALID_BINARY, SPV_ERROR_INVALID_ID));
ASSERT_NE(nullptr, diagnostic);
EXPECT_THAT(diagnostic->error, Eq(GetParam().expected_diagnostic));
}
INSTANTIATE_TEST_SUITE_P(
BinaryParseDiagnostic, BinaryParseWordVectorDiagnosticTest,
::testing::ValuesIn(std::vector<WordVectorDiagnosticCase>{
{Concatenate({ExpectedHeaderForBound(1),
{spvOpcodeMake(0, spv::Op::OpNop)}}),
"Invalid instruction word count: 0"},
{Concatenate(
{ExpectedHeaderForBound(1),
{spvOpcodeMake(1, static_cast<spv::Op>(
std::numeric_limits<uint16_t>::max()))}}),
"Invalid opcode: 65535"},
{Concatenate({ExpectedHeaderForBound(1),
MakeInstruction(spv::Op::OpNop, {42})}),
"Invalid instruction OpNop starting at word 5: expected "
"no more operands after 1 words, but stated word count is 2."},
// Supply several more unexpected words.
{Concatenate({ExpectedHeaderForBound(1),
MakeInstruction(spv::Op::OpNop,
{42, 43, 44, 45, 46, 47})}),
"Invalid instruction OpNop starting at word 5: expected "
"no more operands after 1 words, but stated word count is 7."},
{Concatenate({ExpectedHeaderForBound(1),
MakeInstruction(spv::Op::OpTypeVoid, {1, 2})}),
"Invalid instruction OpTypeVoid starting at word 5: expected "
"no more operands after 2 words, but stated word count is 3."},
{Concatenate({ExpectedHeaderForBound(1),
MakeInstruction(spv::Op::OpTypeVoid, {1, 2, 5, 9, 10})}),
"Invalid instruction OpTypeVoid starting at word 5: expected "
"no more operands after 2 words, but stated word count is 6."},
{Concatenate({ExpectedHeaderForBound(1),
MakeInstruction(spv::Op::OpTypeInt, {1, 32, 1, 9})}),
"Invalid instruction OpTypeInt starting at word 5: expected "
"no more operands after 4 words, but stated word count is 5."},
{Concatenate({ExpectedHeaderForBound(1),
MakeInstruction(spv::Op::OpTypeInt, {1})}),
"End of input reached while decoding OpTypeInt starting at word 5:"
" expected more operands after 2 words."},
// Check several cases for running off the end of input.
// Detect a missing single word operand.
{Concatenate({ExpectedHeaderForBound(1),
{spvOpcodeMake(2, spv::Op::OpTypeStruct)}}),
"End of input reached while decoding OpTypeStruct starting at word"
" 5: missing result ID operand at word offset 1."},
// Detect this a missing a multi-word operand to OpConstant.
// We also lie and say the OpConstant instruction has 5 words when
// it only has 3. Corresponds to something like this:
// %1 = OpTypeInt 64 0
// %2 = OpConstant %1 <missing>
{Concatenate({ExpectedHeaderForBound(3),
{MakeInstruction(spv::Op::OpTypeInt, {1, 64, 0})},
{spvOpcodeMake(5, spv::Op::OpConstant), 1, 2}}),
"End of input reached while decoding OpConstant starting at word"
" 9: missing possibly multi-word literal number operand at word "
"offset 3."},
// Detect when we provide only one word from the 64-bit literal,
// and again lie about the number of words in the instruction.
{Concatenate({ExpectedHeaderForBound(3),
{MakeInstruction(spv::Op::OpTypeInt, {1, 64, 0})},
{spvOpcodeMake(5, spv::Op::OpConstant), 1, 2, 42}}),
"End of input reached while decoding OpConstant starting at word"
" 9: truncated possibly multi-word literal number operand at word "
"offset 3."},
// Detect when a required string operand is missing.
// Also, lie about the length of the instruction.
{Concatenate({ExpectedHeaderForBound(3),
{spvOpcodeMake(3, spv::Op::OpString), 1}}),
"End of input reached while decoding OpString starting at word"
" 5: missing literal string operand at word offset 2."},
// Detect when a required string operand is truncated: it's missing
// a null terminator. Catching the error avoids a buffer overrun.
{Concatenate({ExpectedHeaderForBound(3),
{spvOpcodeMake(4, spv::Op::OpString), 1, 0x41414141,
0x41414141}}),
"End of input reached while decoding OpString starting at word"
" 5: truncated literal string operand at word offset 2."},
// Detect when an optional string operand is truncated: it's missing
// a null terminator. Catching the error avoids a buffer overrun.
// (It is valid for an optional string operand to be absent.)
{Concatenate({ExpectedHeaderForBound(3),
{spvOpcodeMake(6, spv::Op::OpSource),
static_cast<uint32_t>(spv::SourceLanguage::OpenCL_C),
210, 1 /* file id */,
/*start of string*/ 0x41414141, 0x41414141}}),
"End of input reached while decoding OpSource starting at word"
" 5: truncated literal string operand at word offset 4."},
// (End of input exhaustion test cases.)
// In this case the instruction word count is too small, where
// it would truncate a multi-word operand to OpConstant.
{Concatenate({ExpectedHeaderForBound(3),
{MakeInstruction(spv::Op::OpTypeInt, {1, 64, 0})},
{spvOpcodeMake(4, spv::Op::OpConstant), 1, 2, 44, 44}}),
"Invalid word count: OpConstant starting at word 9 says it has 4"
" words, but found 5 words instead."},
// Word count is to small, where it would truncate a literal string.
{Concatenate({ExpectedHeaderForBound(2),
{spvOpcodeMake(3, spv::Op::OpString), 1, 0x41414141, 0}}),
"Invalid word count: OpString starting at word 5 says it has 3"
" words, but found 4 words instead."},
// Word count is too large. The string terminates before the last
// word.
{Concatenate({ExpectedHeaderForBound(2),
{spvOpcodeMake(4, spv::Op::OpString), 1 /* result id */},
MakeVector("abc"),
{0 /* this word does not belong*/}}),
"Invalid instruction OpString starting at word 5: expected no more"
" operands after 3 words, but stated word count is 4."},
// Word count is too large. There are too many words after the string
// literal. A linkage attribute decoration is the only case in SPIR-V
// where a string operand is followed by another operand.
{Concatenate(
{ExpectedHeaderForBound(2),
{spvOpcodeMake(6, spv::Op::OpDecorate), 1 /* target id */,
static_cast<uint32_t>(spv::Decoration::LinkageAttributes)},
MakeVector("abc"),
{static_cast<uint32_t>(spv::LinkageType::Import),
0 /* does not belong */}}),
"Invalid instruction OpDecorate starting at word 5: expected no more"
" operands after 5 words, but stated word count is 6."},
// Like the previous case, but with 5 extra words.
{Concatenate(
{ExpectedHeaderForBound(2),
{spvOpcodeMake(10, spv::Op::OpDecorate), 1 /* target id */,
static_cast<uint32_t>(spv::Decoration::LinkageAttributes)},
MakeVector("abc"),
{static_cast<uint32_t>(spv::LinkageType::Import),
/* don't belong */ 0, 1, 2, 3, 4}}),
"Invalid instruction OpDecorate starting at word 5: expected no more"
" operands after 5 words, but stated word count is 10."},
// Like the previous two cases, but with OpMemberDecorate.
{Concatenate(
{ExpectedHeaderForBound(2),
{spvOpcodeMake(7, spv::Op::OpMemberDecorate), 1 /* target id */,
42 /* member index */,
static_cast<uint32_t>(spv::Decoration::LinkageAttributes)},
MakeVector("abc"),
{static_cast<uint32_t>(spv::LinkageType::Import),
0 /* does not belong */}}),
"Invalid instruction OpMemberDecorate starting at word 5: expected no"
" more operands after 6 words, but stated word count is 7."},
{Concatenate(
{ExpectedHeaderForBound(2),
{spvOpcodeMake(11, spv::Op::OpMemberDecorate), 1 /* target id */,
42 /* member index */,
static_cast<uint32_t>(spv::Decoration::LinkageAttributes)},
MakeVector("abc"),
{static_cast<uint32_t>(spv::LinkageType::Import),
/* don't belong */ 0, 1, 2, 3, 4}}),
"Invalid instruction OpMemberDecorate starting at word 5: expected no"
" more operands after 6 words, but stated word count is 11."},
// Word count is too large. There should be no more words
// after the RelaxedPrecision decoration.
{Concatenate({ExpectedHeaderForBound(2),
{spvOpcodeMake(4, spv::Op::OpDecorate), 1 /* target id */,
static_cast<uint32_t>(spv::Decoration::RelaxedPrecision),
0 /* does not belong */}}),
"Invalid instruction OpDecorate starting at word 5: expected no"
" more operands after 3 words, but stated word count is 4."},
// Word count is too large. There should be only one word after
// the SpecId decoration enum word.
{Concatenate({ExpectedHeaderForBound(2),
{spvOpcodeMake(5, spv::Op::OpDecorate), 1 /* target id */,
static_cast<uint32_t>(spv::Decoration::SpecId),
42 /* the spec id */, 0 /* does not belong */}}),
"Invalid instruction OpDecorate starting at word 5: expected no"
" more operands after 4 words, but stated word count is 5."},
{Concatenate({ExpectedHeaderForBound(2),
{spvOpcodeMake(2, spv::Op::OpTypeVoid), 0}}),
"Error: Result Id is 0"},
{Concatenate({
ExpectedHeaderForBound(2),
{spvOpcodeMake(2, spv::Op::OpTypeVoid), 1},
{spvOpcodeMake(2, spv::Op::OpTypeBool), 1},
}),
"Id 1 is defined more than once"},
{Concatenate({ExpectedHeaderForBound(3),
MakeInstruction(spv::Op::OpExtInst, {2, 3, 100, 4, 5})}),
"OpExtInst set Id 100 does not reference an OpExtInstImport result "
"Id"},
{Concatenate({ExpectedHeaderForBound(101),
MakeInstruction(spv::Op::OpExtInstImport, {100},
MakeVector("OpenCL.std")),
// OpenCL cos is #14
MakeInstruction(spv::Op::OpExtInst,
{2, 3, 100, 14, 5, 999})}),
"Invalid instruction OpExtInst starting at word 10: expected no "
"more operands after 6 words, but stated word count is 7."},
// In this case, the OpSwitch selector refers to an invalid ID.
{Concatenate({ExpectedHeaderForBound(3),
MakeInstruction(spv::Op::OpSwitch, {1, 2, 42, 3})}),
"Invalid OpSwitch: selector id 1 has no type"},
// In this case, the OpSwitch selector refers to an ID that has
// no type.
{Concatenate({ExpectedHeaderForBound(3),
MakeInstruction(spv::Op::OpLabel, {1}),
MakeInstruction(spv::Op::OpSwitch, {1, 2, 42, 3})}),
"Invalid OpSwitch: selector id 1 has no type"},
{Concatenate({ExpectedHeaderForBound(3),
MakeInstruction(spv::Op::OpTypeInt, {1, 32, 0}),
MakeInstruction(spv::Op::OpSwitch, {1, 3, 42, 3})}),
"Invalid OpSwitch: selector id 1 is a type, not a value"},
{Concatenate({ExpectedHeaderForBound(3),
MakeInstruction(spv::Op::OpTypeFloat, {1, 32}),
MakeInstruction(spv::Op::OpConstant, {1, 2, 0x78f00000}),
MakeInstruction(spv::Op::OpSwitch, {2, 3, 42, 3})}),
"Invalid OpSwitch: selector id 2 is not a scalar integer"},
{Concatenate({ExpectedHeaderForBound(3),
MakeInstruction(spv::Op::OpExtInstImport, {1},
MakeVector("invalid-import"))}),
"Invalid extended instruction import 'invalid-import'"},
{Concatenate({
ExpectedHeaderForBound(3),
MakeInstruction(spv::Op::OpTypeInt, {1, 32, 0}),
MakeInstruction(spv::Op::OpConstant, {2, 2, 42}),
}),
"Type Id 2 is not a type"},
{Concatenate({
ExpectedHeaderForBound(3),
MakeInstruction(spv::Op::OpTypeBool, {1}),
MakeInstruction(spv::Op::OpConstant, {1, 2, 42}),
}),
"Type Id 1 is not a scalar numeric type"},
}));
// A binary parser diagnostic case generated from an assembly text input.
struct AssemblyDiagnosticCase {
std::string assembly;
std::string expected_diagnostic;
};
using BinaryParseAssemblyDiagnosticTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<AssemblyDiagnosticCase>>;
TEST_P(BinaryParseAssemblyDiagnosticTest, AssemblyCases) {
auto words = CompileSuccessfully(GetParam().assembly);
EXPECT_THAT(spvBinaryParse(ScopedContext().context, nullptr, words.data(),
words.size(), nullptr, nullptr, &diagnostic),
AnyOf(SPV_ERROR_INVALID_BINARY, SPV_ERROR_INVALID_ID));
ASSERT_NE(nullptr, diagnostic);
EXPECT_THAT(diagnostic->error, Eq(GetParam().expected_diagnostic));
}
INSTANTIATE_TEST_SUITE_P(
BinaryParseDiagnostic, BinaryParseAssemblyDiagnosticTest,
::testing::ValuesIn(std::vector<AssemblyDiagnosticCase>{
{"%1 = OpConstant !0 42", "Error: Type Id is 0"},
// A required id is 0.
{"OpName !0 \"foo\"", "Id is 0"},
// An optional id is 0, in this case the optional
// initializer.
{"%2 = OpVariable %1 CrossWorkgroup !0", "Id is 0"},
{"OpControlBarrier !0 %1 %2", "scope ID is 0"},
{"OpControlBarrier %1 !0 %2", "scope ID is 0"},
{"OpControlBarrier %1 %2 !0", "memory semantics ID is 0"},
{"%import = OpExtInstImport \"GLSL.std.450\" "
"%result = OpExtInst %type %import !999999 %x",
"Invalid extended instruction number: 999999"},
{"%2 = OpSpecConstantOp %1 !1000 %2",
"Invalid OpSpecConstantOp opcode: 1000"},
{"OpCapability !9999", "Invalid capability operand: 9999"},
{"OpSource !9999 100",
"Invalid source language operand: 9999, if you are creating a new "
"source language please use value 0 (Unknown) and when ready, add "
"your source language to SPIRV-Headers"},
{"OpEntryPoint !9999", "Invalid execution model operand: 9999"},
{"OpMemoryModel !9999", "Invalid addressing model operand: 9999"},
{"OpMemoryModel Logical !9999", "Invalid memory model operand: 9999"},
{"OpExecutionMode %1 !9999", "Invalid execution mode operand: 9999"},
{"OpTypeForwardPointer %1 !9999",
"Invalid storage class operand: 9999"},
{"%2 = OpTypeImage %1 !9999", "Invalid dimensionality operand: 9999"},
{"%2 = OpTypeImage %1 1D 0 0 0 0 !9999",
"Invalid image format operand: 9999"},
{"OpDecorate %1 FPRoundingMode !9999",
"Invalid floating-point rounding mode operand: 9999"},
{"OpDecorate %1 LinkageAttributes \"C\" !9999",
"Invalid linkage type operand: 9999"},
{"%1 = OpTypePipe !9999", "Invalid access qualifier operand: 9999"},
{"OpDecorate %1 FuncParamAttr !9999",
"Invalid function parameter attribute operand: 9999"},
{"OpDecorate %1 !9999", "Invalid decoration operand: 9999"},
{"OpDecorate %1 BuiltIn !9999", "Invalid built-in operand: 9999"},
{"%2 = OpGroupIAdd %1 %3 !9999",
"Invalid group operation operand: 9999"},
{"OpDecorate %1 FPFastMathMode !63",
"Invalid floating-point fast math mode operand: 63 has invalid mask "
"component 32"},
{"%2 = OpFunction %2 !31",
"Invalid function control operand: 31 has invalid mask component 16"},
{"OpLoopMerge %1 %2 !1027",
"Invalid loop control operand: 1027 has invalid mask component 1024"},
{"%2 = OpImageFetch %1 %image %coord !32770",
"Invalid image operand: 32770 has invalid mask component 32768"},
{"OpSelectionMerge %1 !7",
"Invalid selection control operand: 7 has invalid mask component 4"},
}));
} // namespace
} // namespace spvtools