mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2025-01-15 19:00:05 +00:00
8e9be303b0
Adds validator option to specify scalar block layout rules. Both VK_KHR_relax_block_layout and VK_EXT_scalar_block_layout can be enabled at the same time. But scalar block layout is as permissive as relax block layout. Also, scalar block layout does not require padding at the end of a struct. Add test for scalar layout testing ArrayStride 12 on array of vec3s Cleanup: The internal getSize method does not need a round-up argument, so remove it.
975 lines
40 KiB
C++
975 lines
40 KiB
C++
// Copyright (c) 2017 Google Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/val/validate.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "source/diagnostic.h"
|
|
#include "source/opcode.h"
|
|
#include "source/spirv_target_env.h"
|
|
#include "source/spirv_validator_options.h"
|
|
#include "source/val/validation_state.h"
|
|
|
|
namespace spvtools {
|
|
namespace val {
|
|
namespace {
|
|
|
|
// Distinguish between row and column major matrix layouts.
|
|
enum MatrixLayout { kRowMajor, kColumnMajor };
|
|
|
|
// A functor for hashing a pair of integers.
|
|
struct PairHash {
|
|
std::size_t operator()(const std::pair<uint32_t, uint32_t> pair) const {
|
|
const uint32_t a = pair.first;
|
|
const uint32_t b = pair.second;
|
|
const uint32_t rotated_b = (b >> 2) | ((b & 3) << 30);
|
|
return a ^ rotated_b;
|
|
}
|
|
};
|
|
|
|
// Struct member layout attributes that are inherited through arrays.
|
|
struct LayoutConstraints {
|
|
explicit LayoutConstraints(
|
|
MatrixLayout the_majorness = MatrixLayout::kColumnMajor,
|
|
uint32_t stride = 0)
|
|
: majorness(the_majorness), matrix_stride(stride) {}
|
|
MatrixLayout majorness;
|
|
uint32_t matrix_stride;
|
|
};
|
|
|
|
// A type for mapping (struct id, member id) to layout constraints.
|
|
using MemberConstraints = std::unordered_map<std::pair<uint32_t, uint32_t>,
|
|
LayoutConstraints, PairHash>;
|
|
|
|
// Returns the array stride of the given array type.
|
|
uint32_t GetArrayStride(uint32_t array_id, ValidationState_t& vstate) {
|
|
for (auto& decoration : vstate.id_decorations(array_id)) {
|
|
if (SpvDecorationArrayStride == decoration.dec_type()) {
|
|
return decoration.params()[0];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Returns true if the given variable has a BuiltIn decoration.
|
|
bool isBuiltInVar(uint32_t var_id, ValidationState_t& vstate) {
|
|
const auto& decorations = vstate.id_decorations(var_id);
|
|
return std::any_of(
|
|
decorations.begin(), decorations.end(),
|
|
[](const Decoration& d) { return SpvDecorationBuiltIn == d.dec_type(); });
|
|
}
|
|
|
|
// Returns true if the given structure type has any members with BuiltIn
|
|
// decoration.
|
|
bool isBuiltInStruct(uint32_t struct_id, ValidationState_t& vstate) {
|
|
const auto& decorations = vstate.id_decorations(struct_id);
|
|
return std::any_of(
|
|
decorations.begin(), decorations.end(), [](const Decoration& d) {
|
|
return SpvDecorationBuiltIn == d.dec_type() &&
|
|
Decoration::kInvalidMember != d.struct_member_index();
|
|
});
|
|
}
|
|
|
|
// Returns true if the given ID has the Import LinkageAttributes decoration.
|
|
bool hasImportLinkageAttribute(uint32_t id, ValidationState_t& vstate) {
|
|
const auto& decorations = vstate.id_decorations(id);
|
|
return std::any_of(decorations.begin(), decorations.end(),
|
|
[](const Decoration& d) {
|
|
return SpvDecorationLinkageAttributes == d.dec_type() &&
|
|
d.params().size() >= 2u &&
|
|
d.params().back() == SpvLinkageTypeImport;
|
|
});
|
|
}
|
|
|
|
// Returns a vector of all members of a structure.
|
|
std::vector<uint32_t> getStructMembers(uint32_t struct_id,
|
|
ValidationState_t& vstate) {
|
|
const auto inst = vstate.FindDef(struct_id);
|
|
return std::vector<uint32_t>(inst->words().begin() + 2, inst->words().end());
|
|
}
|
|
|
|
// Returns a vector of all members of a structure that have specific type.
|
|
std::vector<uint32_t> getStructMembers(uint32_t struct_id, SpvOp type,
|
|
ValidationState_t& vstate) {
|
|
std::vector<uint32_t> members;
|
|
for (auto id : getStructMembers(struct_id, vstate)) {
|
|
if (type == vstate.FindDef(id)->opcode()) {
|
|
members.push_back(id);
|
|
}
|
|
}
|
|
return members;
|
|
}
|
|
|
|
// Returns whether the given structure is missing Offset decoration for any
|
|
// member. Handles also nested structures.
|
|
bool isMissingOffsetInStruct(uint32_t struct_id, ValidationState_t& vstate) {
|
|
std::vector<bool> hasOffset(getStructMembers(struct_id, vstate).size(),
|
|
false);
|
|
// Check offsets of member decorations
|
|
for (auto& decoration : vstate.id_decorations(struct_id)) {
|
|
if (SpvDecorationOffset == decoration.dec_type() &&
|
|
Decoration::kInvalidMember != decoration.struct_member_index()) {
|
|
hasOffset[decoration.struct_member_index()] = true;
|
|
}
|
|
}
|
|
// Check also nested structures
|
|
bool nestedStructsMissingOffset = false;
|
|
for (auto id : getStructMembers(struct_id, SpvOpTypeStruct, vstate)) {
|
|
if (isMissingOffsetInStruct(id, vstate)) {
|
|
nestedStructsMissingOffset = true;
|
|
break;
|
|
}
|
|
}
|
|
return nestedStructsMissingOffset ||
|
|
!std::all_of(hasOffset.begin(), hasOffset.end(),
|
|
[](const bool b) { return b; });
|
|
}
|
|
|
|
// Rounds x up to the next alignment. Assumes alignment is a power of two.
|
|
uint32_t align(uint32_t x, uint32_t alignment) {
|
|
return (x + alignment - 1) & ~(alignment - 1);
|
|
}
|
|
|
|
// Returns base alignment of struct member. If |roundUp| is true, also
|
|
// ensure that structs and arrays are aligned at least to a multiple of 16
|
|
// bytes.
|
|
uint32_t getBaseAlignment(uint32_t member_id, bool roundUp,
|
|
const LayoutConstraints& inherited,
|
|
MemberConstraints& constraints,
|
|
ValidationState_t& vstate) {
|
|
const auto inst = vstate.FindDef(member_id);
|
|
const auto& words = inst->words();
|
|
// Minimal alignment is byte-aligned.
|
|
uint32_t baseAlignment = 1;
|
|
switch (inst->opcode()) {
|
|
case SpvOpTypeInt:
|
|
case SpvOpTypeFloat:
|
|
baseAlignment = words[2] / 8;
|
|
break;
|
|
case SpvOpTypeVector: {
|
|
const auto componentId = words[2];
|
|
const auto numComponents = words[3];
|
|
const auto componentAlignment = getBaseAlignment(
|
|
componentId, roundUp, inherited, constraints, vstate);
|
|
baseAlignment =
|
|
componentAlignment * (numComponents == 3 ? 4 : numComponents);
|
|
break;
|
|
}
|
|
case SpvOpTypeMatrix: {
|
|
const auto column_type = words[2];
|
|
if (inherited.majorness == kColumnMajor) {
|
|
baseAlignment = getBaseAlignment(column_type, roundUp, inherited,
|
|
constraints, vstate);
|
|
} else {
|
|
// A row-major matrix of C columns has a base alignment equal to the
|
|
// base alignment of a vector of C matrix components.
|
|
const auto num_columns = words[3];
|
|
const auto component_inst = vstate.FindDef(column_type);
|
|
const auto component_id = component_inst->words()[2];
|
|
const auto componentAlignment = getBaseAlignment(
|
|
component_id, roundUp, inherited, constraints, vstate);
|
|
baseAlignment =
|
|
componentAlignment * (num_columns == 3 ? 4 : num_columns);
|
|
}
|
|
} break;
|
|
case SpvOpTypeArray:
|
|
case SpvOpTypeRuntimeArray:
|
|
baseAlignment =
|
|
getBaseAlignment(words[2], roundUp, inherited, constraints, vstate);
|
|
if (roundUp) baseAlignment = align(baseAlignment, 16u);
|
|
break;
|
|
case SpvOpTypeStruct: {
|
|
const auto members = getStructMembers(member_id, vstate);
|
|
for (uint32_t memberIdx = 0, numMembers = uint32_t(members.size());
|
|
memberIdx < numMembers; ++memberIdx) {
|
|
const auto id = members[memberIdx];
|
|
const auto& constraint =
|
|
constraints[std::make_pair(member_id, memberIdx)];
|
|
baseAlignment = std::max(
|
|
baseAlignment,
|
|
getBaseAlignment(id, roundUp, constraint, constraints, vstate));
|
|
}
|
|
if (roundUp) baseAlignment = align(baseAlignment, 16u);
|
|
break;
|
|
}
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
return baseAlignment;
|
|
}
|
|
|
|
// Returns scalar alignment of a type.
|
|
uint32_t getScalarAlignment(uint32_t type_id, ValidationState_t& vstate) {
|
|
const auto inst = vstate.FindDef(type_id);
|
|
const auto& words = inst->words();
|
|
switch (inst->opcode()) {
|
|
case SpvOpTypeInt:
|
|
case SpvOpTypeFloat:
|
|
return words[2] / 8;
|
|
case SpvOpTypeVector:
|
|
case SpvOpTypeMatrix:
|
|
case SpvOpTypeArray:
|
|
case SpvOpTypeRuntimeArray: {
|
|
const auto compositeMemberTypeId = words[2];
|
|
return getScalarAlignment(compositeMemberTypeId, vstate);
|
|
}
|
|
case SpvOpTypeStruct: {
|
|
const auto members = getStructMembers(type_id, vstate);
|
|
uint32_t max_member_alignment = 1;
|
|
for (uint32_t memberIdx = 0, numMembers = uint32_t(members.size());
|
|
memberIdx < numMembers; ++memberIdx) {
|
|
const auto id = members[memberIdx];
|
|
uint32_t member_alignment = getScalarAlignment(id, vstate);
|
|
if (member_alignment > max_member_alignment) {
|
|
max_member_alignment = member_alignment;
|
|
}
|
|
}
|
|
return max_member_alignment;
|
|
} break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Returns size of a struct member. Doesn't include padding at the end of struct
|
|
// or array. Assumes that in the struct case, all members have offsets.
|
|
uint32_t getSize(uint32_t member_id, const LayoutConstraints& inherited,
|
|
MemberConstraints& constraints, ValidationState_t& vstate) {
|
|
const auto inst = vstate.FindDef(member_id);
|
|
const auto& words = inst->words();
|
|
switch (inst->opcode()) {
|
|
case SpvOpTypeInt:
|
|
case SpvOpTypeFloat:
|
|
return words[2] / 8;
|
|
case SpvOpTypeVector: {
|
|
const auto componentId = words[2];
|
|
const auto numComponents = words[3];
|
|
const auto componentSize =
|
|
getSize(componentId, inherited, constraints, vstate);
|
|
const auto size = componentSize * numComponents;
|
|
return size;
|
|
}
|
|
case SpvOpTypeArray: {
|
|
const auto sizeInst = vstate.FindDef(words[3]);
|
|
if (spvOpcodeIsSpecConstant(sizeInst->opcode())) return 0;
|
|
assert(SpvOpConstant == sizeInst->opcode());
|
|
const uint32_t num_elem = sizeInst->words()[3];
|
|
const uint32_t elem_type = words[2];
|
|
const uint32_t elem_size =
|
|
getSize(elem_type, inherited, constraints, vstate);
|
|
// Account for gaps due to alignments in the first N-1 elements,
|
|
// then add the size of the last element.
|
|
const auto size =
|
|
(num_elem - 1) * GetArrayStride(member_id, vstate) + elem_size;
|
|
return size;
|
|
}
|
|
case SpvOpTypeRuntimeArray:
|
|
return 0;
|
|
case SpvOpTypeMatrix: {
|
|
const auto num_columns = words[3];
|
|
if (inherited.majorness == kColumnMajor) {
|
|
return num_columns * inherited.matrix_stride;
|
|
} else {
|
|
// Row major case.
|
|
const auto column_type = words[2];
|
|
const auto component_inst = vstate.FindDef(column_type);
|
|
const auto num_rows = component_inst->words()[3];
|
|
const auto scalar_elem_type = component_inst->words()[2];
|
|
const uint32_t scalar_elem_size =
|
|
getSize(scalar_elem_type, inherited, constraints, vstate);
|
|
return (num_rows - 1) * inherited.matrix_stride +
|
|
num_columns * scalar_elem_size;
|
|
}
|
|
}
|
|
case SpvOpTypeStruct: {
|
|
const auto& members = getStructMembers(member_id, vstate);
|
|
if (members.empty()) return 0;
|
|
const auto lastIdx = uint32_t(members.size() - 1);
|
|
const auto& lastMember = members.back();
|
|
uint32_t offset = 0xffffffff;
|
|
// Find the offset of the last element and add the size.
|
|
for (auto& decoration : vstate.id_decorations(member_id)) {
|
|
if (SpvDecorationOffset == decoration.dec_type() &&
|
|
decoration.struct_member_index() == (int)lastIdx) {
|
|
offset = decoration.params()[0];
|
|
}
|
|
}
|
|
// This check depends on the fact that all members have offsets. This
|
|
// has been checked earlier in the flow.
|
|
assert(offset != 0xffffffff);
|
|
const auto& constraint = constraints[std::make_pair(lastMember, lastIdx)];
|
|
return offset + getSize(lastMember, constraint, constraints, vstate);
|
|
}
|
|
default:
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// A member is defined to improperly straddle if either of the following are
|
|
// true:
|
|
// - It is a vector with total size less than or equal to 16 bytes, and has
|
|
// Offset decorations placing its first byte at F and its last byte at L, where
|
|
// floor(F / 16) != floor(L / 16).
|
|
// - It is a vector with total size greater than 16 bytes and has its Offset
|
|
// decorations placing its first byte at a non-integer multiple of 16.
|
|
bool hasImproperStraddle(uint32_t id, uint32_t offset,
|
|
const LayoutConstraints& inherited,
|
|
MemberConstraints& constraints,
|
|
ValidationState_t& vstate) {
|
|
const auto size = getSize(id, inherited, constraints, vstate);
|
|
const auto F = offset;
|
|
const auto L = offset + size - 1;
|
|
if (size <= 16) {
|
|
if ((F >> 4) != (L >> 4)) return true;
|
|
} else {
|
|
if (F % 16 != 0) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true if |offset| satsifies an alignment to |alignment|. In the case
|
|
// of |alignment| of zero, the |offset| must also be zero.
|
|
bool IsAlignedTo(uint32_t offset, uint32_t alignment) {
|
|
if (alignment == 0) return offset == 0;
|
|
return 0 == (offset % alignment);
|
|
}
|
|
|
|
// Returns SPV_SUCCESS if the given struct satisfies standard layout rules for
|
|
// Block or BufferBlocks in Vulkan. Otherwise emits a diagnostic and returns
|
|
// something other than SPV_SUCCESS. Matrices inherit the specified column
|
|
// or row major-ness.
|
|
spv_result_t checkLayout(uint32_t struct_id, const char* storage_class_str,
|
|
const char* decoration_str, bool blockRules,
|
|
MemberConstraints& constraints,
|
|
ValidationState_t& vstate) {
|
|
if (vstate.options()->skip_block_layout) return SPV_SUCCESS;
|
|
|
|
// Relaxed layout and scalar layout can both be in effect at the same time.
|
|
// For example, relaxed layout is implied by Vulkan 1.1. But scalar layout
|
|
// is more permissive than relaxed layout.
|
|
const bool relaxed_block_layout = vstate.IsRelaxedBlockLayout();
|
|
const bool scalar_block_layout = vstate.options()->scalar_block_layout;
|
|
|
|
auto fail = [&vstate, struct_id, storage_class_str, decoration_str,
|
|
blockRules, relaxed_block_layout,
|
|
scalar_block_layout](uint32_t member_idx) -> DiagnosticStream {
|
|
DiagnosticStream ds =
|
|
std::move(vstate.diag(SPV_ERROR_INVALID_ID, vstate.FindDef(struct_id))
|
|
<< "Structure id " << struct_id << " decorated as "
|
|
<< decoration_str << " for variable in " << storage_class_str
|
|
<< " storage class must follow "
|
|
<< (scalar_block_layout
|
|
? "scalar "
|
|
: (relaxed_block_layout ? "relaxed " : "standard "))
|
|
<< (blockRules ? "uniform buffer" : "storage buffer")
|
|
<< " layout rules: member " << member_idx << " ");
|
|
return ds;
|
|
};
|
|
|
|
const auto& members = getStructMembers(struct_id, vstate);
|
|
|
|
// To check for member overlaps, we want to traverse the members in
|
|
// offset order.
|
|
struct MemberOffsetPair {
|
|
uint32_t member;
|
|
uint32_t offset;
|
|
};
|
|
std::vector<MemberOffsetPair> member_offsets;
|
|
member_offsets.reserve(members.size());
|
|
for (uint32_t memberIdx = 0, numMembers = uint32_t(members.size());
|
|
memberIdx < numMembers; memberIdx++) {
|
|
uint32_t offset = 0xffffffff;
|
|
for (auto& decoration : vstate.id_decorations(struct_id)) {
|
|
if (decoration.struct_member_index() == (int)memberIdx) {
|
|
switch (decoration.dec_type()) {
|
|
case SpvDecorationOffset:
|
|
offset = decoration.params()[0];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
member_offsets.push_back(MemberOffsetPair{memberIdx, offset});
|
|
}
|
|
std::stable_sort(
|
|
member_offsets.begin(), member_offsets.end(),
|
|
[](const MemberOffsetPair& lhs, const MemberOffsetPair& rhs) {
|
|
return lhs.offset < rhs.offset;
|
|
});
|
|
|
|
// Now scan from lowest offest to highest offset.
|
|
uint32_t nextValidOffset = 0;
|
|
for (size_t ordered_member_idx = 0;
|
|
ordered_member_idx < member_offsets.size(); ordered_member_idx++) {
|
|
const auto& member_offset = member_offsets[ordered_member_idx];
|
|
const auto memberIdx = member_offset.member;
|
|
const auto offset = member_offset.offset;
|
|
auto id = members[member_offset.member];
|
|
const LayoutConstraints& constraint =
|
|
constraints[std::make_pair(struct_id, uint32_t(memberIdx))];
|
|
// Scalar layout takes precedence because it's more permissive, and implying
|
|
// an alignment that divides evenly into the alignment that would otherwise
|
|
// be used.
|
|
const auto alignment =
|
|
scalar_block_layout
|
|
? getScalarAlignment(id, vstate)
|
|
: getBaseAlignment(id, blockRules, constraint, constraints, vstate);
|
|
const auto inst = vstate.FindDef(id);
|
|
const auto opcode = inst->opcode();
|
|
const auto size = getSize(id, constraint, constraints, vstate);
|
|
// Check offset.
|
|
if (offset == 0xffffffff)
|
|
return fail(memberIdx) << "is missing an Offset decoration";
|
|
if (!scalar_block_layout && relaxed_block_layout &&
|
|
opcode == SpvOpTypeVector) {
|
|
// In relaxed block layout, the vector offset must be aligned to the
|
|
// vector's scalar element type.
|
|
const auto componentId = inst->words()[2];
|
|
const auto scalar_alignment = getScalarAlignment(componentId, vstate);
|
|
if (!IsAlignedTo(offset, scalar_alignment)) {
|
|
return fail(memberIdx)
|
|
<< "at offset " << offset
|
|
<< " is not aligned to scalar element size " << scalar_alignment;
|
|
}
|
|
} else {
|
|
// Without relaxed block layout, the offset must be divisible by the
|
|
// alignment requirement.
|
|
if (!IsAlignedTo(offset, alignment)) {
|
|
return fail(memberIdx)
|
|
<< "at offset " << offset << " is not aligned to " << alignment;
|
|
}
|
|
}
|
|
if (offset < nextValidOffset)
|
|
return fail(memberIdx) << "at offset " << offset
|
|
<< " overlaps previous member ending at offset "
|
|
<< nextValidOffset - 1;
|
|
if (!scalar_block_layout && relaxed_block_layout) {
|
|
// Check improper straddle of vectors.
|
|
if (SpvOpTypeVector == opcode &&
|
|
hasImproperStraddle(id, offset, constraint, constraints, vstate))
|
|
return fail(memberIdx)
|
|
<< "is an improperly straddling vector at offset " << offset;
|
|
}
|
|
// Check struct members recursively.
|
|
spv_result_t recursive_status = SPV_SUCCESS;
|
|
if (SpvOpTypeStruct == opcode &&
|
|
SPV_SUCCESS != (recursive_status =
|
|
checkLayout(id, storage_class_str, decoration_str,
|
|
blockRules, constraints, vstate)))
|
|
return recursive_status;
|
|
// Check matrix stride.
|
|
if (SpvOpTypeMatrix == opcode) {
|
|
for (auto& decoration : vstate.id_decorations(id)) {
|
|
if (SpvDecorationMatrixStride == decoration.dec_type() &&
|
|
!IsAlignedTo(decoration.params()[0], alignment))
|
|
return fail(memberIdx)
|
|
<< "is a matrix with stride " << decoration.params()[0]
|
|
<< " not satisfying alignment to " << alignment;
|
|
}
|
|
}
|
|
// Check arrays and runtime arrays.
|
|
if (SpvOpTypeArray == opcode || SpvOpTypeRuntimeArray == opcode) {
|
|
const auto typeId = inst->word(2);
|
|
const auto arrayInst = vstate.FindDef(typeId);
|
|
if (SpvOpTypeStruct == arrayInst->opcode() &&
|
|
SPV_SUCCESS != (recursive_status = checkLayout(
|
|
typeId, storage_class_str, decoration_str,
|
|
blockRules, constraints, vstate)))
|
|
return recursive_status;
|
|
// Check array stride.
|
|
for (auto& decoration : vstate.id_decorations(id)) {
|
|
if (SpvDecorationArrayStride == decoration.dec_type() &&
|
|
!IsAlignedTo(decoration.params()[0], alignment))
|
|
return fail(memberIdx)
|
|
<< "is an array with stride " << decoration.params()[0]
|
|
<< " not satisfying alignment to " << alignment;
|
|
}
|
|
}
|
|
nextValidOffset = offset + size;
|
|
if (!scalar_block_layout && blockRules &&
|
|
(SpvOpTypeArray == opcode || SpvOpTypeStruct == opcode)) {
|
|
// Uniform block rules don't permit anything in the padding of a struct
|
|
// or array.
|
|
nextValidOffset = align(nextValidOffset, alignment);
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
// Returns true if structure id has given decoration. Handles also nested
|
|
// structures.
|
|
bool hasDecoration(uint32_t struct_id, SpvDecoration decoration,
|
|
ValidationState_t& vstate) {
|
|
for (auto& dec : vstate.id_decorations(struct_id)) {
|
|
if (decoration == dec.dec_type()) return true;
|
|
}
|
|
for (auto id : getStructMembers(struct_id, SpvOpTypeStruct, vstate)) {
|
|
if (hasDecoration(id, decoration, vstate)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true if all ids of given type have a specified decoration.
|
|
bool checkForRequiredDecoration(uint32_t struct_id, SpvDecoration decoration,
|
|
SpvOp type, ValidationState_t& vstate) {
|
|
const auto& members = getStructMembers(struct_id, vstate);
|
|
for (size_t memberIdx = 0; memberIdx < members.size(); memberIdx++) {
|
|
const auto id = members[memberIdx];
|
|
if (type != vstate.FindDef(id)->opcode()) continue;
|
|
bool found = false;
|
|
for (auto& dec : vstate.id_decorations(id)) {
|
|
if (decoration == dec.dec_type()) found = true;
|
|
}
|
|
for (auto& dec : vstate.id_decorations(struct_id)) {
|
|
if (decoration == dec.dec_type() &&
|
|
(int)memberIdx == dec.struct_member_index()) {
|
|
found = true;
|
|
}
|
|
}
|
|
if (!found) {
|
|
return false;
|
|
}
|
|
}
|
|
for (auto id : getStructMembers(struct_id, SpvOpTypeStruct, vstate)) {
|
|
if (!checkForRequiredDecoration(id, decoration, type, vstate)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
spv_result_t CheckLinkageAttrOfFunctions(ValidationState_t& vstate) {
|
|
for (const auto& function : vstate.functions()) {
|
|
if (function.block_count() == 0u) {
|
|
// A function declaration (an OpFunction with no basic blocks), must have
|
|
// a Linkage Attributes Decoration with the Import Linkage Type.
|
|
if (!hasImportLinkageAttribute(function.id(), vstate)) {
|
|
return vstate.diag(SPV_ERROR_INVALID_BINARY,
|
|
vstate.FindDef(function.id()))
|
|
<< "Function declaration (id " << function.id()
|
|
<< ") must have a LinkageAttributes decoration with the Import "
|
|
"Linkage type.";
|
|
}
|
|
} else {
|
|
if (hasImportLinkageAttribute(function.id(), vstate)) {
|
|
return vstate.diag(SPV_ERROR_INVALID_BINARY,
|
|
vstate.FindDef(function.id()))
|
|
<< "Function definition (id " << function.id()
|
|
<< ") may not be decorated with Import Linkage type.";
|
|
}
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
// Checks whether an imported variable is initialized by this module.
|
|
spv_result_t CheckImportedVariableInitialization(ValidationState_t& vstate) {
|
|
// According the SPIR-V Spec 2.16.1, it is illegal to initialize an imported
|
|
// variable. This means that a module-scope OpVariable with initialization
|
|
// value cannot be marked with the Import Linkage Type (import type id = 1).
|
|
for (auto global_var_id : vstate.global_vars()) {
|
|
// Initializer <id> is an optional argument for OpVariable. If initializer
|
|
// <id> is present, the instruction will have 5 words.
|
|
auto variable_instr = vstate.FindDef(global_var_id);
|
|
if (variable_instr->words().size() == 5u &&
|
|
hasImportLinkageAttribute(global_var_id, vstate)) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, variable_instr)
|
|
<< "A module-scope OpVariable with initialization value "
|
|
"cannot be marked with the Import Linkage Type.";
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
// Checks whether a builtin variable is valid.
|
|
spv_result_t CheckBuiltInVariable(uint32_t var_id, ValidationState_t& vstate) {
|
|
const auto& decorations = vstate.id_decorations(var_id);
|
|
for (const auto& d : decorations) {
|
|
if (spvIsVulkanEnv(vstate.context()->target_env)) {
|
|
if (d.dec_type() == SpvDecorationLocation ||
|
|
d.dec_type() == SpvDecorationComponent) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, vstate.FindDef(var_id))
|
|
<< "A BuiltIn variable (id " << var_id
|
|
<< ") cannot have any Location or Component decorations";
|
|
}
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
// Checks whether proper decorations have been appied to the entry points.
|
|
spv_result_t CheckDecorationsOfEntryPoints(ValidationState_t& vstate) {
|
|
for (uint32_t entry_point : vstate.entry_points()) {
|
|
const auto& descs = vstate.entry_point_descriptions(entry_point);
|
|
int num_builtin_inputs = 0;
|
|
int num_builtin_outputs = 0;
|
|
for (const auto& desc : descs) {
|
|
for (auto interface : desc.interfaces) {
|
|
Instruction* var_instr = vstate.FindDef(interface);
|
|
if (!var_instr || SpvOpVariable != var_instr->opcode()) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, var_instr)
|
|
<< "Interfaces passed to OpEntryPoint must be of type "
|
|
"OpTypeVariable. Found Op"
|
|
<< spvOpcodeString(var_instr->opcode()) << ".";
|
|
}
|
|
const SpvStorageClass storage_class =
|
|
var_instr->GetOperandAs<SpvStorageClass>(2);
|
|
if (storage_class != SpvStorageClassInput &&
|
|
storage_class != SpvStorageClassOutput) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, var_instr)
|
|
<< "OpEntryPoint interfaces must be OpVariables with "
|
|
"Storage Class of Input(1) or Output(3). Found Storage "
|
|
"Class "
|
|
<< storage_class << " for Entry Point id " << entry_point
|
|
<< ".";
|
|
}
|
|
|
|
const uint32_t ptr_id = var_instr->word(1);
|
|
Instruction* ptr_instr = vstate.FindDef(ptr_id);
|
|
// It is guaranteed (by validator ID checks) that ptr_instr is
|
|
// OpTypePointer. Word 3 of this instruction is the type being pointed
|
|
// to.
|
|
const uint32_t type_id = ptr_instr->word(3);
|
|
Instruction* type_instr = vstate.FindDef(type_id);
|
|
if (type_instr && SpvOpTypeStruct == type_instr->opcode() &&
|
|
isBuiltInStruct(type_id, vstate)) {
|
|
if (storage_class == SpvStorageClassInput) ++num_builtin_inputs;
|
|
if (storage_class == SpvStorageClassOutput) ++num_builtin_outputs;
|
|
if (num_builtin_inputs > 1 || num_builtin_outputs > 1) break;
|
|
if (auto error = CheckBuiltInVariable(interface, vstate))
|
|
return error;
|
|
} else if (isBuiltInVar(interface, vstate)) {
|
|
if (auto error = CheckBuiltInVariable(interface, vstate))
|
|
return error;
|
|
}
|
|
}
|
|
if (num_builtin_inputs > 1 || num_builtin_outputs > 1) {
|
|
return vstate.diag(SPV_ERROR_INVALID_BINARY,
|
|
vstate.FindDef(entry_point))
|
|
<< "There must be at most one object per Storage Class that can "
|
|
"contain a structure type containing members decorated with "
|
|
"BuiltIn, consumed per entry-point. Entry Point id "
|
|
<< entry_point << " does not meet this requirement.";
|
|
}
|
|
// The LinkageAttributes Decoration cannot be applied to functions
|
|
// targeted by an OpEntryPoint instruction
|
|
for (auto& decoration : vstate.id_decorations(entry_point)) {
|
|
if (SpvDecorationLinkageAttributes == decoration.dec_type()) {
|
|
const char* linkage_name =
|
|
reinterpret_cast<const char*>(&decoration.params()[0]);
|
|
return vstate.diag(SPV_ERROR_INVALID_BINARY,
|
|
vstate.FindDef(entry_point))
|
|
<< "The LinkageAttributes Decoration (Linkage name: "
|
|
<< linkage_name << ") cannot be applied to function id "
|
|
<< entry_point
|
|
<< " because it is targeted by an OpEntryPoint instruction.";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
// Load |constraints| with all the member constraints for structs contained
|
|
// within the given array type.
|
|
void ComputeMemberConstraintsForArray(MemberConstraints* constraints,
|
|
uint32_t array_id,
|
|
const LayoutConstraints& inherited,
|
|
ValidationState_t& vstate);
|
|
|
|
// Load |constraints| with all the member constraints for the given struct,
|
|
// and all its contained structs.
|
|
void ComputeMemberConstraintsForStruct(MemberConstraints* constraints,
|
|
uint32_t struct_id,
|
|
const LayoutConstraints& inherited,
|
|
ValidationState_t& vstate) {
|
|
assert(constraints);
|
|
const auto& members = getStructMembers(struct_id, vstate);
|
|
for (uint32_t memberIdx = 0, numMembers = uint32_t(members.size());
|
|
memberIdx < numMembers; memberIdx++) {
|
|
LayoutConstraints& constraint =
|
|
(*constraints)[std::make_pair(struct_id, memberIdx)];
|
|
constraint = inherited;
|
|
for (auto& decoration : vstate.id_decorations(struct_id)) {
|
|
if (decoration.struct_member_index() == (int)memberIdx) {
|
|
switch (decoration.dec_type()) {
|
|
case SpvDecorationRowMajor:
|
|
constraint.majorness = kRowMajor;
|
|
break;
|
|
case SpvDecorationColMajor:
|
|
constraint.majorness = kColumnMajor;
|
|
break;
|
|
case SpvDecorationMatrixStride:
|
|
constraint.matrix_stride = decoration.params()[0];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now recurse
|
|
auto member_type_id = members[memberIdx];
|
|
const auto member_type_inst = vstate.FindDef(member_type_id);
|
|
const auto opcode = member_type_inst->opcode();
|
|
switch (opcode) {
|
|
case SpvOpTypeArray:
|
|
case SpvOpTypeRuntimeArray:
|
|
ComputeMemberConstraintsForArray(constraints, member_type_id, inherited,
|
|
vstate);
|
|
break;
|
|
case SpvOpTypeStruct:
|
|
ComputeMemberConstraintsForStruct(constraints, member_type_id,
|
|
inherited, vstate);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ComputeMemberConstraintsForArray(MemberConstraints* constraints,
|
|
uint32_t array_id,
|
|
const LayoutConstraints& inherited,
|
|
ValidationState_t& vstate) {
|
|
assert(constraints);
|
|
auto elem_type_id = vstate.FindDef(array_id)->words()[2];
|
|
const auto elem_type_inst = vstate.FindDef(elem_type_id);
|
|
const auto opcode = elem_type_inst->opcode();
|
|
switch (opcode) {
|
|
case SpvOpTypeArray:
|
|
case SpvOpTypeRuntimeArray:
|
|
ComputeMemberConstraintsForArray(constraints, elem_type_id, inherited,
|
|
vstate);
|
|
break;
|
|
case SpvOpTypeStruct:
|
|
ComputeMemberConstraintsForStruct(constraints, elem_type_id, inherited,
|
|
vstate);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
spv_result_t CheckDecorationsOfBuffers(ValidationState_t& vstate) {
|
|
for (const auto& inst : vstate.ordered_instructions()) {
|
|
const auto& words = inst.words();
|
|
if (SpvOpVariable == inst.opcode()) {
|
|
// For storage class / decoration combinations, see Vulkan 14.5.4 "Offset
|
|
// and Stride Assignment".
|
|
const auto storageClass = words[3];
|
|
const bool uniform = storageClass == SpvStorageClassUniform;
|
|
const bool push_constant = storageClass == SpvStorageClassPushConstant;
|
|
const bool storage_buffer = storageClass == SpvStorageClassStorageBuffer;
|
|
if (uniform || push_constant || storage_buffer) {
|
|
const auto ptrInst = vstate.FindDef(words[1]);
|
|
assert(SpvOpTypePointer == ptrInst->opcode());
|
|
const auto id = ptrInst->words()[3];
|
|
if (SpvOpTypeStruct != vstate.FindDef(id)->opcode()) continue;
|
|
MemberConstraints constraints;
|
|
ComputeMemberConstraintsForStruct(&constraints, id, LayoutConstraints(),
|
|
vstate);
|
|
// Prepare for messages
|
|
const char* sc_str =
|
|
uniform ? "Uniform"
|
|
: (push_constant ? "PushConstant" : "StorageBuffer");
|
|
for (const auto& dec : vstate.id_decorations(id)) {
|
|
const bool blockDeco = SpvDecorationBlock == dec.dec_type();
|
|
const bool bufferDeco = SpvDecorationBufferBlock == dec.dec_type();
|
|
const bool blockRules = uniform && blockDeco;
|
|
const bool bufferRules = (uniform && bufferDeco) ||
|
|
(push_constant && blockDeco) ||
|
|
(storage_buffer && blockDeco);
|
|
if (blockRules || bufferRules) {
|
|
const char* deco_str = blockDeco ? "Block" : "BufferBlock";
|
|
spv_result_t recursive_status = SPV_SUCCESS;
|
|
if (isMissingOffsetInStruct(id, vstate)) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, vstate.FindDef(id))
|
|
<< "Structure id " << id << " decorated as " << deco_str
|
|
<< " must be explicitly laid out with Offset decorations.";
|
|
} else if (hasDecoration(id, SpvDecorationGLSLShared, vstate)) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, vstate.FindDef(id))
|
|
<< "Structure id " << id << " decorated as " << deco_str
|
|
<< " must not use GLSLShared decoration.";
|
|
} else if (hasDecoration(id, SpvDecorationGLSLPacked, vstate)) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, vstate.FindDef(id))
|
|
<< "Structure id " << id << " decorated as " << deco_str
|
|
<< " must not use GLSLPacked decoration.";
|
|
} else if (!checkForRequiredDecoration(id, SpvDecorationArrayStride,
|
|
SpvOpTypeArray, vstate)) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, vstate.FindDef(id))
|
|
<< "Structure id " << id << " decorated as " << deco_str
|
|
<< " must be explicitly laid out with ArrayStride "
|
|
"decorations.";
|
|
} else if (!checkForRequiredDecoration(id,
|
|
SpvDecorationMatrixStride,
|
|
SpvOpTypeMatrix, vstate)) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, vstate.FindDef(id))
|
|
<< "Structure id " << id << " decorated as " << deco_str
|
|
<< " must be explicitly laid out with MatrixStride "
|
|
"decorations.";
|
|
} else if (blockRules &&
|
|
(SPV_SUCCESS != (recursive_status = checkLayout(
|
|
id, sc_str, deco_str, true,
|
|
constraints, vstate)))) {
|
|
return recursive_status;
|
|
} else if (bufferRules &&
|
|
(SPV_SUCCESS != (recursive_status = checkLayout(
|
|
id, sc_str, deco_str, false,
|
|
constraints, vstate)))) {
|
|
return recursive_status;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t CheckVulkanMemoryModelDeprecatedDecorations(
|
|
ValidationState_t& vstate) {
|
|
if (vstate.memory_model() != SpvMemoryModelVulkanKHR) return SPV_SUCCESS;
|
|
|
|
std::string msg;
|
|
std::ostringstream str(msg);
|
|
for (const auto& def : vstate.all_definitions()) {
|
|
const auto inst = def.second;
|
|
const auto id = inst->id();
|
|
for (const auto& dec : vstate.id_decorations(id)) {
|
|
const auto member = dec.struct_member_index();
|
|
if (dec.dec_type() == SpvDecorationCoherent ||
|
|
dec.dec_type() == SpvDecorationVolatile) {
|
|
str << (dec.dec_type() == SpvDecorationCoherent ? "Coherent"
|
|
: "Volatile");
|
|
str << " decoration targeting " << vstate.getIdName(id);
|
|
if (member != Decoration::kInvalidMember) {
|
|
str << " (member index " << member << ")";
|
|
}
|
|
str << " is banned when using the Vulkan memory model.";
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, inst) << str.str();
|
|
}
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t CheckDecorationsOfConversions(ValidationState_t& vstate) {
|
|
// Validates FPRoundingMode decoration for Shader Capabilities
|
|
if (!vstate.HasCapability(SpvCapabilityShader)) return SPV_SUCCESS;
|
|
|
|
for (const auto& kv : vstate.id_decorations()) {
|
|
const uint32_t id = kv.first;
|
|
const auto& decorations = kv.second;
|
|
if (decorations.empty()) {
|
|
continue;
|
|
}
|
|
|
|
const Instruction* inst = vstate.FindDef(id);
|
|
assert(inst);
|
|
|
|
// Validates FPRoundingMode decoration
|
|
for (const auto& decoration : decorations) {
|
|
if (decoration.dec_type() != SpvDecorationFPRoundingMode) {
|
|
continue;
|
|
}
|
|
|
|
// Validates width-only conversion instruction for floating-point object
|
|
// i.e., OpFConvert
|
|
if (inst->opcode() != SpvOpFConvert) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "FPRoundingMode decoration can be applied only to a "
|
|
"width-only conversion instruction for floating-point "
|
|
"object.";
|
|
}
|
|
|
|
// Validates Object operand of an OpStore
|
|
for (const auto& use : inst->uses()) {
|
|
const auto store = use.first;
|
|
if (store->opcode() != SpvOpStore) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "FPRoundingMode decoration can be applied only to the "
|
|
"Object operand of an OpStore.";
|
|
}
|
|
|
|
if (use.second != 2) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "FPRoundingMode decoration can be applied only to the "
|
|
"Object operand of an OpStore.";
|
|
}
|
|
|
|
const auto ptr_inst = vstate.FindDef(store->GetOperandAs<uint32_t>(0));
|
|
const auto ptr_type =
|
|
vstate.FindDef(ptr_inst->GetOperandAs<uint32_t>(0));
|
|
|
|
const auto half_float_id = ptr_type->GetOperandAs<uint32_t>(2);
|
|
if (!vstate.IsFloatScalarOrVectorType(half_float_id) ||
|
|
vstate.GetBitWidth(half_float_id) != 16) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "FPRoundingMode decoration can be applied only to the "
|
|
"Object operand of an OpStore storing through a pointer to "
|
|
"a 16-bit floating-point scalar or vector object.";
|
|
}
|
|
|
|
// Validates storage class of the pointer to the OpStore
|
|
const auto storage = ptr_type->GetOperandAs<uint32_t>(1);
|
|
if (storage != SpvStorageClassStorageBuffer &&
|
|
storage != SpvStorageClassUniform &&
|
|
storage != SpvStorageClassPushConstant &&
|
|
storage != SpvStorageClassInput &&
|
|
storage != SpvStorageClassOutput) {
|
|
return vstate.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "FPRoundingMode decoration can be applied only to the "
|
|
"Object operand of an OpStore in the StorageBuffer, "
|
|
"Uniform, PushConstant, Input, or Output Storage "
|
|
"Classes.";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Validates that decorations have been applied properly.
|
|
spv_result_t ValidateDecorations(ValidationState_t& vstate) {
|
|
if (auto error = CheckImportedVariableInitialization(vstate)) return error;
|
|
if (auto error = CheckDecorationsOfEntryPoints(vstate)) return error;
|
|
if (auto error = CheckDecorationsOfBuffers(vstate)) return error;
|
|
if (auto error = CheckLinkageAttrOfFunctions(vstate)) return error;
|
|
if (auto error = CheckVulkanMemoryModelDeprecatedDecorations(vstate))
|
|
return error;
|
|
if (auto error = CheckDecorationsOfConversions(vstate)) return error;
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
} // namespace val
|
|
} // namespace spvtools
|