SPIRV-Tools/source/validate_cfg.cpp
dan sinclair 51091045fe
Produce better error diagnostics in the CFG validation. (#1660)
Produce better error diagnostics in the CFG validation.

This CL fixes up several issues with the diagnostic error line output
in the CFG validation code. For the cases where we can determine a
better line it has been output. For other cases, we removed the
diagnostic line and the error line number from the results.

Fixes #1657
2018-07-03 15:06:54 -04:00

625 lines
24 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "cfa.h"
#include "validate.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "spirv_validator_options.h"
#include "val/basic_block.h"
#include "val/construct.h"
#include "val/function.h"
#include "val/validation_state.h"
using std::find;
using std::function;
using std::get;
using std::ignore;
using std::make_pair;
using std::make_tuple;
using std::numeric_limits;
using std::pair;
using std::string;
using std::tie;
using std::transform;
using std::tuple;
using std::unordered_map;
using std::unordered_set;
using std::vector;
using libspirv::BasicBlock;
namespace libspirv {
namespace {
using bb_ptr = BasicBlock*;
using cbb_ptr = const BasicBlock*;
using bb_iter = vector<BasicBlock*>::const_iterator;
} // namespace
void printDominatorList(const BasicBlock& b) {
std::cout << b.id() << " is dominated by: ";
const BasicBlock* bb = &b;
while (bb->immediate_dominator() != bb) {
bb = bb->immediate_dominator();
std::cout << bb->id() << " ";
}
}
#define CFG_ASSERT(ASSERT_FUNC, TARGET) \
if (spv_result_t rcode = ASSERT_FUNC(_, TARGET)) return rcode
spv_result_t FirstBlockAssert(ValidationState_t& _, uint32_t target) {
if (_.current_function().IsFirstBlock(target)) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(_.current_function().id())->InstructionPosition())
<< "First block " << _.getIdName(target) << " of function "
<< _.getIdName(_.current_function().id()) << " is targeted by block "
<< _.getIdName(_.current_function().current_block()->id());
}
return SPV_SUCCESS;
}
spv_result_t MergeBlockAssert(ValidationState_t& _, uint32_t merge_block) {
if (_.current_function().IsBlockType(merge_block, kBlockTypeMerge)) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(_.current_function().id())->InstructionPosition())
<< "Block " << _.getIdName(merge_block)
<< " is already a merge block for another header";
}
return SPV_SUCCESS;
}
/// Update the continue construct's exit blocks once the backedge blocks are
/// identified in the CFG.
void UpdateContinueConstructExitBlocks(
Function& function, const vector<pair<uint32_t, uint32_t>>& back_edges) {
auto& constructs = function.constructs();
// TODO(umar): Think of a faster way to do this
for (auto& edge : back_edges) {
uint32_t back_edge_block_id;
uint32_t loop_header_block_id;
tie(back_edge_block_id, loop_header_block_id) = edge;
auto is_this_header = [=](Construct& c) {
return c.type() == ConstructType::kLoop &&
c.entry_block()->id() == loop_header_block_id;
};
for (auto construct : constructs) {
if (is_this_header(construct)) {
Construct* continue_construct =
construct.corresponding_constructs().back();
assert(continue_construct->type() == ConstructType::kContinue);
BasicBlock* back_edge_block;
tie(back_edge_block, ignore) = function.GetBlock(back_edge_block_id);
continue_construct->set_exit(back_edge_block);
}
}
}
}
tuple<string, string, string> ConstructNames(ConstructType type) {
string construct_name, header_name, exit_name;
switch (type) {
case ConstructType::kSelection:
construct_name = "selection";
header_name = "selection header";
exit_name = "merge block";
break;
case ConstructType::kLoop:
construct_name = "loop";
header_name = "loop header";
exit_name = "merge block";
break;
case ConstructType::kContinue:
construct_name = "continue";
header_name = "continue target";
exit_name = "back-edge block";
break;
case ConstructType::kCase:
construct_name = "case";
header_name = "case entry block";
exit_name = "case exit block";
break;
default:
assert(1 == 0 && "Not defined type");
}
return make_tuple(construct_name, header_name, exit_name);
}
/// Constructs an error message for construct validation errors
string ConstructErrorString(const Construct& construct,
const string& header_string,
const string& exit_string,
const string& dominate_text) {
string construct_name, header_name, exit_name;
tie(construct_name, header_name, exit_name) =
ConstructNames(construct.type());
// TODO(umar): Add header block for continue constructs to error message
return "The " + construct_name + " construct with the " + header_name + " " +
header_string + " " + dominate_text + " the " + exit_name + " " +
exit_string;
}
// Finds the fall through case construct of |target_block| and records it in
// |case_fall_through|. Returns SPV_ERROR_INVALID_CFG if the case construct
// headed by |target_block| branches to multiple case constructs.
spv_result_t FindCaseFallThrough(
const ValidationState_t& _, const BasicBlock* target_block,
uint32_t* case_fall_through, const BasicBlock* merge,
const std::unordered_set<uint32_t>& case_targets) {
std::vector<const BasicBlock*> stack;
stack.push_back(target_block);
std::unordered_set<const BasicBlock*> visited;
while (!stack.empty()) {
const auto block = stack.back();
stack.pop_back();
if (block == merge) continue;
if (!visited.insert(block).second) continue;
if (target_block->reachable() && block->reachable() &&
target_block->dominates(*block)) {
// Still in the case construct.
for (auto successor : *block->successors()) {
stack.push_back(successor);
}
} else {
// Exiting the case construct to non-merge block.
if (!case_targets.count(block->id())) {
continue;
}
if (*case_fall_through == 0u) {
*case_fall_through = block->id();
} else if (*case_fall_through != block->id()) {
uint32_t instruction_id =
target_block->label() ? target_block->label()->InstructionPosition()
: -1;
// Case construct has at most one branch to another case construct.
return _.diag(SPV_ERROR_INVALID_CFG, instruction_id)
<< "Case construct that targets "
<< _.getIdName(target_block->id())
<< " has branches to multiple other case construct targets "
<< _.getIdName(*case_fall_through) << " and "
<< _.getIdName(block->id());
}
}
}
return SPV_SUCCESS;
}
spv_result_t StructuredSwitchChecks(const ValidationState_t& _,
const Function& function,
const Instruction* switch_inst,
const BasicBlock* header,
const BasicBlock* merge) {
std::unordered_set<uint32_t> case_targets;
for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
if (target != merge->id()) case_targets.insert(target);
}
// Tracks how many times each case construct is targeted by another case
// construct.
std::map<uint32_t, uint32_t> num_fall_through_targeted;
uint32_t default_case_fall_through = 0u;
uint32_t default_target = switch_inst->GetOperandAs<uint32_t>(1u);
std::unordered_set<uint32_t> seen;
for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
if (target == merge->id()) continue;
if (!seen.insert(target).second) continue;
const auto target_block = function.GetBlock(target).first;
// OpSwitch must dominate all its case constructs.
if (header->reachable() && target_block->reachable() &&
!header->dominates(*target_block)) {
return _.diag(SPV_ERROR_INVALID_CFG)
<< "Selection header " << _.getIdName(header->id())
<< " does not dominate its case construct " << _.getIdName(target);
}
uint32_t case_fall_through = 0u;
if (auto error = FindCaseFallThrough(_, target_block, &case_fall_through,
merge, case_targets)) {
return error;
}
// Track how many time the fall through case has been targeted.
if (case_fall_through != 0u) {
auto where = num_fall_through_targeted.lower_bound(case_fall_through);
if (where == num_fall_through_targeted.end() ||
where->first != case_fall_through) {
num_fall_through_targeted.insert(where,
std::make_pair(case_fall_through, 1));
} else {
where->second++;
}
}
if (case_fall_through == default_target) {
case_fall_through = default_case_fall_through;
}
if (case_fall_through != 0u) {
bool is_default = i == 1;
if (is_default) {
default_case_fall_through = case_fall_through;
} else {
// Allow code like:
// case x:
// case y:
// ...
// case z:
//
// Where x and y target the same block and fall through to z.
uint32_t j = i;
while ((j + 2 < switch_inst->operands().size()) &&
target == switch_inst->GetOperandAs<uint32_t>(j + 2)) {
j += 2;
}
// If Target T1 branches to Target T2, or if Target T1 branches to the
// Default target and the Default target branches to Target T2, then T1
// must immediately precede T2 in the list of OpSwitch Target operands.
if ((switch_inst->operands().size() < j + 2) ||
(case_fall_through != switch_inst->GetOperandAs<uint32_t>(j + 2))) {
return _.diag(SPV_ERROR_INVALID_CFG,
switch_inst->InstructionPosition())
<< "Case construct that targets " << _.getIdName(target)
<< " has branches to the case construct that targets "
<< _.getIdName(case_fall_through)
<< ", but does not immediately precede it in the "
"OpSwitch's target list";
}
}
}
}
// Each case construct must be branched to by at most one other case
// construct.
for (const auto& pair : num_fall_through_targeted) {
if (pair.second > 1) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(pair.first)->InstructionPosition())
<< "Multiple case constructs have branches to the case construct "
"that targets "
<< _.getIdName(pair.first);
}
}
return SPV_SUCCESS;
}
spv_result_t StructuredControlFlowChecks(
const ValidationState_t& _, Function* function,
const vector<pair<uint32_t, uint32_t>>& back_edges) {
/// Check all backedges target only loop headers and have exactly one
/// back-edge branching to it
// Map a loop header to blocks with back-edges to the loop header.
std::map<uint32_t, std::unordered_set<uint32_t>> loop_latch_blocks;
for (auto back_edge : back_edges) {
uint32_t back_edge_block;
uint32_t header_block;
tie(back_edge_block, header_block) = back_edge;
if (!function->IsBlockType(header_block, kBlockTypeLoop)) {
return _.diag(SPV_ERROR_INVALID_CFG)
<< "Back-edges (" << _.getIdName(back_edge_block) << " -> "
<< _.getIdName(header_block)
<< ") can only be formed between a block and a loop header.";
}
loop_latch_blocks[header_block].insert(back_edge_block);
}
// Check the loop headers have exactly one back-edge branching to it
for (BasicBlock* loop_header : function->ordered_blocks()) {
if (!loop_header->reachable()) continue;
if (!loop_header->is_type(kBlockTypeLoop)) continue;
auto loop_header_id = loop_header->id();
auto num_latch_blocks = loop_latch_blocks[loop_header_id].size();
if (num_latch_blocks != 1) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(loop_header_id)->InstructionPosition())
<< "Loop header " << _.getIdName(loop_header_id)
<< " is targeted by " << num_latch_blocks
<< " back-edge blocks but the standard requires exactly one";
}
}
// Check construct rules
for (const Construct& construct : function->constructs()) {
auto header = construct.entry_block();
auto merge = construct.exit_block();
if (header->reachable() && !merge) {
string construct_name, header_name, exit_name;
tie(construct_name, header_name, exit_name) =
ConstructNames(construct.type());
return _.diag(SPV_ERROR_INTERNAL,
_.FindDef(header->id())->InstructionPosition())
<< "Construct " + construct_name + " with " + header_name + " " +
_.getIdName(header->id()) + " does not have a " +
exit_name + ". This may be a bug in the validator.";
}
// If the exit block is reachable then it's dominated by the
// header.
if (merge && merge->reachable()) {
if (!header->dominates(*merge)) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(merge->id())->InstructionPosition())
<< ConstructErrorString(construct, _.getIdName(header->id()),
_.getIdName(merge->id()),
"does not dominate");
}
// If it's really a merge block for a selection or loop, then it must be
// *strictly* dominated by the header.
if (construct.ExitBlockIsMergeBlock() && (header == merge)) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(merge->id())->InstructionPosition())
<< ConstructErrorString(construct, _.getIdName(header->id()),
_.getIdName(merge->id()),
"does not strictly dominate");
}
}
// Check post-dominance for continue constructs. But dominance and
// post-dominance only make sense when the construct is reachable.
if (header->reachable() && construct.type() == ConstructType::kContinue) {
if (!merge->postdominates(*header)) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(merge->id())->InstructionPosition())
<< ConstructErrorString(construct, _.getIdName(header->id()),
_.getIdName(merge->id()),
"is not post dominated by");
}
}
// Check that for all non-header blocks, all predecessors are within this
// construct.
Construct::ConstructBlockSet construct_blocks = construct.blocks(function);
for (auto block : construct_blocks) {
if (block == header) continue;
for (auto pred : *block->predecessors()) {
if (pred->reachable() && !construct_blocks.count(pred)) {
string construct_name, header_name, exit_name;
tie(construct_name, header_name, exit_name) =
ConstructNames(construct.type());
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(pred->id())->InstructionPosition())
<< "block <ID> " << pred->id() << " branches to the "
<< construct_name << " construct, but not to the "
<< header_name << " <ID> " << header->id();
}
}
}
// Checks rules for case constructs.
if (construct.type() == ConstructType::kSelection &&
header->terminator()->opcode() == SpvOpSwitch) {
const auto terminator = header->terminator();
if (auto error =
StructuredSwitchChecks(_, *function, terminator, header, merge)) {
return error;
}
}
}
return SPV_SUCCESS;
}
spv_result_t PerformCfgChecks(ValidationState_t& _) {
for (auto& function : _.functions()) {
// Check all referenced blocks are defined within a function
if (function.undefined_block_count() != 0) {
string undef_blocks("{");
bool first = true;
for (auto undefined_block : function.undefined_blocks()) {
undef_blocks += _.getIdName(undefined_block);
if (!first) {
undef_blocks += " ";
}
first = false;
}
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(function.id())->InstructionPosition())
<< "Block(s) " << undef_blocks << "}"
<< " are referenced but not defined in function "
<< _.getIdName(function.id());
}
// Set each block's immediate dominator and immediate postdominator,
// and find all back-edges.
//
// We want to analyze all the blocks in the function, even in degenerate
// control flow cases including unreachable blocks. So use the augmented
// CFG to ensure we cover all the blocks.
vector<const BasicBlock*> postorder;
vector<const BasicBlock*> postdom_postorder;
vector<pair<uint32_t, uint32_t>> back_edges;
auto ignore_block = [](cbb_ptr) {};
auto ignore_edge = [](cbb_ptr, cbb_ptr) {};
if (!function.ordered_blocks().empty()) {
/// calculate dominators
spvtools::CFA<libspirv::BasicBlock>::DepthFirstTraversal(
function.first_block(), function.AugmentedCFGSuccessorsFunction(),
ignore_block, [&](cbb_ptr b) { postorder.push_back(b); },
ignore_edge);
auto edges = spvtools::CFA<libspirv::BasicBlock>::CalculateDominators(
postorder, function.AugmentedCFGPredecessorsFunction());
for (auto edge : edges) {
edge.first->SetImmediateDominator(edge.second);
}
/// calculate post dominators
spvtools::CFA<libspirv::BasicBlock>::DepthFirstTraversal(
function.pseudo_exit_block(),
function.AugmentedCFGPredecessorsFunction(), ignore_block,
[&](cbb_ptr b) { postdom_postorder.push_back(b); }, ignore_edge);
auto postdom_edges =
spvtools::CFA<libspirv::BasicBlock>::CalculateDominators(
postdom_postorder, function.AugmentedCFGSuccessorsFunction());
for (auto edge : postdom_edges) {
edge.first->SetImmediatePostDominator(edge.second);
}
/// calculate back edges.
spvtools::CFA<libspirv::BasicBlock>::DepthFirstTraversal(
function.pseudo_entry_block(),
function
.AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge(),
ignore_block, ignore_block, [&](cbb_ptr from, cbb_ptr to) {
back_edges.emplace_back(from->id(), to->id());
});
}
UpdateContinueConstructExitBlocks(function, back_edges);
auto& blocks = function.ordered_blocks();
if (!blocks.empty()) {
// Check if the order of blocks in the binary appear before the blocks
// they dominate
for (auto block = begin(blocks) + 1; block != end(blocks); ++block) {
if (auto idom = (*block)->immediate_dominator()) {
if (idom != function.pseudo_entry_block() &&
block == std::find(begin(blocks), block, idom)) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef(idom->id())->InstructionPosition())
<< "Block " << _.getIdName((*block)->id())
<< " appears in the binary before its dominator "
<< _.getIdName(idom->id());
}
}
}
// If we have structed control flow, check that no block has a control
// flow nesting depth larger than the limit.
if (_.HasCapability(SpvCapabilityShader)) {
const int control_flow_nesting_depth_limit =
_.options()->universal_limits_.max_control_flow_nesting_depth;
for (auto block = begin(blocks); block != end(blocks); ++block) {
if (function.GetBlockDepth(*block) >
control_flow_nesting_depth_limit) {
return _.diag(SPV_ERROR_INVALID_CFG,
_.FindDef((*block)->id())->InstructionPosition())
<< "Maximum Control Flow nesting depth exceeded.";
}
}
}
}
/// Structured control flow checks are only required for shader capabilities
if (_.HasCapability(SpvCapabilityShader)) {
if (auto error = StructuredControlFlowChecks(_, &function, back_edges))
return error;
}
}
return SPV_SUCCESS;
}
spv_result_t CfgPass(ValidationState_t& _, const Instruction* inst) {
SpvOp opcode = static_cast<SpvOp>(inst->opcode());
switch (opcode) {
case SpvOpLabel:
if (auto error = _.current_function().RegisterBlock(inst->id()))
return error;
// TODO(github:1661) This should be done in the
// ValidationState::RegisterInstruction method but because of the order of
// passes the OpLabel ends up not being part of the basic block it starts.
_.current_function().current_block()->set_label(inst);
break;
case SpvOpLoopMerge: {
uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
uint32_t continue_block = inst->GetOperandAs<uint32_t>(1);
CFG_ASSERT(MergeBlockAssert, merge_block);
if (auto error = _.current_function().RegisterLoopMerge(merge_block,
continue_block))
return error;
} break;
case SpvOpSelectionMerge: {
uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
CFG_ASSERT(MergeBlockAssert, merge_block);
if (auto error = _.current_function().RegisterSelectionMerge(merge_block))
return error;
} break;
case SpvOpBranch: {
uint32_t target = inst->GetOperandAs<uint32_t>(0);
CFG_ASSERT(FirstBlockAssert, target);
_.current_function().RegisterBlockEnd({target}, opcode);
} break;
case SpvOpBranchConditional: {
uint32_t tlabel = inst->GetOperandAs<uint32_t>(1);
uint32_t flabel = inst->GetOperandAs<uint32_t>(2);
CFG_ASSERT(FirstBlockAssert, tlabel);
CFG_ASSERT(FirstBlockAssert, flabel);
_.current_function().RegisterBlockEnd({tlabel, flabel}, opcode);
} break;
case SpvOpSwitch: {
vector<uint32_t> cases;
for (size_t i = 1; i < inst->operands().size(); i += 2) {
uint32_t target = inst->GetOperandAs<uint32_t>(i);
CFG_ASSERT(FirstBlockAssert, target);
cases.push_back(target);
}
_.current_function().RegisterBlockEnd({cases}, opcode);
} break;
case SpvOpReturn: {
const uint32_t return_type = _.current_function().GetResultTypeId();
const Instruction* return_type_inst = _.FindDef(return_type);
assert(return_type_inst);
if (return_type_inst->opcode() != SpvOpTypeVoid)
return _.diag(SPV_ERROR_INVALID_CFG, inst->InstructionPosition())
<< "OpReturn can only be called from a function with void "
<< "return type.";
}
// Fallthrough.
case SpvOpKill:
case SpvOpReturnValue:
case SpvOpUnreachable:
_.current_function().RegisterBlockEnd(vector<uint32_t>(), opcode);
if (opcode == SpvOpKill) {
_.current_function().RegisterExecutionModelLimitation(
SpvExecutionModelFragment,
"OpKill requires Fragment execution model");
}
break;
default:
break;
}
return SPV_SUCCESS;
}
} // namespace libspirv