Add sample RayTracing. (#361)

This commit is contained in:
Andreas Süßenbach 2019-07-25 13:52:09 +02:00 committed by Markus Tavenrath
parent d5d4f3457b
commit ecfaf9a0df
11 changed files with 1709 additions and 32 deletions

3
.gitmodules vendored
View File

@ -10,3 +10,6 @@
[submodule "Vulkan-Headers"]
path = Vulkan-Headers
url = https://github.com/KhronosGroup/Vulkan-Headers.git
[submodule "glfw"]
path = glfw
url = https://github.com/glfw/glfw

View File

@ -79,6 +79,7 @@ target_include_directories(VulkanHppGenerator PRIVATE "${CMAKE_SOURCE_DIR}/tinyx
option (SAMPLES_BUILD OFF)
if (SAMPLES_BUILD)
add_subdirectory(glfw)
add_subdirectory(glslang)
add_subdirectory(samples)
endif (SAMPLES_BUILD)

@ -1 +1 @@
Subproject commit 097a1045098213919fd56442f52c716fc78eeb27
Subproject commit 552e49ee964e138352fbc0ecac3a16ca052ea7cb

1
glfw Submodule

@ -0,0 +1 @@
Subproject commit 3a5e99e59a74aae9cb74dbd1170374aec9ecc6a2

View File

@ -0,0 +1,55 @@
# Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
cmake_minimum_required(VERSION 3.2)
project(RayTracing)
set(HEADERS
CameraManipulator.hpp
../utils/shaders.hpp
../utils/utils.hpp
)
set(SOURCES
CameraManipulator.cpp
RayTracing.cpp
../utils/shaders.cpp
../utils/utils.cpp
../../glslang/StandAlone/ResourceLimits.cpp
)
source_group(headers FILES ${HEADERS})
source_group(sources FILES ${SOURCES})
add_executable(RayTracing
${HEADERS}
${SOURCES}
)
set_target_properties(RayTracing PROPERTIES FOLDER "Samples")
target_include_directories(RayTracing PUBLIC
${CMAKE_SOURCE_DIR}/glslang
${CMAKE_SOURCE_DIR}/glfw/include
${CMAKE_SOURCE_DIR}/samples/RayTracing/common
${CMAKE_SOURCE_DIR}/samples/RayTracing/vulkannv
${CMAKE_SOURCE_DIR}/stb
${CMAKE_SOURCE_DIR}/tinyobjloader
)
target_link_libraries(RayTracing PUBLIC glslang SPIRV
legacy_stdio_definitions.lib
${CMAKE_SOURCE_DIR}/builds/VS2017_64/glfw/src/Debug/glfw3.lib
"${Vulkan_LIBRARIES}"
)

View File

@ -0,0 +1,428 @@
// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "CameraManipulator.hpp"
#include <glm/glm.hpp>
#include <glm/gtx/rotate_vector.hpp>
namespace vk
{
namespace su
{
const float trackballSize = 0.8f;
//-----------------------------------------------------------------------------
// MATH functions
//
template <typename T>
bool isZero(const T& _a)
{
return fabs(_a) < std::numeric_limits<T>::epsilon();
}
template <typename T>
bool isOne(const T& _a)
{
return areEqual(_a, (T)1);
}
inline float sign(float s)
{
return (s < 0.f) ? -1.f : 1.f;
}
CameraManipulator::CameraManipulator()
{
update();
}
glm::vec3 const& CameraManipulator::getCameraPosition() const
{
return m_cameraPosition;
}
glm::vec3 const& CameraManipulator::getCenterPosition() const
{
return m_centerPosition;
}
glm::mat4 const& CameraManipulator::getMatrix() const
{
return m_matrix;
}
CameraManipulator::Mode CameraManipulator::getMode() const
{
return m_mode;
}
glm::ivec2 const& CameraManipulator::getMousePosition() const
{
return m_mousePosition;
}
float CameraManipulator::getRoll() const
{
return m_roll;
}
float CameraManipulator::getSpeed() const
{
return m_speed;
}
glm::vec3 const& CameraManipulator::getUpVector() const
{
return m_upVector;
}
glm::u32vec2 const& CameraManipulator::getWindowSize() const
{
return m_windowSize;
}
CameraManipulator::Action CameraManipulator::mouseMove(glm::ivec2 const& position, MouseButton mouseButton, ModifierFlags & modifiers)
{
Action curAction = Action::None;
switch (mouseButton)
{
case MouseButton::Left:
if (((modifiers & ModifierFlagBits::Ctrl) && (modifiers & ModifierFlagBits::Shift)) || (modifiers & ModifierFlagBits::Alt))
{
curAction = m_mode == Mode::Examine ? Action::LookAround : Action::Orbit;
}
else if (modifiers & ModifierFlagBits::Shift)
{
curAction = Action::Dolly;
}
else if (modifiers & ModifierFlagBits::Ctrl)
{
curAction = Action::Pan;
}
else
{
curAction = m_mode == Mode::Examine ? Action::Orbit : Action::LookAround;
}
break;
case MouseButton::Middle:
curAction = Action::Pan;
break;
case MouseButton::Right:
curAction = Action::Dolly;
break;
default:
assert(false);
}
assert(curAction != Action::None);
motion(position, curAction);
return curAction;
}
void CameraManipulator::setLookat(const glm::vec3& cameraPosition, const glm::vec3& centerPosition, const glm::vec3& upVector)
{
m_cameraPosition = cameraPosition;
m_centerPosition = centerPosition;
m_upVector = upVector;
update();
}
void CameraManipulator::setMode(Mode mode)
{
m_mode = mode;
}
void CameraManipulator::setMousePosition(glm::ivec2 const& position)
{
m_mousePosition = position;
}
void CameraManipulator::setRoll(float roll)
{
m_roll = roll;
update();
}
void CameraManipulator::setSpeed(float speed)
{
m_speed = speed;
}
void CameraManipulator::setWindowSize(glm::ivec2 const& size)
{
m_windowSize = size;
}
void CameraManipulator::wheel(int value)
{
float fValue = static_cast<float>(value);
float dx = (fValue * abs(fValue)) / static_cast<float>(m_windowSize[0]);
glm::vec3 z = m_cameraPosition - m_centerPosition;
float length = z.length() * 0.1f;
length = length < 0.001f ? 0.001f : length;
dx *= m_speed;
dolly(glm::vec2(dx, dx));
update();
}
void CameraManipulator::dolly(glm::vec2 const& delta)
{
glm::vec3 z = m_centerPosition - m_cameraPosition;
float length = glm::length(z);
// We are at the point of interest, and don't know any direction, so do nothing!
if(isZero(length))
{
return;
}
// Use the larger movement.
float dd;
if(m_mode != Mode::Examine)
{
dd = -delta[1];
}
else
{
dd = fabs(delta[0]) > fabs(delta[1]) ? delta[0] : -delta[1];
}
float factor = m_speed * dd / length;
// Adjust speed based on distance.
length /= 10;
length = length < 0.001f ? 0.001f : length;
factor *= length;
// Don't move to or through the point of interest.
if (1.0f <= factor)
{
return;
}
z *= factor;
// Not going up
if(m_mode == Mode::Walk)
{
if(m_upVector.y > m_upVector.z)
{
z.y = 0;
}
else
{
z.z = 0;
}
}
m_cameraPosition += z;
// In fly mode, the interest moves with us.
if(m_mode != Mode::Examine)
{
m_centerPosition += z;
}
}
void CameraManipulator::motion(glm::ivec2 const& position, Action action)
{
glm::vec2 delta(float(position[0] - m_mousePosition[0]) / float(m_windowSize[0]), float(position[1] - m_mousePosition[1]) / float(m_windowSize[1]));
switch(action)
{
case Action::Orbit:
if(m_mode == Mode::Trackball)
{
orbit(delta, true); // trackball(position);
}
else
{
orbit(delta, false);
}
break;
case Action::Dolly:
dolly(delta);
break;
case Action::Pan:
pan(delta);
break;
case Action::LookAround:
if(m_mode == Mode::Trackball)
{
trackball(position);
}
else
{
orbit(glm::vec2(delta[0], -delta[1]), true);
}
break;
}
update();
m_mousePosition = position;
}
void CameraManipulator::orbit(glm::vec2 const& delta, bool invert)
{
if(isZero(delta[0]) && isZero(delta[1]))
{
return;
}
// Full width will do a full turn
float dx = delta[0] * float(glm::two_pi<float>());
float dy = delta[1] * float(glm::two_pi<float>());
// Get the camera
glm::vec3 origin(invert ? m_cameraPosition : m_centerPosition);
glm::vec3 position(invert ? m_centerPosition : m_cameraPosition);
// Get the length of sight
glm::vec3 centerToEye(position - origin);
float radius = glm::length(centerToEye);
centerToEye = glm::normalize(centerToEye);
// Find the rotation around the UP axis (Y)
glm::vec3 zAxis(centerToEye);
glm::mat4 yRotation = glm::rotate(-dx, m_upVector);
// Apply the (Y) rotation to the eye-center vector
glm::vec4 tmpVector = yRotation * glm::vec4(centerToEye.x, centerToEye.y, centerToEye.z, 0.0f);
centerToEye = glm::vec3(tmpVector.x, tmpVector.y, tmpVector.z);
// Find the rotation around the X vector: cross between eye-center and up (X)
glm::vec3 xAxis = glm::cross(m_upVector, zAxis);
xAxis = glm::normalize(xAxis);
glm::mat4 xRotation = glm::rotate(-dy, xAxis);
// Apply the (X) rotation to the eye-center vector
tmpVector = xRotation * glm::vec4(centerToEye.x, centerToEye.y, centerToEye.z, 0);
glm::vec3 rotatedVector(tmpVector.x, tmpVector.y, tmpVector.z);
if(sign(rotatedVector.x) == sign(centerToEye.x))
{
centerToEye = rotatedVector;
}
// Make the vector as long as it was originally
centerToEye *= radius;
// Finding the new position
glm::vec3 newPosition = centerToEye + origin;
if(!invert)
{
m_cameraPosition = newPosition; // Normal: change the position of the camera
}
else
{
m_centerPosition = newPosition; // Inverted: change the interest point
}
}
void CameraManipulator::pan(glm::vec2 const& delta)
{
glm::vec3 z(m_cameraPosition - m_centerPosition);
float length = static_cast<float>(glm::length(z)) / 0.785f; // 45 degrees
z = glm::normalize(z);
glm::vec3 x = glm::normalize(glm::cross(m_upVector, z));
glm::vec3 y = glm::normalize(glm::cross(z, x));
x *= -delta[0] * length;
y *= delta[1] * length;
if(m_mode == Mode::Fly)
{
x = -x;
y = -y;
}
m_cameraPosition += x + y;
m_centerPosition += x + y;
}
double CameraManipulator::projectOntoTBSphere(const glm::vec2& p)
{
double z;
double d = length(p);
if(d < trackballSize * 0.70710678118654752440)
{
// inside sphere
z = sqrt(trackballSize * trackballSize - d * d);
}
else
{
// on hyperbola
double t = trackballSize / 1.41421356237309504880;
z = t * t / d;
}
return z;
}
void CameraManipulator::trackball(glm::ivec2 const& position)
{
glm::vec2 p0(2 * (m_mousePosition[0] - m_windowSize[0] / 2) / double(m_windowSize[0]),
2 * (m_windowSize[1] / 2 - m_mousePosition[1]) / double(m_windowSize[1]));
glm::vec2 p1(2 * (position[0] - m_windowSize[0] / 2) / double(m_windowSize[0]), 2 * (m_windowSize[1] / 2 - position[1]) / double(m_windowSize[1]));
// determine the z coordinate on the sphere
glm::vec3 pTB0(p0[0], p0[1], projectOntoTBSphere(p0));
glm::vec3 pTB1(p1[0], p1[1], projectOntoTBSphere(p1));
// calculate the rotation axis via cross product between p0 and p1
glm::vec3 axis = glm::cross(pTB0, pTB1);
axis = glm::normalize(axis);
// calculate the angle
float t = glm::length(pTB0 - pTB1) / (2.f * trackballSize);
// clamp between -1 and 1
if(t > 1.0f)
{
t = 1.0f;
}
else if(t < -1.0f)
{
t = -1.0f;
}
float rad = 2.0f * asin(t);
{
glm::vec4 rot_axis = m_matrix * glm::vec4(axis, 0);
glm::mat4 rot_mat = glm::rotate(rad, glm::vec3(rot_axis.x, rot_axis.y, rot_axis.z));
glm::vec3 pnt = m_cameraPosition - m_centerPosition;
glm::vec4 pnt2 = rot_mat * glm::vec4(pnt.x, pnt.y, pnt.z, 1);
m_cameraPosition = m_centerPosition + glm::vec3(pnt2.x, pnt2.y, pnt2.z);
glm::vec4 up2 = rot_mat * glm::vec4(m_upVector.x, m_upVector.y, m_upVector.z, 0);
m_upVector = glm::vec3(up2.x, up2.y, up2.z);
}
}
void CameraManipulator::update()
{
m_matrix = glm::lookAt(m_cameraPosition, m_centerPosition, m_upVector);
if(!isZero(m_roll))
{
glm::mat4 rot = glm::rotate(m_roll, glm::vec3(0, 0, 1));
m_matrix = m_matrix * rot;
}
}
} // namespace su
} // namespace vk

View File

@ -0,0 +1,79 @@
// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#pragma once
#include <glm/glm.hpp>
#include <vulkan/vulkan.hpp>
namespace vk
{
namespace su
{
class CameraManipulator
{
public:
enum class Action { None, Orbit, Dolly, Pan, LookAround };
enum class Mode { Examine, Fly, Walk, Trackball };
enum class MouseButton { None, Left, Middle, Right };
enum class ModifierFlagBits { Shift = 1, Ctrl = 2, Alt = 4 };
using ModifierFlags = vk::Flags<ModifierFlagBits, uint32_t>;
public:
CameraManipulator();
glm::vec3 const& getCameraPosition() const;
glm::vec3 const& getCenterPosition() const;
glm::mat4 const& getMatrix() const;
Mode getMode() const;
glm::ivec2 const& getMousePosition() const;
float getRoll() const;
float getSpeed() const;
glm::vec3 const& getUpVector() const;
glm::u32vec2 const& getWindowSize() const;
Action mouseMove(glm::ivec2 const& position, MouseButton mouseButton, ModifierFlags & modifiers);
void setLookat(const glm::vec3& cameraPosition, const glm::vec3& centerPosition, const glm::vec3& upVector);
void setMode(Mode mode);
void setMousePosition(glm::ivec2 const& position);
void setRoll(float roll); // roll in radians
void setSpeed(float speed);
void setWindowSize(glm::ivec2 const& size);
void wheel(int value);
private:
void dolly(glm::vec2 const& delta);
void motion(glm::ivec2 const& position, Action action = Action::None);
void orbit(glm::vec2 const& delta, bool invert = false);
void pan(glm::vec2 const& delta);
double projectOntoTBSphere(const glm::vec2& p);
void trackball(glm::ivec2 const& position);
void update();
private:
glm::vec3 m_cameraPosition = glm::vec3(10, 10, 10);
glm::vec3 m_centerPosition = glm::vec3(0, 0, 0);
glm::vec3 m_upVector = glm::vec3(0, 1, 0);
float m_roll = 0; // Rotation around the Z axis in RAD
glm::mat4 m_matrix = glm::mat4(1);
glm::u32vec2 m_windowSize = glm::u32vec2(1, 1);
float m_speed = 30.0f;
glm::ivec2 m_mousePosition = glm::ivec2(0, 0);
Mode m_mode = Mode::Examine;
};
} // namespace su
} // namespace vk

File diff suppressed because it is too large Load Diff

View File

@ -33,6 +33,14 @@ namespace vk
case vk::ShaderStageFlagBits::eGeometry: return EShLangGeometry;
case vk::ShaderStageFlagBits::eFragment: return EShLangFragment;
case vk::ShaderStageFlagBits::eCompute: return EShLangCompute;
case vk::ShaderStageFlagBits::eRaygenNV: return EShLangRayGenNV;
case vk::ShaderStageFlagBits::eAnyHitNV: return EShLangAnyHitNV;
case vk::ShaderStageFlagBits::eClosestHitNV: return EShLangClosestHitNV;
case vk::ShaderStageFlagBits::eMissNV: return EShLangMissNV;
case vk::ShaderStageFlagBits::eIntersectionNV: return EShLangIntersectNV;
case vk::ShaderStageFlagBits::eCallableNV: return EShLangCallableNV;
case vk::ShaderStageFlagBits::eTaskNV: return EShLangTaskNV;
case vk::ShaderStageFlagBits::eMeshNV: return EShLangMeshNV;
default:
assert(false && "Unknown shader stage");
return EShLangVertex;

View File

@ -537,14 +537,15 @@ namespace vk
}
void updateDescriptorSets(vk::UniqueDevice const& device, vk::UniqueDescriptorSet const& descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::UniqueBuffer const&, vk::UniqueBufferView const&>> const& bufferData, vk::su::TextureData const& textureData)
std::vector<std::tuple<vk::DescriptorType, vk::UniqueBuffer const&, vk::UniqueBufferView const&>> const& bufferData, vk::su::TextureData const& textureData,
uint32_t bindingOffset)
{
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.reserve(bufferData.size());
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.reserve(bufferData.size() + 1);
uint32_t dstBinding = 0;
uint32_t dstBinding = bindingOffset;
for (auto const& bd : bufferData)
{
bufferInfos.push_back(vk::DescriptorBufferInfo(*std::get<1>(bd), 0, VK_WHOLE_SIZE));
@ -559,14 +560,14 @@ namespace vk
void updateDescriptorSets(vk::UniqueDevice const& device, vk::UniqueDescriptorSet const& descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::UniqueBuffer const&, vk::UniqueBufferView const&>> const& bufferData,
std::vector<vk::su::TextureData> const& textureData)
std::vector<vk::su::TextureData> const& textureData, uint32_t bindingOffset)
{
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.reserve(bufferData.size());
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.reserve(bufferData.size() + textureData.empty() ? 0 : 1);
uint32_t dstBinding = 0;
uint32_t dstBinding = bindingOffset;
for (auto const& bd : bufferData)
{
bufferInfos.push_back(vk::DescriptorBufferInfo(*std::get<1>(bd), 0, VK_WHOLE_SIZE));
@ -684,18 +685,23 @@ namespace vk
}
}
CheckerboardImageGenerator::CheckerboardImageGenerator(std::array<uint8_t, 3> const& rgb0, std::array<uint8_t, 3> const& rgb1)
: m_rgb0(rgb0)
, m_rgb1(rgb1)
{}
void CheckerboardImageGenerator::operator()(void* data, vk::Extent2D &extent) const
{
// Checkerboard of 16x16 pixel squares
unsigned char *pImageMemory = static_cast<unsigned char*>(data);
uint8_t *pImageMemory = static_cast<uint8_t *>(data);
for (uint32_t row = 0; row < extent.height; row++)
{
for (uint32_t col = 0; col < extent.width; col++)
{
unsigned char rgb = (((row & 0x10) == 0) ^ ((col & 0x10) == 0)) * 255;
pImageMemory[0] = rgb;
pImageMemory[1] = rgb;
pImageMemory[2] = rgb;
std::array<uint8_t, 3> const& rgb = (((row & 0x10) == 0) ^ ((col & 0x10) == 0)) ? m_rgb1 : m_rgb0;
pImageMemory[0] = rgb[0];
pImageMemory[1] = rgb[1];
pImageMemory[2] = rgb[2];
pImageMemory[3] = 255;
pImageMemory += 4;
}

View File

@ -42,34 +42,34 @@ namespace vk
}
template <typename DataType>
void upload(vk::UniqueDevice const& device, std::vector<DataType> const& data) const
void upload(vk::UniqueDevice const& device, std::vector<DataType> const& data, size_t stride = 0) const
{
assert((m_propertyFlags & vk::MemoryPropertyFlagBits::eHostCoherent) && (m_propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible));
assert(m_propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible);
size_t dataSize = data.size() * sizeof(DataType);
assert(dataSize <= m_size);
size_t elementSize = stride ? stride : sizeof(DataType);
assert(sizeof(DataType) <= elementSize);
void* dataPtr = device->mapMemory(*this->deviceMemory, 0, dataSize);
memcpy(dataPtr, data.data(), dataSize);
device->unmapMemory(*this->deviceMemory);
copyToDevice(device, deviceMemory, data.data(), data.size(), elementSize);
}
template <typename DataType>
void upload(vk::PhysicalDevice const& physicalDevice, vk::UniqueDevice const& device, vk::UniqueCommandPool const& commandPool, vk::Queue queue, std::vector<DataType> const& data) const
void upload(vk::PhysicalDevice const& physicalDevice, vk::UniqueDevice const& device, vk::UniqueCommandPool const& commandPool, vk::Queue queue, std::vector<DataType> const& data,
size_t stride) const
{
assert(m_usage & vk::BufferUsageFlagBits::eTransferDst);
assert(m_propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal);
size_t dataSize = data.size() * sizeof(DataType);
size_t elementSize = stride ? stride : sizeof(DataType);
assert(sizeof(DataType) <= elementSize);
size_t dataSize = data.size() * elementSize;
assert(dataSize <= m_size);
vk::su::BufferData stagingBuffer(physicalDevice, device, dataSize, vk::BufferUsageFlagBits::eTransferSrc);
void* dataPtr = device->mapMemory(*stagingBuffer.deviceMemory, 0, dataSize);
memcpy(dataPtr, data.data(), dataSize);
device->unmapMemory(*stagingBuffer.deviceMemory);
copyToDevice(device, stagingBuffer.deviceMemory, data.data(), data.size(), elementSize);
vk::UniqueCommandBuffer commandBuffer = std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(*commandPool, vk::CommandBufferLevel::ePrimary, 1)).front());
vk::su::oneTimeSubmit(commandBuffer, queue, [&]() { commandBuffer->copyBuffer(*stagingBuffer.buffer, *this->buffer, vk::BufferCopy(0, 0, dataSize)); });
vk::su::oneTimeSubmit(device, commandPool, queue,
[&](vk::UniqueCommandBuffer const& commandBuffer) { commandBuffer->copyBuffer(*stagingBuffer.buffer, *this->buffer, vk::BufferCopy(0, 0, dataSize)); });
}
vk::UniqueBuffer buffer;
@ -120,8 +120,14 @@ namespace vk
class CheckerboardImageGenerator
{
public:
public:
CheckerboardImageGenerator(std::array<uint8_t, 3> const& rgb0 = {0, 0, 0}, std::array<uint8_t, 3> const& rgb1 = {255, 255, 255});
void operator()(void* data, vk::Extent2D &extent) const;
private:
std::array<uint8_t, 3> const& m_rgb0;
std::array<uint8_t, 3> const& m_rgb1;
};
class MonochromeImageGenerator
@ -207,7 +213,7 @@ namespace vk
}
template <class T>
void copyToDevice(vk::UniqueDevice &device, vk::UniqueDeviceMemory &memory, T const* pData, size_t count, size_t stride = sizeof(T))
void copyToDevice(vk::UniqueDevice const& device, vk::UniqueDeviceMemory const& memory, T const* pData, size_t count, size_t stride = sizeof(T))
{
assert(sizeof(T) <= stride);
uint8_t* deviceData = static_cast<uint8_t*>(device->mapMemory(memory.get(), 0, count * stride));
@ -227,7 +233,7 @@ namespace vk
}
template <class T>
void copyToDevice(vk::UniqueDevice &device, vk::UniqueDeviceMemory &memory, T const& data)
void copyToDevice(vk::UniqueDevice const& device, vk::UniqueDeviceMemory const& memory, T const& data)
{
copyToDevice<T>(device, memory, &data, 1);
}
@ -238,16 +244,23 @@ namespace vk
return v < lo ? lo : hi < v ? hi : v;
}
template <typename Func, typename... Args>
void oneTimeSubmit(vk::UniqueCommandBuffer const& commandBuffer, vk::Queue const& queue, Func const& func, Args... args)
template <typename Func>
void oneTimeSubmit(vk::UniqueCommandBuffer const& commandBuffer, vk::Queue const& queue, Func const& func)
{
commandBuffer->begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit));
func(args...);
func(commandBuffer);
commandBuffer->end();
queue.submit(vk::SubmitInfo(0, nullptr, nullptr, 1, &(*commandBuffer)), nullptr);
queue.waitIdle();
}
template <typename Func>
void oneTimeSubmit(vk::UniqueDevice const& device, vk::UniqueCommandPool const& commandPool, vk::Queue const& queue, Func const& func)
{
vk::UniqueCommandBuffer commandBuffer = std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(*commandPool, vk::CommandBufferLevel::ePrimary, 1)).front());
oneTimeSubmit(commandBuffer, queue, func);
}
vk::UniqueDeviceMemory allocateMemory(vk::UniqueDevice const& device, vk::PhysicalDeviceMemoryProperties const& memoryProperties, vk::MemoryRequirements const& memoryRequirements,
vk::MemoryPropertyFlags memoryPropertyFlags);
vk::UniqueCommandPool createCommandPool(vk::UniqueDevice &device, uint32_t queueFamilyIndex);
@ -277,10 +290,11 @@ namespace vk
void setImageLayout(vk::UniqueCommandBuffer const& commandBuffer, vk::Image image, vk::Format format, vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout);
void submitAndWait(vk::UniqueDevice &device, vk::Queue queue, vk::UniqueCommandBuffer &commandBuffer);
void updateDescriptorSets(vk::UniqueDevice const& device, vk::UniqueDescriptorSet const& descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::UniqueBuffer const&, vk::UniqueBufferView const&>> const& bufferData, vk::su::TextureData const& textureData);
std::vector<std::tuple<vk::DescriptorType, vk::UniqueBuffer const&, vk::UniqueBufferView const&>> const& bufferData, vk::su::TextureData const& textureData,
uint32_t bindingOffset = 0);
void updateDescriptorSets(vk::UniqueDevice const& device, vk::UniqueDescriptorSet const& descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::UniqueBuffer const&, vk::UniqueBufferView const&>> const& bufferData,
std::vector<vk::su::TextureData> const& textureData);
std::vector<vk::su::TextureData> const& textureData, uint32_t bindingOffset = 0);
#if defined(VK_USE_PLATFORM_WIN32_KHR)
HWND initializeWindow(std::string const& className, std::string const& windowName, LONG width, LONG height);