SPIRV-Tools/source/cfa.h
2017-05-25 12:31:38 -04:00

228 lines
8.2 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPVTOOLS_CFA_H_
#define SPVTOOLS_CFA_H_
#include <algorithm>
#include <cassert>
#include <functional>
#include <map>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using std::find;
using std::function;
using std::get;
using std::pair;
using std::unordered_map;
using std::unordered_set;
using std::vector;
namespace spvtools {
// Control Flow Analysis of control flow graphs of basic block nodes |BB|.
template<class BB> class CFA {
using bb_ptr = BB*;
using cbb_ptr = const BB*;
using bb_iter = typename std::vector<BB*>::const_iterator;
using get_blocks_func =
std::function<const std::vector<BB*>*(const BB*)>;
struct block_info {
cbb_ptr block; ///< pointer to the block
bb_iter iter; ///< Iterator to the current child node being processed
};
/// Returns true if a block with @p id is found in the @p work_list vector
///
/// @param[in] work_list Set of blocks visited in the the depth first traversal
/// of the CFG
/// @param[in] id The ID of the block being checked
///
/// @return true if the edge work_list.back().block->id() => id is a back-edge
static bool FindInWorkList(
const std::vector<block_info>& work_list, uint32_t id);
public:
/// @brief Depth first traversal starting from the \p entry BasicBlock
///
/// This function performs a depth first traversal from the \p entry
/// BasicBlock and calls the pre/postorder functions when it needs to process
/// the node in pre order, post order. It also calls the backedge function
/// when a back edge is encountered.
///
/// @param[in] entry The root BasicBlock of a CFG
/// @param[in] successor_func A function which will return a pointer to the
/// successor nodes
/// @param[in] preorder A function that will be called for every block in a
/// CFG following preorder traversal semantics
/// @param[in] postorder A function that will be called for every block in a
/// CFG following postorder traversal semantics
/// @param[in] backedge A function that will be called when a backedge is
/// encountered during a traversal
/// NOTE: The @p successor_func and predecessor_func each return a pointer to a
/// collection such that iterators to that collection remain valid for the
/// lifetime of the algorithm.
static void DepthFirstTraversal(const BB* entry,
get_blocks_func successor_func,
std::function<void(cbb_ptr)> preorder,
std::function<void(cbb_ptr)> postorder,
std::function<void(cbb_ptr, cbb_ptr)> backedge);
/// @brief Calculates dominator edges for a set of blocks
///
/// Computes dominators using the algorithm of Cooper, Harvey, and Kennedy
/// "A Simple, Fast Dominance Algorithm", 2001.
///
/// The algorithm assumes there is a unique root node (a node without
/// predecessors), and it is therefore at the end of the postorder vector.
///
/// This function calculates the dominator edges for a set of blocks in the CFG.
/// Uses the dominator algorithm by Cooper et al.
///
/// @param[in] postorder A vector of blocks in post order traversal order
/// in a CFG
/// @param[in] predecessor_func Function used to get the predecessor nodes of a
/// block
///
/// @return the dominator tree of the graph, as a vector of pairs of nodes.
/// The first node in the pair is a node in the graph. The second node in the
/// pair is its immediate dominator in the sense of Cooper et.al., where a block
/// without predecessors (such as the root node) is its own immediate dominator.
static vector<pair<BB*, BB*>> CalculateDominators(
const vector<cbb_ptr>& postorder, get_blocks_func predecessor_func);
};
template<class BB> bool CFA<BB>::FindInWorkList(const vector<block_info>& work_list,
uint32_t id) {
for (const auto b : work_list) {
if (b.block->id() == id) return true;
}
return false;
}
template<class BB> void CFA<BB>::DepthFirstTraversal(const BB* entry,
get_blocks_func successor_func,
function<void(cbb_ptr)> preorder,
function<void(cbb_ptr)> postorder,
function<void(cbb_ptr, cbb_ptr)> backedge) {
unordered_set<uint32_t> processed;
/// NOTE: work_list is the sequence of nodes from the root node to the node
/// being processed in the traversal
vector<block_info> work_list;
work_list.reserve(10);
work_list.push_back({ entry, begin(*successor_func(entry)) });
preorder(entry);
processed.insert(entry->id());
while (!work_list.empty()) {
block_info& top = work_list.back();
if (top.iter == end(*successor_func(top.block))) {
postorder(top.block);
work_list.pop_back();
}
else {
BB* child = *top.iter;
top.iter++;
if (FindInWorkList(work_list, child->id())) {
backedge(top.block, child);
}
if (processed.count(child->id()) == 0) {
preorder(child);
work_list.emplace_back(
block_info{ child, begin(*successor_func(child)) });
processed.insert(child->id());
}
}
}
}
template<class BB>
vector<pair<BB*, BB*>> CFA<BB>::CalculateDominators(
const vector<cbb_ptr>& postorder, get_blocks_func predecessor_func) {
struct block_detail {
size_t dominator; ///< The index of blocks's dominator in post order array
size_t postorder_index; ///< The index of the block in the post order array
};
const size_t undefined_dom = postorder.size();
unordered_map<cbb_ptr, block_detail> idoms;
for (size_t i = 0; i < postorder.size(); i++) {
idoms[postorder[i]] = { undefined_dom, i };
}
idoms[postorder.back()].dominator = idoms[postorder.back()].postorder_index;
bool changed = true;
while (changed) {
changed = false;
for (auto b = postorder.rbegin() + 1; b != postorder.rend(); ++b) {
const vector<BB*>& predecessors = *predecessor_func(*b);
// Find the first processed/reachable predecessor that is reachable
// in the forward traversal.
auto res = find_if(begin(predecessors), end(predecessors),
[&idoms, undefined_dom](BB* pred) {
return idoms.count(pred) &&
idoms[pred].dominator != undefined_dom;
});
if (res == end(predecessors)) continue;
const BB* idom = *res;
size_t idom_idx = idoms[idom].postorder_index;
// all other predecessors
for (const auto* p : predecessors) {
if (idom == p) continue;
// Only consider nodes reachable in the forward traversal.
// Otherwise the intersection doesn't make sense and will never
// terminate.
if (!idoms.count(p)) continue;
if (idoms[p].dominator != undefined_dom) {
size_t finger1 = idoms[p].postorder_index;
size_t finger2 = idom_idx;
while (finger1 != finger2) {
while (finger1 < finger2) {
finger1 = idoms[postorder[finger1]].dominator;
}
while (finger2 < finger1) {
finger2 = idoms[postorder[finger2]].dominator;
}
}
idom_idx = finger1;
}
}
if (idoms[*b].dominator != idom_idx) {
idoms[*b].dominator = idom_idx;
changed = true;
}
}
}
vector<pair<bb_ptr, bb_ptr>> out;
for (auto idom : idoms) {
// NOTE: performing a const cast for convenient usage with
// UpdateImmediateDominators
out.push_back({ const_cast<BB*>(get<0>(idom)),
const_cast<BB*>(postorder[get<1>(idom).dominator]) });
}
return out;
}
} // namespace spvtools
#endif // SPVTOOLS_CFA_H_