SPIRV-Tools/test/fuzz/equivalence_relation_test.cpp
Alastair Donaldson fb6bac889e
spirv-fuzz: make equivalence classes deterministic (#3011)
An equivalence relation is computed by traversing the tree of values
rooted at the class's representative. Children were represented by
unordered sets, meaning that the order of values in an equivalence
class could be nondeterministic. This change makes things
deterministic by representing children using a vector.

The path compression optimization employed in the implementation of
the underlying union-find data structure has the potential to change
the order in which elements appear in an equivalence class by changing
the structure of the tree, so the guarantee of determinism is limited
to being a deterministic function of the manner in which the
equivalence relation is updated and inspected.
2019-11-05 15:34:05 +00:00

146 lines
5.0 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <set>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "source/fuzz/equivalence_relation.h"
namespace spvtools {
namespace fuzz {
namespace {
struct UInt32Equals {
bool operator()(const uint32_t* first, const uint32_t* second) const {
return *first == *second;
}
};
struct UInt32Hash {
size_t operator()(const uint32_t* element) const {
return static_cast<size_t>(*element);
}
};
std::vector<uint32_t> ToUIntVector(
const std::vector<const uint32_t*>& pointers) {
std::vector<uint32_t> result;
for (auto pointer : pointers) {
result.push_back(*pointer);
}
return result;
}
TEST(EquivalenceRelationTest, BasicTest) {
EquivalenceRelation<uint32_t, UInt32Hash, UInt32Equals> relation;
ASSERT_TRUE(relation.GetAllKnownValues().empty());
for (uint32_t element = 2; element < 80; element += 2) {
relation.MakeEquivalent(0, element);
relation.MakeEquivalent(element - 1, element + 1);
}
for (uint32_t element = 82; element < 100; element += 2) {
relation.MakeEquivalent(80, element);
relation.MakeEquivalent(element - 1, element + 1);
}
relation.MakeEquivalent(78, 80);
std::vector<uint32_t> class1;
for (uint32_t element = 0; element < 98; element += 2) {
ASSERT_TRUE(relation.IsEquivalent(0, element));
ASSERT_TRUE(relation.IsEquivalent(element, element + 2));
class1.push_back(element);
}
class1.push_back(98);
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(0)),
testing::WhenSorted(class1));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(4)),
testing::WhenSorted(class1));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(40)),
testing::WhenSorted(class1));
std::vector<uint32_t> class2;
for (uint32_t element = 1; element < 79; element += 2) {
ASSERT_TRUE(relation.IsEquivalent(1, element));
ASSERT_TRUE(relation.IsEquivalent(element, element + 2));
class2.push_back(element);
}
class2.push_back(79);
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(1)),
testing::WhenSorted(class2));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(11)),
testing::WhenSorted(class2));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(31)),
testing::WhenSorted(class2));
std::vector<uint32_t> class3;
for (uint32_t element = 81; element < 99; element += 2) {
ASSERT_TRUE(relation.IsEquivalent(81, element));
ASSERT_TRUE(relation.IsEquivalent(element, element + 2));
class3.push_back(element);
}
class3.push_back(99);
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(81)),
testing::WhenSorted(class3));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(91)),
testing::WhenSorted(class3));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(99)),
testing::WhenSorted(class3));
bool first = true;
std::vector<const uint32_t*> previous_class;
for (auto representative : relation.GetEquivalenceClassRepresentatives()) {
std::vector<const uint32_t*> current_class =
relation.GetEquivalenceClass(*representative);
ASSERT_TRUE(std::find(current_class.begin(), current_class.end(),
representative) != current_class.end());
if (!first) {
ASSERT_TRUE(std::find(previous_class.begin(), previous_class.end(),
representative) == previous_class.end());
}
previous_class = current_class;
first = false;
}
}
TEST(EquivalenceRelationTest, DeterministicEquivalenceClassOrder) {
EquivalenceRelation<uint32_t, UInt32Hash, UInt32Equals> relation1;
EquivalenceRelation<uint32_t, UInt32Hash, UInt32Equals> relation2;
for (uint32_t i = 0; i < 1000; ++i) {
if (i >= 10) {
relation1.MakeEquivalent(i, i - 10);
relation2.MakeEquivalent(i, i - 10);
}
}
// We constructed the equivalence relations in the same way, so we would like
// them to have identical representatives, and identically-ordered equivalence
// classes per representative.
ASSERT_THAT(ToUIntVector(relation1.GetEquivalenceClassRepresentatives()),
ToUIntVector(relation2.GetEquivalenceClassRepresentatives()));
for (auto representative : relation1.GetEquivalenceClassRepresentatives()) {
ASSERT_THAT(ToUIntVector(relation1.GetEquivalenceClass(*representative)),
ToUIntVector(relation2.GetEquivalenceClass(*representative)));
}
}
} // namespace
} // namespace fuzz
} // namespace spvtools