SPIRV-Tools/source/fuzz/fuzzer_pass_add_composite_extract.cpp
Alastair Donaldson 9c4481419e
spirv-fuzz: Allow inapplicable transformations to be ignored (#4407)
spirv-fuzz features transformations that should be applicable by
construction. Assertions are used to detect when such transformations
turn out to be inapplicable. Failures of such assertions indicate bugs
in the fuzzer. However, when using the fuzzer at scale (e.g. in
ClusterFuzz) reports of these assertion failures create noise, and
cause the fuzzer to exit early. This change adds an option whereby
inapplicable transformations can be ignored. This reduces noise and
allows fuzzing to continue even when a transformation that should be
applicable but is not has been erroneously created.
2021-07-28 22:59:37 +01:00

161 lines
6.0 KiB
C++

// Copyright (c) 2020 Vasyl Teliman
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_add_composite_extract.h"
#include "source/fuzz/available_instructions.h"
#include "source/fuzz/fuzzer_context.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_descriptor.h"
#include "source/fuzz/transformation_composite_extract.h"
namespace spvtools {
namespace fuzz {
FuzzerPassAddCompositeExtract::FuzzerPassAddCompositeExtract(
opt::IRContext* ir_context, TransformationContext* transformation_context,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations,
bool ignore_inapplicable_transformations)
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
transformations, ignore_inapplicable_transformations) {}
void FuzzerPassAddCompositeExtract::Apply() {
std::vector<const protobufs::DataDescriptor*> composite_synonyms;
for (const auto* dd :
GetTransformationContext()->GetFactManager()->GetAllSynonyms()) {
// |dd| must describe a component of a composite.
if (!dd->index().empty()) {
composite_synonyms.push_back(dd);
}
}
AvailableInstructions available_composites(
GetIRContext(), [](opt::IRContext* ir_context, opt::Instruction* inst) {
return inst->type_id() && inst->result_id() &&
fuzzerutil::IsCompositeType(
ir_context->get_type_mgr()->GetType(inst->type_id()));
});
ForEachInstructionWithInstructionDescriptor(
[this, &available_composites, &composite_synonyms](
opt::Function* /*unused*/, opt::BasicBlock* /*unused*/,
opt::BasicBlock::iterator inst_it,
const protobufs::InstructionDescriptor& instruction_descriptor) {
if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(SpvOpCompositeExtract,
inst_it)) {
return;
}
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfAddingCompositeExtract())) {
return;
}
std::vector<const protobufs::DataDescriptor*> available_synonyms;
for (const auto* dd : composite_synonyms) {
if (fuzzerutil::IdIsAvailableBeforeInstruction(
GetIRContext(), &*inst_it, dd->object())) {
available_synonyms.push_back(dd);
}
}
auto candidate_composites =
available_composites.GetAvailableBeforeInstruction(&*inst_it);
if (available_synonyms.empty() && candidate_composites.empty()) {
return;
}
uint32_t composite_id = 0;
std::vector<uint32_t> indices;
if (available_synonyms.empty() || (!candidate_composites.empty() &&
GetFuzzerContext()->ChooseEven())) {
const auto* inst =
candidate_composites[GetFuzzerContext()->RandomIndex(
candidate_composites)];
composite_id = inst->result_id();
auto type_id = inst->type_id();
do {
uint32_t number_of_members = 0;
const auto* type_inst =
GetIRContext()->get_def_use_mgr()->GetDef(type_id);
assert(type_inst && "Composite instruction has invalid type id");
switch (type_inst->opcode()) {
case SpvOpTypeArray:
number_of_members =
fuzzerutil::GetArraySize(*type_inst, GetIRContext());
break;
case SpvOpTypeVector:
case SpvOpTypeMatrix:
number_of_members = type_inst->GetSingleWordInOperand(1);
break;
case SpvOpTypeStruct:
number_of_members = type_inst->NumInOperands();
break;
default:
assert(false && "|type_inst| is not a composite");
return;
}
if (number_of_members == 0) {
return;
}
indices.push_back(
GetFuzzerContext()->GetRandomCompositeExtractIndex(
number_of_members));
switch (type_inst->opcode()) {
case SpvOpTypeArray:
case SpvOpTypeVector:
case SpvOpTypeMatrix:
type_id = type_inst->GetSingleWordInOperand(0);
break;
case SpvOpTypeStruct:
type_id = type_inst->GetSingleWordInOperand(indices.back());
break;
default:
assert(false && "|type_inst| is not a composite");
return;
}
} while (fuzzerutil::IsCompositeType(
GetIRContext()->get_type_mgr()->GetType(type_id)) &&
GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()
->GetChanceOfGoingDeeperToExtractComposite()));
} else {
const auto* dd = available_synonyms[GetFuzzerContext()->RandomIndex(
available_synonyms)];
composite_id = dd->object();
indices.assign(dd->index().begin(), dd->index().end());
}
assert(composite_id != 0 && !indices.empty() &&
"Composite object should have been chosen correctly");
ApplyTransformation(TransformationCompositeExtract(
instruction_descriptor, GetFuzzerContext()->GetFreshId(),
composite_id, indices));
});
}
} // namespace fuzz
} // namespace spvtools