SPIRV-Tools/source/fuzz/transformation_flatten_conditional_branch.cpp
Alastair Donaldson fcb22ecf0f
spirv-fuzz: Report fresh ids in transformations (#3856)
Adds a virtual method, GetFreshIds(), to Transformation. Every
transformation uses this to indicate which ids in its protobuf message
are fresh ids. This means that when replaying a sequence of
transformations the replayer can obtain a smallest id that is not in
use by the module already and that will not be used by any
transformation by necessity. Ids greater than or equal to this id
can be used as overflow ids.

Fixes #3851.
2020-09-29 22:12:49 +01:00

717 lines
30 KiB
C++

// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/transformation_flatten_conditional_branch.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_descriptor.h"
namespace spvtools {
namespace fuzz {
TransformationFlattenConditionalBranch::TransformationFlattenConditionalBranch(
const protobufs::TransformationFlattenConditionalBranch& message)
: message_(message) {}
TransformationFlattenConditionalBranch::TransformationFlattenConditionalBranch(
uint32_t header_block_id, bool true_branch_first,
const std::vector<protobufs::SideEffectWrapperInfo>&
side_effect_wrappers_info) {
message_.set_header_block_id(header_block_id);
message_.set_true_branch_first(true_branch_first);
for (auto const& side_effect_wrapper_info : side_effect_wrappers_info) {
*message_.add_side_effect_wrapper_info() = side_effect_wrapper_info;
}
}
bool TransformationFlattenConditionalBranch::IsApplicable(
opt::IRContext* ir_context,
const TransformationContext& transformation_context) const {
uint32_t header_block_id = message_.header_block_id();
auto header_block = fuzzerutil::MaybeFindBlock(ir_context, header_block_id);
// The block must have been found and it must be a selection header.
if (!header_block || !header_block->GetMergeInst() ||
header_block->GetMergeInst()->opcode() != SpvOpSelectionMerge) {
return false;
}
// The header block must end with an OpBranchConditional instruction.
if (header_block->terminator()->opcode() != SpvOpBranchConditional) {
return false;
}
// Use a set to keep track of the instructions that require fresh ids.
std::set<opt::Instruction*> instructions_that_need_ids;
// Check that, if there are enough ids, the conditional can be flattened and,
// if so, add all the problematic instructions that need to be enclosed inside
// conditionals to |instructions_that_need_ids|.
if (!GetProblematicInstructionsIfConditionalCanBeFlattened(
ir_context, header_block, &instructions_that_need_ids)) {
return false;
}
// Get the mapping from instructions to the fresh ids needed to enclose them
// inside conditionals.
auto insts_to_wrapper_info = GetInstructionsToWrapperInfo(ir_context);
{
std::set<uint32_t> used_fresh_ids;
// Check the ids in the map.
for (const auto& inst_to_info : insts_to_wrapper_info) {
// Check the fresh ids needed for all of the instructions that need to be
// enclosed inside a conditional.
for (uint32_t id : {inst_to_info.second.merge_block_id(),
inst_to_info.second.execute_block_id()}) {
if (!id || !CheckIdIsFreshAndNotUsedByThisTransformation(
id, ir_context, &used_fresh_ids)) {
return false;
}
}
// Check the other ids needed, if the instruction needs a placeholder.
if (InstructionNeedsPlaceholder(ir_context, *inst_to_info.first)) {
// Check the fresh ids.
for (uint32_t id : {inst_to_info.second.actual_result_id(),
inst_to_info.second.alternative_block_id(),
inst_to_info.second.placeholder_result_id()}) {
if (!id || !CheckIdIsFreshAndNotUsedByThisTransformation(
id, ir_context, &used_fresh_ids)) {
return false;
}
}
// Check that the placeholder value id exists, has the right type and is
// available to use at this point.
auto value_def = ir_context->get_def_use_mgr()->GetDef(
inst_to_info.second.value_to_copy_id());
if (!value_def ||
value_def->type_id() != inst_to_info.first->type_id() ||
!fuzzerutil::IdIsAvailableBeforeInstruction(
ir_context, inst_to_info.first,
inst_to_info.second.value_to_copy_id())) {
return false;
}
}
}
}
// If some instructions that require ids are not in the map, the
// transformation needs overflow ids to be applicable.
for (auto instruction : instructions_that_need_ids) {
if (insts_to_wrapper_info.count(instruction) == 0 &&
!transformation_context.GetOverflowIdSource()->HasOverflowIds()) {
return false;
}
}
// All checks were passed.
return true;
}
void TransformationFlattenConditionalBranch::Apply(
opt::IRContext* ir_context,
TransformationContext* transformation_context) const {
uint32_t header_block_id = message_.header_block_id();
auto header_block = ir_context->cfg()->block(header_block_id);
// Find the first block where flow converges (it is not necessarily the merge
// block) by walking the true branch until reaching a block that
// post-dominates the header.
// This is necessary because a potential common set of blocks at the end of
// the construct should not be duplicated.
uint32_t convergence_block_id =
header_block->terminator()->GetSingleWordInOperand(1);
auto postdominator_analysis =
ir_context->GetPostDominatorAnalysis(header_block->GetParent());
while (!postdominator_analysis->Dominates(convergence_block_id,
header_block_id)) {
auto current_block = ir_context->get_instr_block(convergence_block_id);
// If the transformation is applicable, the terminator is OpBranch.
convergence_block_id =
current_block->terminator()->GetSingleWordInOperand(0);
}
// Get the mapping from instructions to fresh ids.
auto insts_to_info = GetInstructionsToWrapperInfo(ir_context);
auto branch_instruction = header_block->terminator();
// Get a reference to the last block in the first branch that will be laid out
// (this depends on |message_.true_branch_first|). The last block is the block
// in the branch just before flow converges (it might not exist).
opt::BasicBlock* last_block_first_branch = nullptr;
// branch = 1 corresponds to the true branch, branch = 2 corresponds to the
// false branch. If the true branch is to be laid out first, we need to visit
// the false branch first, because each branch is moved to right after the
// header while it is visited.
std::vector<uint32_t> branches = {2, 1};
if (!message_.true_branch_first()) {
// Similarly, we need to visit the true branch first, if we want it to be
// laid out after the false branch.
branches = {1, 2};
}
// Keep track of blocks and ids for which we should later add dead block and
// irrelevant id facts. We wait until we have finished applying the
// transformation before adding these facts, so that the fact manager has
// access to the fully up-to-date module.
std::vector<uint32_t> dead_blocks;
std::vector<uint32_t> irrelevant_ids;
// Adjust the conditional branches by enclosing problematic instructions
// within conditionals and get references to the last block in each branch.
for (uint32_t branch : branches) {
auto current_block = header_block;
// Get the id of the first block in this branch.
uint32_t next_block_id = branch_instruction->GetSingleWordInOperand(branch);
// Consider all blocks in the branch until the convergence block is reached.
while (next_block_id != convergence_block_id) {
// Move the next block to right after the current one.
current_block->GetParent()->MoveBasicBlockToAfter(next_block_id,
current_block);
// Move forward in the branch.
current_block = ir_context->cfg()->block(next_block_id);
// Find all the instructions in the current block which need to be
// enclosed inside conditionals.
std::vector<opt::Instruction*> problematic_instructions;
current_block->ForEachInst(
[&problematic_instructions](opt::Instruction* instruction) {
if (instruction->opcode() != SpvOpLabel &&
instruction->opcode() != SpvOpBranch &&
!fuzzerutil::InstructionHasNoSideEffects(*instruction)) {
problematic_instructions.push_back(instruction);
}
});
uint32_t condition_id =
header_block->terminator()->GetSingleWordInOperand(0);
// Enclose all of the problematic instructions in conditionals, with the
// same condition as the selection construct being flattened.
for (auto instruction : problematic_instructions) {
// Get the info needed by this instruction to wrap it inside a
// conditional.
protobufs::SideEffectWrapperInfo wrapper_info;
if (insts_to_info.count(instruction) != 0) {
// Get the fresh ids from the map, if present.
wrapper_info = insts_to_info[instruction];
} else {
// If we could not get it from the map, use overflow ids. We don't
// need to set |wrapper_info.instruction|, as it will not be used.
wrapper_info.set_merge_block_id(
transformation_context->GetOverflowIdSource()
->GetNextOverflowId());
wrapper_info.set_execute_block_id(
transformation_context->GetOverflowIdSource()
->GetNextOverflowId());
if (InstructionNeedsPlaceholder(ir_context, *instruction)) {
// Ge the fresh ids from the overflow ids.
wrapper_info.set_actual_result_id(
transformation_context->GetOverflowIdSource()
->GetNextOverflowId());
wrapper_info.set_alternative_block_id(
transformation_context->GetOverflowIdSource()
->GetNextOverflowId());
wrapper_info.set_placeholder_result_id(
transformation_context->GetOverflowIdSource()
->GetNextOverflowId());
// Try to find a zero constant. It does not matter whether it is
// relevant or irrelevant.
for (bool is_irrelevant : {true, false}) {
wrapper_info.set_value_to_copy_id(
fuzzerutil::MaybeGetZeroConstant(
ir_context, *transformation_context,
instruction->type_id(), is_irrelevant));
if (wrapper_info.value_to_copy_id()) {
break;
}
}
}
}
// Enclose the instruction in a conditional and get the merge block
// generated by this operation (this is where all the following
// instructions will be).
current_block = EncloseInstructionInConditional(
ir_context, *transformation_context, current_block, instruction,
wrapper_info, condition_id, branch == 1, &dead_blocks,
&irrelevant_ids);
}
next_block_id = current_block->terminator()->GetSingleWordInOperand(0);
// If the next block is the convergence block and this the branch that
// will be laid out right after the header, record this as the last block
// in the first branch.
if (next_block_id == convergence_block_id && branch == branches[1]) {
last_block_first_branch = current_block;
}
}
}
// Get the condition operand and the ids of the starting blocks of the first
// and last branches to be laid out. The first branch is the true branch iff
// |message_.true_branch_first| is true.
auto condition_operand = branch_instruction->GetInOperand(0);
uint32_t first_block_first_branch_id =
branch_instruction->GetSingleWordInOperand(branches[1]);
uint32_t first_block_last_branch_id =
branch_instruction->GetSingleWordInOperand(branches[0]);
// The current header should unconditionally branch to the starting block in
// the first branch to be laid out, if such a branch exists (i.e. the header
// does not branch directly to the convergence block), and to the starting
// block in the last branch to be laid out otherwise.
uint32_t after_header = first_block_first_branch_id != convergence_block_id
? first_block_first_branch_id
: first_block_last_branch_id;
// Kill the merge instruction and the branch instruction in the current
// header.
auto merge_inst = header_block->GetMergeInst();
ir_context->KillInst(branch_instruction);
ir_context->KillInst(merge_inst);
// Add a new, unconditional, branch instruction from the current header to
// |after_header|.
header_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpBranch, 0, 0,
opt::Instruction::OperandList{{SPV_OPERAND_TYPE_ID, {after_header}}}));
// If the first branch to be laid out exists, change the branch instruction so
// that the last block in such branch unconditionally branches to the first
// block in the other branch (or the convergence block if there is no other
// branch) and change the OpPhi instructions in the last branch accordingly
// (the predecessor changed).
if (last_block_first_branch) {
last_block_first_branch->terminator()->SetInOperand(
0, {first_block_last_branch_id});
// Change the OpPhi instructions of the last branch (if there is another
// branch) so that the predecessor is now the last block of the first
// branch. The block must have a single predecessor, so the operand
// specifying the predecessor is always in the same position.
if (first_block_last_branch_id != convergence_block_id) {
ir_context->get_instr_block(first_block_last_branch_id)
->ForEachPhiInst(
[&last_block_first_branch](opt::Instruction* phi_inst) {
// The operand specifying the predecessor is the second input
// operand.
phi_inst->SetInOperand(1, {last_block_first_branch->id()});
});
}
}
// If the OpBranchConditional instruction in the header branches to the same
// block for both values of the condition, this is the convergence block (the
// flow does not actually diverge) and the OpPhi instructions in it are still
// valid, so we do not need to make any changes.
if (first_block_first_branch_id != first_block_last_branch_id) {
// Replace all of the current OpPhi instructions in the convergence block
// with OpSelect.
ir_context->get_instr_block(convergence_block_id)
->ForEachPhiInst([&condition_operand](opt::Instruction* phi_inst) {
phi_inst->SetOpcode(SpvOpSelect);
std::vector<opt::Operand> operands;
operands.emplace_back(condition_operand);
// Only consider the operands referring to the instructions ids, as
// the block labels are not necessary anymore.
for (uint32_t i = 0; i < phi_inst->NumInOperands(); i += 2) {
operands.emplace_back(phi_inst->GetInOperand(i));
}
phi_inst->SetInOperands(std::move(operands));
});
}
// Invalidate all analyses
ir_context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone);
// Now that we have finished adding blocks and ids to the module and
// invalidated existing analyses, update the fact manager regarding dead
// blocks and irrelevant ids.
for (auto dead_block : dead_blocks) {
transformation_context->GetFactManager()->AddFactBlockIsDead(dead_block);
}
for (auto irrelevant_id : irrelevant_ids) {
transformation_context->GetFactManager()->AddFactIdIsIrrelevant(
irrelevant_id);
}
}
protobufs::Transformation TransformationFlattenConditionalBranch::ToMessage()
const {
protobufs::Transformation result;
*result.mutable_flatten_conditional_branch() = message_;
return result;
}
bool TransformationFlattenConditionalBranch::
GetProblematicInstructionsIfConditionalCanBeFlattened(
opt::IRContext* ir_context, opt::BasicBlock* header,
std::set<opt::Instruction*>* instructions_that_need_ids) {
uint32_t merge_block_id = header->MergeBlockIdIfAny();
assert(merge_block_id &&
header->GetMergeInst()->opcode() == SpvOpSelectionMerge &&
header->terminator()->opcode() == SpvOpBranchConditional &&
"|header| must be the header of a conditional.");
auto enclosing_function = header->GetParent();
auto dominator_analysis =
ir_context->GetDominatorAnalysis(enclosing_function);
auto postdominator_analysis =
ir_context->GetPostDominatorAnalysis(enclosing_function);
// Check that the header and the merge block describe a single-entry,
// single-exit region.
if (!dominator_analysis->Dominates(header->id(), merge_block_id) ||
!postdominator_analysis->Dominates(merge_block_id, header->id())) {
return false;
}
// Traverse the CFG starting from the header and check that, for all the
// blocks that can be reached by the header before the flow converges:
// - they don't contain merge, barrier or OpSampledImage instructions
// - they branch unconditionally to another block
// Add any side-effecting instruction, requiring fresh ids, to
// |instructions_that_need_ids|
std::list<uint32_t> to_check;
header->ForEachSuccessorLabel(
[&to_check](uint32_t label) { to_check.push_back(label); });
while (!to_check.empty()) {
uint32_t block_id = to_check.front();
to_check.pop_front();
// If the block post-dominates the header, this is where flow converges, and
// we don't need to check this branch any further, because the
// transformation will only change the part of the graph where flow is
// divergent.
if (postdominator_analysis->Dominates(block_id, header->id())) {
continue;
}
auto block = ir_context->cfg()->block(block_id);
// The block must not have a merge instruction, because inner constructs are
// not allowed.
if (block->GetMergeInst()) {
return false;
}
// The terminator instruction for the block must be OpBranch.
if (block->terminator()->opcode() != SpvOpBranch) {
return false;
}
// Check all of the instructions in the block.
bool all_instructions_compatible =
block->WhileEachInst([ir_context, instructions_that_need_ids](
opt::Instruction* instruction) {
// We can ignore OpLabel instructions.
if (instruction->opcode() == SpvOpLabel) {
return true;
}
// If the instruction is a branch, it must be an unconditional branch.
if (instruction->IsBranch()) {
return instruction->opcode() == SpvOpBranch;
}
// We cannot go ahead if we encounter an instruction that cannot be
// handled.
if (!InstructionCanBeHandled(ir_context, *instruction)) {
return false;
}
// If the instruction has side effects, add it to the
// |instructions_that_need_ids| set.
if (!fuzzerutil::InstructionHasNoSideEffects(*instruction)) {
instructions_that_need_ids->emplace(instruction);
}
return true;
});
if (!all_instructions_compatible) {
return false;
}
// Add the successor of this block to the list of blocks that need to be
// checked.
to_check.push_back(block->terminator()->GetSingleWordInOperand(0));
}
// All the blocks are compatible with the transformation and this is indeed a
// single-entry, single-exit region.
return true;
}
bool TransformationFlattenConditionalBranch::InstructionNeedsPlaceholder(
opt::IRContext* ir_context, const opt::Instruction& instruction) {
assert(!fuzzerutil::InstructionHasNoSideEffects(instruction) &&
InstructionCanBeHandled(ir_context, instruction) &&
"The instruction must have side effects and it must be possible to "
"enclose it inside a conditional.");
if (instruction.HasResultId()) {
// We need a placeholder iff the type is not Void.
auto type = ir_context->get_type_mgr()->GetType(instruction.type_id());
return type && !type->AsVoid();
}
return false;
}
std::unordered_map<opt::Instruction*, protobufs::SideEffectWrapperInfo>
TransformationFlattenConditionalBranch::GetInstructionsToWrapperInfo(
opt::IRContext* ir_context) const {
std::unordered_map<opt::Instruction*, protobufs::SideEffectWrapperInfo>
instructions_to_ids;
for (const auto& wrapper_info : message_.side_effect_wrapper_info()) {
auto instruction = FindInstruction(wrapper_info.instruction(), ir_context);
if (instruction) {
instructions_to_ids.emplace(instruction, wrapper_info);
}
}
return instructions_to_ids;
}
opt::BasicBlock*
TransformationFlattenConditionalBranch::EncloseInstructionInConditional(
opt::IRContext* ir_context,
const TransformationContext& transformation_context, opt::BasicBlock* block,
opt::Instruction* instruction,
const protobufs::SideEffectWrapperInfo& wrapper_info, uint32_t condition_id,
bool exec_if_cond_true, std::vector<uint32_t>* dead_blocks,
std::vector<uint32_t>* irrelevant_ids) const {
// Get the next instruction (it will be useful for splitting).
auto next_instruction = instruction->NextNode();
// Update the module id bound.
for (uint32_t id :
{wrapper_info.merge_block_id(), wrapper_info.execute_block_id()}) {
fuzzerutil::UpdateModuleIdBound(ir_context, id);
}
// Create the block where the instruction is executed by splitting the
// original block.
auto execute_block = block->SplitBasicBlock(
ir_context, wrapper_info.execute_block_id(),
fuzzerutil::GetIteratorForInstruction(block, instruction));
// Create the merge block for the conditional that we are about to create by
// splitting execute_block (this will leave |instruction| as the only
// instruction in |execute_block|).
auto merge_block = execute_block->SplitBasicBlock(
ir_context, wrapper_info.merge_block_id(),
fuzzerutil::GetIteratorForInstruction(execute_block, next_instruction));
// Propagate the fact that the block is dead to the newly-created blocks.
if (transformation_context.GetFactManager()->BlockIsDead(block->id())) {
dead_blocks->emplace_back(execute_block->id());
dead_blocks->emplace_back(merge_block->id());
}
// Initially, consider the merge block as the alternative block to branch to
// if the instruction should not be executed.
auto alternative_block = merge_block;
// Add an unconditional branch from |execute_block| to |merge_block|.
execute_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpBranch, 0, 0,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {merge_block->id()}}}));
// If the instruction requires a placeholder, it means that it has a result id
// and its result needs to be able to be used later on, and we need to:
// - add an additional block |ids.alternative_block_id| where a placeholder
// result id (using fresh id |ids.placeholder_result_id|) is obtained either
// by using OpCopyObject and copying |ids.value_to_copy_id| or, if such id
// was not given and a suitable constant was not found, by using OpUndef.
// - mark |ids.placeholder_result_id| as irrelevant
// - change the result id of the instruction to a fresh id
// (|ids.actual_result_id|).
// - add an OpPhi instruction, which will have the original result id of the
// instruction, in the merge block.
if (InstructionNeedsPlaceholder(ir_context, *instruction)) {
// Update the module id bound with the additional ids.
for (uint32_t id :
{wrapper_info.actual_result_id(), wrapper_info.alternative_block_id(),
wrapper_info.placeholder_result_id()}) {
fuzzerutil::UpdateModuleIdBound(ir_context, id);
}
// Create a new block using |fresh_ids.alternative_block_id| for its label.
auto alternative_block_temp =
MakeUnique<opt::BasicBlock>(MakeUnique<opt::Instruction>(
ir_context, SpvOpLabel, 0, wrapper_info.alternative_block_id(),
opt::Instruction::OperandList{}));
// Keep the original result id of the instruction in a variable.
uint32_t original_result_id = instruction->result_id();
// Set the result id of the instruction to be |ids.actual_result_id|.
instruction->SetResultId(wrapper_info.actual_result_id());
// Add a placeholder instruction, with the same type as the original
// instruction and id |ids.placeholder_result_id|, to the new block.
if (wrapper_info.value_to_copy_id()) {
// If there is an available id to copy from, the placeholder instruction
// will be %placeholder_result_id = OpCopyObject %type %value_to_copy_id
alternative_block_temp->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpCopyObject, instruction->type_id(),
wrapper_info.placeholder_result_id(),
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {wrapper_info.value_to_copy_id()}}}));
} else {
// If there is no such id, use an OpUndef instruction.
alternative_block_temp->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpUndef, instruction->type_id(),
wrapper_info.placeholder_result_id(),
opt::Instruction::OperandList{}));
}
// Mark |ids.placeholder_result_id| as irrelevant.
irrelevant_ids->emplace_back(wrapper_info.placeholder_result_id());
// Add an unconditional branch from the new block to the merge block.
alternative_block_temp->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpBranch, 0, 0,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {merge_block->id()}}}));
// Insert the block before the merge block.
alternative_block = block->GetParent()->InsertBasicBlockBefore(
std::move(alternative_block_temp), merge_block);
// Using the original instruction result id, add an OpPhi instruction to the
// merge block, which will either take the value of the result of the
// instruction or the placeholder value defined in the alternative block.
merge_block->begin().InsertBefore(MakeUnique<opt::Instruction>(
ir_context, SpvOpPhi, instruction->type_id(), original_result_id,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {instruction->result_id()}},
{SPV_OPERAND_TYPE_ID, {execute_block->id()}},
{SPV_OPERAND_TYPE_ID, {wrapper_info.placeholder_result_id()}},
{SPV_OPERAND_TYPE_ID, {alternative_block->id()}}}));
// Propagate the fact that the block is dead to the new block.
if (transformation_context.GetFactManager()->BlockIsDead(block->id())) {
dead_blocks->emplace_back(alternative_block->id());
}
}
// Depending on whether the instruction should be executed in the if branch or
// in the else branch, get the corresponding ids.
auto if_block_id = (exec_if_cond_true ? execute_block : alternative_block)
->GetLabel()
->result_id();
auto else_block_id = (exec_if_cond_true ? alternative_block : execute_block)
->GetLabel()
->result_id();
// Add an OpSelectionMerge instruction to the block.
block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpSelectionMerge, 0, 0,
opt::Instruction::OperandList{{SPV_OPERAND_TYPE_ID, {merge_block->id()}},
{SPV_OPERAND_TYPE_SELECTION_CONTROL,
{SpvSelectionControlMaskNone}}}));
// Add an OpBranchConditional, to the block, using |condition_id| as the
// condition and branching to |if_block_id| if the condition is true and to
// |else_block_id| if the condition is false.
block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpBranchConditional, 0, 0,
opt::Instruction::OperandList{{SPV_OPERAND_TYPE_ID, {condition_id}},
{SPV_OPERAND_TYPE_ID, {if_block_id}},
{SPV_OPERAND_TYPE_ID, {else_block_id}}}));
return merge_block;
}
bool TransformationFlattenConditionalBranch::InstructionCanBeHandled(
opt::IRContext* ir_context, const opt::Instruction& instruction) {
// We can handle all instructions with no side effects.
if (fuzzerutil::InstructionHasNoSideEffects(instruction)) {
return true;
}
// We cannot handle barrier instructions, while we should be able to handle
// all other instructions by enclosing them inside a conditional.
if (instruction.opcode() == SpvOpControlBarrier ||
instruction.opcode() == SpvOpMemoryBarrier ||
instruction.opcode() == SpvOpNamedBarrierInitialize ||
instruction.opcode() == SpvOpMemoryNamedBarrier ||
instruction.opcode() == SpvOpTypeNamedBarrier) {
return false;
}
// We cannot handle OpSampledImage instructions, as they need to be in the
// same block as their use.
if (instruction.opcode() == SpvOpSampledImage) {
return false;
}
// We cannot handle instructions with an id which return a void type, if the
// result id is used in the module (e.g. a function call to a function that
// returns nothing).
if (instruction.HasResultId()) {
auto type = ir_context->get_type_mgr()->GetType(instruction.type_id());
assert(type && "The type should be found in the module");
if (type->AsVoid() &&
!ir_context->get_def_use_mgr()->WhileEachUse(
instruction.result_id(),
[](opt::Instruction* use_inst, uint32_t use_index) {
// Return false if the id is used as an input operand.
return use_index <
use_inst->NumOperands() - use_inst->NumInOperands();
})) {
return false;
}
}
return true;
}
std::unordered_set<uint32_t>
TransformationFlattenConditionalBranch::GetFreshIds() const {
std::unordered_set<uint32_t> result;
for (auto& side_effect_wrapper_info : message_.side_effect_wrapper_info()) {
result.insert(side_effect_wrapper_info.merge_block_id());
result.insert(side_effect_wrapper_info.execute_block_id());
result.insert(side_effect_wrapper_info.actual_result_id());
result.insert(side_effect_wrapper_info.alternative_block_id());
result.insert(side_effect_wrapper_info.placeholder_result_id());
}
return result;
}
} // namespace fuzz
} // namespace spvtools