SPIRV-Tools/source/fuzz/protobufs/spvtoolsfuzz.proto
Alastair Donaldson f1e5cd73f6
spirv-fuzz: improvements to representation of data synonym facts (#3006)
This change fixes a bug in EquivalenceRelation, changes the interface
of EquivalenceRelation to avoid exposing (potentially
nondeterministic) unordered sets, and changes the interface of
FactManager to allow querying data synonyms directly. These interface
changes have required a lot of corresponding changes to client code
and tests.
2019-11-01 17:50:01 +00:00

540 lines
16 KiB
Protocol Buffer

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file is specifically named spvtools_fuzz.proto so that the string
// 'spvtools_fuzz' appears in the names of global-scope symbols that protoc
// generates when targeting C++. This is to reduce the potential for name
// clashes with other globally-scoped symbols.
syntax = "proto3";
package spvtools.fuzz.protobufs;
message InstructionDescriptor {
// Describes an instruction in some block of a function with respect to a
// base instruction.
// The id of an instruction after which the instruction being described is
// believed to be located. It might be the using instruction itself.
uint32 base_instruction_result_id = 1;
// The opcode for the instruction being described.
uint32 target_instruction_opcode = 2;
// The number of matching opcodes to skip over when searching from the base
// instruction to the instruction being described.
uint32 num_opcodes_to_ignore = 3;
}
message IdUseDescriptor {
// Describes a use of an id as an input operand to an instruction in some
// block of a function.
// Example:
// - id_of_interest = 42
// - enclosing_instruction = (
// base_instruction_result_id = 50,
// target_instruction_opcode = OpStore
// num_opcodes_to_ignore = 7
// )
// - in_operand_index = 1
// represents a use of id 42 as input operand 1 to an OpStore instruction,
// such that the OpStore instruction can be found in the same basic block as
// the instruction with result id 50, and in particular is the 8th OpStore
// instruction found from instruction 50 onwards (i.e. 7 OpStore
// instructions are skipped).
// An id that we would like to be able to find a use of.
uint32 id_of_interest = 1;
// The input operand index at which the use is expected.
InstructionDescriptor enclosing_instruction = 2;
uint32 in_operand_index = 3;
}
message DataDescriptor {
// Represents a data element that can be accessed from an id, by walking the
// type hierarchy via a sequence of 0 or more indices.
//
// Very similar to a UniformBufferElementDescriptor, except that a
// DataDescriptor is rooted at the id of a scalar or composite.
// The object being accessed - a scalar or composite
uint32 object = 1;
// 0 or more indices, used to index into a composite object
repeated uint32 index = 2;
}
message UniformBufferElementDescriptor {
// Represents a data element inside a uniform buffer. The element is
// specified via (a) the result id of a uniform variable in which the element
// is contained, and (b) a series of indices that need to be followed to get
// to the element (via fields and array/vector indices).
//
// Example: suppose there is a uniform variable with descriptor set 7 and
// binding 9, and that the uniform variable has the following type (using
// GLSL-like syntax):
//
// struct S {
// float f;
// vec3 g;
// int4 h[10];
// };
//
// Then:
// - (7, 9, [0]) describes the 'f' field.
// - (7, 9, [1,1]) describes the y component of the 'g' field.
// - (7, 9, [2,7,3]) describes the w component of element 7 of the 'h' field
// The descriptor set and binding associated with a uniform variable.
uint32 descriptor_set = 1;
uint32 binding = 2;
// An ordered sequence of indices through composite structures in the
// uniform buffer.
repeated uint32 index = 3;
}
message FactSequence {
repeated Fact fact = 1;
}
message Fact {
oneof fact {
// Order the fact options by numeric id (rather than alphabetically).
FactConstantUniform constant_uniform_fact = 1;
FactDataSynonym data_synonym_fact = 2;
}
}
// Keep fact message types in alphabetical order:
message FactConstantUniform {
// Records the fact that a uniform buffer element is guaranteed to be equal
// to a particular constant value. spirv-fuzz can use such guarantees to
// obfuscate code, e.g. to manufacture an expression that will (due to the
// guarantee) evaluate to a particular value at runtime but in a manner that
// cannot be predicted at compile-time.
// An element of a uniform buffer
UniformBufferElementDescriptor uniform_buffer_element_descriptor = 1;
// The words of the associated constant
repeated uint32 constant_word = 2;
}
message FactDataSynonym {
// Records the fact that the data held in two data descriptors are guaranteed
// to be equal. spirv-fuzz can use this to replace uses of one piece of data
// with a known-to-be-equal piece of data.
// Data descriptors guaranteed to hold identical data.
DataDescriptor data1 = 1;
DataDescriptor data2 = 2;
}
message TransformationSequence {
repeated Transformation transformation = 1;
}
message Transformation {
oneof transformation {
// Order the transformation options by numeric id (rather than
// alphabetically).
TransformationMoveBlockDown move_block_down = 1;
TransformationSplitBlock split_block = 2;
TransformationAddConstantBoolean add_constant_boolean = 3;
TransformationAddConstantScalar add_constant_scalar = 4;
TransformationAddTypeBoolean add_type_boolean = 5;
TransformationAddTypeFloat add_type_float = 6;
TransformationAddTypeInt add_type_int = 7;
TransformationAddDeadBreak add_dead_break = 8;
TransformationReplaceBooleanConstantWithConstantBinary
replace_boolean_constant_with_constant_binary = 9;
TransformationAddTypePointer add_type_pointer = 10;
TransformationReplaceConstantWithUniform replace_constant_with_uniform = 11;
TransformationAddDeadContinue add_dead_continue = 12;
TransformationCopyObject copy_object = 13;
TransformationReplaceIdWithSynonym replace_id_with_synonym = 14;
TransformationSetSelectionControl set_selection_control = 15;
TransformationCompositeConstruct composite_construct = 16;
TransformationSetLoopControl set_loop_control = 17;
TransformationSetFunctionControl set_function_control = 18;
TransformationAddNoContractionDecoration add_no_contraction_decoration = 19;
TransformationSetMemoryOperandsMask set_memory_operands_mask = 20;
TransformationCompositeExtract composite_extract = 21;
// Add additional option using the next available number.
}
}
// Keep transformation message types in alphabetical order:
message TransformationAddConstantBoolean {
// Supports adding the constants true and false to a module, which may be
// necessary in order to enable other transformations if they are not present.
uint32 fresh_id = 1;
bool is_true = 2;
}
message TransformationAddConstantScalar {
// Adds a constant of the given scalar type
// Id for the constant
uint32 fresh_id = 1;
// Id for the scalar type of the constant
uint32 type_id = 2;
// Value of the constant
repeated uint32 word = 3;
}
message TransformationAddDeadBreak {
// A transformation that turns a basic block that unconditionally branches to
// its successor into a block that potentially breaks out of a structured
// control flow construct, but in such a manner that the break cannot actually
// be taken.
// The block to break from
uint32 from_block = 1;
// The merge block to break to
uint32 to_block = 2;
// Determines whether the break condition is true or false
bool break_condition_value = 3;
// A sequence of ids suitable for extending OpPhi instructions as a result of
// the new break edge
repeated uint32 phi_id = 4;
}
message TransformationAddDeadContinue {
// A transformation that turns a basic block appearing in a loop and that
// unconditionally branches to its successor into a block that potentially
// branches to the continue target of the loop, but in such a manner that the
// continue branch cannot actually be taken.
// The block to continue from
uint32 from_block = 1;
// Determines whether the continue condition is true or false
bool continue_condition_value = 2;
// A sequence of ids suitable for extending OpPhi instructions as a result of
// the new break edge
repeated uint32 phi_id = 3;
}
message TransformationAddNoContractionDecoration {
// Applies OpDecorate NoContraction to the given result id
// Result id to be decorated
uint32 result_id = 1;
}
message TransformationAddTypeBoolean {
// Adds OpTypeBool to the module
// Id to be used for the type
uint32 fresh_id = 1;
}
message TransformationAddTypeFloat {
// Adds OpTypeFloat to the module with the given width
// Id to be used for the type
uint32 fresh_id = 1;
// Floating-point width
uint32 width = 2;
}
message TransformationAddTypeInt {
// Adds OpTypeInt to the module with the given width and signedness
// Id to be used for the type
uint32 fresh_id = 1;
// Integer width
uint32 width = 2;
// True if and only if this is a signed type
bool is_signed = 3;
}
message TransformationAddTypePointer {
// Adds OpTypePointer to the module, with the given storage class and base
// type
// Id to be used for the type
uint32 fresh_id = 1;
// Pointer storage class
uint32 storage_class = 2;
// Id of the base type for the pointer
uint32 base_type_id = 3;
}
message TransformationCompositeConstruct {
// A transformation that introduces an OpCompositeConstruct instruction to
// make a composite object.
// Id of the type of the composite that is to be constructed
uint32 composite_type_id = 1;
// Ids of the objects that will form the components of the composite
repeated uint32 component = 2;
// A descriptor for an instruction in a block before which the new
// OpCompositeConstruct instruction should be inserted
InstructionDescriptor instruction_to_insert_before = 3;
// A fresh id for the composite object
uint32 fresh_id = 4;
}
message TransformationCompositeExtract {
// A transformation that adds an instruction to extract an element from a
// composite.
// A descriptor for an instruction in a block before which the new
// OpCompositeExtract instruction should be inserted
InstructionDescriptor instruction_to_insert_before = 1;
// Result id for the extract operation.
uint32 fresh_id = 2;
// Id of the composite from which data is to be extracted.
uint32 composite_id = 3;
// Indices that indicate which part of the composite should be extracted.
repeated uint32 index = 4;
}
message TransformationCopyObject {
// A transformation that introduces an OpCopyObject instruction to make a
// copy of an object.
// Id of the object to be copied
uint32 object = 1;
// A descriptor for an instruction in a block before which the new
// OpCopyObject instruction should be inserted
InstructionDescriptor instruction_to_insert_before = 2;
// A fresh id for the copied object
uint32 fresh_id = 3;
}
message TransformationMoveBlockDown {
// A transformation that moves a basic block to be one position lower in
// program order.
// The id of the block to move down.
uint32 block_id = 1;
}
message TransformationReplaceBooleanConstantWithConstantBinary {
// A transformation to capture replacing a use of a boolean constant with
// binary operation on two constant values
// A descriptor for the boolean constant id we would like to replace
IdUseDescriptor id_use_descriptor = 1;
// Id for the constant to be used on the LHS of the comparision
uint32 lhs_id = 2;
// Id for the constant to be used on the RHS of the comparision
uint32 rhs_id = 3;
// Opcode for binary operator
uint32 opcode = 4;
// Id that will store the result of the binary operation instruction
uint32 fresh_id_for_binary_operation = 5;
}
message TransformationReplaceConstantWithUniform {
// Replaces a use of a constant id with the result of a load from an
// element of uniform buffer known to hold the same value as the constant
// A descriptor for the id we would like to replace
IdUseDescriptor id_use_descriptor = 1;
// Uniform descriptor to identify which uniform value to choose
UniformBufferElementDescriptor uniform_descriptor = 2;
// Id that will store the result of an access chain
uint32 fresh_id_for_access_chain = 3;
// Id that will store the result of a load
uint32 fresh_id_for_load = 4;
}
message TransformationReplaceIdWithSynonym {
// Replaces an id use with something known to be synonymous with that id use,
// e.g. because it was obtained via applying OpCopyObject
// Identifies the id use that is to be replaced
IdUseDescriptor id_use_descriptor = 1;
// Identifies the data with which the id use is expected to be synonymous
DataDescriptor data_descriptor = 2;
// In the case that a temporary is required to express the synonym (e.g. to
// obtain an element of a vector, provides a fresh id for the temporary;
// should be set to 0 if no temporary is required
uint32 fresh_id_for_temporary = 3;
}
message TransformationSetFunctionControl {
// A transformation that sets the function control operand of an OpFunction
// instruction.
// The result id of an OpFunction instruction
uint32 function_id = 1;
// The value to which the 'function control' operand should be set.
uint32 function_control = 2;
}
message TransformationSetLoopControl {
// A transformation that sets the loop control operand of an OpLoopMerge
// instruction.
// The id of a basic block that should contain OpLoopMerge
uint32 block_id = 1;
// The value to which the 'loop control' operand should be set.
// This must be a legal loop control mask.
uint32 loop_control = 2;
// Provides a peel count value for the loop. Used if and only if the
// PeelCount bit is set. Must be zero if the PeelCount bit is not set (can
// still be zero if this bit is set).
uint32 peel_count = 3;
// Provides a partial count value for the loop. Used if and only if the
// PartialCount bit is set. Must be zero if the PartialCount bit is not set
// (can still be zero if this bit is set).
uint32 partial_count = 4;
}
message TransformationSetMemoryOperandsMask {
// A transformation that sets the memory operands mask of a memory access
// instruction.
// A descriptor for a memory access instruction, e.g. an OpLoad
InstructionDescriptor memory_access_instruction = 1;
// A mask of memory operands to be applied to the instruction. It must be the
// same as the original mask, except that Volatile can be added, and
// Nontemporal can be added or removed.
uint32 memory_operands_mask = 2;
// Some memory access instructions allow more than one mask to be specified;
// this field indicates which mask should be set
uint32 memory_operands_mask_index = 3;
}
message TransformationSetSelectionControl {
// A transformation that sets the selection control operand of an
// OpSelectionMerge instruction.
// The id of a basic block that should contain OpSelectionMerge
uint32 block_id = 1;
// The value to which the 'selection control' operand should be set.
// Although technically 'selection control' is a literal mask that can be
// some combination of 'None', 'Flatten' and 'DontFlatten', the combination
// 'Flatten | DontFlatten' does not make sense and is not allowed here.
uint32 selection_control = 2;
}
message TransformationSplitBlock {
// A transformation that splits a basic block into two basic blocks
// A descriptor for an instruction such that the block containing the
// described instruction should be split right before the instruction.
InstructionDescriptor instruction_to_split_before = 1;
// An id that must not yet be used by the module to which this transformation
// is applied. Rather than having the transformation choose a suitable id on
// application, we require the id to be given upfront in order to facilitate
// reducing fuzzed shaders by removing transformations. The reason is that
// future transformations may refer to the fresh id introduced by this
// transformation, and if we end up changing what that id is, due to removing
// earlier transformations, it may inhibit later transformations from
// applying.
uint32 fresh_id = 2;
}