SPIRV-Tools/source/opt/scalar_replacement_pass.cpp
Steven Perron 55ea57a785
Handle extract with no indexes (#2910)
* Handle extract with no indexes

It is possible that OpCompositeExtract instructions will not have any
indexes.  This is not handled well by scalar replacement and instruction
folding.

Fixes https://crbug.com/1006435

* Fix typo.
2019-09-24 16:19:31 -04:00

904 lines
30 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/scalar_replacement_pass.h"
#include <algorithm>
#include <queue>
#include <tuple>
#include <utility>
#include "source/enum_string_mapping.h"
#include "source/extensions.h"
#include "source/opt/reflect.h"
#include "source/opt/types.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace opt {
Pass::Status ScalarReplacementPass::Process() {
Status status = Status::SuccessWithoutChange;
for (auto& f : *get_module()) {
Status functionStatus = ProcessFunction(&f);
if (functionStatus == Status::Failure)
return functionStatus;
else if (functionStatus == Status::SuccessWithChange)
status = functionStatus;
}
return status;
}
Pass::Status ScalarReplacementPass::ProcessFunction(Function* function) {
std::queue<Instruction*> worklist;
BasicBlock& entry = *function->begin();
for (auto iter = entry.begin(); iter != entry.end(); ++iter) {
// Function storage class OpVariables must appear as the first instructions
// of the entry block.
if (iter->opcode() != SpvOpVariable) break;
Instruction* varInst = &*iter;
if (CanReplaceVariable(varInst)) {
worklist.push(varInst);
}
}
Status status = Status::SuccessWithoutChange;
while (!worklist.empty()) {
Instruction* varInst = worklist.front();
worklist.pop();
Status var_status = ReplaceVariable(varInst, &worklist);
if (var_status == Status::Failure)
return var_status;
else if (var_status == Status::SuccessWithChange)
status = var_status;
}
return status;
}
Pass::Status ScalarReplacementPass::ReplaceVariable(
Instruction* inst, std::queue<Instruction*>* worklist) {
std::vector<Instruction*> replacements;
if (!CreateReplacementVariables(inst, &replacements)) {
return Status::Failure;
}
std::vector<Instruction*> dead;
bool replaced_all_uses = get_def_use_mgr()->WhileEachUser(
inst, [this, &replacements, &dead](Instruction* user) {
if (!IsAnnotationInst(user->opcode())) {
switch (user->opcode()) {
case SpvOpLoad:
if (ReplaceWholeLoad(user, replacements)) {
dead.push_back(user);
} else {
return false;
}
break;
case SpvOpStore:
if (ReplaceWholeStore(user, replacements)) {
dead.push_back(user);
} else {
return false;
}
break;
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
if (ReplaceAccessChain(user, replacements))
dead.push_back(user);
else
return false;
break;
case SpvOpName:
case SpvOpMemberName:
break;
default:
assert(false && "Unexpected opcode");
break;
}
}
return true;
});
if (replaced_all_uses) {
dead.push_back(inst);
} else {
return Status::Failure;
}
// If there are no dead instructions to clean up, return with no changes.
if (dead.empty()) return Status::SuccessWithoutChange;
// Clean up some dead code.
while (!dead.empty()) {
Instruction* toKill = dead.back();
dead.pop_back();
context()->KillInst(toKill);
}
// Attempt to further scalarize.
for (auto var : replacements) {
if (var->opcode() == SpvOpVariable) {
if (get_def_use_mgr()->NumUsers(var) == 0) {
context()->KillInst(var);
} else if (CanReplaceVariable(var)) {
worklist->push(var);
}
}
}
return Status::SuccessWithChange;
}
bool ScalarReplacementPass::ReplaceWholeLoad(
Instruction* load, const std::vector<Instruction*>& replacements) {
// Replaces the load of the entire composite with a load from each replacement
// variable followed by a composite construction.
BasicBlock* block = context()->get_instr_block(load);
std::vector<Instruction*> loads;
loads.reserve(replacements.size());
BasicBlock::iterator where(load);
for (auto var : replacements) {
// Create a load of each replacement variable.
if (var->opcode() != SpvOpVariable) {
loads.push_back(var);
continue;
}
Instruction* type = GetStorageType(var);
uint32_t loadId = TakeNextId();
if (loadId == 0) {
return false;
}
std::unique_ptr<Instruction> newLoad(
new Instruction(context(), SpvOpLoad, type->result_id(), loadId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {var->result_id()}}}));
// Copy memory access attributes which start at index 1. Index 0 is the
// pointer to load.
for (uint32_t i = 1; i < load->NumInOperands(); ++i) {
Operand copy(load->GetInOperand(i));
newLoad->AddOperand(std::move(copy));
}
where = where.InsertBefore(std::move(newLoad));
get_def_use_mgr()->AnalyzeInstDefUse(&*where);
context()->set_instr_block(&*where, block);
loads.push_back(&*where);
}
// Construct a new composite.
uint32_t compositeId = TakeNextId();
if (compositeId == 0) {
return false;
}
where = load;
std::unique_ptr<Instruction> compositeConstruct(new Instruction(
context(), SpvOpCompositeConstruct, load->type_id(), compositeId, {}));
for (auto l : loads) {
Operand op(SPV_OPERAND_TYPE_ID,
std::initializer_list<uint32_t>{l->result_id()});
compositeConstruct->AddOperand(std::move(op));
}
where = where.InsertBefore(std::move(compositeConstruct));
get_def_use_mgr()->AnalyzeInstDefUse(&*where);
context()->set_instr_block(&*where, block);
context()->ReplaceAllUsesWith(load->result_id(), compositeId);
return true;
}
bool ScalarReplacementPass::ReplaceWholeStore(
Instruction* store, const std::vector<Instruction*>& replacements) {
// Replaces a store to the whole composite with a series of extract and stores
// to each element.
uint32_t storeInput = store->GetSingleWordInOperand(1u);
BasicBlock* block = context()->get_instr_block(store);
BasicBlock::iterator where(store);
uint32_t elementIndex = 0;
for (auto var : replacements) {
// Create the extract.
if (var->opcode() != SpvOpVariable) {
elementIndex++;
continue;
}
Instruction* type = GetStorageType(var);
uint32_t extractId = TakeNextId();
if (extractId == 0) {
return false;
}
std::unique_ptr<Instruction> extract(new Instruction(
context(), SpvOpCompositeExtract, type->result_id(), extractId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {storeInput}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {elementIndex++}}}));
auto iter = where.InsertBefore(std::move(extract));
get_def_use_mgr()->AnalyzeInstDefUse(&*iter);
context()->set_instr_block(&*iter, block);
// Create the store.
std::unique_ptr<Instruction> newStore(
new Instruction(context(), SpvOpStore, 0, 0,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {var->result_id()}},
{SPV_OPERAND_TYPE_ID, {extractId}}}));
// Copy memory access attributes which start at index 2. Index 0 is the
// pointer and index 1 is the data.
for (uint32_t i = 2; i < store->NumInOperands(); ++i) {
Operand copy(store->GetInOperand(i));
newStore->AddOperand(std::move(copy));
}
iter = where.InsertBefore(std::move(newStore));
get_def_use_mgr()->AnalyzeInstDefUse(&*iter);
context()->set_instr_block(&*iter, block);
}
return true;
}
bool ScalarReplacementPass::ReplaceAccessChain(
Instruction* chain, const std::vector<Instruction*>& replacements) {
// Replaces the access chain with either another access chain (with one fewer
// indexes) or a direct use of the replacement variable.
uint32_t indexId = chain->GetSingleWordInOperand(1u);
const Instruction* index = get_def_use_mgr()->GetDef(indexId);
int64_t indexValue = context()
->get_constant_mgr()
->GetConstantFromInst(index)
->GetSignExtendedValue();
if (indexValue < 0 ||
indexValue >= static_cast<int64_t>(replacements.size())) {
// Out of bounds access, this is illegal IR. Notice that OpAccessChain
// indexing is 0-based, so we should also reject index == size-of-array.
return false;
} else {
const Instruction* var = replacements[static_cast<size_t>(indexValue)];
if (chain->NumInOperands() > 2) {
// Replace input access chain with another access chain.
BasicBlock::iterator chainIter(chain);
uint32_t replacementId = TakeNextId();
if (replacementId == 0) {
return false;
}
std::unique_ptr<Instruction> replacementChain(new Instruction(
context(), chain->opcode(), chain->type_id(), replacementId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {var->result_id()}}}));
// Add the remaining indexes.
for (uint32_t i = 2; i < chain->NumInOperands(); ++i) {
Operand copy(chain->GetInOperand(i));
replacementChain->AddOperand(std::move(copy));
}
auto iter = chainIter.InsertBefore(std::move(replacementChain));
get_def_use_mgr()->AnalyzeInstDefUse(&*iter);
context()->set_instr_block(&*iter, context()->get_instr_block(chain));
context()->ReplaceAllUsesWith(chain->result_id(), replacementId);
} else {
// Replace with a use of the variable.
context()->ReplaceAllUsesWith(chain->result_id(), var->result_id());
}
}
return true;
}
bool ScalarReplacementPass::CreateReplacementVariables(
Instruction* inst, std::vector<Instruction*>* replacements) {
Instruction* type = GetStorageType(inst);
std::unique_ptr<std::unordered_set<int64_t>> components_used =
GetUsedComponents(inst);
uint32_t elem = 0;
switch (type->opcode()) {
case SpvOpTypeStruct:
type->ForEachInOperand(
[this, inst, &elem, replacements, &components_used](uint32_t* id) {
if (!components_used || components_used->count(elem)) {
CreateVariable(*id, inst, elem, replacements);
} else {
replacements->push_back(CreateNullConstant(*id));
}
elem++;
});
break;
case SpvOpTypeArray:
for (uint32_t i = 0; i != GetArrayLength(type); ++i) {
if (!components_used || components_used->count(i)) {
CreateVariable(type->GetSingleWordInOperand(0u), inst, i,
replacements);
} else {
replacements->push_back(
CreateNullConstant(type->GetSingleWordInOperand(0u)));
}
}
break;
case SpvOpTypeMatrix:
case SpvOpTypeVector:
for (uint32_t i = 0; i != GetNumElements(type); ++i) {
CreateVariable(type->GetSingleWordInOperand(0u), inst, i, replacements);
}
break;
default:
assert(false && "Unexpected type.");
break;
}
TransferAnnotations(inst, replacements);
return std::find(replacements->begin(), replacements->end(), nullptr) ==
replacements->end();
}
void ScalarReplacementPass::TransferAnnotations(
const Instruction* source, std::vector<Instruction*>* replacements) {
// Only transfer invariant and restrict decorations on the variable. There are
// no type or member decorations that are necessary to transfer.
for (auto inst :
get_decoration_mgr()->GetDecorationsFor(source->result_id(), false)) {
assert(inst->opcode() == SpvOpDecorate);
uint32_t decoration = inst->GetSingleWordInOperand(1u);
if (decoration == SpvDecorationInvariant ||
decoration == SpvDecorationRestrict) {
for (auto var : *replacements) {
if (var == nullptr) {
continue;
}
std::unique_ptr<Instruction> annotation(
new Instruction(context(), SpvOpDecorate, 0, 0,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_ID, {var->result_id()}},
{SPV_OPERAND_TYPE_DECORATION, {decoration}}}));
for (uint32_t i = 2; i < inst->NumInOperands(); ++i) {
Operand copy(inst->GetInOperand(i));
annotation->AddOperand(std::move(copy));
}
context()->AddAnnotationInst(std::move(annotation));
get_def_use_mgr()->AnalyzeInstUse(&*--context()->annotation_end());
}
}
}
}
void ScalarReplacementPass::CreateVariable(
uint32_t typeId, Instruction* varInst, uint32_t index,
std::vector<Instruction*>* replacements) {
uint32_t ptrId = GetOrCreatePointerType(typeId);
uint32_t id = TakeNextId();
if (id == 0) {
replacements->push_back(nullptr);
}
std::unique_ptr<Instruction> variable(new Instruction(
context(), SpvOpVariable, ptrId, id,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}}}));
BasicBlock* block = context()->get_instr_block(varInst);
block->begin().InsertBefore(std::move(variable));
Instruction* inst = &*block->begin();
// If varInst was initialized, make sure to initialize its replacement.
GetOrCreateInitialValue(varInst, index, inst);
get_def_use_mgr()->AnalyzeInstDefUse(inst);
context()->set_instr_block(inst, block);
// Copy decorations from the member to the new variable.
Instruction* typeInst = GetStorageType(varInst);
for (auto dec_inst :
get_decoration_mgr()->GetDecorationsFor(typeInst->result_id(), false)) {
uint32_t decoration;
if (dec_inst->opcode() != SpvOpMemberDecorate) {
continue;
}
if (dec_inst->GetSingleWordInOperand(1) != index) {
continue;
}
decoration = dec_inst->GetSingleWordInOperand(2u);
switch (decoration) {
case SpvDecorationRelaxedPrecision: {
std::unique_ptr<Instruction> new_dec_inst(
new Instruction(context(), SpvOpDecorate, 0, 0, {}));
new_dec_inst->AddOperand(Operand(SPV_OPERAND_TYPE_ID, {id}));
for (uint32_t i = 2; i < dec_inst->NumInOperandWords(); ++i) {
new_dec_inst->AddOperand(Operand(dec_inst->GetInOperand(i)));
}
context()->AddAnnotationInst(std::move(new_dec_inst));
} break;
default:
break;
}
}
replacements->push_back(inst);
}
uint32_t ScalarReplacementPass::GetOrCreatePointerType(uint32_t id) {
auto iter = pointee_to_pointer_.find(id);
if (iter != pointee_to_pointer_.end()) return iter->second;
analysis::Type* pointeeTy;
std::unique_ptr<analysis::Pointer> pointerTy;
std::tie(pointeeTy, pointerTy) =
context()->get_type_mgr()->GetTypeAndPointerType(id,
SpvStorageClassFunction);
uint32_t ptrId = 0;
if (pointeeTy->IsUniqueType()) {
// Non-ambiguous type, just ask the type manager for an id.
ptrId = context()->get_type_mgr()->GetTypeInstruction(pointerTy.get());
pointee_to_pointer_[id] = ptrId;
return ptrId;
}
// Ambiguous type. We must perform a linear search to try and find the right
// type.
for (auto global : context()->types_values()) {
if (global.opcode() == SpvOpTypePointer &&
global.GetSingleWordInOperand(0u) == SpvStorageClassFunction &&
global.GetSingleWordInOperand(1u) == id) {
if (get_decoration_mgr()->GetDecorationsFor(id, false).empty()) {
// Only reuse a decoration-less pointer of the correct type.
ptrId = global.result_id();
break;
}
}
}
if (ptrId != 0) {
pointee_to_pointer_[id] = ptrId;
return ptrId;
}
ptrId = TakeNextId();
context()->AddType(MakeUnique<Instruction>(
context(), SpvOpTypePointer, 0, ptrId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}},
{SPV_OPERAND_TYPE_ID, {id}}}));
Instruction* ptr = &*--context()->types_values_end();
get_def_use_mgr()->AnalyzeInstDefUse(ptr);
pointee_to_pointer_[id] = ptrId;
// Register with the type manager if necessary.
context()->get_type_mgr()->RegisterType(ptrId, *pointerTy);
return ptrId;
}
void ScalarReplacementPass::GetOrCreateInitialValue(Instruction* source,
uint32_t index,
Instruction* newVar) {
assert(source->opcode() == SpvOpVariable);
if (source->NumInOperands() < 2) return;
uint32_t initId = source->GetSingleWordInOperand(1u);
uint32_t storageId = GetStorageType(newVar)->result_id();
Instruction* init = get_def_use_mgr()->GetDef(initId);
uint32_t newInitId = 0;
// TODO(dnovillo): Refactor this with constant propagation.
if (init->opcode() == SpvOpConstantNull) {
// Initialize to appropriate NULL.
auto iter = type_to_null_.find(storageId);
if (iter == type_to_null_.end()) {
newInitId = TakeNextId();
type_to_null_[storageId] = newInitId;
context()->AddGlobalValue(
MakeUnique<Instruction>(context(), SpvOpConstantNull, storageId,
newInitId, std::initializer_list<Operand>{}));
Instruction* newNull = &*--context()->types_values_end();
get_def_use_mgr()->AnalyzeInstDefUse(newNull);
} else {
newInitId = iter->second;
}
} else if (IsSpecConstantInst(init->opcode())) {
// Create a new constant extract.
newInitId = TakeNextId();
context()->AddGlobalValue(MakeUnique<Instruction>(
context(), SpvOpSpecConstantOp, storageId, newInitId,
std::initializer_list<Operand>{
{SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER, {SpvOpCompositeExtract}},
{SPV_OPERAND_TYPE_ID, {init->result_id()}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {index}}}));
Instruction* newSpecConst = &*--context()->types_values_end();
get_def_use_mgr()->AnalyzeInstDefUse(newSpecConst);
} else if (init->opcode() == SpvOpConstantComposite) {
// Get the appropriate index constant.
newInitId = init->GetSingleWordInOperand(index);
Instruction* element = get_def_use_mgr()->GetDef(newInitId);
if (element->opcode() == SpvOpUndef) {
// Undef is not a valid initializer for a variable.
newInitId = 0;
}
} else {
assert(false);
}
if (newInitId != 0) {
newVar->AddOperand({SPV_OPERAND_TYPE_ID, {newInitId}});
}
}
uint64_t ScalarReplacementPass::GetArrayLength(
const Instruction* arrayType) const {
assert(arrayType->opcode() == SpvOpTypeArray);
const Instruction* length =
get_def_use_mgr()->GetDef(arrayType->GetSingleWordInOperand(1u));
return context()
->get_constant_mgr()
->GetConstantFromInst(length)
->GetZeroExtendedValue();
}
uint64_t ScalarReplacementPass::GetNumElements(const Instruction* type) const {
assert(type->opcode() == SpvOpTypeVector ||
type->opcode() == SpvOpTypeMatrix);
const Operand& op = type->GetInOperand(1u);
assert(op.words.size() <= 2);
uint64_t len = 0;
for (size_t i = 0; i != op.words.size(); ++i) {
len |= (static_cast<uint64_t>(op.words[i]) << (32ull * i));
}
return len;
}
bool ScalarReplacementPass::IsSpecConstant(uint32_t id) const {
const Instruction* inst = get_def_use_mgr()->GetDef(id);
assert(inst);
return spvOpcodeIsSpecConstant(inst->opcode());
}
Instruction* ScalarReplacementPass::GetStorageType(
const Instruction* inst) const {
assert(inst->opcode() == SpvOpVariable);
uint32_t ptrTypeId = inst->type_id();
uint32_t typeId =
get_def_use_mgr()->GetDef(ptrTypeId)->GetSingleWordInOperand(1u);
return get_def_use_mgr()->GetDef(typeId);
}
bool ScalarReplacementPass::CanReplaceVariable(
const Instruction* varInst) const {
assert(varInst->opcode() == SpvOpVariable);
// Can only replace function scope variables.
if (varInst->GetSingleWordInOperand(0u) != SpvStorageClassFunction) {
return false;
}
if (!CheckTypeAnnotations(get_def_use_mgr()->GetDef(varInst->type_id()))) {
return false;
}
const Instruction* typeInst = GetStorageType(varInst);
if (!CheckType(typeInst)) {
return false;
}
if (!CheckAnnotations(varInst)) {
return false;
}
if (!CheckUses(varInst)) {
return false;
}
return true;
}
bool ScalarReplacementPass::CheckType(const Instruction* typeInst) const {
if (!CheckTypeAnnotations(typeInst)) {
return false;
}
switch (typeInst->opcode()) {
case SpvOpTypeStruct:
// Don't bother with empty structs or very large structs.
if (typeInst->NumInOperands() == 0 ||
IsLargerThanSizeLimit(typeInst->NumInOperands())) {
return false;
}
return true;
case SpvOpTypeArray:
if (IsSpecConstant(typeInst->GetSingleWordInOperand(1u))) {
return false;
}
if (IsLargerThanSizeLimit(GetArrayLength(typeInst))) {
return false;
}
return true;
// TODO(alanbaker): Develop some heuristics for when this should be
// re-enabled.
//// Specifically including matrix and vector in an attempt to reduce the
//// number of vector registers required.
// case SpvOpTypeMatrix:
// case SpvOpTypeVector:
// if (IsLargerThanSizeLimit(GetNumElements(typeInst))) return false;
// return true;
case SpvOpTypeRuntimeArray:
default:
return false;
}
}
bool ScalarReplacementPass::CheckTypeAnnotations(
const Instruction* typeInst) const {
for (auto inst :
get_decoration_mgr()->GetDecorationsFor(typeInst->result_id(), false)) {
uint32_t decoration;
if (inst->opcode() == SpvOpDecorate) {
decoration = inst->GetSingleWordInOperand(1u);
} else {
assert(inst->opcode() == SpvOpMemberDecorate);
decoration = inst->GetSingleWordInOperand(2u);
}
switch (decoration) {
case SpvDecorationRowMajor:
case SpvDecorationColMajor:
case SpvDecorationArrayStride:
case SpvDecorationMatrixStride:
case SpvDecorationCPacked:
case SpvDecorationInvariant:
case SpvDecorationRestrict:
case SpvDecorationOffset:
case SpvDecorationAlignment:
case SpvDecorationAlignmentId:
case SpvDecorationMaxByteOffset:
case SpvDecorationRelaxedPrecision:
break;
default:
return false;
}
}
return true;
}
bool ScalarReplacementPass::CheckAnnotations(const Instruction* varInst) const {
for (auto inst :
get_decoration_mgr()->GetDecorationsFor(varInst->result_id(), false)) {
assert(inst->opcode() == SpvOpDecorate);
uint32_t decoration = inst->GetSingleWordInOperand(1u);
switch (decoration) {
case SpvDecorationInvariant:
case SpvDecorationRestrict:
case SpvDecorationAlignment:
case SpvDecorationAlignmentId:
case SpvDecorationMaxByteOffset:
break;
default:
return false;
}
}
return true;
}
bool ScalarReplacementPass::CheckUses(const Instruction* inst) const {
VariableStats stats = {0, 0};
bool ok = CheckUses(inst, &stats);
// TODO(alanbaker/greg-lunarg): Add some meaningful heuristics about when
// SRoA is costly, such as when the structure has many (unaccessed?)
// members.
return ok;
}
bool ScalarReplacementPass::CheckUses(const Instruction* inst,
VariableStats* stats) const {
uint64_t max_legal_index = GetMaxLegalIndex(inst);
bool ok = true;
get_def_use_mgr()->ForEachUse(inst, [this, max_legal_index, stats, &ok](
const Instruction* user,
uint32_t index) {
// Annotations are check as a group separately.
if (!IsAnnotationInst(user->opcode())) {
switch (user->opcode()) {
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
if (index == 2u && user->NumInOperands() > 1) {
uint32_t id = user->GetSingleWordInOperand(1u);
const Instruction* opInst = get_def_use_mgr()->GetDef(id);
const auto* constant =
context()->get_constant_mgr()->GetConstantFromInst(opInst);
if (!constant) {
ok = false;
} else if (constant->GetZeroExtendedValue() >= max_legal_index) {
ok = false;
} else {
if (!CheckUsesRelaxed(user)) ok = false;
}
stats->num_partial_accesses++;
} else {
ok = false;
}
break;
case SpvOpLoad:
if (!CheckLoad(user, index)) ok = false;
stats->num_full_accesses++;
break;
case SpvOpStore:
if (!CheckStore(user, index)) ok = false;
stats->num_full_accesses++;
break;
case SpvOpName:
case SpvOpMemberName:
break;
default:
ok = false;
break;
}
}
});
return ok;
}
bool ScalarReplacementPass::CheckUsesRelaxed(const Instruction* inst) const {
bool ok = true;
get_def_use_mgr()->ForEachUse(
inst, [this, &ok](const Instruction* user, uint32_t index) {
switch (user->opcode()) {
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
if (index != 2u) {
ok = false;
} else {
if (!CheckUsesRelaxed(user)) ok = false;
}
break;
case SpvOpLoad:
if (!CheckLoad(user, index)) ok = false;
break;
case SpvOpStore:
if (!CheckStore(user, index)) ok = false;
break;
default:
ok = false;
break;
}
});
return ok;
}
bool ScalarReplacementPass::CheckLoad(const Instruction* inst,
uint32_t index) const {
if (index != 2u) return false;
if (inst->NumInOperands() >= 2 &&
inst->GetSingleWordInOperand(1u) & SpvMemoryAccessVolatileMask)
return false;
return true;
}
bool ScalarReplacementPass::CheckStore(const Instruction* inst,
uint32_t index) const {
if (index != 0u) return false;
if (inst->NumInOperands() >= 3 &&
inst->GetSingleWordInOperand(2u) & SpvMemoryAccessVolatileMask)
return false;
return true;
}
bool ScalarReplacementPass::IsLargerThanSizeLimit(uint64_t length) const {
if (max_num_elements_ == 0) {
return false;
}
return length > max_num_elements_;
}
std::unique_ptr<std::unordered_set<int64_t>>
ScalarReplacementPass::GetUsedComponents(Instruction* inst) {
std::unique_ptr<std::unordered_set<int64_t>> result(
new std::unordered_set<int64_t>());
analysis::DefUseManager* def_use_mgr = context()->get_def_use_mgr();
def_use_mgr->WhileEachUser(inst, [&result, def_use_mgr,
this](Instruction* use) {
switch (use->opcode()) {
case SpvOpLoad: {
// Look for extract from the load.
std::vector<uint32_t> t;
if (def_use_mgr->WhileEachUser(use, [&t](Instruction* use2) {
if (use2->opcode() != SpvOpCompositeExtract ||
use2->NumInOperands() <= 1) {
return false;
}
t.push_back(use2->GetSingleWordInOperand(1));
return true;
})) {
result->insert(t.begin(), t.end());
return true;
} else {
result.reset(nullptr);
return false;
}
}
case SpvOpName:
case SpvOpMemberName:
case SpvOpStore:
// No components are used.
return true;
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain: {
// Add the first index it if is a constant.
// TODO: Could be improved by checking if the address is used in a load.
analysis::ConstantManager* const_mgr = context()->get_constant_mgr();
uint32_t index_id = use->GetSingleWordInOperand(1);
const analysis::Constant* index_const =
const_mgr->FindDeclaredConstant(index_id);
if (index_const) {
result->insert(index_const->GetSignExtendedValue());
return true;
} else {
// Could be any element. Assuming all are used.
result.reset(nullptr);
return false;
}
}
default:
// We do not know what is happening. Have to assume the worst.
result.reset(nullptr);
return false;
}
});
return result;
}
Instruction* ScalarReplacementPass::CreateNullConstant(uint32_t type_id) {
analysis::TypeManager* type_mgr = context()->get_type_mgr();
analysis::ConstantManager* const_mgr = context()->get_constant_mgr();
const analysis::Type* type = type_mgr->GetType(type_id);
const analysis::Constant* null_const = const_mgr->GetConstant(type, {});
Instruction* null_inst =
const_mgr->GetDefiningInstruction(null_const, type_id);
if (null_inst != nullptr) {
context()->UpdateDefUse(null_inst);
}
return null_inst;
}
uint64_t ScalarReplacementPass::GetMaxLegalIndex(
const Instruction* var_inst) const {
assert(var_inst->opcode() == SpvOpVariable &&
"|var_inst| must be a variable instruction.");
Instruction* type = GetStorageType(var_inst);
switch (type->opcode()) {
case SpvOpTypeStruct:
return type->NumInOperands();
case SpvOpTypeArray:
return GetArrayLength(type);
case SpvOpTypeMatrix:
case SpvOpTypeVector:
return GetNumElements(type);
default:
return 0;
}
return 0;
}
} // namespace opt
} // namespace spvtools