SPIRV-Tools/source/fuzz/fuzzer_pass_add_access_chains.cpp
Alastair Donaldson 9c4481419e
spirv-fuzz: Allow inapplicable transformations to be ignored (#4407)
spirv-fuzz features transformations that should be applicable by
construction. Assertions are used to detect when such transformations
turn out to be inapplicable. Failures of such assertions indicate bugs
in the fuzzer. However, when using the fuzzer at scale (e.g. in
ClusterFuzz) reports of these assertion failures create noise, and
cause the fuzzer to exit early. This change adds an option whereby
inapplicable transformations can be ignored. This reduces noise and
allows fuzzing to continue even when a transformation that should be
applicable but is not has been erroneously created.
2021-07-28 22:59:37 +01:00

192 lines
8.1 KiB
C++

// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_add_access_chains.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/transformation_access_chain.h"
namespace spvtools {
namespace fuzz {
FuzzerPassAddAccessChains::FuzzerPassAddAccessChains(
opt::IRContext* ir_context, TransformationContext* transformation_context,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations,
bool ignore_inapplicable_transformations)
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
transformations, ignore_inapplicable_transformations) {}
void FuzzerPassAddAccessChains::Apply() {
ForEachInstructionWithInstructionDescriptor(
[this](opt::Function* function, opt::BasicBlock* block,
opt::BasicBlock::iterator inst_it,
const protobufs::InstructionDescriptor& instruction_descriptor)
-> void {
assert(inst_it->opcode() ==
instruction_descriptor.target_instruction_opcode() &&
"The opcode of the instruction we might insert before must be "
"the same as the opcode in the descriptor for the instruction");
// Check whether it is legitimate to insert an access chain
// instruction before this instruction.
if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(SpvOpAccessChain,
inst_it)) {
return;
}
// Randomly decide whether to try inserting a load here.
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfAddingAccessChain())) {
return;
}
// Get all of the pointers that are currently in scope, excluding
// explicitly null and undefined pointers.
std::vector<opt::Instruction*> relevant_pointer_instructions =
FindAvailableInstructions(
function, block, inst_it,
[](opt::IRContext* context,
opt::Instruction* instruction) -> bool {
if (!instruction->result_id() || !instruction->type_id()) {
// A pointer needs both a result and type id.
return false;
}
switch (instruction->opcode()) {
case SpvOpConstantNull:
case SpvOpUndef:
// Do not allow making an access chain from a null or
// undefined pointer. (We can eliminate these cases
// before actually checking that the instruction is a
// pointer.)
return false;
default:
break;
}
// If the instruction has pointer type, we can legitimately
// make an access chain from it.
return context->get_def_use_mgr()
->GetDef(instruction->type_id())
->opcode() == SpvOpTypePointer;
});
// At this point, |relevant_instructions| contains all the pointers
// we might think of making an access chain from.
if (relevant_pointer_instructions.empty()) {
return;
}
auto chosen_pointer =
relevant_pointer_instructions[GetFuzzerContext()->RandomIndex(
relevant_pointer_instructions)];
std::vector<uint32_t> index_ids;
// Each index accessing a non-struct composite will be clamped, thus
// needing a pair of fresh ids
std::vector<std::pair<uint32_t, uint32_t>> fresh_ids_for_clamping;
auto pointer_type = GetIRContext()->get_def_use_mgr()->GetDef(
chosen_pointer->type_id());
uint32_t subobject_type_id = pointer_type->GetSingleWordInOperand(1);
while (true) {
auto subobject_type =
GetIRContext()->get_def_use_mgr()->GetDef(subobject_type_id);
if (!spvOpcodeIsComposite(subobject_type->opcode())) {
break;
}
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()
->GetChanceOfGoingDeeperWhenMakingAccessChain())) {
break;
}
uint32_t bound;
switch (subobject_type->opcode()) {
case SpvOpTypeArray:
bound = fuzzerutil::GetArraySize(*subobject_type, GetIRContext());
break;
case SpvOpTypeMatrix:
case SpvOpTypeVector:
bound = subobject_type->GetSingleWordInOperand(1);
break;
case SpvOpTypeStruct:
bound = fuzzerutil::GetNumberOfStructMembers(*subobject_type);
break;
default:
assert(false && "Not a composite type opcode.");
// Set the bound to a value in order to keep release compilers
// happy.
bound = 0;
break;
}
if (bound == 0) {
// It is possible for a composite type to legitimately have zero
// sub-components, at least in the case of a struct, which
// can have no fields.
break;
}
uint32_t index_value =
GetFuzzerContext()->GetRandomIndexForAccessChain(bound);
switch (subobject_type->opcode()) {
case SpvOpTypeArray:
case SpvOpTypeMatrix:
case SpvOpTypeVector: {
// The index will be clamped
bool is_signed = GetFuzzerContext()->ChooseEven();
// Make the constant ready for clamping. We need:
// - an OpTypeBool to be present in the module
// - an OpConstant with the same type as the index and value
// the maximum value for an index
// - a new pair of fresh ids for the clamping instructions
FindOrCreateBoolType();
FindOrCreateIntegerConstant({bound - 1}, 32, is_signed, false);
std::pair<uint32_t, uint32_t> fresh_pair_of_ids = {
GetFuzzerContext()->GetFreshId(),
GetFuzzerContext()->GetFreshId()};
fresh_ids_for_clamping.emplace_back(fresh_pair_of_ids);
index_ids.push_back(FindOrCreateIntegerConstant(
{index_value}, 32, is_signed, false));
subobject_type_id = subobject_type->GetSingleWordInOperand(0);
} break;
case SpvOpTypeStruct:
index_ids.push_back(FindOrCreateIntegerConstant(
{index_value}, 32, GetFuzzerContext()->ChooseEven(), false));
subobject_type_id =
subobject_type->GetSingleWordInOperand(index_value);
break;
default:
assert(false && "Not a composite type opcode.");
}
}
// The transformation we are about to create will only apply if a
// pointer suitable for the access chain's result type exists, so we
// create one if it does not.
FindOrCreatePointerType(subobject_type_id,
static_cast<SpvStorageClass>(
pointer_type->GetSingleWordInOperand(0)));
// Apply the transformation to add an access chain.
ApplyTransformation(TransformationAccessChain(
GetFuzzerContext()->GetFreshId(), chosen_pointer->result_id(),
index_ids, instruction_descriptor, fresh_ids_for_clamping));
});
}
} // namespace fuzz
} // namespace spvtools