SPIRV-Tools/source/util/bit_stream.h
Diego Novillo d2938e4842 Re-format files in source, source/opt, source/util, source/val and tools.
NFC. This just makes sure every file is formatted following the
formatting definition in .clang-format.

Re-formatted with:

$ clang-format -i $(find source tools include -name '*.cpp')
$ clang-format -i $(find source tools include -name '*.h')
2017-11-08 14:03:08 -05:00

448 lines
16 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Contains utils for reading, writing and debug printing bit streams.
#ifndef LIBSPIRV_UTIL_BIT_STREAM_H_
#define LIBSPIRV_UTIL_BIT_STREAM_H_
#include <algorithm>
#include <bitset>
#include <cstdint>
#include <functional>
#include <sstream>
#include <string>
#include <vector>
namespace spvutils {
// Returns rounded down log2(val). log2(0) is considered 0.
size_t Log2U64(uint64_t val);
// Terminology:
// Bits - usually used for a uint64 word, first bit is the lowest.
// Stream - std::string of '0' and '1', read left-to-right,
// i.e. first bit is at the front and not at the end as in
// std::bitset::to_string().
// Bitset - std::bitset corresponding to uint64 bits and to reverse(stream).
// Converts number of bits to a respective number of chunks of size N.
// For example NumBitsToNumWords<8> returns how many bytes are needed to store
// |num_bits|.
template <size_t N>
inline size_t NumBitsToNumWords(size_t num_bits) {
return (num_bits + (N - 1)) / N;
}
// Returns value of the same type as |in|, where all but the first |num_bits|
// are set to zero.
template <typename T>
inline T GetLowerBits(T in, size_t num_bits) {
return sizeof(T) * 8 == num_bits ? in : in & T((T(1) << num_bits) - T(1));
}
// Encodes signed integer as unsigned in zigzag order:
// 0 -> 0
// -1 -> 1
// 1 -> 2
// -2 -> 3
// 2 -> 4
// Motivation: -1 is 0xFF...FF what doesn't work very well with
// WriteVariableWidth which prefers to have as many 0 bits as possible.
inline uint64_t EncodeZigZag(int64_t val) { return (val << 1) ^ (val >> 63); }
// Decodes signed integer encoded with EncodeZigZag.
inline int64_t DecodeZigZag(uint64_t val) {
if (val & 1) {
// Negative.
// 1 -> -1
// 3 -> -2
// 5 -> -3
return -1 - (val >> 1);
} else {
// Non-negative.
// 0 -> 0
// 2 -> 1
// 4 -> 2
return val >> 1;
}
}
// Encodes signed integer as unsigned. This is a generalized version of
// EncodeZigZag, designed to favor small positive numbers.
// Values are transformed in blocks of 2^|block_exponent|.
// If |block_exponent| is zero, then this degenerates into normal EncodeZigZag.
// Example when |block_exponent| is 1 (return value is the index):
// 0, 1, -1, -2, 2, 3, -3, -4, 4, 5, -5, -6, 6, 7, -7, -8
// Example when |block_exponent| is 2:
// 0, 1, 2, 3, -1, -2, -3, -4, 4, 5, 6, 7, -5, -6, -7, -8
inline uint64_t EncodeZigZag(int64_t val, size_t block_exponent) {
assert(block_exponent < 64);
const uint64_t uval = static_cast<uint64_t>(val >= 0 ? val : -val - 1);
const uint64_t block_num =
((uval >> block_exponent) << 1) + (val >= 0 ? 0 : 1);
const uint64_t pos = GetLowerBits(uval, block_exponent);
return (block_num << block_exponent) + pos;
}
// Decodes signed integer encoded with EncodeZigZag. |block_exponent| must be
// the same.
inline int64_t DecodeZigZag(uint64_t val, size_t block_exponent) {
assert(block_exponent < 64);
const uint64_t block_num = val >> block_exponent;
const uint64_t pos = GetLowerBits(val, block_exponent);
if (block_num & 1) {
// Negative.
return -1LL - ((block_num >> 1) << block_exponent) - pos;
} else {
// Positive.
return ((block_num >> 1) << block_exponent) + pos;
}
}
// Converts |buffer| to a stream of '0' and '1'.
template <typename T>
std::string BufferToStream(const std::vector<T>& buffer) {
std::stringstream ss;
for (auto it = buffer.begin(); it != buffer.end(); ++it) {
std::string str = std::bitset<sizeof(T) * 8>(*it).to_string();
// Strings generated by std::bitset::to_string are read right to left.
// Reversing to left to right.
std::reverse(str.begin(), str.end());
ss << str;
}
return ss.str();
}
// Converts a left-to-right input string of '0' and '1' to a buffer of |T|
// words.
template <typename T>
std::vector<T> StreamToBuffer(std::string str) {
// The input string is left-to-right, the input argument of std::bitset needs
// to right-to-left. Instead of reversing tokens, reverse the entire string
// and iterate tokens from end to begin.
std::reverse(str.begin(), str.end());
const int word_size = static_cast<int>(sizeof(T) * 8);
const int str_length = static_cast<int>(str.length());
std::vector<T> buffer;
buffer.reserve(NumBitsToNumWords<sizeof(T)>(str.length()));
for (int index = str_length - word_size; index >= 0; index -= word_size) {
buffer.push_back(static_cast<T>(
std::bitset<sizeof(T) * 8>(str, index, word_size).to_ullong()));
}
const size_t suffix_length = str.length() % word_size;
if (suffix_length != 0) {
buffer.push_back(static_cast<T>(
std::bitset<sizeof(T) * 8>(str, 0, suffix_length).to_ullong()));
}
return buffer;
}
// Adds '0' chars at the end of the string until the size is a multiple of N.
template <size_t N>
inline std::string PadToWord(std::string&& str) {
const size_t tail_length = str.size() % N;
if (tail_length != 0) str += std::string(N - tail_length, '0');
return str;
}
// Adds '0' chars at the end of the string until the size is a multiple of N.
template <size_t N>
inline std::string PadToWord(const std::string& str) {
return PadToWord<N>(std::string(str));
}
// Converts a left-to-right stream of bits to std::bitset.
template <size_t N>
inline std::bitset<N> StreamToBitset(std::string str) {
std::reverse(str.begin(), str.end());
return std::bitset<N>(str);
}
// Converts first |num_bits| of std::bitset to a left-to-right stream of bits.
template <size_t N>
inline std::string BitsetToStream(const std::bitset<N>& bits,
size_t num_bits = N) {
std::string str = bits.to_string().substr(N - num_bits);
std::reverse(str.begin(), str.end());
return str;
}
// Converts a left-to-right stream of bits to uint64.
inline uint64_t StreamToBits(std::string str) {
std::reverse(str.begin(), str.end());
return std::bitset<64>(str).to_ullong();
}
// Converts first |num_bits| stored in uint64 to a left-to-right stream of bits.
inline std::string BitsToStream(uint64_t bits, size_t num_bits = 64) {
std::bitset<64> bitset(bits);
return BitsetToStream(bitset, num_bits);
}
// Base class for writing sequences of bits.
class BitWriterInterface {
public:
BitWriterInterface() {}
virtual ~BitWriterInterface() {}
// Writes lower |num_bits| in |bits| to the stream.
// |num_bits| must be no greater than 64.
virtual void WriteBits(uint64_t bits, size_t num_bits) = 0;
// Writes left-to-right string of '0' and '1' to stream.
// String length must be no greater than 64.
// Note: "01" will be writen as 0x2, not 0x1. The string doesn't represent
// numbers but a stream of bits in the order they come from encoder.
virtual void WriteStream(const std::string& bits) {
WriteBits(StreamToBits(bits), bits.length());
}
// Writes lower |num_bits| in |bits| to the stream.
// |num_bits| must be no greater than 64.
template <size_t N>
void WriteBitset(const std::bitset<N>& bits, size_t num_bits = N) {
WriteBits(bits.to_ullong(), num_bits);
}
// Writes bits from value of type |T| to the stream. No encoding is done.
// Always writes 8 * sizeof(T) bits.
template <typename T>
void WriteUnencoded(T val) {
static_assert(sizeof(T) <= 64, "Type size too large");
uint64_t bits = 0;
memcpy(&bits, &val, sizeof(T));
WriteBits(bits, sizeof(T) * 8);
}
// Writes |val| in chunks of size |chunk_length| followed by a signal bit:
// 0 - no more chunks to follow
// 1 - more chunks to follow
// for example 255 is encoded into 1111 1 1111 0 for chunk length 4.
// The last chunk can be truncated and signal bit omitted, if the entire
// payload (for example 16 bit for uint16_t has already been written).
void WriteVariableWidthU64(uint64_t val, size_t chunk_length);
void WriteVariableWidthU32(uint32_t val, size_t chunk_length);
void WriteVariableWidthU16(uint16_t val, size_t chunk_length);
void WriteVariableWidthU8(uint8_t val, size_t chunk_length);
void WriteVariableWidthS64(int64_t val, size_t chunk_length,
size_t zigzag_exponent);
void WriteVariableWidthS32(int32_t val, size_t chunk_length,
size_t zigzag_exponent);
void WriteVariableWidthS16(int16_t val, size_t chunk_length,
size_t zigzag_exponent);
void WriteVariableWidthS8(int8_t val, size_t chunk_length,
size_t zigzag_exponent);
// Writes |val| using fixed bit width. Bit width is determined by |max_val|:
// max_val 0 -> bit width 1
// max_val 1 -> bit width 1
// max_val 2 -> bit width 2
// max_val 3 -> bit width 2
// max_val 4 -> bit width 3
// max_val 5 -> bit width 3
// max_val 8 -> bit width 4
// max_val n -> bit width 1 + floor(log2(n))
// |val| needs to be <= |max_val|.
void WriteFixedWidth(uint64_t val, uint64_t max_val);
// Returns number of bits written.
virtual size_t GetNumBits() const = 0;
// Provides direct access to the buffer data if implemented.
virtual const uint8_t* GetData() const { return nullptr; }
// Returns buffer size in bytes.
size_t GetDataSizeBytes() const { return NumBitsToNumWords<8>(GetNumBits()); }
// Generates and returns byte array containing written bits.
virtual std::vector<uint8_t> GetDataCopy() const = 0;
BitWriterInterface(const BitWriterInterface&) = delete;
BitWriterInterface& operator=(const BitWriterInterface&) = delete;
};
// This class is an implementation of BitWriterInterface, using
// std::vector<uint64_t> to store written bits.
class BitWriterWord64 : public BitWriterInterface {
public:
explicit BitWriterWord64(size_t reserve_bits = 64);
void WriteBits(uint64_t bits, size_t num_bits) override;
size_t GetNumBits() const override { return end_; }
const uint8_t* GetData() const override {
return reinterpret_cast<const uint8_t*>(buffer_.data());
}
std::vector<uint8_t> GetDataCopy() const override {
return std::vector<uint8_t>(GetData(), GetData() + GetDataSizeBytes());
}
// Returns written stream as std::string, padded with zeroes so that the
// length is a multiple of 64.
std::string GetStreamPadded64() const { return BufferToStream(buffer_); }
// Sets callback to emit bit sequences after every write.
void SetCallback(std::function<void(const std::string&)> callback) {
callback_ = callback;
}
protected:
// Sends string generated from arguments to callback_ if defined.
void EmitSequence(uint64_t bits, size_t num_bits) const {
if (callback_) callback_(BitsToStream(bits, num_bits));
}
private:
std::vector<uint64_t> buffer_;
// Total number of bits written so far. Named 'end' as analogy to std::end().
size_t end_;
// If not null, the writer will use the callback to emit the written bit
// sequence as a string of '0' and '1'.
std::function<void(const std::string&)> callback_;
};
// Base class for reading sequences of bits.
class BitReaderInterface {
public:
BitReaderInterface() {}
virtual ~BitReaderInterface() {}
// Reads |num_bits| from the stream, stores them in |bits|.
// Returns number of read bits. |num_bits| must be no greater than 64.
virtual size_t ReadBits(uint64_t* bits, size_t num_bits) = 0;
// Reads |num_bits| from the stream, stores them in |bits|.
// Returns number of read bits. |num_bits| must be no greater than 64.
template <size_t N>
size_t ReadBitset(std::bitset<N>* bits, size_t num_bits = N) {
uint64_t val = 0;
size_t num_read = ReadBits(&val, num_bits);
if (num_read) {
*bits = std::bitset<N>(val);
}
return num_read;
}
// Reads |num_bits| from the stream, returns string in left-to-right order.
// The length of the returned string may be less than |num_bits| if end was
// reached.
std::string ReadStream(size_t num_bits) {
uint64_t bits = 0;
size_t num_read = ReadBits(&bits, num_bits);
return BitsToStream(bits, num_read);
}
// Reads 8 * sizeof(T) bits and stores them in |val|.
template <typename T>
bool ReadUnencoded(T* val) {
static_assert(sizeof(T) <= 64, "Type size too large");
uint64_t bits = 0;
const size_t num_read = ReadBits(&bits, sizeof(T) * 8);
if (num_read != sizeof(T) * 8) return false;
memcpy(val, &bits, sizeof(T));
return true;
}
// Returns number of bits already read.
virtual size_t GetNumReadBits() const = 0;
// These two functions define 'hard' and 'soft' EOF.
//
// Returns true if the end of the buffer was reached.
virtual bool ReachedEnd() const = 0;
// Returns true if we reached the end of the buffer or are nearing it and only
// zero bits are left to read. Implementations of this function are allowed to
// commit a "false negative" error if the end of the buffer was not reached,
// i.e. it can return false even if indeed only zeroes are left.
// It is assumed that the consumer expects that
// the buffer stream ends with padding zeroes, and would accept this as a
// 'soft' EOF. Implementations of this class do not necessarily need to
// implement this, default behavior can simply delegate to ReachedEnd().
virtual bool OnlyZeroesLeft() const { return ReachedEnd(); }
// Reads value encoded with WriteVariableWidthXXX (see BitWriterInterface).
// Reader and writer must use the same |chunk_length| and variable type.
// Returns true on success, false if the bit stream ends prematurely.
bool ReadVariableWidthU64(uint64_t* val, size_t chunk_length);
bool ReadVariableWidthU32(uint32_t* val, size_t chunk_length);
bool ReadVariableWidthU16(uint16_t* val, size_t chunk_length);
bool ReadVariableWidthU8(uint8_t* val, size_t chunk_length);
bool ReadVariableWidthS64(int64_t* val, size_t chunk_length,
size_t zigzag_exponent);
bool ReadVariableWidthS32(int32_t* val, size_t chunk_length,
size_t zigzag_exponent);
bool ReadVariableWidthS16(int16_t* val, size_t chunk_length,
size_t zigzag_exponent);
bool ReadVariableWidthS8(int8_t* val, size_t chunk_length,
size_t zigzag_exponent);
// Reads value written by WriteFixedWidth (|max_val| needs to be the same).
// Returns true on success, false if the bit stream ends prematurely.
bool ReadFixedWidth(uint64_t* val, uint64_t max_val);
BitReaderInterface(const BitReaderInterface&) = delete;
BitReaderInterface& operator=(const BitReaderInterface&) = delete;
};
// This class is an implementation of BitReaderInterface which accepts both
// uint8_t and uint64_t buffers as input. uint64_t buffers are consumed and
// owned. uint8_t buffers are copied.
class BitReaderWord64 : public BitReaderInterface {
public:
// Consumes and owns the buffer.
explicit BitReaderWord64(std::vector<uint64_t>&& buffer);
// Copies the buffer and casts it to uint64.
// Consuming the original buffer and casting it to uint64 is difficult,
// as it would potentially cause data misalignment and poor performance.
explicit BitReaderWord64(const std::vector<uint8_t>& buffer);
BitReaderWord64(const void* buffer, size_t num_bytes);
size_t ReadBits(uint64_t* bits, size_t num_bits) override;
size_t GetNumReadBits() const override { return pos_; }
bool ReachedEnd() const override;
bool OnlyZeroesLeft() const override;
BitReaderWord64() = delete;
// Sets callback to emit bit sequences after every read.
void SetCallback(std::function<void(const std::string&)> callback) {
callback_ = callback;
}
protected:
// Sends string generated from arguments to callback_ if defined.
void EmitSequence(uint64_t bits, size_t num_bits) const {
if (callback_) callback_(BitsToStream(bits, num_bits));
}
private:
const std::vector<uint64_t> buffer_;
size_t pos_;
// If not null, the reader will use the callback to emit the read bit
// sequence as a string of '0' and '1'.
std::function<void(const std::string&)> callback_;
};
} // namespace spvutils
#endif // LIBSPIRV_UTIL_BIT_STREAM_H_