// Copyright(c) 2015-2020, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include "VulkanHppGenerator.hpp" void appendArgumentCount(std::string & str, size_t vectorIndex, std::string const& vectorName, std::string const& counterName, size_t returnParamIndex, size_t templateParamIndex, bool twoStep, bool singular); std::string appendFunctionBodyEnhancedLocalReturnVariableSingular(std::string & str, std::string const& indentation, std::string const& returnName, std::string const& typeName, bool isStructureChain); void appendReinterpretCast(std::string & str, bool leadingConst, std::string const& type, bool trailingPointerToConst); void appendTypesafeStuff(std::string &str, std::string const& typesafeCheck); void appendVersionCheck(std::string & str, std::string const& version); bool beginsWith(std::string const& text, std::string const& prefix); bool endsWith(std::string const& text, std::string const& postfix); template void checkAlias(std::map const& data, std::string const& name, int line); void checkAttributes(std::map const& attributes, int line, std::map> const& required, std::map> const& optional); void checkElements(std::vector const& elements, std::set const& values); void checkEmptyElement(tinyxml2::XMLElement const* element); void checkOrderedElements(std::vector const& elements, std::vector const& values); void cleanup(std::stringstream & ss); std::string createEnumValueName(std::string const& name, std::string const& prefix, std::string const& postfix, bool bitmask, std::string const& tag); std::string determineCommandName(std::string const& vulkanCommandName, std::string const& firstArgumentType); std::set determineSkippedParams(size_t returnParamIndex, std::map const& vectorParamIndices); bool determineStructureChaining(std::string const& structType, std::set const& extendedStructs, std::map const& structureAliases); std::string findTag(std::set const& tags, std::string const& name, std::string const& postfix = ""); std::pair generateFunctionBodyStandardReturn(std::string const& returnType); std::map getAttributes(tinyxml2::XMLElement const* element); std::vector getChildElements(tinyxml2::XMLElement const* element); std::string getEnumPostfix(std::string const& name, std::set const& tags, std::string & prefix); std::string getEnumPrefix(std::string const& name, bool bitmask); std::string readArraySize(tinyxml2::XMLNode const* node); void readStructStructExtends(std::map const& attributes, std::vector & structExtends, std::set & extendedStructs); std::string readTypePostfix(tinyxml2::XMLNode const* node); std::string readTypePrefix(tinyxml2::XMLNode const* node); std::string replaceWithMap(std::string const &input, std::map replacements); std::string startLowerCase(std::string const& input); std::string startUpperCase(std::string const& input); std::string stripPostfix(std::string const& value, std::string const& postfix); std::string stripPluralS(std::string const& name); std::string stripPrefix(std::string const& value, std::string const& prefix); std::string toCamelCase(std::string const& value); std::string toUpperCase(std::string const& name); std::vector tokenize(std::string tokenString, char separator); std::string trim(std::string const& input); std::string trimEnd(std::string const& input); const std::set nonConstSTypeStructs = { "VkBaseInStructure", "VkBaseOutStructure" }; void appendArgumentCount(std::string & str, size_t vectorIndex, std::string const& vectorName, std::string const& counterName, size_t returnParamIndex, size_t templateParamIndex, bool twoStep, bool singular) { // this parameter is a count parameter for a vector parameter if ((returnParamIndex == vectorIndex) && twoStep) { // the corresponding vector parameter is the return parameter and it's a two-step algorithm // -> use the pointer to a local variable named like the counter parameter without leading 'p' assert((counterName[0] == 'p') && isupper(counterName[1])); str += "&" + startLowerCase(stripPrefix(counterName, "p")); } else { // the corresponding vector parameter is not the return parameter, or it's not a two-step algorithm if (singular) { // for the singular version, the count is just 1. str += "1 "; } else { // for the non-singular version, the count is the size of the vector parameter // -> use the vector parameter name without leading 'p' to get the size (in number of elements, not in bytes) assert(vectorName[0] == 'p'); str += startLowerCase(stripPrefix(vectorName, "p")) + ".size() "; } if (templateParamIndex == vectorIndex) { // if the vector parameter is templatized -> multiply by the size of that type to get the size in bytes str += "* sizeof( T ) "; } } } std::string appendFunctionBodyEnhancedLocalReturnVariableSingular(std::string & str, std::string const& indentation, std::string const& returnName, std::string const& typeName, bool isStructureChain) { std::string strippedReturnName = stripPluralS(returnName); if (isStructureChain) { // For StructureChains use the template parameters str += "StructureChain structureChain;\n" + indentation + " " + typeName + "& " + strippedReturnName + " = structureChain.template get<" + typeName + ">()"; strippedReturnName = "structureChain"; } else { // in singular case, just use the return parameters pure type for the return variable str += typeName + " " + strippedReturnName; } return strippedReturnName; } void appendReinterpretCast(std::string & str, bool leadingConst, std::string const& type, bool trailingPointerToConst) { str += "reinterpret_cast<"; if (leadingConst) { str += "const "; } str += type; if (trailingPointerToConst) { str += "* const"; } str += "*>"; } void appendTypesafeStuff(std::string & str, std::string const& typesafeCheck) { str += "// 32-bit vulkan is not typesafe for handles, so don't allow copy constructors on this platform by default.\n" "// To enable this feature on 32-bit platforms please define VULKAN_HPP_TYPESAFE_CONVERSION\n" + typesafeCheck + "\n" "# if !defined( VULKAN_HPP_TYPESAFE_CONVERSION )\n" "# define VULKAN_HPP_TYPESAFE_CONVERSION\n" "# endif\n" "#endif\n"; } void appendVersionCheck(std::string & str, std::string const& version) { str += "static_assert( VK_HEADER_VERSION == " + version + " , \"Wrong VK_HEADER_VERSION!\" );\n" "\n"; } bool beginsWith(std::string const& text, std::string const& prefix) { return !prefix.empty() && text.substr(0, prefix.length()) == prefix; } bool endsWith(std::string const& text, std::string const& postfix) { return !postfix.empty() && (postfix.length() <= text.length()) && (text.substr(text.length() - postfix.length()) == postfix); } template void checkAlias(std::map const& data, std::string const& name, int line) { if (data.find(name) == data.end()) { throw std::runtime_error("Spec error on line " + std::to_string(line) + ": missing alias <" + name + ">"); } } // check the validity of an attributes map // attributes : the map of name/value pairs of the encountered attributes // line : the line in the xml file where the attributes are listed // required : the required attributes, with a set of allowed values per attribute // optional : the optional attributes, with a set of allowed values per attribute void checkAttributes(std::map const& attributes, int line, std::map> const& required, std::map> const& optional) { // check if all required attributes are included and if there is a set of allowed values, check if the actual value is part of that set for (auto const& r : required) { auto attributesIt = attributes.find(r.first); if (attributesIt == attributes.end()) { throw std::runtime_error("Spec error on line " + std::to_string(line) + ": missing attribute <" + r.first + ">"); } if (!r.second.empty() && (r.second.find(attributesIt->second) == r.second.end())) { throw std::runtime_error("Spec error on line " + std::to_string(line) + ": unexpected attribute value <" + attributesIt->second + "> in attribute <" + r.first + ">"); } } // check if all not required attributes or optional, and if there is a set of allowed values, check if the actual value is part of that set for (auto const& a : attributes) { if (required.find(a.first) == required.end()) { auto optionalIt = optional.find(a.first); if (optionalIt == optional.end()) { std::cerr << "warning: " << "Unknown attribute " + a.first + " in line " + std::to_string(line) + "!" << std::endl; continue; } if (!optionalIt->second.empty()) { std::vector values = tokenize(a.second, ','); for (auto const& v : values) { if (optionalIt->second.find(v) == optionalIt->second.end()) { throw std::runtime_error("Spec error on line " + std::to_string(line) + ": unexpected attribute value <" + v + "> in attribute <" + a.first + ">"); } } } } } } void checkElements(std::vector const& elements, std::set const& values) { for (auto e : elements) { if (values.find(e->Value()) == values.end()) { std::cerr << "warning: Unknown element in spec on line: " << std::to_string(e->GetLineNum()) << " " << e->Value() << "!" << std::endl; } } } void checkEmptyElement(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); checkElements(getChildElements(element), {}); } void checkOrderedElements(std::vector const& elements, std::vector const& values) { for (size_t i = 0; i < elements.size(); i++) { if (values.size() <= i) { throw std::runtime_error("Spec error on line " + std::to_string(elements[i]->GetLineNum()) + ": unexpected surplus element <" + elements[i]->Value() + ">"); } if (values[i] != elements[i]->Value()) { throw std::runtime_error("Spec error on line " + std::to_string(elements[i]->GetLineNum()) + ": unexpected element <" + elements[i]->Value() + ">, expected <" + values[i] + ">"); } } } void cleanup(std::string &str) { std::map replacements = { { "\n\n\n", "\n\n" }, { "{\n\n", "{\n" }, { "\n\n }", "\n }" } }; for (auto const& repl : replacements) { std::string::size_type pos = str.find(repl.first); while (pos != std::string::npos) { str.replace(pos, repl.first.length(), repl.second); pos = str.find(repl.first, pos); } } } std::string createEnumValueName(std::string const& name, std::string const& prefix, std::string const& postfix, bool bitmask, std::string const& tag) { std::string result = "e" + toCamelCase(stripPostfix(stripPrefix(name, prefix), postfix)); if (bitmask) { size_t pos = result.find("Bit"); if (pos != std::string::npos) { result.erase(pos, 3); } } if (!tag.empty() && (result.substr(result.length() - tag.length()) == toCamelCase(tag))) { result = result.substr(0, result.length() - tag.length()) + tag; } return result; } std::string determineCommandName(std::string const& vulkanCommandName, std::string const& firstArgumentType) { std::string commandName(startLowerCase(stripPrefix(vulkanCommandName, "vk"))); std::string searchName = stripPrefix(firstArgumentType, "Vk"); size_t pos = commandName.find(searchName); if ((pos == std::string::npos) && isupper(searchName[0])) { searchName[0] = static_cast(tolower(searchName[0])); pos = commandName.find(searchName); } if (pos != std::string::npos) { commandName.erase(pos, searchName.length()); } else if ((searchName == "commandBuffer") && beginsWith(commandName, "cmd")) { commandName.erase(0, 3); pos = 0; } if ((pos == 0) && isupper(commandName[0])) { commandName[0] = static_cast(tolower(commandName[0])); } return commandName; } std::set determineSkippedParams(size_t returnParamIndex, std::map const& vectorParamIndices) { std::set skippedParams; // the size-parameters of vector parameters are not explicitly used in the enhanced API std::for_each(vectorParamIndices.begin(), vectorParamIndices.end(), [&skippedParams](std::pair const& vp) { if (vp.second != INVALID_INDEX) skippedParams.insert(vp.second); }); // and the return parameter is also skipped if (returnParamIndex != INVALID_INDEX) { skippedParams.insert(returnParamIndex); } return skippedParams; } bool determineStructureChaining(std::string const& structType, std::set const& extendedStructs, std::map const& structureAliases) { bool isStructureChained = (extendedStructs.find(structType) != extendedStructs.end()); if (!isStructureChained) { auto aliasIt = structureAliases.find(structType); if ((aliasIt != structureAliases.end())) { isStructureChained = (extendedStructs.find(aliasIt->second) != extendedStructs.end()); } } return isStructureChained; } std::string findTag(std::set const& tags, std::string const& name, std::string const& postfix) { auto tagIt = std::find_if(tags.begin(), tags.end(), [&name, &postfix](std::string const& t) { return endsWith(name, t + postfix); }); return (tagIt != tags.end()) ? *tagIt : ""; } std::pair generateFunctionBodyStandardReturn(std::string const& returnType) { bool castReturn = false; std::string ret; if (returnType != "void") { // there's something to return... ret = "return "; castReturn = beginsWith(returnType, "Vk"); if (castReturn) { // the return-type is a vulkan type -> need to cast to VULKAN_HPP_NAMESPACE-type ret += "static_cast<" + stripPrefix(returnType, "Vk") + ">( "; } } return std::make_pair(castReturn, ret); } std::map getAttributes(tinyxml2::XMLElement const* element) { std::map attributes; for (auto attribute = element->FirstAttribute(); attribute; attribute = attribute->Next()) { assert(attributes.find(attribute->Name()) == attributes.end()); attributes[attribute->Name()] = attribute->Value(); } return attributes; } std::vector getChildElements(tinyxml2::XMLElement const* element) { std::vector childElements; for (tinyxml2::XMLElement const* childElement = element->FirstChildElement(); childElement; childElement = childElement->NextSiblingElement()) { childElements.push_back(childElement); } return childElements; } std::string getEnumPostfix(std::string const& name, std::set const& tags, std::string & prefix) { std::string postfix; if (name != "VkResult") { // if the enum name contains a tag move it from the prefix to the postfix to generate correct enum value names. for (auto const& tag : tags) { if (endsWith(prefix, tag + "_")) { prefix.erase(prefix.length() - tag.length() - 1); postfix = "_" + tag; break; } else if (endsWith(name, tag)) { postfix = "_" + tag; break; } } } return postfix; } std::string getEnumPrefix(std::string const& name, bool bitmask) { std::string prefix; if (name == "VkResult") { prefix = "VK_"; } else if (bitmask) { // for a bitmask enum, start with "VK", cut off the trailing "FlagBits", and convert that name to upper case // end that with "Bit" size_t pos = name.find("FlagBits"); assert(pos != std::string::npos); prefix = toUpperCase(name.substr(0, pos)) + "_"; } else { // for a non-bitmask enum, convert the name to upper case prefix = toUpperCase(name) + "_"; } return prefix; } std::string extractTag(std::string const& name, std::set const& tags) { // extract the tag from the name, which is supposed to look like VK__ size_t tagStart = name.find('_'); assert(tagStart != std::string::npos); size_t tagEnd = name.find('_', tagStart + 1); assert(tagEnd != std::string::npos); std::string tag = name.substr(tagStart + 1, tagEnd - tagStart - 1); assert(tags.find(tag) != tags.end()); return tag; } std::string readArraySize(tinyxml2::XMLNode const* node) { if (node && node->ToText()) { // following the name there might be some array size assert(!node->ToElement()); std::string arraySize = node->Value(); if ((arraySize.front() == '[') && (arraySize.back() == ']')) { return arraySize.substr(1, arraySize.length() - 2); } } return ""; } void readStructStructExtends(std::map const& attributes, std::vector & structExtends, std::set & extendedStructs) { auto attributesIt = attributes.find("structextends"); if (attributesIt != attributes.end()) { std::vector extends = tokenize(attributesIt->second, ','); structExtends.insert(structExtends.end(), extends.begin(), extends.end()); extendedStructs.insert(extends.begin(), extends.end()); assert(!structExtends.empty()); } } std::string readTypePostfix(tinyxml2::XMLNode const* node) { std::string postfix; if (node && node->ToText()) { postfix = trimEnd(node->Value()); assert((postfix == "*") || (postfix == "**") || (postfix == "* const*")); } return postfix; } std::string readTypePrefix(tinyxml2::XMLNode const* node) { std::string prefix; if (node && node->ToText()) { prefix = trim(node->Value()); assert((prefix == "const") || (prefix == "struct") || (prefix == "const struct")); } return prefix; } std::string replaceWithMap(std::string const &input, std::map replacements) { // This will match ${someVariable} and contain someVariable in match group 1 std::regex re(R"(\$\{([^\}]+)\})"); auto it = std::sregex_iterator(input.begin(), input.end(), re); auto end = std::sregex_iterator(); // No match, just return the original string if (it == end) { return input; } std::string result = ""; while (it != end) { std::smatch match = *it; auto itReplacement = replacements.find(match[1].str()); assert(itReplacement != replacements.end()); result += match.prefix().str() + ((itReplacement != replacements.end()) ? itReplacement->second : match[0].str()); ++it; // we've passed the last match. Append the rest of the orignal string if (it == end) { result += match.suffix().str(); } } return result; } std::string startLowerCase(std::string const& input) { return input.empty() ? "" : static_cast(tolower(input[0])) + input.substr(1); } std::string startUpperCase(std::string const& input) { return input.empty() ? "" : static_cast(toupper(input[0])) + input.substr(1); } std::string stripPostfix(std::string const& value, std::string const& postfix) { std::string strippedValue = value; if (endsWith(strippedValue, postfix)) { strippedValue.erase(strippedValue.length() - postfix.length()); } return strippedValue; } std::string stripPluralS(std::string const& name) { std::string strippedName(name); size_t pos = strippedName.rfind('s'); assert(pos != std::string::npos); strippedName.erase(pos, 1); return strippedName; } std::string stripPrefix(std::string const& value, std::string const& prefix) { std::string strippedValue = value; if (beginsWith(strippedValue, prefix)) { strippedValue.erase(0, prefix.length()); } return strippedValue; } std::string toCamelCase(std::string const& value) { assert(!value.empty() && (isupper(value[0]) || isdigit(value[0]))); std::string result; result.reserve(value.size()); bool keepUpper = true; for (auto c : value) { if (c == '_') { keepUpper = true; } else if (isdigit(c)) { keepUpper = true; result.push_back(c); } else if (keepUpper) { result.push_back(c); keepUpper = false; } else { result.push_back(static_cast(tolower(c))); } } return result; } std::string toUpperCase(std::string const& name) { std::string convertedName; convertedName.reserve(name.size()); bool lowerOrDigit = false; for (auto c : name) { if (islower(c) || isdigit(c)) { lowerOrDigit = true; } else if (lowerOrDigit) { convertedName.push_back('_'); lowerOrDigit = false; } convertedName.push_back(static_cast(toupper(c))); } return convertedName; } std::vector tokenize(std::string tokenString, char separator) { std::vector tokens; size_t start = 0, end; do { end = tokenString.find(separator, start); tokens.push_back(tokenString.substr(start, end - start)); start = end + 1; } while (end != std::string::npos); return tokens; } std::string trim(std::string const& input) { std::string result = input; result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](char c) { return !std::isspace(c); })); result.erase(std::find_if(result.rbegin(), result.rend(), [](char c) { return !std::isspace(c); }).base(), result.end()); return result; } std::string trimEnd(std::string const& input) { std::string result = input; result.erase(std::find_if(result.rbegin(), result.rend(), [](char c) { return !std::isspace(c); }).base(), result.end()); return result; } VulkanHppGenerator::VulkanHppGenerator() { m_handles.insert(std::make_pair("", HandleData())); // insert the default "handle" without class (for createInstance, and such) #if !defined(NDEBUG) #endif } void VulkanHppGenerator::appendArgumentPlainType(std::string & str, ParamData const& paramData) const { // this parameter is just a plain type if (!paramData.type.postfix.empty()) { assert(paramData.type.postfix.back() == '*'); // it's a pointer std::string parameterName = startLowerCase(stripPrefix(paramData.name, "p")); if (paramData.type.prefix.find("const") != std::string::npos) { // it's a const pointer if (paramData.type.type == "char") { // it's a const pointer to char -> it's a string -> get the data via c_str() str += parameterName + (paramData.optional ? (" ? " + parameterName + "->c_str() : nullptr") : ".c_str()"); } else { // it's const pointer to something else -> just use the name assert(!paramData.optional); str += paramData.name; } } else { // it's a non-const pointer, and char is the only type that occurs -> use the address of the parameter assert(paramData.type.type.find("char") == std::string::npos); str += "&" + parameterName; } } else { // it's a plain parameter -> just use its name str += paramData.name; } } void VulkanHppGenerator::appendArguments(std::string & str, CommandData const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool twoStep, bool firstCall, bool singular, size_t from, size_t to) const { assert(from <= to); bool encounteredArgument = false; for (size_t i = from; i < to; i++) { if (encounteredArgument) { str += ", "; } auto it = vectorParamIndices.find(i); if (it != vectorParamIndices.end()) { appendArgumentVector(str, it->first, commandData.params[it->first], returnParamIndex, templateParamIndex, twoStep, firstCall, singular); } else { it = find_if(vectorParamIndices.begin(), vectorParamIndices.end(), [i](std::pair const& vpi) { return vpi.second == i; }); if (it != vectorParamIndices.end()) { appendArgumentCount(str, it->first, commandData.params[it->first].name, commandData.params[it->second].name, returnParamIndex, templateParamIndex, twoStep, singular); } else if (beginsWith(commandData.params[i].type.type, "Vk")) { appendArgumentVulkanType(str, commandData.params[i]); } else { appendArgumentPlainType(str, commandData.params[i]); } } encounteredArgument = true; } } void VulkanHppGenerator::appendArgumentVector(std::string & str, size_t paramIndex, ParamData const& paramData, size_t returnParamIndex, size_t templateParamIndex, bool twoStep, bool firstCall, bool singular) const { // this parameter is a vector parameter assert(paramData.type.postfix.back() == '*'); if ((returnParamIndex == paramIndex) && twoStep && firstCall) { // this parameter is the return parameter, and it's the first call of a two-step algorithm -> just just nullptr str += "nullptr"; } else { std::string parameterName = startLowerCase(stripPrefix(paramData.name, "p")); if (beginsWith(paramData.type.type, "Vk") || (paramIndex == templateParamIndex)) { // CHECK for !commandData.params[it->first].optional // this parameter is a vulkan type or a templated type -> need to reinterpret cast appendReinterpretCast(str, paramData.type.prefix.find("const") == 0, paramData.type.type, paramData.type.postfix.rfind("* const") != std::string::npos); str += "( " + (singular ? ("&" + stripPluralS(parameterName)) : (parameterName + ".data()")) + " )"; } else if (paramData.type.type == "char") { // the parameter is a vector to char -> it might be optional // besides that, the parameter now is a std::string -> get the pointer via c_str() str += parameterName + (paramData.optional ? (" ? " + parameterName + "->c_str() : nullptr") : ".c_str()"); } else { // this parameter is just a vetor -> get the pointer to its data str += parameterName + ".data()"; } } } void VulkanHppGenerator::appendArgumentVulkanType(std::string & str, ParamData const& paramData) const { // this parameter is a vulkan type if (!paramData.type.postfix.empty()) { assert(paramData.type.postfix.back() == '*'); // it's a pointer -> needs a reinterpret cast to the vulkan type std::string parameterName = startLowerCase(stripPrefix(paramData.name, "p")); appendReinterpretCast(str, paramData.type.prefix.find("const") != std::string::npos, paramData.type.type, false); str += "( "; if (paramData.optional) { // for an optional parameter, we need also a static_cast from optional type to const-pointer to pure type str += "static_cast( " + parameterName + " )"; } else { // other parameters can just use the pointer str += "&" + parameterName; } str += " )"; } else { // a non-pointer parameter needs a static_cast from VULKAN_HPP_NAMESPACE-type to vulkan type str += "static_cast<" + paramData.type.type + ">( " + paramData.name + " )"; } } void VulkanHppGenerator::appendBaseTypes(std::string & str) const { assert(!m_baseTypes.empty()); for (auto const& baseType : m_baseTypes) { if (baseType.first != "VkFlags") // filter out VkFlags { str += " using " + stripPrefix(baseType.first, "Vk") + " = " + baseType.second + ";\n"; } } } void VulkanHppGenerator::appendBitmasks(std::string & str) const { for (auto const& bitmask : m_bitmasks) { auto bitmaskBits = m_bitmaskBits.find(bitmask.second.requirement); if (bitmaskBits == m_bitmaskBits.end()) { throw std::runtime_error( bitmask.first + " references the undefined requirement '" + bitmask.second.requirement + "'"); } std::string strippedBitmaskName = stripPrefix(bitmask.first, "Vk"); std::string strippedEnumName = stripPrefix(bitmaskBits->first, "Vk"); str += "\n"; appendPlatformEnter(str, bitmask.second.platform); appendEnum(str, *bitmaskBits); appendEnumToString(str, *bitmaskBits); appendBitmask(str, strippedBitmaskName, bitmask.second.alias, strippedEnumName, bitmaskBits->second.values); appendBitmaskToStringFunction(str, strippedBitmaskName, strippedEnumName, bitmaskBits->second.values); appendPlatformLeave(str, bitmask.second.platform); } } void VulkanHppGenerator::appendBitmask(std::string & str, std::string const& bitmaskName, std::string const& bitmaskAlias, std::string const& enumName, std::vector const& enumValues) const { // each Flags class is using the class 'Flags' with the corresponding FlagBits enum as the template parameter str += "\n" " using " + bitmaskName + " = Flags<" + enumName + ", Vk" + bitmaskName + ">;\n"; if (!enumValues.empty()) { std::string allFlags; for (auto const& value : enumValues) { if (!allFlags.empty()) { allFlags += " | "; } allFlags += "VkFlags(" + enumName + "::" + value.vkValue + ")"; } static const std::string bitmaskOperatorsTemplate = R"( template <> struct FlagTraits<${enumName}> { enum { allFlags = ${allFlags} }; }; VULKAN_HPP_INLINE VULKAN_HPP_CONSTEXPR ${bitmaskName} operator|( ${enumName} bit0, ${enumName} bit1 ) VULKAN_HPP_NOEXCEPT { return ${bitmaskName}( bit0 ) | bit1; } VULKAN_HPP_INLINE VULKAN_HPP_CONSTEXPR ${bitmaskName} operator&( ${enumName} bit0, ${enumName} bit1 ) VULKAN_HPP_NOEXCEPT { return ${bitmaskName}( bit0 ) & bit1; } VULKAN_HPP_INLINE VULKAN_HPP_CONSTEXPR ${bitmaskName} operator^( ${enumName} bit0, ${enumName} bit1 ) VULKAN_HPP_NOEXCEPT { return ${bitmaskName}( bit0 ) ^ bit1; } VULKAN_HPP_INLINE VULKAN_HPP_CONSTEXPR ${bitmaskName} operator~( ${enumName} bits ) VULKAN_HPP_NOEXCEPT { return ~( ${bitmaskName}( bits ) ); } )"; str += replaceWithMap(bitmaskOperatorsTemplate, { { "bitmaskName", bitmaskName },{ "enumName", enumName },{ "allFlags", allFlags } }); } if (!bitmaskAlias.empty()) { str += "\n" " using " + stripPrefix(bitmaskAlias, "Vk") + " = " + bitmaskName + ";\n"; } } void VulkanHppGenerator::appendBitmaskToStringFunction(std::string & str, std::string const& bitmaskName, std::string const& enumName, std::vector const& enumValues) const { str += "\n" " VULKAN_HPP_INLINE std::string to_string( " + bitmaskName + (enumValues.empty() ? " " : " value ") + " )\n" " {\n"; if (enumValues.empty()) { str += "\n return \"{}\";\n"; } else { // 'or' together all the bits in the value str += "\n" " if ( !value ) return \"{}\";\n" " std::string result;\n"; for (auto const& evd : enumValues) { if (evd.singleBit) { str += "\n" " if ( value & " + enumName + "::" + evd.vkValue + " ) result += \"" + evd.vkValue.substr(1) + " | \";"; } } str += "\n" " return \"{ \" + result.substr(0, result.size() - 3) + \" }\";\n"; } str += " }\n"; } void VulkanHppGenerator::appendCall(std::string & str, std::pair const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool twoStep, bool firstCall, bool singular) const { // the original function call str += "d." + commandData.first + "( "; assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); std::string const& handle = m_commandToHandle.find(commandData.first)->second; if (!handle.empty()) { // if it's member of a class -> the first argument is the member variable, starting with "m_" assert(handle == commandData.second.params[0].type.type); str += "m_" + startLowerCase(stripPrefix(handle, "Vk")); if (1 < commandData.second.params.size()) { str += ", "; } } appendArguments(str, commandData.second, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, firstCall, singular, handle.empty() ? 0 : 1, commandData.second.params.size()); str += " )"; } void VulkanHppGenerator::appendCommand(std::string & str, std::string const& indentation, std::string const& name, std::pair const& commandData, bool definition) const { bool twoStep = isTwoStepAlgorithm(commandData.second.params); std::map vectorParamIndices = determineVectorParamIndices(commandData.second.params); size_t returnParamIndex = determineReturnParamIndex(commandData.second, vectorParamIndices, twoStep); bool isStructureChain = (returnParamIndex != INVALID_INDEX) && determineStructureChaining(commandData.second.params[returnParamIndex].type.type, m_extendedStructs, m_structureAliases); std::string enhancedReturnType = determineEnhancedReturnType(commandData.second, returnParamIndex, vectorParamIndices, twoStep, false); // get the enhanced return type without structureChain size_t templateParamIndex = determineTemplateParamIndex(commandData.second.params, vectorParamIndices); // first create the standard version of the function std::string standard; appendFunction(standard, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnType, definition, false, false, false, false, false); // then the enhanced version, composed by up to eight parts std::string enhanced; appendFunction(enhanced, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnType, definition, true, false, false, false, false); if (enhancedReturnType.find("Allocator") != std::string::npos) { appendFunction(enhanced, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnType, definition, true, false, false, false, true); } if (isStructureChain) { std::string enhancedReturnTypeWithStructureChain = determineEnhancedReturnType(commandData.second, returnParamIndex, vectorParamIndices, twoStep, true); appendFunction(enhanced, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnTypeWithStructureChain, definition, true, false, false, true, false); if (enhancedReturnTypeWithStructureChain.find("Allocator") != std::string::npos) { appendFunction(enhanced, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnTypeWithStructureChain, definition, true, false, false, true, true); } } // then a singular version, if a sized vector would be returned std::map::const_iterator returnVector = vectorParamIndices.find(returnParamIndex); bool singular = (returnVector != vectorParamIndices.end()) && (returnVector->second != INVALID_INDEX) && (commandData.second.params[returnVector->first].type.type != "void") && (commandData.second.params[returnVector->second].type.postfix.empty() || (commandData.second.params[returnVector->second].type.postfix.back() != '*')); if (singular) { appendFunction(enhanced, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnType, definition, true, true, false, false, false); } // special handling for createDevice and createInstance ! bool specialWriteUnique = (commandData.first == "vkCreateDevice") || (commandData.first == "vkCreateInstance"); // and then the same for the Unique* versions (a deleteCommand is available for the commandData's class, and the function starts with 'allocate' or 'create') assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); auto handleIt = m_handles.find(m_commandToHandle.find(commandData.first)->second); assert(handleIt != m_handles.end()); if ((!handleIt->second.deleteCommand.empty() || specialWriteUnique) && ((commandData.first.substr(2, 8) == "Allocate") || (commandData.first.substr(2, 6) == "Create") || ((commandData.first.substr(2, 8) == "Register") && (returnParamIndex + 1 == commandData.second.params.size())))) { enhanced += "#ifndef VULKAN_HPP_NO_SMART_HANDLE\n"; appendFunction(enhanced, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnType, definition, true, false, true, false, false); if (enhancedReturnType.find("Allocator") != std::string::npos) { appendFunction(enhanced, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnType, definition, true, false, true, false, true); } if (singular) { appendFunction(enhanced, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnType, definition, true, true, true, false, false); } enhanced += "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/\n"; } // and append one or both of them if (standard == enhanced) { // standard and enhanced string are equal -> just use one of them and we're done str += standard; } else { // standard and enhanced string differ -> use both, wrapping the enhanced by !VULKAN_HPP_DISABLE_ENHANCED_MODE // determine the argument list of that standard, and compare it with that of the enhanced // if they are equal -> need to have just one; if they differ -> need to have both size_t standardStart = standard.find('('); size_t standardCount = standard.find(')', standardStart) - standardStart; size_t enhancedStart = enhanced.find('('); bool unchangedInterface = (standard.substr(standardStart, standardCount) == enhanced.substr(enhancedStart, standardCount)); if (unchangedInterface) { str += "#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE\n"; } str += standard + (unchangedInterface ? "#else" : "#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE") + "\n" + enhanced + "#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/\n"; } } void VulkanHppGenerator::appendDispatchLoaderDynamic(std::string & str) { str += R"( #if VULKAN_HPP_ENABLE_DYNAMIC_LOADER_TOOL class DynamicLoader { public: #ifdef VULKAN_HPP_NO_EXCEPTIONS DynamicLoader() VULKAN_HPP_NOEXCEPT : m_success( false ) #else DynamicLoader() : m_success( false ) #endif { #if defined(__linux__) m_library = dlopen( "libvulkan.so", RTLD_NOW | RTLD_LOCAL ); #elif defined(__APPLE__) m_library = dlopen( "libvulkan.dylib", RTLD_NOW | RTLD_LOCAL ); #elif defined(_WIN32) m_library = LoadLibrary( TEXT( "vulkan-1.dll" ) ); #else assert( false && "unsupported platform" ); #endif m_success = m_library != 0; #ifndef VULKAN_HPP_NO_EXCEPTIONS if ( !m_success ) { // NOTE there should be an InitializationFailedError, but msvc insists on the symbol does not exist within the scope of this function. throw std::runtime_error( "Failed to load vulkan library!" ); } #endif } ~DynamicLoader() VULKAN_HPP_NOEXCEPT { if ( m_library ) { #if defined(__linux__) || defined(__APPLE__) dlclose( m_library ); #elif defined(_WIN32) FreeLibrary( m_library ); #endif } } template T getProcAddress( const char* function ) const VULKAN_HPP_NOEXCEPT { #if defined(__linux__) || defined(__APPLE__) return (T)dlsym( m_library, function ); #elif defined(_WIN32) return (T)GetProcAddress( m_library, function ); #endif } bool success() const VULKAN_HPP_NOEXCEPT { return m_success; } private: bool m_success; #if defined(__linux__) || defined(__APPLE__) void *m_library; #elif defined(_WIN32) HMODULE m_library; #else #error unsupported platform #endif }; #endif )"; str += R"( class DispatchLoaderDynamic { public: )"; for (auto const& handle : m_handles) { for (auto const& command : handle.second.commands) { std::string enter, leave; appendPlatformEnter(enter, command.second.platform); appendPlatformLeave(leave, command.second.platform); str += enter + " PFN_" + command.first + " " + command.first + " = 0;\n" + leave; } } std::string emptyFunctions; std::string strDeviceFunctions; std::string strDeviceFunctionsInstance; std::string strInstanceFunctions; for (auto const& handle : m_handles) { for (auto const& command : handle.second.commands) { if ((command.first != "vkGetInstanceProcAddr")) { std::string enter, leave; appendPlatformEnter(enter, command.second.platform); appendPlatformLeave(leave, command.second.platform); if (handle.first.empty()) { emptyFunctions += enter; emptyFunctions += " " + command.first + " = PFN_" + command.first + "( vkGetInstanceProcAddr( NULL, \"" + command.first + "\" ) );\n"; emptyFunctions += leave; } else if (!command.second.params.empty() && m_handles.find(command.second.params[0].type.type) != m_handles.end() && command.second.params[0].type.type != "VkInstance" && command.second.params[0].type.type != "VkPhysicalDevice") { strDeviceFunctions += enter; strDeviceFunctions += " " + command.first + " = PFN_" + command.first + "( vkGetDeviceProcAddr( device, \"" + command.first + "\" ) );\n"; strDeviceFunctions += leave; strDeviceFunctionsInstance += enter; strDeviceFunctionsInstance += " " + command.first + " = PFN_" + command.first + "( vkGetInstanceProcAddr( instance, \"" + command.first + "\" ) );\n"; strDeviceFunctionsInstance += leave; } else { strInstanceFunctions += enter; strInstanceFunctions += " " + command.first + " = PFN_" + command.first + "( vkGetInstanceProcAddr( instance, \"" + command.first + "\" ) );\n"; strInstanceFunctions += leave; } } } } // append initialization function to fetch function pointers str += R"( public: DispatchLoaderDynamic() VULKAN_HPP_NOEXCEPT = default; #if !defined(VK_NO_PROTOTYPES) // This interface is designed to be used for per-device function pointers in combination with a linked vulkan library. DispatchLoaderDynamic(VULKAN_HPP_NAMESPACE::Instance const& instance, VULKAN_HPP_NAMESPACE::Device const& device) VULKAN_HPP_NOEXCEPT { init(instance, device); } // This interface is designed to be used for per-device function pointers in combination with a linked vulkan library. void init(VULKAN_HPP_NAMESPACE::Instance const& instance, VULKAN_HPP_NAMESPACE::Device const& device) VULKAN_HPP_NOEXCEPT { static vk::DynamicLoader dl; PFN_vkGetInstanceProcAddr getInstanceProcAddr = dl.getProcAddress("vkGetInstanceProcAddr"); PFN_vkGetDeviceProcAddr getDeviceProcAddr = dl.getProcAddress("vkGetDeviceProcAddr"); init(static_cast(instance), getInstanceProcAddr, static_cast(device), device ? getDeviceProcAddr : nullptr); } #endif // !defined(VK_NO_PROTOTYPES) DispatchLoaderDynamic(PFN_vkGetInstanceProcAddr getInstanceProcAddr) VULKAN_HPP_NOEXCEPT { init(getInstanceProcAddr); } void init( PFN_vkGetInstanceProcAddr getInstanceProcAddr ) VULKAN_HPP_NOEXCEPT { VULKAN_HPP_ASSERT(getInstanceProcAddr); vkGetInstanceProcAddr = getInstanceProcAddr; )"; str += emptyFunctions; str += R"( } // This interface does not require a linked vulkan library. DispatchLoaderDynamic( VkInstance instance, PFN_vkGetInstanceProcAddr getInstanceProcAddr, VkDevice device = VK_NULL_HANDLE, PFN_vkGetDeviceProcAddr getDeviceProcAddr = nullptr ) VULKAN_HPP_NOEXCEPT { init( instance, getInstanceProcAddr, device, getDeviceProcAddr ); } // This interface does not require a linked vulkan library. void init( VkInstance instance, PFN_vkGetInstanceProcAddr getInstanceProcAddr, VkDevice device = VK_NULL_HANDLE, PFN_vkGetDeviceProcAddr /*getDeviceProcAddr*/ = nullptr ) VULKAN_HPP_NOEXCEPT { VULKAN_HPP_ASSERT(instance && getInstanceProcAddr); vkGetInstanceProcAddr = getInstanceProcAddr; init( VULKAN_HPP_NAMESPACE::Instance(instance) ); if (device) { init( VULKAN_HPP_NAMESPACE::Device(device) ); } } void init( VULKAN_HPP_NAMESPACE::Instance instanceCpp ) VULKAN_HPP_NOEXCEPT { VkInstance instance = static_cast(instanceCpp); )"; str += strInstanceFunctions; str += strDeviceFunctionsInstance; str += " }\n\n"; str += " void init( VULKAN_HPP_NAMESPACE::Device deviceCpp ) VULKAN_HPP_NOEXCEPT\n {\n"; str += " VkDevice device = static_cast(deviceCpp);\n"; str += strDeviceFunctions; str += R"( } }; )"; } void VulkanHppGenerator::appendDispatchLoaderStatic(std::string & str) { str += R"( #if !defined(VK_NO_PROTOTYPES) class DispatchLoaderStatic { public:)"; for (auto const& handle : m_handles) { for (auto const& command : handle.second.commands) { std::string parameterList, parameters; bool firstParam = true; for (auto param : command.second.params) { if (!firstParam) { parameterList += ", "; parameters += ", "; } parameterList += param.type.prefix + (param.type.prefix.empty() ? "" : " ") + param.type.type + param.type.postfix + " " + param.name; if (!param.arraySize.empty()) { parameterList += "[" + param.arraySize + "]"; } parameters += param.name; firstParam = false; } std::string commandName = stripPrefix(command.first, "vk"); str += "\n"; appendPlatformEnter(str, command.second.platform); str += " " + command.second.returnType + " vk" + commandName + "( " + parameterList + " ) const VULKAN_HPP_NOEXCEPT\n" " {\n" " return ::vk" + commandName + "( " + parameters + " );\n" " }\n"; appendPlatformLeave(str, command.second.platform); } } str += " };\n#endif\n"; } void VulkanHppGenerator::appendDispatchLoaderDefault(std::string & str) { str += "\n" R"( class DispatchLoaderDynamic; #if !defined(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC) # if defined(VK_NO_PROTOTYPES) # define VULKAN_HPP_DISPATCH_LOADER_DYNAMIC 1 # else # define VULKAN_HPP_DISPATCH_LOADER_DYNAMIC 0 # endif #endif #if !defined(VULKAN_HPP_DEFAULT_DISPATCHER) # if VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1 # define VULKAN_HPP_DEFAULT_DISPATCHER ::VULKAN_HPP_NAMESPACE::defaultDispatchLoaderDynamic # define VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE namespace VULKAN_HPP_NAMESPACE { DispatchLoaderDynamic defaultDispatchLoaderDynamic; } extern DispatchLoaderDynamic defaultDispatchLoaderDynamic; # else # define VULKAN_HPP_DEFAULT_DISPATCHER ::VULKAN_HPP_NAMESPACE::DispatchLoaderStatic() # define VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE # endif #endif #if !defined(VULKAN_HPP_DEFAULT_DISPATCHER_TYPE) # if VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1 #define VULKAN_HPP_DEFAULT_DISPATCHER_TYPE ::VULKAN_HPP_NAMESPACE::DispatchLoaderDynamic # else # define VULKAN_HPP_DEFAULT_DISPATCHER_TYPE ::VULKAN_HPP_NAMESPACE::DispatchLoaderStatic # endif #endif )"; } void VulkanHppGenerator::appendEnum(std::string & str, std::pair const& enumData) const { str += " enum class " + stripPrefix(enumData.first, "Vk") + "\n" " {"; bool first = true; for (auto const& value : enumData.second.values) { if (!first) { str += ","; } str += "\n " + value.vkValue + " = " + value.vulkanValue; first = false; } for (auto const& value : enumData.second.aliases) { // make sure to only list alias values that differ from all non-alias values if (std::find_if(enumData.second.values.begin(), enumData.second.values.end(), [&value](EnumValueData const& evd) { return value.second == evd.vkValue; }) == enumData.second.values.end()) { if (!first) { str += ","; } str += "\n " + value.second + " = " + value.first; first = false; } } if (!first) { str += "\n "; } str += "};\n"; } void VulkanHppGenerator::appendEnums(std::string & str) const { for (auto const& e : m_enums) { str += "\n"; appendPlatformEnter(str, e.second.platform); appendEnum(str, e); appendEnumToString(str, e); appendPlatformLeave(str, e.second.platform); } } void VulkanHppGenerator::appendEnumToString(std::string & str, std::pair const& enumData) const { std::string enumName = stripPrefix(enumData.first, "Vk"); str += "\n" " VULKAN_HPP_INLINE std::string to_string( " + enumName + (enumData.second.values.empty() ? "" : " value") + " )\n" " {"; if (enumData.second.values.empty()) { str += "\n" " return \"(void)\";\n"; } else { str += "\n" " switch ( value )\n" " {\n"; for (auto const& value : enumData.second.values) { str += " case " + enumName + "::" + value.vkValue + " : return \"" + value.vkValue.substr(1) + "\";\n"; } str += " default: return \"invalid\";\n" " }\n"; } str += " }\n"; } void VulkanHppGenerator::appendForwardDeclarations(std::string & str) const { str += "\n"; for (auto const& structure : m_structures) { appendPlatformEnter(str, structure.second.platform); str += std::string(" ") + (structure.second.isUnion ? "union" : "struct") + " " + stripPrefix(structure.first, "Vk") + ";\n"; for (std::string const& alias : structure.second.aliases) { str += " using " + stripPrefix(alias, "Vk") + " = " + stripPrefix(structure.first, "Vk") + ";\n"; } appendPlatformLeave(str, structure.second.platform); } } bool needsMultiVectorSizeCheck(size_t returnParamIndex, std::map const& vectorParamIndices) { for (std::map::const_iterator it0 = vectorParamIndices.begin(); it0 != vectorParamIndices.end(); ++it0) { if (it0->first != returnParamIndex) { for (std::map::const_iterator it1 = std::next(it0); it1 != vectorParamIndices.end(); ++it1) { if ((it1->first != returnParamIndex) && (it0->second == it1->second)) { return true; } } } } return false; } void VulkanHppGenerator::appendFunction(std::string & str, std::string const& indentation, std::string const& name, std::pair const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool twoStep, std::string const& enhancedReturnType, bool definition, bool enhanced, bool singular, bool unique, bool isStructureChain, bool withAllocator) const { appendFunctionHeaderTemplate(str, indentation, returnParamIndex, templateParamIndex, enhancedReturnType, enhanced, singular, unique, !definition, isStructureChain); str += indentation + (definition ? "VULKAN_HPP_INLINE " : ""); appendFunctionHeaderReturnType(str, commandData.second, returnParamIndex, vectorParamIndices, enhancedReturnType, enhanced, singular, unique, isStructureChain); assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); std::string const& handle = m_commandToHandle.find(commandData.first)->second; if (definition && !handle.empty()) { str += stripPrefix(handle, "Vk") + "::"; } // append the function header name str += (singular ? stripPluralS(name) : name); if (unique) { str += "Unique"; } appendFunctionHeaderArguments(str, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, enhanced, singular, !definition, withAllocator); // Any function that originally does not return VkResult can be marked noexcept, // if it is enhanced it musnt't include anything with an Allocator or needs size checks on multiple vectors bool hasAllocator = enhancedReturnType.find("Allocator") != std::string::npos; if (commandData.second.returnType != "VkResult" && !(enhanced && (hasAllocator || needsMultiVectorSizeCheck(returnParamIndex, vectorParamIndices)))) { str += " VULKAN_HPP_NOEXCEPT"; } str += std::string(definition ? "" : ";") + "\n"; if (definition) { // append the function body str += indentation + "{\n"; if (enhanced) { appendFunctionBodyEnhanced(str, indentation, name, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, enhancedReturnType, singular, unique, isStructureChain, withAllocator); } else { appendFunctionBodyStandard(str, indentation, commandData); } str += indentation + "}\n"; } } void VulkanHppGenerator::appendFunctionBodyEnhanced(std::string & str, std::string const& indentation, std::string const& commandName, std::pair const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool twoStep, std::string const& enhancedReturnType, bool singular, bool unique, bool isStructureChain, bool withAllocator) const { if (unique && !singular && (vectorParamIndices.find(returnParamIndex) != vectorParamIndices.end())) // returns a vector of UniqueStuff { appendFunctionBodyEnhancedVectorOfUniqueHandles(str, indentation, commandName, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, singular, withAllocator); } else if (isStructureChain && (vectorParamIndices.find(returnParamIndex) != vectorParamIndices.end())) { appendFunctionBodyEnhancedVectorOfStructureChain(str, indentation, commandData, returnParamIndex, vectorParamIndices, withAllocator); } else { if (1 < vectorParamIndices.size()) { appendFunctionBodyEnhancedMultiVectorSizeCheck(str, indentation, commandName, commandData, returnParamIndex, vectorParamIndices); } std::string returnName; if (returnParamIndex != INVALID_INDEX) { returnName = appendFunctionBodyEnhancedLocalReturnVariable(str, indentation, commandData.second, returnParamIndex, vectorParamIndices, twoStep, enhancedReturnType, singular, isStructureChain, withAllocator); } if (twoStep) { appendFunctionBodyEnhancedTwoStep(str, indentation, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, singular, returnName); } else { appendFunctionBodyEnhancedSingleStep(str, indentation, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, singular); } if ((commandData.second.returnType == "VkResult") || !commandData.second.successCodes.empty()) { appendFunctionBodyEnhancedReturnResultValue(str, indentation, returnName, commandName, commandData, returnParamIndex, twoStep, singular, unique); } else if ((returnParamIndex != INVALID_INDEX) && (stripPrefix(commandData.second.returnType, "Vk") != enhancedReturnType)) { // for the other returning cases, when the return type is somhow enhanced, just return the local returnVariable str += indentation + " return " + returnName + ";\n"; } } } std::string VulkanHppGenerator::appendFunctionBodyEnhancedLocalReturnVariable(std::string & str, std::string const& indentation, CommandData const& commandData, size_t returnParamIndex, std::map const& vectorParamIndices, bool twoStep, std::string const& enhancedReturnType, bool singular, bool isStructureChain, bool withAllocator) const { std::string pureReturnType = stripPrefix(commandData.params[returnParamIndex].type.type, "Vk"); std::string returnName = startLowerCase(stripPrefix(commandData.params[returnParamIndex].name, "p")); // there is a returned parameter -> we need a local variable to hold that value if (stripPrefix(commandData.returnType, "Vk") != enhancedReturnType) { // the returned parameter is somehow enhanced by us str += indentation + " "; if (singular) { returnName = appendFunctionBodyEnhancedLocalReturnVariableSingular(str, indentation, returnName, pureReturnType, isStructureChain); } else { // in non-singular case, use the enhanced type for the return variable (like vector<...>) if (isStructureChain && vectorParamIndices.empty()) { // For StructureChains use the template parameters str += "StructureChain structureChain;\n" + indentation + " " + enhancedReturnType + "& " + returnName + " = structureChain.template get<" + enhancedReturnType + ">()"; returnName = "structureChain"; } else { str += enhancedReturnType + " " + returnName; } std::map::const_iterator vpiIt = vectorParamIndices.find(returnParamIndex); if (vpiIt != vectorParamIndices.end() && !twoStep) { appendFunctionBodyEnhancedLocalReturnVariableVectorSize(str, commandData.params, *vpiIt, returnParamIndex, vectorParamIndices, withAllocator); } else if (withAllocator) { str += "( vectorAllocator )"; } } str += ";\n"; } else { // the return parameter is not enhanced -> the type is supposed to be a Result and there are more than one success codes! assert((commandData.returnType == "VkResult") && (1 < commandData.successCodes.size())); str += indentation + " " + pureReturnType + " " + returnName + ";\n"; } return returnName; } void VulkanHppGenerator::appendFunctionBodyEnhancedLocalReturnVariableVectorSize(std::string & str, std::vector const& params, std::pair const& vectorParamIndex, size_t returnParamIndex, std::map const& vectorParamIndices, bool withAllocator) const { // if the return parameter is a vector parameter, and not part of a two-step algorithm, initialize its size std::string size; if (vectorParamIndex.second == INVALID_INDEX) { assert(!params[returnParamIndex].len.empty()); // the size of the vector is not given by an other parameter, but by some member of a parameter, described as 'parameter::member' // -> replace the '::' by '.' and filter out the leading 'p' to access that value size = startLowerCase(stripPrefix(params[returnParamIndex].len, "p")); size_t pos = size.find("::"); assert(pos != std::string::npos); size.replace(pos, 2, "."); } else { // the size of the vector is given by an other parameter // first check, if that size has become the size of some other vector parameter // -> look for it and get it's actual size for (auto const& vpi : vectorParamIndices) { if ((vpi.first != vectorParamIndex.first) || (vpi.second != vectorParamIndex.second)) { size = startLowerCase(stripPrefix(params[vpi.first].name, "p")) + ".size()"; break; } } if (size.empty()) { // otherwise, just use that parameter size = params[vectorParamIndex.second].name; } } assert(!size.empty()); str += "( " + size + (withAllocator ? ", vectorAllocator" : "") + " )"; } void VulkanHppGenerator::appendFunctionBodyEnhancedMultiVectorSizeCheck(std::string & str, std::string const& indentation, std::string const& commandName, std::pair const& commandData, size_t returnParamIndex, std::map const& vectorParamIndices) const { std::string const sizeCheckTemplate = R"#(#ifdef VULKAN_HPP_NO_EXCEPTIONS ${i} VULKAN_HPP_ASSERT( ${firstVectorName}.size() == ${secondVectorName}.size() ); #else ${i} if ( ${firstVectorName}.size() != ${secondVectorName}.size() ) ${i} { ${i} throw LogicError( VULKAN_HPP_NAMESPACE_STRING "::${className}::${commandName}: ${firstVectorName}.size() != ${secondVectorName}.size()" ); ${i} } #endif /*VULKAN_HPP_NO_EXCEPTIONS*/ )#"; assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); std::string const& handle = m_commandToHandle.find(commandData.first)->second; // add some error checks if multiple vectors need to have the same size for (std::map::const_iterator it0 = vectorParamIndices.begin(); it0 != vectorParamIndices.end(); ++it0) { if (it0->first != returnParamIndex) { for (std::map::const_iterator it1 = std::next(it0); it1 != vectorParamIndices.end(); ++it1) { if ((it1->first != returnParamIndex) && (it0->second == it1->second)) { str += replaceWithMap(sizeCheckTemplate, std::map({ { "firstVectorName", startLowerCase(stripPrefix(commandData.second.params[it0->first].name, "p")) }, { "secondVectorName", startLowerCase(stripPrefix(commandData.second.params[it1->first].name, "p")) }, { "className", handle }, { "commandName", commandName }, { "i", indentation } })); } } } } } void VulkanHppGenerator::appendFunctionBodyEnhancedReturnResultValue(std::string & str, std::string const& indentation, std::string const& returnName, std::string const& commandName, std::pair const& commandData, size_t returnParamIndex, bool twoStep, bool singular, bool unique) const { std::string type = (returnParamIndex != INVALID_INDEX) ? commandData.second.params[returnParamIndex].type.type : ""; std::string returnVectorName = (returnParamIndex != INVALID_INDEX) ? stripPostfix(stripPrefix(commandData.second.params[returnParamIndex].name, "p"), "s") : ""; if (commandData.second.returnType == "void") { std::cerr << "warning: skipping appendFunctionBodyEnhancedReturnResultValue for function " << commandName << " because the returnType is void"; return; } assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); std::string const& handle = m_commandToHandle.find(commandData.first)->second; if (unique) { // the unique version needs a Deleter object for destruction of the newly created stuff // get the DeleterData corresponding to the returned type // special handling for "createDevice", as Device is created from PhysicalDevice, but destroyed on its own bool noParent = handle.empty() || (commandData.first == "vkCreateDevice"); str += "\n" + indentation + ((commandData.first == "vkAllocateMemory") ? " ObjectFree<" : " ObjectDestroy<") + (noParent ? "NoParent" : stripPrefix(handle, "Vk")) + ",Dispatch> deleter( " + (noParent ? "" : "*this, ") + "allocator, d );\n" + indentation + " return createResultValue<" + stripPrefix(type, "Vk") + ",Dispatch>( result, "; } else { str += indentation + " return createResultValue( result, "; } // if the return type is "Result" or there is at least one success code, create the Result/Value construct to return if (returnParamIndex != INVALID_INDEX) { // if there's a return parameter, list it in the Result/Value constructor str += returnName + ", "; } // now the function name (with full namespace) as a string str += "VULKAN_HPP_NAMESPACE_STRING\"::" + (handle.empty() ? "" : stripPrefix(handle, "Vk") + "::") + (singular ? stripPluralS(commandName) : commandName) + (unique ? "Unique" : "") + "\""; if (!twoStep && (1 < commandData.second.successCodes.size())) { // and for the single-step algorithms with more than one success code list them all str += ", { Result::" + commandData.second.successCodes[0]; for (size_t i = 1; i < commandData.second.successCodes.size(); i++) { str += ", Result::" + commandData.second.successCodes[i]; } str += " }"; } if (unique) { str += ", deleter"; } str += " );\n"; } void VulkanHppGenerator::appendFunctionBodyEnhancedSingleStep(std::string & str, std::string const& indentation, std::pair const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool singular) const { str += indentation + " "; if (commandData.second.returnType == "VkResult") { str += "Result result = static_cast( "; } else if (commandData.second.returnType != "void") { str += "return "; } appendCall(str, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, false, true, singular); if (commandData.second.returnType == "VkResult") { str += " )"; } str += ";\n"; } void VulkanHppGenerator::appendFunctionBodyEnhancedTwoStep(std::string & str, std::string const& indentation, std::pair const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool singular, std::string const& returnName) const { assert(!singular); assert((commandData.second.returnType == "VkResult") || (commandData.second.returnType == "void")); assert(returnParamIndex != INVALID_INDEX); // local count variable to hold the size of the vector to fill std::map::const_iterator returnit = vectorParamIndices.find(returnParamIndex); assert(returnit != vectorParamIndices.end() && (returnit->second != INVALID_INDEX)); // take the pure type of the size parameter; strip the leading 'p' from its name for its local name std::string sizeName = startLowerCase(stripPrefix(commandData.second.params[returnit->second].name, "p")); str += indentation + " " + stripPrefix(commandData.second.params[returnit->second].type.type, "Vk") + " " + sizeName + ";\n"; std::string const multiSuccessTemplate = R"(${i} Result result; ${i} do ${i} { ${i} result = static_cast( ${call1} ); ${i} if ( ( result == Result::eSuccess ) && ${sizeName} ) ${i} { ${i} ${returnName}.resize( ${sizeName} ); ${i} result = static_cast( ${call2} ); ${i} } ${i} } while ( result == Result::eIncomplete ); ${i} if ( result == Result::eSuccess ) ${i} { ${i} VULKAN_HPP_ASSERT( ${sizeName} <= ${returnName}.size() ); ${i} ${returnName}.resize( ${sizeName} ); ${i} } )"; std::string const singleSuccessTemplate = R"(${i} Result result = static_cast( ${call1} ); ${i} if ( ( result == Result::eSuccess ) && ${sizeName} ) ${i} { ${i} ${returnName}.resize( ${sizeName} ); ${i} result = static_cast( ${call2} ); ${i} } )"; std::string const voidMultiCallTemplate = R"(${i} ${call1}; ${i} ${returnName}.resize( ${sizeName} ); ${i} ${call2}; )"; std::string const& selectedTemplate = (commandData.second.returnType == "VkResult") ? ((1 < commandData.second.successCodes.size()) ? multiSuccessTemplate : singleSuccessTemplate) : voidMultiCallTemplate; std::string call1, call2; appendCall(call1, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, true, true, false); appendCall(call2, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, true, false, false); str += replaceWithMap(selectedTemplate, { { "sizeName", sizeName }, { "returnName", returnName }, { "call1", call1 }, { "call2", call2 }, { "i", indentation } }); } void VulkanHppGenerator::appendFunctionBodyEnhancedVectorOfStructureChain(std::string & str, std::string const& indentation, std::pair const& commandData, size_t returnParamIndex, std::map const& vectorParamIndices, bool withAllocator) const { std::string const stringTemplate = R"(${i} std::vector ${returnName}${vectorAllocator}; ${i} uint32_t ${sizeName}; ${i} d.${commandName}( m_${handleName}, &${sizeName}, nullptr ); ${i} ${returnName}.resize( ${sizeName} ); ${i} std::vector localVector( ${sizeName} ); ${i} for ( uint32_t i = 0; i < ${sizeName} ; i++ ) ${i} { ${i} localVector[i].pNext = ${returnName}[i].template get().pNext; ${i} } ${i} d.${commandName}( m_${handleName}, &${sizeName}, reinterpret_cast<${VkReturnType}*>( localVector.data() ) ); ${i} for ( uint32_t i = 0; i < ${sizeName} ; i++ ) ${i} { ${i} ${returnName}[i].template get() = localVector[i]; ${i} } ${i} return ${returnName}; )"; // local count variable to hold the size of the vector to fill std::map::const_iterator returnit = vectorParamIndices.find(returnParamIndex); assert(returnit != vectorParamIndices.end() && (returnit->second != INVALID_INDEX)); assert(m_commandToHandle.find(commandData.first)->second == commandData.second.params[0].type.type); // make sure, the first argument is the handle assert(commandData.second.params.size() == 3); // make sure, there are three args: the handle, the pointer to size, and the data pointer str += replaceWithMap(stringTemplate, { { "commandName", commandData.first}, { "handleName", startLowerCase(stripPrefix(commandData.second.params[0].type.type, "Vk")) }, { "i", indentation }, { "returnName", startLowerCase(stripPrefix(commandData.second.params[returnParamIndex].name, "p")) }, { "returnType", stripPrefix(commandData.second.params[returnParamIndex].type.type, "Vk")}, { "sizeName", startLowerCase(stripPrefix(commandData.second.params[returnit->second].name, "p"))}, { "vectorAllocator", withAllocator ? "( vectorAllocator )" : "" }, { "VkReturnType", commandData.second.params[returnParamIndex].type.type} }); } void VulkanHppGenerator::appendFunctionBodyEnhancedVectorOfUniqueHandles(std::string & str, std::string const& indentation, std::string const& commandName, std::pair const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool twoStep, bool singular, bool withAllocator) const { std::string const stringTemplate = R"(${i} static_assert( sizeof( ${type} ) <= sizeof( UniqueHandle<${type}, Dispatch> ), "${type} is greater than UniqueHandle<${type}, Dispatch>!" ); ${i} std::vector, Allocator> ${typeVariable}s${allocator}; ${i} ${typeVariable}s.reserve( ${vectorSize} ); ${i} ${type}* buffer = reinterpret_cast<${type}*>( reinterpret_cast( ${typeVariable}s.data() ) + ${vectorSize} * ( sizeof( UniqueHandle<${type}, Dispatch> ) - sizeof( ${type} ) ) ); ${i} Result result = static_cast(d.vk${command}( m_device, ${arguments}, reinterpret_cast( buffer ) ) ); ${i} if (result == VULKAN_HPP_NAMESPACE::Result::eSuccess) ${i} { ${i} ${Deleter}<${DeleterTemplate},Dispatch> deleter( *this, ${deleterArg}, d ); ${i} for ( size_t i=0 ; i<${vectorSize} ; i++ ) ${i} { ${i} ${typeVariable}s.push_back( UniqueHandle<${type}, Dispatch>( buffer[i], deleter ) ); ${i} } ${i} } ${i} return createResultValue( result, ${typeVariable}s, VULKAN_HPP_NAMESPACE_STRING "::${class}::${commandName}Unique" ); )"; std::string type = (returnParamIndex != INVALID_INDEX) ? commandData.second.params[returnParamIndex].type.type : ""; std::string typeVariable = startLowerCase(stripPrefix(type, "Vk")); std::string arguments; appendArguments(arguments, commandData.second, returnParamIndex, templateParamIndex, vectorParamIndices, twoStep, true, singular, 1, commandData.second.params.size() - 1); assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); std::string const& handle = m_commandToHandle.find(commandData.first)->second; auto handleIt = m_handles.find(type); assert(handleIt != m_handles.end()); bool isCreateFunction = (commandData.first.substr(2, 6) == "Create"); str += replaceWithMap(stringTemplate, std::map { { "i", indentation }, { "type", stripPrefix(type, "Vk") }, { "typeVariable", typeVariable }, { "allocator", withAllocator ? "( vectorAllocator )" : "" }, { "vectorSize", isCreateFunction ? "createInfos.size()" : "allocateInfo." + typeVariable + "Count" }, { "command", stripPrefix(commandData.first, "vk") }, { "arguments", arguments }, { "Deleter", handleIt->second.deletePool.empty() ? "ObjectDestroy" : "PoolFree" }, { "DeleterTemplate", stripPrefix(handle, "Vk") + (handleIt->second.deletePool.empty() ? "" : "," + stripPrefix(handleIt->second.deletePool, "Vk")) }, { "deleterArg", handleIt->second.deletePool.empty() ? "allocator" : "allocateInfo." + startLowerCase(stripPrefix(handleIt->second.deletePool, "Vk")) }, { "class", stripPrefix(handle, "Vk") }, { "commandName", commandName } }); } void VulkanHppGenerator::appendFunctionBodyStandard(std::string & str, std::string const& indentation, std::pair const& commandData) const { std::pair returnData = generateFunctionBodyStandardReturn(commandData.second.returnType); assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); std::string const& handle = m_commandToHandle.find(commandData.first)->second; assert(handle.empty() || (handle == commandData.second.params[0].type.type)); str += indentation + " " + returnData.second + "d." + commandData.first + "( " + (handle.empty() ? "" : ("m_" + startLowerCase(stripPrefix(handle, "Vk")))); for (size_t i = handle.empty() ? 0 : 1; i < commandData.second.params.size(); i++) { if (0 < i) { str += ", "; } appendFunctionBodyStandardArgument(str, commandData.second.params[i].type, commandData.second.params[i].name); } str += std::string(" )") + (returnData.first ? " )" : "") + ";\n"; } void VulkanHppGenerator::appendFunctionBodyStandardArgument(std::string & str, TypeData const& typeData, std::string const& name) const { if (beginsWith(typeData.type, "Vk")) { // the parameter is a vulkan type if (!typeData.postfix.empty()) { assert(typeData.postfix.back() == '*'); // it's a pointer -> need to reinterpret_cast it appendReinterpretCast(str, typeData.prefix.find("const") == 0, typeData.type, typeData.postfix.find("* const") != std::string::npos); } else { // it's a value -> need to static_cast ist str += "static_cast<" + typeData.type + ">"; } str += "( " + name + " )"; } else { // it's a non-vulkan type -> just use it str += name; } } bool VulkanHppGenerator::appendFunctionHeaderArgumentEnhanced(std::string & str, ParamData const& param, size_t paramIndex, std::map const& vectorParamIndices, bool skip, bool argEncountered, bool isTemplateParam, bool isLastArgument, bool singular, bool withDefaults, bool withAllocator) const { if (!skip) { if (argEncountered) { str += ", "; } std::string strippedParameterName = startLowerCase(stripPrefix(param.name, "p")); std::map::const_iterator it = vectorParamIndices.find(paramIndex); if (it == vectorParamIndices.end()) { // the argument ist not a vector if (param.type.postfix.empty()) { // and its not a pointer -> just use its type and name here appendFunctionHeaderArgumentEnhancedSimple(str, param, isLastArgument, withDefaults, withAllocator); } else { // the argument is not a vector, but a pointer assert(param.type.postfix.back() == '*'); appendFunctionHeaderArgumentEnhancedPointer(str, param, strippedParameterName, withDefaults, withAllocator); } } else { // the argument is a vector appendFunctionHeaderArgumentEnhancedVector(str, param, strippedParameterName, it->second != INVALID_INDEX, isTemplateParam, singular, withDefaults, withAllocator); } argEncountered = true; } return argEncountered; } void VulkanHppGenerator::appendFunctionHeaderArgumentEnhancedPointer(std::string & str, ParamData const& param, std::string const& strippedParameterName, bool withDefaults, bool withAllocator) const { assert(param.type.postfix.back() == '*'); if (param.optional) { // for an optional argument, trim the leading 'p' from the name str += "Optional<" + param.type.prefix + (param.type.prefix.empty() ? "" : " ") + stripPrefix(param.type.type, "Vk") + "> " + strippedParameterName; if (withDefaults && !withAllocator) { str += " = nullptr"; } } else if (param.type.type == "void") { // for void-pointer, just use type and name str += param.type.compose() + " " + param.name; } else if (param.type.type != "char") { // for non-char-pointer, change to reference assert(param.type.postfix == "*"); str += param.type.prefix + (param.type.prefix.empty() ? "" : " ") + stripPrefix(param.type.type, "Vk") + " & " + strippedParameterName; } else { // for char-pointer, change to const reference to std::string str += "const std::string & " + strippedParameterName; } } void VulkanHppGenerator::appendFunctionHeaderArgumentEnhancedSimple(std::string & str, ParamData const& param, bool lastArgument, bool withDefaults, bool withAllocator) const { str += param.type.compose() + " " + param.name; if (!param.arraySize.empty()) { str += "[" + param.arraySize + "]"; } if (withDefaults && lastArgument && !withAllocator) { // check if the very last argument is a flag without any bits -> provide some empty default for it std::map::const_iterator bitmasksIt = m_bitmasks.find(param.type.type); if (bitmasksIt != m_bitmasks.end()) { // get the enum corresponding to this flag, to check if it's empty std::string strippedBitmaskName = stripPrefix(bitmasksIt->first, "Vk"); std::map::const_iterator enumIt = m_bitmaskBits.find(bitmasksIt->second.requirement); assert(enumIt != m_bitmaskBits.end()); if (enumIt->second.values.empty()) { // there are no bits in this flag -> provide the default str += " = " + stripPrefix(param.type.type, "Vk") + "()"; } } } } void VulkanHppGenerator::appendFunctionHeaderArgumentEnhancedVector(std::string & str, ParamData const& param, std::string const& strippedParameterName, bool hasSizeParam, bool isTemplateParam, bool singular, bool withDefaults, bool withAllocator) const { assert(param.type.postfix.back() == '*'); // it's optional, if it's marked as optional and there's no size specified bool optional = param.optional && !hasSizeParam; if (param.type.type.find("char") != std::string::npos) { // it's a char-vector -> use a std::string (either optional or a const-reference if (optional) { str += "Optional " + strippedParameterName; if (withDefaults && !withAllocator) { str += " = nullptr"; } } else { str += "const std::string & " + strippedParameterName; } } else { // it's a non-char vector (they are never optional) assert(!optional); if (singular) { // in singular case, change from pointer to reference str += param.type.prefix + (param.type.prefix.empty() ? "" : " ") + stripPrefix(param.type.type, "Vk") + " & " + stripPluralS(strippedParameterName); } else { // otherwise, use our ArrayProxy bool isConst = (param.type.prefix.find("const") != std::string::npos); str += "ArrayProxy<" + (isTemplateParam ? (isConst ? "const T" : "T") : stripPostfix(param.type.compose(), "*")) + "> " + strippedParameterName; } } } void VulkanHppGenerator::appendFunctionHeaderArguments(std::string & str, std::pair const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool enhanced, bool singular, bool withDefaults, bool withAllocator) const { str += "("; if (enhanced) { appendFunctionHeaderArgumentsEnhanced(str, commandData, returnParamIndex, templateParamIndex, vectorParamIndices, singular, withDefaults, withAllocator); } else { appendFunctionHeaderArgumentsStandard(str, commandData, withDefaults); } str += ")"; assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); if (!m_commandToHandle.find(commandData.first)->second.empty()) { str += " const"; } } void VulkanHppGenerator::appendFunctionHeaderArgumentsEnhanced(std::string & str, std::pair const& commandData, size_t returnParamIndex, size_t templateParamIndex, std::map const& vectorParamIndices, bool singular, bool withDefaults, bool withAllocator) const { assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); std::string const& handle = m_commandToHandle.find(commandData.first)->second; // check if there's at least one argument left to put in here std::set skippedParams = determineSkippedParams(returnParamIndex, vectorParamIndices); if (skippedParams.size() + (handle.empty() ? 0 : 1) < commandData.second.params.size()) { // determine the last argument, where we might provide some default for size_t lastArgument = INVALID_INDEX; for (size_t i = commandData.second.params.size() - 1; i < commandData.second.params.size(); i--) { if (skippedParams.find(i) == skippedParams.end()) { lastArgument = i; break; } } str += " "; bool argEncountered = false; for (size_t i = handle.empty() ? 0 : 1; i < commandData.second.params.size(); i++) { argEncountered = appendFunctionHeaderArgumentEnhanced(str, commandData.second.params[i], i, vectorParamIndices, skippedParams.find(i) != skippedParams.end(), argEncountered, (templateParamIndex == i), (lastArgument == i), singular, withDefaults, withAllocator); } if (argEncountered) { str += ", "; } } if (withAllocator) { str += "Allocator const& vectorAllocator, "; } str += "Dispatch const &d"; if (withDefaults && !withAllocator) { str += " = VULKAN_HPP_DEFAULT_DISPATCHER"; } str += " "; } void VulkanHppGenerator::appendFunctionHeaderArgumentsStandard(std::string & str, std::pair const& commandData, bool withDefaults) const { // for the standard case, just list all the arguments as we've got them // determine the last argument, where we might provide some default for size_t lastArgument = commandData.second.params.size() - 1; assert(m_commandToHandle.find(commandData.first) != m_commandToHandle.end()); std::string const& handle = m_commandToHandle.find(commandData.first)->second; bool argEncountered = false; for (size_t i = handle.empty() ? 0 : 1; i < commandData.second.params.size(); i++) { argEncountered = appendFunctionHeaderArgumentStandard(str, commandData.second.params[i], argEncountered, lastArgument == i, withDefaults); } if (argEncountered) { str += ", "; } str += "Dispatch const &d"; if (withDefaults) { str += " = VULKAN_HPP_DEFAULT_DISPATCHER "; } } bool VulkanHppGenerator::appendFunctionHeaderArgumentStandard(std::string & str, ParamData const& param, bool argEncountered, bool isLastArgument, bool withDefaults) const { if (argEncountered) { str += ","; } str += " " + param.type.compose() + " " + param.name; if (!param.arraySize.empty()) { str += "[" + param.arraySize + "]"; } if (withDefaults && isLastArgument) { // check if the very last argument is a flag without any bits -> provide some empty default for it std::map::const_iterator bitmasksIt = m_bitmasks.find(param.type.type); if (bitmasksIt != m_bitmasks.end()) { // get the enum corresponding to this flag, to check if it's empty std::string strippedBitmaskName = stripPrefix(bitmasksIt->first, "Vk"); std::map::const_iterator enumIt = m_bitmaskBits.find(bitmasksIt->second.requirement); assert(enumIt != m_bitmaskBits.end()); if (enumIt->second.values.empty()) { // there are no bits in this flag -> provide the default str += " = " + stripPrefix(param.type.type, "Vk") + "()"; } } } return true; } void VulkanHppGenerator::appendFunctionHeaderReturnType(std::string & str, CommandData const& commandData, size_t returnParamIndex, std::map const& vectorParamIndices, std::string const& enhancedReturnType, bool enhanced, bool singular, bool unique, bool isStructureChain) const { if (enhanced) { // the enhanced function might return some pretty complex return stuff bool isVector = (enhancedReturnType.find("Allocator") != std::string::npos); if (unique) { // the unique version returns something prefixed with 'Unique'; potentially a vector of that stuff // it's a vector, if it's not the singular version and the return parameter is a vector parameter bool returnsVector = !singular && (vectorParamIndices.find(returnParamIndex) != vectorParamIndices.end()); std::string returnType = isStructureChain ? "StructureChain" : stripPrefix(commandData.params[returnParamIndex].type.type, "Vk"); str += returnsVector ? (((isStructureChain || (!singular && isVector)) ? "typename " : "")) + std::string("ResultValueType,Allocator>>::type " : "typename ResultValueType>::type "; } else if ((enhancedReturnType != stripPrefix(commandData.returnType, "Vk")) && (commandData.returnType != "void")) { // if the enhanced return type differs from the original return type, and it's not void, we return a ResultValueType<...>::type assert(commandData.returnType == "VkResult"); // in singular case, we create the ResultValueType from the pure return type, otherwise from the enhanced return type std::string returnType = isStructureChain ? "StructureChain" : (singular ? stripPrefix(commandData.params[returnParamIndex].type.type, "Vk") : enhancedReturnType); // for the non-singular case with allocation, we need to prepend with 'typename' to keep compilers happy str += ((isStructureChain || (!singular && isVector)) ? "typename " : "") + std::string("ResultValueType<") + returnType + ">::type "; } else if ((returnParamIndex != INVALID_INDEX) && (1 < commandData.successCodes.size())) { // if there is a return parameter at all, and there are multiple success codes, we return a ResultValue<...> with the pure return type assert(commandData.returnType == "VkResult"); str += "ResultValue<" + (isStructureChain ? "StructureChain" : stripPrefix(commandData.params[returnParamIndex].type.type, "Vk")) + "> "; } else { // and in every other case, we just return the enhanced return type. str += (isStructureChain && !isVector ? "StructureChain" : enhancedReturnType) + " "; } } else { // the non-enhanced function just uses the return type str += stripPrefix(commandData.returnType, "Vk") + " "; } } void VulkanHppGenerator::appendFunctionHeaderTemplate(std::string & str, std::string const& indentation, size_t returnParamIndex, size_t templateParamIndex, std::string const& enhancedReturnType, bool enhanced, bool singular, bool unique, bool withDefault, bool isStructureChain) const { bool withAllocator = (enhancedReturnType.find("Allocator") != std::string::npos); str += indentation + "template<"; if (enhanced) { if (isStructureChain) { str += std::string("typename ") + (withAllocator ? "StructureChain" : "X, typename Y, typename ...Z") + ", "; } else if ((templateParamIndex != INVALID_INDEX) && ((templateParamIndex != returnParamIndex) || (enhancedReturnType == "Result"))) { assert(!withAllocator); str += "typename T, "; } if (!singular && withAllocator) { // otherwise, if there's an Allocator used in the enhanced return type, we templatize on that Allocator assert((enhancedReturnType.substr(0, 12) == "std::vector<") && (enhancedReturnType.find(',') != std::string::npos) && (12 < enhancedReturnType.find(','))); str += "typename Allocator"; if (withDefault) { // for the default type get the type from the enhancedReturnType, which is of the form 'std::vector' assert(!isStructureChain || !unique); str += " = std::allocator<" + (isStructureChain ? "StructureChain" : (unique ? "Unique" : "") + enhancedReturnType.substr(12, enhancedReturnType.find(',') - 12)) + ">"; } str += ", "; } } str += std::string("typename Dispatch") + (withDefault ? " = VULKAN_HPP_DEFAULT_DISPATCHER_TYPE" : "") + ">\n"; } void VulkanHppGenerator::appendHandle(std::string & str, std::pair const& handleData, std::set & listedHandles) const { if (listedHandles.find(handleData.first) == listedHandles.end()) { listedHandles.insert(handleData.first); // first check for any handle that needs to be listed before this one for (auto const& command : handleData.second.commands) { for (auto const& parameter : command.second.params) { std::string typeName = parameter.type.type; auto handlesIt = m_handles.find(typeName); if ((handlesIt != m_handles.end()) && (listedHandles.find(typeName) == listedHandles.end())) { appendHandle(str, *handlesIt, listedHandles); } } } if (handleData.first.empty()) { for (auto const& command : handleData.second.commands) { std::string commandName = determineCommandName(command.first, command.second.params[0].type.type); if (command.first == "vkCreateInstance") { // special handling for createInstance, as we need to explicitly place the forward declarations and the deleter classes here #if !defined(NDEBUG) auto handleIt = m_handles.find(""); assert((handleIt != m_handles.end()) && (handleIt->second.childrenHandles.size() == 2)); assert(handleIt->second.childrenHandles.find("VkInstance") != handleIt->second.childrenHandles.end()); #endif appendUniqueTypes(str, "", { "VkInstance" }); } str += "\n"; appendPlatformEnter(str, command.second.platform); appendCommand(str, " ", commandName, command, false); appendPlatformLeave(str, command.second.platform); } } else { // then append any forward declaration of Deleters used by this handle if (!handleData.second.childrenHandles.empty()) { appendUniqueTypes(str, handleData.first, handleData.second.childrenHandles); } else if (handleData.first == "VkPhysicalDevice") { // special handling for class Device, as it's created from PhysicalDevice, but destroys itself appendUniqueTypes(str, "", { "VkDevice" }); } std::string commands; // list all the commands that are mapped to members of this class for (auto const& command : handleData.second.commands) { std::string enter, leave, commandString; appendPlatformEnter(enter, command.second.platform); appendPlatformLeave(leave, command.second.platform); std::string commandName = determineCommandName(command.first, command.second.params[0].type.type); appendCommand(commandString, " ", commandName, command, false); commands += "\n" + enter + commandString; // special handling for destroy functions which are not aliased. if (!command.second.isAlias && (((command.first.substr(2, 7) == "Destroy") && (commandName != "destroy")) || (command.first.substr(2, 4) == "Free"))) { commandName = (command.first.substr(2, 7) == "Destroy") ? "destroy" : "free"; std::string destroyCommandString; appendCommand(destroyCommandString, " ", commandName, command, false); commands += "\n" + destroyCommandString; } commands += leave; } static const std::string templateString = R"( class ${className} { public: using CType = Vk${className}; static VULKAN_HPP_CONST_OR_CONSTEXPR ObjectType objectType = ObjectType::e${className}; public: VULKAN_HPP_CONSTEXPR ${className}() VULKAN_HPP_NOEXCEPT : m_${memberName}(VK_NULL_HANDLE) {} VULKAN_HPP_CONSTEXPR ${className}( std::nullptr_t ) VULKAN_HPP_NOEXCEPT : m_${memberName}(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT ${className}( Vk${className} ${memberName} ) VULKAN_HPP_NOEXCEPT : m_${memberName}( ${memberName} ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) ${className} & operator=(Vk${className} ${memberName}) VULKAN_HPP_NOEXCEPT { m_${memberName} = ${memberName}; return *this; } #endif ${className} & operator=( std::nullptr_t ) VULKAN_HPP_NOEXCEPT { m_${memberName} = VK_NULL_HANDLE; return *this; } bool operator==( ${className} const & rhs ) const VULKAN_HPP_NOEXCEPT { return m_${memberName} == rhs.m_${memberName}; } bool operator!=(${className} const & rhs ) const VULKAN_HPP_NOEXCEPT { return m_${memberName} != rhs.m_${memberName}; } bool operator<(${className} const & rhs ) const VULKAN_HPP_NOEXCEPT { return m_${memberName} < rhs.m_${memberName}; } ${commands} VULKAN_HPP_TYPESAFE_EXPLICIT operator Vk${className}() const VULKAN_HPP_NOEXCEPT { return m_${memberName}; } explicit operator bool() const VULKAN_HPP_NOEXCEPT { return m_${memberName} != VK_NULL_HANDLE; } bool operator!() const VULKAN_HPP_NOEXCEPT { return m_${memberName} == VK_NULL_HANDLE; } private: Vk${className} m_${memberName}; }; static_assert( sizeof( ${className} ) == sizeof( Vk${className} ), "handle and wrapper have different size!" ); template <> struct cpp_type { using type = ${className}; }; )"; str += replaceWithMap(templateString, { { "className", stripPrefix(handleData.first, "Vk") }, { "memberName", startLowerCase(stripPrefix(handleData.first, "Vk")) }, { "commands", commands } }); if (!handleData.second.alias.empty()) { str += " using " + stripPrefix(handleData.second.alias, "Vk") + " = " + stripPrefix(handleData.first, "Vk") + ";\n"; } } } } void VulkanHppGenerator::appendHandles(std::string & str) const { std::set listedHandles; for (auto const& handle : m_handles) { appendHandle(str, handle, listedHandles); } } void VulkanHppGenerator::appendHandlesCommandDefintions(std::string & str) const { for (auto const& handle : m_handles) { // finally the commands, that are member functions of this handle for (auto const& command : handle.second.commands) { std::string commandName = determineCommandName(command.first, command.second.params[0].type.type); std::string strippedName = startLowerCase(stripPrefix(command.first, "vk")); str += "\n"; appendPlatformEnter(str, command.second.platform); appendCommand(str, " ", commandName, command, true); // special handling for destroy functions if (!command.second.isAlias && (((command.first.substr(2, 7) == "Destroy") && (commandName != "destroy")) || (command.first.substr(2, 4) == "Free"))) { commandName = (command.first.substr(2, 7) == "Destroy") ? "destroy" : "free"; str += "\n"; appendCommand(str, " ", commandName, command, true); } appendPlatformLeave(str, command.second.platform); } } str += "\n"; } // Intended only for `enum class Result`! void VulkanHppGenerator::appendResultExceptions(std::string & str) const { std::string templateString = R"( class ${className} : public SystemError { public: ${className}( std::string const& message ) : SystemError( make_error_code( ${enumName}::${enumMemberName} ), message ) {} ${className}( char const * message ) : SystemError( make_error_code( ${enumName}::${enumMemberName} ), message ) {} }; )"; auto enumData = m_enums.find("VkResult"); for (auto const& value : enumData->second.values) { if (beginsWith(value.vkValue, "eError")) { str += replaceWithMap(templateString, { { "className", stripPrefix(value.vkValue, "eError") + "Error" }, { "enumName", stripPrefix(enumData->first, "Vk") }, { "enumMemberName", value.vkValue } }); } } str += "\n"; } void VulkanHppGenerator::appendPlatformEnter(std::string & str, std::string const& platform) const { if (!platform.empty()) { auto it = m_platforms.find(platform); assert((it != m_platforms.end()) && !it->second.empty()); str += "#ifdef " + it->second + "\n"; } } void VulkanHppGenerator::appendPlatformLeave(std::string & str, std::string const& platform) const { if (!platform.empty()) { auto it = m_platforms.find(platform); assert((it != m_platforms.end()) && !it->second.empty()); str += "#endif /*" + it->second + "*/\n"; } } void VulkanHppGenerator::appendStruct(std::string & str, std::pair const& structure, std::set & listedStructures) const { if (listedStructures.find(structure.first) == listedStructures.end()) { listedStructures.insert(structure.first); for (auto const& member : structure.second.members) { auto structureIt = m_structures.find(member.type.type); if ((structureIt != m_structures.end()) && (listedStructures.find(member.type.type) == listedStructures.end())) { appendStruct(str, *structureIt, listedStructures); } } if (!structure.second.subStruct.empty()) { auto structureIt = m_structures.find(structure.second.subStruct); if ((structureIt != m_structures.end()) && (listedStructures.find(structureIt->first) == listedStructures.end())) { appendStruct(str, *structureIt, listedStructures); } } if (structure.second.isUnion) { appendUnion(str, structure); } else { appendStructure(str, structure); } } } void VulkanHppGenerator::appendStructCompareOperators(std::string & str, std::pair const& structData) const { // two structs are compared by comparing each of the elements std::string compareMembers; std::string intro = ""; for (size_t i = 0; i < structData.second.members.size(); i++) { MemberData const& member = structData.second.members[i]; compareMembers += intro; if (member.arraySize.empty()) { compareMembers += "( " + member.name + " == rhs." + member.name + " )"; } else { std::string arraySize = member.arraySize; if ((0 < i) && ((stripPostfix(member.name, "s") + "Count") == structData.second.members[i - 1].name)) { assert(structData.second.members[i - 1].type.type == "uint32_t"); // make sure, it's an unsigned type, so we don't need to clamp here arraySize = "std::min<" + structData.second.members[i-1].type.type + ">( " + arraySize + ", " + structData.second.members[i - 1].name + " )"; } compareMembers += "( memcmp( " + member.name + ", rhs." + member.name + ", " + arraySize + " * sizeof( " + member.type.compose() + " ) ) == 0 )"; } intro = "\n && "; } static const std::string compareTemplate = R"( bool operator==( ${name} const& rhs ) const VULKAN_HPP_NOEXCEPT { return ${compareMembers}; } bool operator!=( ${name} const& rhs ) const VULKAN_HPP_NOEXCEPT { return !operator==( rhs ); } )"; str += replaceWithMap(compareTemplate, { { "name", stripPrefix(structData.first, "Vk") }, { "compareMembers", compareMembers } }); } std::string VulkanHppGenerator::appendStructConstructor(std::pair const& structData, std::string const& prefix) const { // the constructor with all the elements as arguments, with defaults // returnedOnly structs and structs with a union (and VkBaseInStructure and VkBaseOutStructure) can't be a constexpr! bool isConstExpression = !structData.second.returnedOnly && !containsUnion(structData.first) && (structData.first != "VkBaseInStructure") && (structData.first != "VkBaseOutStructure"); std::string constexprString = isConstExpression ? (std::string("VULKAN_HPP_CONSTEXPR") + (containsArray(structData.first) ? "_14 " : " ")) : ""; std::string ctorOpening = prefix + constexprString + stripPrefix(structData.first, "Vk"); std::string indentation(ctorOpening.size() + 2, ' '); std::string arguments, initializers, copyOps; bool listedArgument = false; bool firstArgument = true; for (auto const& member : structData.second.members) { // gather the arguments listedArgument = appendStructConstructorArgument(arguments, listedArgument, indentation, member); // gather the initializers; skip members 'pNext' and 'sType', they are directly set by initializers if ((member.name != "pNext") && (member.name != "sType")) { if (member.arraySize.empty()) { // here, we can only handle non-array arguments initializers += prefix + " " + (firstArgument ? ":" : ",") + " " + member.name + "( " + member.name + "_ )\n"; firstArgument = false; } else { // here we can handle the arrays, copying over from argument (with trailing '_') to member initializers += prefix + " " + (firstArgument ? ":" : ",") + " " + member.name + "{}\n"; // need to initialize the array firstArgument = false; std::string type = (member.type.type.substr(0, 2) == "Vk") ? ("VULKAN_HPP_NAMESPACE::" + stripPrefix(member.type.type, "Vk")) : member.type.type; copyOps += prefix + " VULKAN_HPP_NAMESPACE::ConstExpressionArrayCopy<" + type + "," + member.arraySize + "," + member.arraySize + ">::copy( " + member.name + ", " + member.name + "_ );\n"; } } } std::string structConstructor = ctorOpening + (arguments.empty() ? "()" : std::string("( " + arguments + " )")) + " VULKAN_HPP_NOEXCEPT\n"; structConstructor += initializers; if (copyOps.empty()) { structConstructor += prefix + "{}\n"; } else { structConstructor += prefix + "{\n" + copyOps + prefix + "}\n"; } if (!structData.second.subStruct.empty()) { auto const& subStruct = m_structures.find(structData.second.subStruct); assert(subStruct != m_structures.end()); std::string subStructArgumentName = startLowerCase(stripPrefix(subStruct->first, "Vk")); ctorOpening = prefix + "explicit " + stripPrefix(structData.first, "Vk") + "( "; indentation = std::string(ctorOpening.size(), ' '); std::string subCopies; firstArgument = true; for (size_t i = 0; i < subStruct->second.members.size(); i++) { assert(structData.second.members[i].arraySize.empty()); subCopies += prefix + " " + (firstArgument ? ":" : ",") + " " + structData.second.members[i].name + "( " + subStructArgumentName + "." + subStruct->second.members[i].name + " )\n"; firstArgument = false; } std::string subArguments; listedArgument = true; for (size_t i = subStruct->second.members.size(); i < structData.second.members.size(); i++) { listedArgument = appendStructConstructorArgument(subArguments, listedArgument, indentation, structData.second.members[i]); assert(structData.second.members[i].arraySize.empty()); subCopies += prefix + " , " + structData.second.members[i].name + "( " + structData.second.members[i].name + "_ )\n"; } structConstructor += "\n" " explicit " + stripPrefix(structData.first, "Vk") + "( " + stripPrefix(subStruct->first, "Vk") + " const& " + subStructArgumentName + subArguments + " )\n" + subCopies + " {}\n"; } // we need a copy constructor if there is constant sType in this struct if ((nonConstSTypeStructs.find(structData.first) == nonConstSTypeStructs.end()) && !structData.second.members.empty() && (structData.second.members.front().name == "sType")) { assert((2 <= structData.second.members.size()) && (structData.second.members[1].name == "pNext")); static const std::string stringTemplate = R"( ${prefix}VULKAN_HPP_NAMESPACE::${structName} & operator=( VULKAN_HPP_NAMESPACE::${structName} const & rhs ) VULKAN_HPP_NOEXCEPT ${prefix}{ ${prefix} memcpy( &pNext, &rhs.pNext, sizeof( VULKAN_HPP_NAMESPACE::${structName} ) - offsetof( ${structName}, pNext ) ); ${prefix} return *this; ${prefix}} )"; structConstructor += replaceWithMap(stringTemplate, { {"prefix", prefix }, { "structName", stripPrefix(structData.first, "Vk") } }); } return structConstructor; } bool VulkanHppGenerator::appendStructConstructorArgument(std::string & str, bool listedArgument, std::string const& indentation, MemberData const& memberData) const { // skip members 'pNext' and 'sType', as they are never explicitly set if ((memberData.name != "pNext") && (memberData.name != "sType")) { str += (listedArgument ? (",\n" + indentation) : ""); if (memberData.arraySize.empty()) { str += memberData.type.compose() + " "; } else { str += "std::array<" + memberData.type.compose() + "," + memberData.arraySize + "> const& "; } str += memberData.name + "_ = {}"; listedArgument = true; } return listedArgument; } void VulkanHppGenerator::appendStructCopyConstructors(std::string & str, std::string const& name) const { static const std::string templateString = R"( ${name}( Vk${name} const & rhs ) VULKAN_HPP_NOEXCEPT { *this = rhs; } ${name}& operator=( Vk${name} const & rhs ) VULKAN_HPP_NOEXCEPT { *this = *reinterpret_cast(&rhs); return *this; } )"; str += replaceWithMap(templateString, { { "name", name } }); } void VulkanHppGenerator::appendStructMembers(std::string & str, std::pair const& structData, std::string const& prefix) const { for (auto const& member : structData.second.members) { str += prefix; if ((member.name == "sType") && (nonConstSTypeStructs.find(structData.first) == nonConstSTypeStructs.end())) // special handling for sType and some nasty little structs that don't get a const sType { str += "const "; } str += member.type.compose() + " " + member.name; if (member.name == "sType") // special handling for sType { auto enumIt = m_enums.find("VkStructureType"); assert(enumIt != m_enums.end()); if (!member.values.empty()) { assert(beginsWith(member.values, "VK_STRUCTURE_TYPE")); auto nameIt = std::find_if(enumIt->second.values.begin(), enumIt->second.values.end(), [&member](EnumValueData const& evd) { return member.values == evd.vulkanValue; }); assert(nameIt != enumIt->second.values.end()); str += " = StructureType::" + nameIt->vkValue; } else { // special handling for those nasty structs with an unspecified value for sType str += " = {}"; } } else { if (!member.arraySize.empty()) { str += "[" + member.arraySize + "]"; } // as we don't have any meaningful default initialization values, everything can be initialized by just '{}' ! str += " = {}"; } str += ";\n"; } } void VulkanHppGenerator::appendStructs(std::string & str) const { std::set listedStructures; for (auto const& structure : m_structures) { appendStruct(str, structure, listedStructures); } } void VulkanHppGenerator::appendStructSetter(std::string & str, std::string const& structureName, MemberData const& memberData) const { if (memberData.type.type != "VkStructureType") // filter out StructureType, which is supposed to be immutable ! { std::string memberType = memberData.arraySize.empty() ? memberData.type.compose() : "std::array<" + memberData.type.compose() + "," + memberData.arraySize + ">"; // copy over the argument, either by assigning simple data, or by memcpy array data str += "\n" " " + structureName + " & set" + startUpperCase(memberData.name) + "( " + memberType + " " + memberData.name + "_ ) VULKAN_HPP_NOEXCEPT\n" " {\n" " "; if (memberData.arraySize.empty()) { str += memberData.name + " = " + memberData.name + "_"; } else { str += "memcpy( " + memberData.name + ", " + memberData.name + "_.data(), " + memberData.arraySize + " * sizeof( " + memberData.type.compose() + " ) )"; } str += ";\n" " return *this;\n" " }\n"; } } void VulkanHppGenerator::appendStructure(std::string & str, std::pair const& structure) const { str += "\n"; appendPlatformEnter(str, structure.second.platform); std::string constructorAndSetters = appendStructConstructor(structure, " "); appendStructCopyConstructors(constructorAndSetters, stripPrefix(structure.first, "Vk")); if (!structure.second.returnedOnly) { // only structs that are not returnedOnly get setters! for (auto const& member : structure.second.members) { appendStructSetter(constructorAndSetters, stripPrefix(structure.first, "Vk"), member); } } // operator==() and operator!=() // only structs without a union as a member can have a meaningfull == and != operation; we filter them out std::string compareOperators; if (!containsUnion(structure.first)) { appendStructCompareOperators(compareOperators, structure); } // the member variables std::string members = "\n public:\n"; appendStructMembers(members, structure, " "); static const std::string structureTemplate = R"( struct ${name} { ${constructorAndSetters} operator ${vkName} const&() const VULKAN_HPP_NOEXCEPT { return *reinterpret_cast( this ); } operator ${vkName} &() VULKAN_HPP_NOEXCEPT { return *reinterpret_cast<${vkName}*>( this ); } ${compareOperators} ${members} }; static_assert( sizeof( ${name} ) == sizeof( ${vkName} ), "struct and wrapper have different size!" ); static_assert( std::is_standard_layout<${name}>::value, "struct wrapper is not a standard layout!" ); )"; str += replaceWithMap(structureTemplate, { { "name", stripPrefix(structure.first, "Vk") }, { "constructorAndSetters", constructorAndSetters }, { "vkName", structure.first }, { "compareOperators", compareOperators }, { "members", members } }); appendPlatformLeave(str, structure.second.platform); } void VulkanHppGenerator::appendStructureChainValidation(std::string & str) { // append all template functions for the structure pointer chain validation for (auto const& structure : m_structures) { if (!structure.second.structExtends.empty()) { appendPlatformEnter(str, structure.second.platform); // append out allowed structure chains for (auto extendName : structure.second.structExtends) { std::map::const_iterator itExtend = m_structures.find(extendName); if (itExtend == m_structures.end()) { std::string errorString; errorString = extendName + " does not specify a struct in structextends field."; // check if symbol name is an alias to a struct auto itAlias = std::find_if(m_structures.begin(), m_structures.end(), [&extendName](std::pair const &it) -> bool {return std::find(it.second.aliases.begin(), it.second.aliases.end(), extendName) != it.second.aliases.end(); }); if (itAlias != m_structures.end()) { errorString += " The symbol is an alias and maps to " + itAlias->first + "."; } errorString += "\n"; throw std::runtime_error(errorString); } if (structure.second.platform != itExtend->second.platform) { appendPlatformEnter(str, itExtend->second.platform); } str += " template <> struct isStructureChainValid<" + stripPrefix(extendName, "Vk") + ", " + stripPrefix(structure.first, "Vk") + ">{ enum { value = true }; };\n"; if (structure.second.platform != itExtend->second.platform) { appendPlatformLeave(str, itExtend->second.platform); } } appendPlatformLeave(str, structure.second.platform); } } } void VulkanHppGenerator::appendThrowExceptions(std::string & str) const { auto enumData = m_enums.find("VkResult"); str += "\n" " [[noreturn]] static void throwResultException( Result result, char const * message )\n" " {\n" " switch ( result )\n" " {\n"; for (auto const& value : enumData->second.values) { if (beginsWith(value.vkValue, "eError")) { str += " case Result::" + value.vkValue + ": throw " + stripPrefix(value.vkValue, "eError") + "Error( message );\n"; } } str += " default: throw SystemError( make_error_code( result ) );\n" " }\n" " }\n"; } void VulkanHppGenerator::appendUnion(std::string & str, std::pair const& structure) const { str += "\n" " union " + stripPrefix(structure.first, "Vk") + "\n" " {\n"; if (!structure.second.returnedOnly) { bool firstTime = true; for (auto const& member : structure.second.members) { // VkBool32 is aliased to uint32_t. Don't create a VkBool32 constructor if the union also contains a uint32_t constructor. auto compareBool32Alias = [](MemberData const& member) { return member.type.type == std::string("uint32_t"); }; if (member.type.type == "VkBool32") { if (std::find_if(structure.second.members.begin(), structure.second.members.end(), compareBool32Alias) != structure.second.members.end()) { continue; } } // one constructor per union element str += " " + stripPrefix(structure.first, "Vk") + "( " + (member.arraySize.empty() ? (member.type.compose() + " ") : ("const std::array<" + member.type.compose() + "," + member.arraySize + ">& ")) + member.name + "_"; // just the very first constructor gets default arguments if (firstTime) { str += " = {}"; firstTime = false; } str += " )\n" " {\n" " " + (member.arraySize.empty() ? (member.name + " = " + member.name + "_") : ("memcpy( " + member.name + ", " + member.name + "_.data(), " + member.arraySize + " * sizeof( " + member.type.compose() + " ) )")) + ";\n" " }\n" "\n"; } // one setter per union element for (auto const& member : structure.second.members) { appendStructSetter(str, stripPrefix(structure.first, "Vk"), member); } } // the implicit cast operators to the native type str += " operator " + structure.first + " const&() const\n" " {\n" " return *reinterpret_cast(this);\n" " }\n" "\n" " operator " + structure.first + " &()\n" " {\n" " return *reinterpret_cast<" + structure.first + "*>(this);\n" " }\n" "\n"; // the union member variables // if there's at least one Vk... type in this union, check for unrestricted unions support bool needsUnrestrictedUnions = (std::find_if(structure.second.members.begin(), structure.second.members.end(), [](MemberData const& member) { return beginsWith(member.type.type, "Vk"); }) != structure.second.members.end()); if (needsUnrestrictedUnions) { str += "#ifdef VULKAN_HPP_HAS_UNRESTRICTED_UNIONS\n"; } for (auto const& member : structure.second.members) { str += " " + member.type.compose() + " " + member.name + (member.arraySize.empty() ? "" : ("[" + member.arraySize + "]")) + ";\n"; } if (needsUnrestrictedUnions) { str += "#else\n"; for (auto const& member : structure.second.members) { str += " " + member.type.prefix + (member.type.prefix.empty() ? "" : " ") + member.type.type + member.type.postfix + " " + member.name + (member.arraySize.empty() ? "" : ("[" + member.arraySize + "]")) + ";\n"; } str += "#endif /*VULKAN_HPP_HAS_UNRESTRICTED_UNIONS*/\n"; } str += " };\n"; } void VulkanHppGenerator::appendUniqueTypes(std::string & str, std::string const& parentType, std::set const& childrenTypes) const { str += "\n" "#ifndef VULKAN_HPP_NO_SMART_HANDLE"; if (!parentType.empty()) { str += "\n" " class " + stripPrefix(parentType, "Vk") + ";"; } for (auto const& childType : childrenTypes) { auto handleIt = m_handles.find(childType); assert(handleIt != m_handles.end()); std::string type = stripPrefix(childType, "Vk"); std::string deleterType = handleIt->second.deletePool.empty() ? "Object" : "Pool"; std::string deleterAction = (handleIt->second.deleteCommand.substr(2, 4) == "Free") ? "Free" : "Destroy"; std::string deleterParent = parentType.empty() ? "NoParent" : stripPrefix(parentType, "Vk"); std::string deleterPool = handleIt->second.deletePool.empty() ? "" : ", " + stripPrefix(handleIt->second.deletePool, "Vk"); str += "\n" " template class UniqueHandleTraits<" + type + ", Dispatch> { public: using deleter = " + deleterType + deleterAction + "<" + deleterParent + deleterPool + ", Dispatch>; };\n" " using Unique" + type + " = UniqueHandle<" + type + ", VULKAN_HPP_DEFAULT_DISPATCHER_TYPE>;"; } str += "\n" "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/\n"; } void VulkanHppGenerator::EnumData::addEnumValue(std::string const &valueName, bool bitmask, bool bitpos, std::string const& prefix, std::string const& postfix, std::string const& tag) { std::string translatedName = createEnumValueName(valueName, prefix, postfix, bitmask, tag); auto it = std::find_if(values.begin(), values.end(), [&translatedName](EnumValueData const& evd) { return evd.vkValue == translatedName; }); if (it == values.end()) { values.push_back(EnumValueData(valueName, translatedName, bitpos)); } else { assert(it->vulkanValue == valueName); } } bool VulkanHppGenerator::containsArray(std::string const& type) const { // a simple recursive check if a type is or contains an array auto structureIt = m_structures.find(type); bool found = false; if (structureIt != m_structures.end()) { for (auto memberIt = structureIt->second.members.begin(); memberIt != structureIt->second.members.end() && !found; ++memberIt) { found = !memberIt->arraySize.empty(); } } return found; } bool VulkanHppGenerator::containsUnion(std::string const& type) const { // a simple recursive check if a type is or contains a union auto structureIt = m_structures.find(type); bool found = (structureIt != m_structures.end()); if (found) { found = structureIt->second.isUnion; for (auto memberIt = structureIt->second.members.begin(); memberIt != structureIt->second.members.end() && !found; ++memberIt) { found = memberIt->type.prefix.empty() && memberIt->type.postfix.empty() && containsUnion(memberIt->type.type); } } return found; } void VulkanHppGenerator::checkCorrectness() { for (auto const& handle : m_handles) { for (auto const& command: handle.second.commands) { // check that functions returning a VkResult specify successcodes if ((command.second.returnType == "VkResult") && command.second.successCodes.empty()) { throw std::runtime_error("Spec error on command Vk" + startUpperCase(command.first) + " : missing successcodes on command returning VkResult!"); } } } } std::string VulkanHppGenerator::determineEnhancedReturnType(CommandData const& commandData, size_t returnParamIndex, std::map const& vectorParamIndices, bool twoStep, bool isStructureChain) const { assert((returnParamIndex == INVALID_INDEX) || (returnParamIndex < commandData.params.size())); for (auto vpi : vectorParamIndices) { assert((vpi.first != vpi.second) && (vpi.first < commandData.params.size()) && ((vpi.second == INVALID_INDEX) || (vpi.second < commandData.params.size()))); } std::string enhancedReturnType; // if there is a return parameter of type void or Result, and if it's of type Result it either has just one success code // or two success codes, where the second one is of type eIncomplete and it's a two-step process // -> we can return that parameter if ((returnParamIndex != INVALID_INDEX) && ((commandData.returnType == "void") || ((commandData.returnType == "VkResult") && ((commandData.successCodes.size() == 1) || ((commandData.successCodes.size() == 2) && (commandData.successCodes[1] == "eIncomplete") && twoStep))))) { if (vectorParamIndices.find(returnParamIndex) != vectorParamIndices.end()) { enhancedReturnType = (commandData.params[returnParamIndex].type.type == "void") ? "std::vector" // the return parameter is a vector-type parameter : isStructureChain ? "std::vector" // for structureChain returns, it's just a vector of StrutureChains : "std::vector<" + stripPrefix(commandData.params[returnParamIndex].type.type, "Vk") + ",Allocator>"; // for the other parameters, we use a vector of the pure type } else { // it's a simple parameter -> get the type and just remove the trailing '*' (originally, it's a pointer) assert(commandData.params[returnParamIndex].type.postfix.back() == '*'); assert((commandData.params[returnParamIndex].type.prefix.find("const") == std::string::npos) && (commandData.params[returnParamIndex].type.postfix.find("const") == std::string::npos)); enhancedReturnType = stripPostfix(commandData.params[returnParamIndex].type.compose(), "*"); } } else if ((commandData.returnType == "VkResult") && (commandData.successCodes.size() == 1)) { // an original return of type "Result" with just one successCode is changed to void, errors throw an exception enhancedReturnType = "void"; } else { // the return type just stays the original return type enhancedReturnType = stripPrefix(commandData.returnType, "Vk"); } return enhancedReturnType; } size_t VulkanHppGenerator::determineReturnParamIndex(CommandData const& commandData, std::map const& vectorParamIndices, bool twoStep) const { for (auto vpi : vectorParamIndices) { assert((vpi.first != vpi.second) && (vpi.first < commandData.params.size()) && ((vpi.second == INVALID_INDEX) || (vpi.second < commandData.params.size()))); } size_t returnParamIndex = INVALID_INDEX; // for return types of type VkResult or void, we can determine a parameter to return if ((commandData.returnType == "VkResult") || (commandData.returnType == "void")) { for (size_t i = 0; i < commandData.params.size(); i++) { if ((commandData.params[i].type.postfix.find('*') != std::string::npos) && (commandData.params[i].type.prefix.find("const") == std::string::npos) && std::find_if(vectorParamIndices.begin(), vectorParamIndices.end(), [i](std::pair const& vpi) { return vpi.second == i; }) == vectorParamIndices.end()) { // it's a non-const pointer and not a vector-size parameter std::map::const_iterator vpit = vectorParamIndices.find(i); if ((vpit == vectorParamIndices.end()) || twoStep || (vectorParamIndices.size() > 1) || (vpit->second == INVALID_INDEX) || (commandData.params[vpit->second].type.postfix.find('*') != std::string::npos)) { // it's not a vector parameter, or a two-step process, or there is at least one more vector parameter, or the size argument of this vector parameter is not an argument, or the size argument of this vector parameter is provided by a pointer // -> look for another non-cost pointer argument auto paramIt = std::find_if(commandData.params.begin() + i + 1, commandData.params.end(), [](ParamData const& pd) { return (pd.type.postfix.find('*') != std::string::npos) && (pd.type.postfix.find("const") == std::string::npos); }); // if there is another such argument, we can't decide which one to return -> return INVALID_INDEX // otherwise return the index of the selcted parameter returnParamIndex = paramIt != commandData.params.end() ? INVALID_INDEX : i; } } } } return returnParamIndex; } std::string VulkanHppGenerator::determineSubStruct(std::pair const& structure) const { for (auto const& s : m_structures) { if ((s.first != structure.first) && (s.second.members.size() < structure.second.members.size()) && (s.second.members[0].name != "sType")) { bool equal = true; for (size_t i = 0; i < s.second.members.size() && equal; i++) { equal = (s.second.members[i].type == structure.second.members[i].type) && (s.second.members[i].name == structure.second.members[i].name); } if (equal) { return s.first; } } } return ""; } size_t VulkanHppGenerator::determineTemplateParamIndex(std::vector const& params, std::map const& vectorParamIndices) const { size_t templateParamIndex = INVALID_INDEX; for (size_t i = 0; i < params.size(); i++) { // any vector parameter on the pure type void is templatized in the enhanced API if ((vectorParamIndices.find(i) != vectorParamIndices.end()) && (params[i].type.type == "void")) { #if !defined(NDEBUG) for (size_t j = i + 1; j < params.size(); j++) { assert((vectorParamIndices.find(j) == vectorParamIndices.end()) || (params[j].type.type != "void")); } #endif templateParamIndex = i; break; } } assert((templateParamIndex == INVALID_INDEX) || (vectorParamIndices.find(templateParamIndex) != vectorParamIndices.end())); return templateParamIndex; } std::map VulkanHppGenerator::determineVectorParamIndices(std::vector const& params) const { std::map vectorParamIndices; // look for the parameters whose len equals the name of an other parameter for (auto it = params.begin(); it != params.end(); ++it) { if (!it->len.empty()) { auto findLambda = [it](ParamData const& pd) { return pd.name == it->len; }; auto findIt = std::find_if(params.begin(), it, findLambda); // look for a parameter named as the len of this parameter assert((std::count_if(params.begin(), params.end(), findLambda) == 0) || (findIt < it)); // make sure, there is no other parameter like that // add this parameter as a vector parameter, using the len-name parameter as the second value (or INVALID_INDEX if there is nothing like that) vectorParamIndices.insert(std::make_pair(std::distance(params.begin(), it), (findIt < it) ? std::distance(params.begin(), findIt) : INVALID_INDEX)); assert((vectorParamIndices[std::distance(params.begin(), it)] != INVALID_INDEX) || (it->len == "null-terminated") || (it->len == "pAllocateInfo::descriptorSetCount") || (it->len == "pAllocateInfo::commandBufferCount")); } } return vectorParamIndices; } std::string const& VulkanHppGenerator::getTypesafeCheck() const { return m_typesafeCheck; } std::string const& VulkanHppGenerator::getVersion() const { return m_version; } std::string const& VulkanHppGenerator::getVulkanLicenseHeader() const { return m_vulkanLicenseHeader; } bool VulkanHppGenerator::isTwoStepAlgorithm(std::vector const& params) const { // we generate a two-step algorithm for functions returning a vector of stuff, where the length is specified as a pointer as well // for those functions, the size can be queried first, and then used bool isTwoStep = false; for (auto paramIt = params.begin(); paramIt != params.end() && !isTwoStep; ++paramIt) { if (!paramIt->len.empty()) { auto lenIt = std::find_if(params.begin(), paramIt, [paramIt](ParamData const& pd) { return paramIt->len == pd.name; }); if (lenIt != paramIt) { isTwoStep = (lenIt->type.postfix.find('*') != std::string::npos); } } } return isTwoStep; } void VulkanHppGenerator::linkCommandToHandle(std::string const& name, CommandData const& commandData) { // first, find the handle named like the type of the first argument // if there is no such handle, look for the unnamed "handle", that gathers all the functions not tied to a specific handle assert(!commandData.params.empty()); std::map::iterator handleIt = m_handles.find(commandData.params[0].type.type); if (handleIt == m_handles.end()) { handleIt = m_handles.find(""); } assert(handleIt != m_handles.end()); // put the command into the handle's list of commands assert(handleIt->second.commands.find(name) == handleIt->second.commands.end()); handleIt->second.commands[name] = commandData; // and store the handle in the command-to-handle map assert(m_commandToHandle.find(name) == m_commandToHandle.end()); m_commandToHandle[name] = handleIt->first; } void VulkanHppGenerator::readBaseType(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "basetype" } } }, {}); std::vector children = getChildElements(element); checkOrderedElements(children, { "type", "name" }); checkEmptyElement(children[0]); checkEmptyElement(children[1]); std::string type = children[0]->GetText(); std::string name = children[1]->GetText(); #if !defined(NDEBUG) assert((type == "uint32_t") || (type == "uint64_t")); #endif assert(m_baseTypes.find(name) == m_baseTypes.end()); m_baseTypes[name] = type; } void VulkanHppGenerator::readBitmask(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "bitmask" } } }, { { "alias",{} },{ "name",{} },{ "requires",{} } }); std::vector children = getChildElements(element); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { readBitmaskAlias(element->GetLineNum(), aliasIt->second, attributes, children); } else { checkOrderedElements(children, { "type", "name" }); checkEmptyElement(children[0]); checkEmptyElement(children[1]); assert(strcmp(children[0]->GetText(), "VkFlags") == 0); std::string name = children[1]->GetText(); std::string requirement; auto requiresIt = attributes.find("requires"); if (requiresIt != attributes.end()) { requirement = requiresIt->second; } else { // Generate FlagBits name and add it to the list of enums and vulkan types requirement = name; size_t pos = requirement.rfind("Flags"); assert(pos != std::string::npos); requirement.replace(pos, 5, "FlagBits"); assert(m_bitmaskBits.find(requirement) == m_bitmaskBits.end()); m_bitmaskBits.insert(std::make_pair(requirement, EnumData())); } m_bitmasks.insert(std::make_pair(name, BitmaskData(requirement))); } } void VulkanHppGenerator::readBitmaskAlias(int lineNum, std::string const& alias, std::map const& attributes, std::vector const& children) { checkAttributes(attributes, lineNum, { { "alias",{} },{ "category",{ "bitmask" } },{ "name",{} } }, {}); // re-check on alias type! checkElements(children, {}); checkAlias(m_bitmasks, alias, lineNum); auto bitmasksIt = m_bitmasks.find(alias); assert((bitmasksIt != m_bitmasks.end()) && bitmasksIt->second.alias.empty()); bitmasksIt->second.alias = attributes.find("name")->second; } void VulkanHppGenerator::readCommand(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "alias",{} }, { "cmdbufferlevel",{ "primary", "secondary" } }, { "comment",{} }, { "errorcodes",{} }, { "name",{} }, { "pipeline",{ "compute", "graphics", "transfer" } }, { "queues",{ "compute", "graphics", "sparse_binding", "transfer" } }, { "renderpass",{ "both", "inside", "outside" } }, { "successcodes",{} } }); std::vector children = getChildElements(element); std::string name; CommandData commandData; auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { readCommandAlias(element->GetLineNum(), aliasIt->second, attributes, children); } else { checkElements(children, { "implicitexternsyncparams", "param", "proto" }); commandData.successCodes = readCommandSuccessCodes(attributes); for (auto child : children) { std::string value = child->Value(); if (value == "param") { commandData.params.push_back(readCommandParam(child)); } else if (value == "proto") { name = readCommandProto(child, commandData.returnType); } } registerDeleter(name, std::make_pair(name, commandData)); linkCommandToHandle(name, commandData); } } void VulkanHppGenerator::readCommandAlias(int lineNum, std::string const& alias, std::map const& attributes, std::vector const& children) { // for command aliases, create a copy of the aliased command checkAttributes(attributes, lineNum, { { "alias",{} },{ "name",{} } }, {}); // re-check on alias type! checkElements(children, {}); std::string name = attributes.find("name")->second; checkAlias(m_commandToHandle, alias, lineNum); auto handleIt = m_handles.find(m_commandToHandle.find(alias)->second); assert(handleIt != m_handles.end()); auto commandsIt = handleIt->second.commands.find(alias); assert(commandsIt != handleIt->second.commands.end()); // create a copy of the found command, mark that as an alias and link it to a handle CommandData commandData = commandsIt->second; commandData.isAlias = true; linkCommandToHandle(name, commandData); } VulkanHppGenerator::ParamData VulkanHppGenerator::readCommandParam(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "externsync",{} },{ "len",{} },{ "noautovalidity",{ "true" } },{ "optional",{ "false", "true" } } }); std::vector children = getChildElements(element); checkElements(children, { "name", "type" }); ParamData paramData; for (auto attribute : attributes) { if (attribute.first == "len") { paramData.len = attribute.second; } else if (attribute.first == "optional") { paramData.optional = (attribute.second == "true"); } } for (auto child : children) { checkEmptyElement(child); std::string value = child->Value(); if (value == "name") { paramData.name = child->GetText(); paramData.arraySize = readArraySize(child->NextSibling()); } else if (value == "type") { paramData.type.prefix = readTypePrefix(child->PreviousSibling()); paramData.type.type = child->GetText(); paramData.type.postfix = readTypePostfix(child->NextSibling()); } } return paramData; } std::string VulkanHppGenerator::readCommandProto(tinyxml2::XMLElement const* element, std::string & returnType) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); std::vector children = getChildElements(element); checkOrderedElements(children, { "type", "name" }); // get return type and name of the command returnType = children[0]->GetText(); // add an empty DependencyData to this name std::string name = children[1]->GetText(); return name; } void VulkanHppGenerator::readCommands(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "comment",{} } }); std::vector children = getChildElements(element); checkElements(children, { "command" }); for (auto child : children) { readCommand(child); } } std::vector VulkanHppGenerator::readCommandSuccessCodes(std::map const& attributes) { // read the success codes std::vector successCodes; auto successcodesAttribute = attributes.find("successcodes"); if (successcodesAttribute != attributes.end()) { successCodes = tokenize(successcodesAttribute->second, ','); for (auto & code : successCodes) { std::string tag = findTag(m_tags, code); // on each success code: prepend 'e', strip "VK_" and a tag, convert it to camel case, and add the tag again code = std::string("e") + toCamelCase(stripPostfix(stripPrefix(code, "VK_"), tag)) + tag; } } return successCodes; } void VulkanHppGenerator::readComment(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); checkElements(getChildElements(element), {}); assert(element->GetText()); std::string text = element->GetText(); if (text.find("\nCopyright") == 0) { assert(m_vulkanLicenseHeader.empty()); m_vulkanLicenseHeader = text; // replace any '\n' with "\n// " for (size_t pos = m_vulkanLicenseHeader.find('\n'); pos != std::string::npos; pos = m_vulkanLicenseHeader.find('\n', pos + 1)) { m_vulkanLicenseHeader.replace(pos, 1, "\n// "); } // and add a little message on our own m_vulkanLicenseHeader += "\n\n// This header is generated from the Khronos Vulkan XML API Registry."; m_vulkanLicenseHeader = trim(m_vulkanLicenseHeader) + "\n"; } } void VulkanHppGenerator::readDefine(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "define" } } }, { { "name",{} } }); auto nameIt = attributes.find("name"); if (nameIt != attributes.end()) { assert(!element->FirstChildElement()); assert(nameIt->second == "VK_DEFINE_NON_DISPATCHABLE_HANDLE"); // filter out the check for the different types of VK_DEFINE_NON_DISPATCHABLE_HANDLE std::string text = element->LastChild()->ToText()->Value(); size_t start = text.find("#if defined(__LP64__)"); size_t end = text.find_first_of("\r\n", start + 1); m_typesafeCheck = text.substr(start, end - start); } else if (element->GetText() && (trim(element->GetText()) == "struct")) { #if !defined(NDEBUG) tinyxml2::XMLElement const* child = element->FirstChildElement(); assert(child && (strcmp(child->Value(), "name") == 0) && child->GetText()); m_defines.insert(child->GetText()); #endif } else { tinyxml2::XMLElement const* child = element->FirstChildElement(); assert(child && !child->FirstAttribute() && (strcmp(child->Value(), "name") == 0) && child->GetText()); std::string text = trim(child->GetText()); if (text == "VK_HEADER_VERSION") { m_version = trimEnd(element->LastChild()->ToText()->Value()); } // ignore all the other defines assert(!child->NextSiblingElement() || (child->NextSiblingElement() && !child->NextSiblingElement()->FirstAttribute() && (strcmp(child->NextSiblingElement()->Value(), "type") == 0) && !child->NextSiblingElement()->NextSiblingElement())); } } void VulkanHppGenerator::readEnum(tinyxml2::XMLElement const* element, EnumData & enumData, bool bitmask, std::string const& prefix, std::string const& postfix) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "alias",{} },{ "bitpos",{} },{ "comment",{} },{ "value",{} } }); assert((attributes.find("alias") != attributes.end()) + (attributes.find("bitpos") != attributes.end()) + (attributes.find("value") != attributes.end()) == 1); checkElements(getChildElements(element), {}); std::string name = attributes.find("name")->second; std::string tag = findTag(m_tags, name, postfix); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { auto enumIt = std::find_if(enumData.values.begin(), enumData.values.end(), [&aliasIt](EnumValueData const& evd) { return evd.vulkanValue == aliasIt->second; }); assert(enumIt != enumData.values.end()); enumData.aliases.push_back(std::make_pair(name, createEnumValueName(name, prefix, postfix, bitmask, tag))); } else { enumData.addEnumValue(name, bitmask, attributes.find("bitpos") != attributes.end(), prefix, postfix, tag); } } void VulkanHppGenerator::readEnums(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "comment",{} },{ "type",{ "bitmask", "enum" } } }); std::vector children = getChildElements(element); checkElements(children, { "comment", "enum", "unused" }); std::string name = attributes.find("name")->second; if (name != "API Constants") { checkAttributes(attributes, element->GetLineNum(), { { "name",{} },{ "type",{ "bitmask", "enum" } } }, { { "comment",{} } }); // re-check with type as required // ad an empty EnumData on this name into the enums map EnumData enumData; std::string type = attributes.find("type")->second; bool bitmask = (type == "bitmask"); std::map::iterator it = bitmask ? m_bitmaskBits.insert(std::make_pair(name, enumData)).first : m_enums.insert(std::make_pair(name, enumData)).first; assert(it->second.values.empty()); std::string prefix = getEnumPrefix(name, bitmask); std::string postfix = getEnumPostfix(name, m_tags, prefix); // read the names of the enum values for (auto child : children) { std::string value = child->Value(); if (value == "enum") { readEnum(child, it->second, bitmask, prefix, postfix); } #if !defined(NDEBUG) else { assert((value == "comment") || (value == "unused")); } #endif } } } void VulkanHppGenerator::readExtension(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} }, { "number",{} }, { "supported",{ "disabled", "vulkan" } } }, { { "author",{} }, { "comment",{} }, { "contact",{} }, { "deprecatedby",{} }, { "obsoletedby",{} }, { "platform",{} }, { "promotedto",{} }, { "provisional",{} }, { "requires",{} }, { "requiresCore",{} }, { "specialuse", {} }, { "type",{ "device", "instance" } } }); std::vector children = getChildElements(element); checkElements(children, { "require" }); if (attributes.find("supported")->second == "disabled") { readExtensionDisabled(children); } else { std::string name = attributes.find("name")->second; assert(beginsWith(name, "VK")); std::string tag = extractTag(name, m_tags); auto platformAttribute = attributes.find("platform"); std::string platform = (platformAttribute != attributes.end()) ? platformAttribute->second : ""; assert(platform.empty() || (m_platforms.find(platform) != m_platforms.end())); for (auto child : children) { assert(strcmp(child->Value(), "require") == 0); readExtensionRequire(child, platform, tag); } } } void VulkanHppGenerator::readExtensionDisabled(std::vector const& children) { // kick out all the disabled stuff we've read before !! for (auto const& child : children) { assert(strcmp(child->Value(), "require") == 0); readExtensionDisabledRequire(child); } } void VulkanHppGenerator::readExtensionDisabledRequire(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); std::vector children = getChildElements(element); checkElements(children, { "command", "comment", "enum", "type" }); for (auto child : children) { checkElements(getChildElements(child), {}); std::string value = child->Value(); if ((value == "command") || (value == "type")) { std::map attributes = getAttributes(child); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {}); // disable a command or a type ! auto nameAttribute = attributes.find("name"); std::string name = nameAttribute->second; std::string strippedName = (value == "command") ? startLowerCase(stripPrefix(name, "vk")) : stripPrefix(name, "Vk"); if (value == "command") { // first unlink the command from its class unlinkCommandFromHandle(name); // then remove the command m_commandToHandle.erase(name); } else { // a type simply needs to be removed from the structs and vkTypes sets assert(m_structures.find(nameAttribute->second) != m_structures.end() || m_bitmasks.find(nameAttribute->second) != m_bitmasks.end() || m_bitmaskBits.find(nameAttribute->second) != m_bitmaskBits.end()); m_structures.erase(nameAttribute->second); m_bitmasks.erase(nameAttribute->second); m_bitmaskBits.erase(nameAttribute->second); } } else if (value == "enum") { std::map attributes = getAttributes(child); checkAttributes(attributes, child->GetLineNum(), { { "name",{} } }, { { "bitpos",{} },{ "extends",{} },{ "offset",{} },{ "value",{} } }); } else { assert(value == "comment"); } } } void VulkanHppGenerator::readExtensionRequire(tinyxml2::XMLElement const* element, std::string const& platform, std::string const& tag) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "extension",{} },{ "feature",{} } }); std::vector children = getChildElements(element); checkElements(children, { "command", "comment", "enum", "type" }); for (auto child : children) { std::string value = child->Value(); if (value == "command") { readExtensionRequireCommand(child, platform); } else if (value == "enum") { readRequireEnum(child, tag); } else if (value == "type") { readExtensionRequireType(child, platform); } #if !defined(NDEBUG) else { assert(value == "comment"); checkEmptyElement(child); } #endif } } void VulkanHppGenerator::readExtensionRequireCommand(tinyxml2::XMLElement const* element, std::string const& platform) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {}); checkElements(getChildElements(element), {}); // just add the protect string to the CommandData if (!platform.empty()) { assert(m_platforms.find(platform) != m_platforms.end()); std::string name = attributes.find("name")->second; assert(m_commandToHandle.find(name) != m_commandToHandle.end()); auto const& handlesIt = m_handles.find(m_commandToHandle.find(name)->second); assert(handlesIt != m_handles.end()); auto const& commandsIt = handlesIt->second.commands.find(name); assert(commandsIt != handlesIt->second.commands.end()); commandsIt->second.platform = platform; } } void VulkanHppGenerator::readExtensionRequireType(tinyxml2::XMLElement const* element, std::string const& platform) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {}); checkElements(getChildElements(element), {}); // add the protect-string to the appropriate type: enum, flag, handle, scalar, or struct if (!platform.empty()) { std::string name = attributes.find("name")->second; auto bmit = m_bitmasks.find(name); if (bmit != m_bitmasks.end()) { assert(bmit->second.platform.empty()); bmit->second.platform = platform; assert(m_bitmaskBits.find(bmit->second.requirement) != m_bitmaskBits.end()); } else { auto eit = m_enums.find(name); if (eit != m_enums.end()) { assert(eit->second.platform.empty()); eit->second.platform = platform; } else { auto stit = m_structures.find(name); if (stit != m_structures.end()) { assert(m_handles.find(name) == m_handles.end()); assert(stit->second.platform.empty()); stit->second.platform = platform; } else { assert((m_defines.find(name) != m_defines.end())); } } } } } void VulkanHppGenerator::readExtensions(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "comment",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "extension" }); for (auto child : children) { readExtension(child); } } void VulkanHppGenerator::readFeature(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "api",{ "vulkan" } },{ "comment",{} },{ "name",{} },{ "number",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "require" }); for (auto child : children) { readFeatureRequire(child); } } void VulkanHppGenerator::readFeatureRequire(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "comment",{} } }); std::vector children = getChildElements(element); checkElements(children, { "command", "comment", "enum", "type" }); for (auto child : children) { std::string value = child->Value(); if (value == "enum") { readRequireEnum(child, ""); } } } void VulkanHppGenerator::readFuncpointer(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "funcpointer" } } }, { { "requires",{} } }); std::vector children = getChildElements(element); checkElements(children, { "name", "type" }); assert(!children.empty()); checkEmptyElement(children[0]); assert((strcmp(children[0]->Value(), "name") == 0) && children[0]->GetText()); #if !defined(NDEBUG) for (size_t i = 1; i < children.size(); i++) { checkEmptyElement(children[i]); } #endif } void VulkanHppGenerator::readHandle(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "handle" } } }, { { "alias",{} },{ "name",{} },{ "parent",{} } }); std::vector children = getChildElements(element); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { checkAttributes(attributes, element->GetLineNum(), { { "alias",{} },{ "category",{ "handle" } },{ "name",{} } }, {}); // re-check on alias type! checkElements(children, {}); checkAlias(m_handles, aliasIt->second, element->GetLineNum()); auto handlesIt = m_handles.find(aliasIt->second); assert((handlesIt != m_handles.end()) && handlesIt->second.alias.empty()); handlesIt->second.alias = attributes.find("name")->second; } else { checkOrderedElements(children, { "type", "name" }); checkEmptyElement(children[0]); checkEmptyElement(children[1]); #if !defined(NDEBUG) std::string type = children[0]->GetText(); assert((type.find("VK_DEFINE_HANDLE") == 0) || (type.find("VK_DEFINE_NON_DISPATCHABLE_HANDLE") == 0)); #endif std::string name = children[1]->GetText(); assert(m_handles.find(name) == m_handles.end()); m_handles.insert(std::make_pair(name, HandleData())); } } void VulkanHppGenerator::readPlatform(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "comment",{} },{ "name",{} },{ "protect",{} } }, {}); checkElements(getChildElements(element), {}); std::string name, protect; for (auto const& attribute : attributes) { if (attribute.first == "name") { name = attribute.second; } else if (attribute.first == "protect") { protect = attribute.second; } else { assert(attribute.first == "comment"); } } assert(!name.empty() && !protect.empty()); assert(m_platforms.find(name) == m_platforms.end()); m_platforms[name] = protect; } void VulkanHppGenerator::readPlatforms(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "platform" }); // init m_platforms with "" -> "" assert(m_platforms.empty()); m_platforms[""] = ""; for (auto child : children) { readPlatform(child); } } void VulkanHppGenerator::readRequireEnum(tinyxml2::XMLElement const* element, std::string const& tag) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "alias",{} }, { "bitpos",{} }, { "comment",{} }, { "dir",{ "-" } }, { "extends",{} }, { "extnumber",{} }, { "offset",{} }, { "value",{} } }); checkElements(getChildElements(element), {}); // TODO process enums which don't extend existing enums auto extendsIt = attributes.find("extends"); if (extendsIt != attributes.end()) { bool bitmask = false; std::string extends = extendsIt->second; auto enumIt = m_enums.find(extends); if (enumIt == m_enums.end()) { enumIt = m_bitmaskBits.find(extends); assert(enumIt != m_bitmaskBits.end()); bitmask = true; } std::string prefix = getEnumPrefix(enumIt->first, bitmask); std::string postfix = getEnumPostfix(enumIt->first, m_tags, prefix); auto nameIt = attributes.find("name"); assert(nameIt != attributes.end()); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { // add this enum name to the list of aliases checkAttributes(attributes, element->GetLineNum(), { { "alias",{} },{ "extends",{} },{ "name",{} } }, { { "comment",{} } }); std::string valueName = createEnumValueName(nameIt->second, prefix, postfix, bitmask, tag); assert(std::find_if(enumIt->second.aliases.begin(), enumIt->second.aliases.end(), [&valueName](std::pair const& aliasPair) { return valueName == aliasPair.second; }) == enumIt->second.aliases.end()); enumIt->second.aliases.push_back(std::make_pair(nameIt->second, valueName)); } else { // add this enum name to the list of values assert((attributes.find("bitpos") != attributes.end()) + (attributes.find("offset") != attributes.end()) + (attributes.find("value") != attributes.end()) == 1); enumIt->second.addEnumValue(nameIt->second, bitmask, attributes.find("bitpos") != attributes.end(), prefix, postfix, tag); } } } #if !defined(NDEBUG) void VulkanHppGenerator::readRequires(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { {"name", {}}, { "requires", {}} }, {}); checkElements(getChildElements(element), {}); auto nameIt = attributes.find("name"); assert(nameIt != attributes.end()); } #endif void VulkanHppGenerator::readStruct(tinyxml2::XMLElement const* element, bool isUnion, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ isUnion ? "union" : "struct" } }, { "name",{} } }, { { "alias",{} }, { "comment",{} }, { "returnedonly",{ "true" } }, { "structextends",{} } }); std::vector children = getChildElements(element); checkElements(children, { "comment", "member" }); std::string name = attributes.find("name")->second; auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { readStructAlias(element->GetLineNum(), name, aliasIt->second, attributes); } else { assert(m_structures.find(name) == m_structures.end()); std::map::iterator it = m_structures.insert(std::make_pair(name, StructureData())).first; it->second.returnedOnly = (attributes.find("returnedonly") != attributes.end()); it->second.isUnion = isUnion; readStructStructExtends(attributes, it->second.structExtends, m_extendedStructs); it->second.members = readStructMembers(children); it->second.subStruct = determineSubStruct(*it); } } void VulkanHppGenerator::readStructAlias(int lineNum, std::string const& name, std::string const& alias, std::map const& attributes) { checkAttributes(attributes, lineNum, { { "alias",{} },{ "category",{ "struct" } },{ "name",{} } }, {}); // re-check on alias type! checkAlias(m_structures, alias, lineNum); auto structsIt = m_structures.find(alias); assert((structsIt != m_structures.end()) && (std::find(structsIt->second.aliases.begin(), structsIt->second.aliases.end(), name) == structsIt->second.aliases.end())); structsIt->second.aliases.push_back(name); assert(m_structureAliases.find(name) == m_structureAliases.end()); m_structureAliases[name] = alias; } VulkanHppGenerator::MemberData VulkanHppGenerator::readStructMember(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "altlen",{} }, { "externsync",{ "true" } }, { "len",{} }, { "noautovalidity",{ "true" } }, { "optional",{ "false", "true" } }, { "values",{} } }); std::vector children = getChildElements(element); checkElements(children, { "comment", "enum", "name", "type" }); MemberData memberData; auto valuesIt = attributes.find("values"); if (valuesIt != attributes.end()) { memberData.values = valuesIt->second; } for (auto child : children) { checkEmptyElement(child); assert(child->Value()); std::string value = child->Value(); assert(child->GetText()); if (value == "enum") { assert(child->PreviousSibling() && (strcmp(child->PreviousSibling()->Value(), "[") == 0) && child->NextSibling() && (strcmp(child->NextSibling()->Value(), "]") == 0)); memberData.arraySize = child->GetText(); } else if (value == "name") { memberData.name = child->GetText(); memberData.arraySize = readArraySize(child->NextSibling()); } else if (value == "type") { memberData.type.prefix = readTypePrefix(child->PreviousSibling()); memberData.type.type = child->GetText(); memberData.type.postfix = readTypePostfix(child->NextSibling()); } } return memberData; } std::vector VulkanHppGenerator::readStructMembers(std::vector const& children) { std::vector members; for (auto child : children) { assert(child->Value()); std::string value = child->Value(); if (value == "member") { members.push_back(readStructMember(child)); } #if !defined(NDEBUG) else { assert(value == "comment"); checkEmptyElement(child); } #endif } return members; } void VulkanHppGenerator::readTags(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "tag" }); for (auto child : children) { readTag(child); } } void VulkanHppGenerator::readTag(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "author",{} },{ "contact",{} },{ "name",{} } }, {}); checkElements(getChildElements(element), {}); for (auto const& attribute : attributes) { std::string name = attribute.first; if (name == "name") { std::string value = attribute.second; assert(m_tags.find(value) == m_tags.end()); m_tags.insert(value); } else { assert((name == "author") || (name == "contact")); } } } void VulkanHppGenerator::readType(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); auto categoryIt = attributes.find("category"); if (categoryIt != attributes.end()) { if (categoryIt->second == "basetype") { readBaseType(element, attributes); } else if (categoryIt->second == "bitmask") { readBitmask(element, attributes); } else if (categoryIt->second == "define") { readDefine(element, attributes); } else if (categoryIt->second == "funcpointer") { readFuncpointer(element, attributes); } else if (categoryIt->second == "handle") { readHandle(element, attributes); } else if (categoryIt->second == "struct") { readStruct(element, false, attributes); } else if (categoryIt->second == "union") { readStruct(element, true, attributes); } else if ((categoryIt->second != "enum") && (categoryIt->second != "include")) { throw std::runtime_error("Spec error on line " + std::to_string(element->GetLineNum()) + ": unknown category <" + categoryIt->second + ">"); } } #if !defined(NDEBUG) else { auto requiresIt = attributes.find("requires"); if (requiresIt != attributes.end()) { readRequires(element, attributes); } else { assert((attributes.size() == 1) && (attributes.begin()->first == "name") && (attributes.begin()->second == "int")); } } #endif } void VulkanHppGenerator::readTypes(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "comment", "type" }); for (auto child : children) { std::string value = child->Value(); if (value == "type") { readType(child); } #if !defined(NDEBUG) else { assert(value == "comment"); checkEmptyElement(child); } #endif } } void VulkanHppGenerator::registerDeleter(std::string const& name, std::pair const& commandData) { if ((commandData.first.substr(2, 7) == "Destroy") || (commandData.first.substr(2, 4) == "Free")) { std::string key; size_t valueIndex; switch (commandData.second.params.size()) { case 2: case 3: assert(commandData.second.params.back().type.type == "VkAllocationCallbacks"); key = (commandData.second.params.size() == 2) ? "" : commandData.second.params[0].type.type; valueIndex = commandData.second.params.size() - 2; break; case 4: key = commandData.second.params[0].type.type; valueIndex = 3; assert(m_handles.find(commandData.second.params[valueIndex].type.type) != m_handles.end()); m_handles.find(commandData.second.params[valueIndex].type.type)->second.deletePool = commandData.second.params[1].type.type; break; default: assert(false); valueIndex = 0; } auto keyHandleIt = m_handles.find(key); assert((keyHandleIt != m_handles.end()) && (keyHandleIt->second.childrenHandles.find(commandData.second.params[valueIndex].type.type) == keyHandleIt->second.childrenHandles.end())); keyHandleIt->second.childrenHandles.insert(commandData.second.params[valueIndex].type.type); auto handleIt = m_handles.find(commandData.second.params[valueIndex].type.type); assert(handleIt != m_handles.end()); handleIt->second.deleteCommand = name; } } void VulkanHppGenerator::unlinkCommandFromHandle(std::string const& name) { assert(m_commandToHandle.find(name) != m_commandToHandle.end()); auto handlesIt = m_handles.find(m_commandToHandle.find(name)->second); assert(handlesIt != m_handles.end()); auto it = handlesIt->second.commands.find(name); assert(it != handlesIt->second.commands.end()); handlesIt->second.commands.erase(it); } std::string VulkanHppGenerator::TypeData::compose() const { return prefix + (prefix.empty() ? "" : " ") + ((type.substr(0, 2) == "Vk") ? "VULKAN_HPP_NAMESPACE::" : "") + stripPrefix(type, "Vk") + postfix; } int main( int argc, char **argv ) { static const std::string classArrayProxy = R"( #if !defined(VULKAN_HPP_DISABLE_ENHANCED_MODE) template class ArrayProxy { public: VULKAN_HPP_CONSTEXPR ArrayProxy(std::nullptr_t) VULKAN_HPP_NOEXCEPT : m_count(0) , m_ptr(nullptr) {} ArrayProxy(typename std::remove_reference::type & ptr) VULKAN_HPP_NOEXCEPT : m_count(1) , m_ptr(&ptr) {} ArrayProxy(uint32_t count, T * ptr) VULKAN_HPP_NOEXCEPT : m_count(count) , m_ptr(ptr) {} template ArrayProxy(std::array::type, N> & data) VULKAN_HPP_NOEXCEPT : m_count(N) , m_ptr(data.data()) {} template ArrayProxy(std::array::type, N> const& data) VULKAN_HPP_NOEXCEPT : m_count(N) , m_ptr(data.data()) {} template ::type>> ArrayProxy(std::vector::type, Allocator> & data) VULKAN_HPP_NOEXCEPT : m_count(static_cast(data.size())) , m_ptr(data.data()) {} template ::type>> ArrayProxy(std::vector::type, Allocator> const& data) VULKAN_HPP_NOEXCEPT : m_count(static_cast(data.size())) , m_ptr(data.data()) {} ArrayProxy(std::initializer_list::type> const& data) VULKAN_HPP_NOEXCEPT : m_count(static_cast(data.end() - data.begin())) , m_ptr(data.begin()) {} const T * begin() const VULKAN_HPP_NOEXCEPT { return m_ptr; } const T * end() const VULKAN_HPP_NOEXCEPT { return m_ptr + m_count; } const T & front() const VULKAN_HPP_NOEXCEPT { VULKAN_HPP_ASSERT(m_count && m_ptr); return *m_ptr; } const T & back() const VULKAN_HPP_NOEXCEPT { VULKAN_HPP_ASSERT(m_count && m_ptr); return *(m_ptr + m_count - 1); } bool empty() const VULKAN_HPP_NOEXCEPT { return (m_count == 0); } uint32_t size() const VULKAN_HPP_NOEXCEPT { return m_count; } T * data() const VULKAN_HPP_NOEXCEPT { return m_ptr; } private: uint32_t m_count; T * m_ptr; }; #endif )"; static const std::string classFlags = R"( template struct FlagTraits { enum { allFlags = 0 }; }; template class Flags { public: // constructors VULKAN_HPP_CONSTEXPR Flags() VULKAN_HPP_NOEXCEPT : m_mask(0) {} VULKAN_HPP_CONSTEXPR Flags(BitType bit) VULKAN_HPP_NOEXCEPT : m_mask(static_cast(bit)) {} VULKAN_HPP_CONSTEXPR Flags(Flags const& rhs) VULKAN_HPP_NOEXCEPT : m_mask(rhs.m_mask) {} VULKAN_HPP_CONSTEXPR explicit Flags(MaskType flags) VULKAN_HPP_NOEXCEPT : m_mask(flags) {} // relational operators VULKAN_HPP_CONSTEXPR bool operator<(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return m_mask < rhs.m_mask; } VULKAN_HPP_CONSTEXPR bool operator<=(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return m_mask <= rhs.m_mask; } VULKAN_HPP_CONSTEXPR bool operator>(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return m_mask > rhs.m_mask; } VULKAN_HPP_CONSTEXPR bool operator>=(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return m_mask >= rhs.m_mask; } VULKAN_HPP_CONSTEXPR bool operator==(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return m_mask == rhs.m_mask; } VULKAN_HPP_CONSTEXPR bool operator!=(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return m_mask != rhs.m_mask; } // logical operator VULKAN_HPP_CONSTEXPR bool operator!() const VULKAN_HPP_NOEXCEPT { return !m_mask; } // bitwise operators VULKAN_HPP_CONSTEXPR Flags operator&(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return Flags(m_mask & rhs.m_mask); } VULKAN_HPP_CONSTEXPR Flags operator|(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return Flags(m_mask | rhs.m_mask); } VULKAN_HPP_CONSTEXPR Flags operator^(Flags const& rhs) const VULKAN_HPP_NOEXCEPT { return Flags(m_mask ^ rhs.m_mask); } VULKAN_HPP_CONSTEXPR Flags operator~() const VULKAN_HPP_NOEXCEPT { return Flags(m_mask ^ FlagTraits::allFlags); } // assignment operators Flags & operator=(Flags const& rhs) VULKAN_HPP_NOEXCEPT { m_mask = rhs.m_mask; return *this; } Flags & operator|=(Flags const& rhs) VULKAN_HPP_NOEXCEPT { m_mask |= rhs.m_mask; return *this; } Flags & operator&=(Flags const& rhs) VULKAN_HPP_NOEXCEPT { m_mask &= rhs.m_mask; return *this; } Flags & operator^=(Flags const& rhs) VULKAN_HPP_NOEXCEPT { m_mask ^= rhs.m_mask; return *this; } // cast operators explicit VULKAN_HPP_CONSTEXPR operator bool() const VULKAN_HPP_NOEXCEPT { return !!m_mask; } explicit VULKAN_HPP_CONSTEXPR operator MaskType() const VULKAN_HPP_NOEXCEPT { return m_mask; } private: MaskType m_mask; }; // relational operators template VULKAN_HPP_CONSTEXPR bool operator<(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags > bit; } template VULKAN_HPP_CONSTEXPR bool operator<=(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags >= bit; } template VULKAN_HPP_CONSTEXPR bool operator>(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags < bit; } template VULKAN_HPP_CONSTEXPR bool operator>=(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags <= bit; } template VULKAN_HPP_CONSTEXPR bool operator==(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags == bit; } template VULKAN_HPP_CONSTEXPR bool operator!=(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags != bit; } // bitwise operators template VULKAN_HPP_CONSTEXPR Flags operator&(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags & bit; } template VULKAN_HPP_CONSTEXPR Flags operator|(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags | bit; } template VULKAN_HPP_CONSTEXPR Flags operator^(BitType bit, Flags const& flags) VULKAN_HPP_NOEXCEPT { return flags ^ bit; } )"; static const std::string classObjectDestroy = R"( struct AllocationCallbacks; template class ObjectDestroy { public: ObjectDestroy() : m_owner() , m_allocationCallbacks( nullptr ) , m_dispatch( nullptr ) {} ObjectDestroy( OwnerType owner, Optional allocationCallbacks = nullptr, Dispatch const &dispatch = Dispatch() ) VULKAN_HPP_NOEXCEPT : m_owner( owner ) , m_allocationCallbacks( allocationCallbacks ) , m_dispatch( &dispatch ) {} OwnerType getOwner() const VULKAN_HPP_NOEXCEPT { return m_owner; } Optional getAllocator() const VULKAN_HPP_NOEXCEPT { return m_allocationCallbacks; } protected: template void destroy(T t) VULKAN_HPP_NOEXCEPT { assert( m_owner && m_dispatch ); m_owner.destroy( t, m_allocationCallbacks, *m_dispatch ); } private: OwnerType m_owner; Optional m_allocationCallbacks; Dispatch const* m_dispatch; }; class NoParent; template class ObjectDestroy { public: ObjectDestroy() : m_allocationCallbacks( nullptr ) , m_dispatch( nullptr ) {} ObjectDestroy( Optional allocationCallbacks, Dispatch const &dispatch = VULKAN_HPP_DEFAULT_DISPATCHER ) VULKAN_HPP_NOEXCEPT : m_allocationCallbacks( allocationCallbacks ) , m_dispatch( &dispatch ) {} Optional getAllocator() const VULKAN_HPP_NOEXCEPT { return m_allocationCallbacks; } protected: template void destroy(T t) VULKAN_HPP_NOEXCEPT { assert( m_dispatch ); t.destroy( m_allocationCallbacks, *m_dispatch ); } private: Optional m_allocationCallbacks; Dispatch const* m_dispatch; }; )"; static const std::string classObjectFree = R"( template class ObjectFree { public: ObjectFree() : m_owner() , m_allocationCallbacks( nullptr ) , m_dispatch( nullptr ) {} ObjectFree( OwnerType owner, Optional allocationCallbacks, Dispatch const &dispatch ) VULKAN_HPP_NOEXCEPT : m_owner( owner ) , m_allocationCallbacks( allocationCallbacks ) , m_dispatch( &dispatch ) {} OwnerType getOwner() const VULKAN_HPP_NOEXCEPT { return m_owner; } Optional getAllocator() const VULKAN_HPP_NOEXCEPT { return m_allocationCallbacks; } protected: template void destroy(T t) VULKAN_HPP_NOEXCEPT { assert( m_owner && m_dispatch ); m_owner.free( t, m_allocationCallbacks, *m_dispatch ); } private: OwnerType m_owner; Optional m_allocationCallbacks; Dispatch const* m_dispatch; }; )"; static const std::string classOptional = R"( template class Optional { public: Optional(RefType & reference) VULKAN_HPP_NOEXCEPT { m_ptr = &reference; } Optional(RefType * ptr) VULKAN_HPP_NOEXCEPT { m_ptr = ptr; } Optional(std::nullptr_t) VULKAN_HPP_NOEXCEPT { m_ptr = nullptr; } operator RefType*() const VULKAN_HPP_NOEXCEPT { return m_ptr; } RefType const* operator->() const VULKAN_HPP_NOEXCEPT { return m_ptr; } explicit operator bool() const VULKAN_HPP_NOEXCEPT { return !!m_ptr; } private: RefType *m_ptr; }; )"; static const std::string classPoolFree = R"( template class PoolFree { public: PoolFree( OwnerType owner = OwnerType(), PoolType pool = PoolType(), Dispatch const &dispatch = VULKAN_HPP_DEFAULT_DISPATCHER ) VULKAN_HPP_NOEXCEPT : m_owner( owner ) , m_pool( pool ) , m_dispatch( &dispatch ) {} OwnerType getOwner() const VULKAN_HPP_NOEXCEPT { return m_owner; } PoolType getPool() const VULKAN_HPP_NOEXCEPT { return m_pool; } protected: template void destroy(T t) VULKAN_HPP_NOEXCEPT { m_owner.free( m_pool, t, *m_dispatch ); } private: OwnerType m_owner; PoolType m_pool; Dispatch const* m_dispatch; }; )"; static const std::string classStructureChain = R"( template struct isStructureChainValid { enum { value = false }; }; template struct TypeList { using list = P; using last = T; }; template struct extendCheck { static const bool valid = isStructureChainValid::value || extendCheck::valid; }; template struct extendCheck,X> { static const bool valid = isStructureChainValid::value; }; template struct extendCheck { static const bool valid = true; }; template struct isPartOfStructureChain { static const bool valid = false; }; template struct isPartOfStructureChain { static const bool valid = std::is_same::value || isPartOfStructureChain::valid; }; template class StructureChainElement { public: explicit operator Element&() VULKAN_HPP_NOEXCEPT { return value; } explicit operator const Element&() const VULKAN_HPP_NOEXCEPT { return value; } private: Element value; }; template class StructureChain : private StructureChainElement... { public: StructureChain() VULKAN_HPP_NOEXCEPT { link(); } StructureChain(StructureChain const &rhs) VULKAN_HPP_NOEXCEPT { linkAndCopy(rhs); } StructureChain(StructureElements const &... elems) VULKAN_HPP_NOEXCEPT { linkAndCopyElements(elems...); } StructureChain& operator=(StructureChain const &rhs) VULKAN_HPP_NOEXCEPT { linkAndCopy(rhs); return *this; } template ClassType& get() VULKAN_HPP_NOEXCEPT { return static_cast(*this);} template std::tuple get() { return std::tuple_cat( std::make_tuple(get(),get()), std::make_tuple(get()...) ); } template void unlink() VULKAN_HPP_NOEXCEPT { static_assert(isPartOfStructureChain::valid, "Can't unlink Structure that's not part of this StructureChain!"); static_assert(!std::is_same>::type>::value, "It's not allowed to unlink the first element!"); VkBaseOutStructure * ptr = reinterpret_cast(&get()); assert(ptr != nullptr); VkBaseOutStructure ** ppNext = &(reinterpret_cast(this)->pNext); assert(*ppNext != nullptr); while (*ppNext != ptr) { ppNext = &(*ppNext)->pNext; assert(*ppNext != nullptr); // fires, if the ClassType member has already been unlinked ! } assert(*ppNext == ptr); *ppNext = (*ppNext)->pNext; } template void relink() VULKAN_HPP_NOEXCEPT { static_assert(isPartOfStructureChain::valid, "Can't relink Structure that's not part of this StructureChain!"); static_assert(!std::is_same>::type>::value, "It's not allowed to have the first element unlinked!"); VkBaseOutStructure * ptr = reinterpret_cast(&get()); assert(ptr != nullptr); VkBaseOutStructure ** ppNext = &(reinterpret_cast(this)->pNext); assert(*ppNext != nullptr); #if !defined(NDEBUG) while (*ppNext) { assert(*ppNext != ptr); // fires, if the ClassType member has not been unlinked before ppNext = &(*ppNext)->pNext; } ppNext = &(reinterpret_cast(this)->pNext); #endif ptr->pNext = *ppNext; *ppNext = ptr; } private: template void link() VULKAN_HPP_NOEXCEPT { static_assert(extendCheck::valid, "The structure chain is not valid!"); } template void link() VULKAN_HPP_NOEXCEPT { static_assert(extendCheck::valid, "The structure chain is not valid!"); X& x = static_cast(*this); Y& y = static_cast(*this); x.pNext = &y; link, Y, Z...>(); } template void linkAndCopy(StructureChain const &rhs) VULKAN_HPP_NOEXCEPT { static_assert(extendCheck::valid, "The structure chain is not valid!"); static_cast(*this) = static_cast(rhs); } template void linkAndCopy(StructureChain const &rhs) VULKAN_HPP_NOEXCEPT { static_assert(extendCheck::valid, "The structure chain is not valid!"); X& x = static_cast(*this); Y& y = static_cast(*this); x = static_cast(rhs); x.pNext = &y; linkAndCopy, Y, Z...>(rhs); } template void linkAndCopyElements(X const &xelem) VULKAN_HPP_NOEXCEPT { static_assert(extendCheck::valid, "The structure chain is not valid!"); static_cast(*this) = xelem; } template void linkAndCopyElements(X const &xelem, Y const &yelem, Z const &... zelem) VULKAN_HPP_NOEXCEPT { static_assert(extendCheck::valid, "The structure chain is not valid!"); X& x = static_cast(*this); Y& y = static_cast(*this); x = xelem; x.pNext = &y; linkAndCopyElements, Y, Z...>(yelem, zelem...); } }; )"; static const std::string classUniqueHandle = R"( #if !defined(VULKAN_HPP_NO_SMART_HANDLE) template class UniqueHandleTraits; template class UniqueHandle : public UniqueHandleTraits::deleter { private: using Deleter = typename UniqueHandleTraits::deleter; public: using element_type = Type; UniqueHandle() : Deleter() , m_value() {} explicit UniqueHandle( Type const& value, Deleter const& deleter = Deleter() ) VULKAN_HPP_NOEXCEPT : Deleter( deleter) , m_value( value ) {} UniqueHandle( UniqueHandle const& ) = delete; UniqueHandle( UniqueHandle && other ) VULKAN_HPP_NOEXCEPT : Deleter( std::move( static_cast( other ) ) ) , m_value( other.release() ) {} ~UniqueHandle() VULKAN_HPP_NOEXCEPT { if ( m_value ) this->destroy( m_value ); } UniqueHandle & operator=( UniqueHandle const& ) = delete; UniqueHandle & operator=( UniqueHandle && other ) VULKAN_HPP_NOEXCEPT { reset( other.release() ); *static_cast(this) = std::move( static_cast(other) ); return *this; } explicit operator bool() const VULKAN_HPP_NOEXCEPT { return m_value.operator bool(); } Type const* operator->() const VULKAN_HPP_NOEXCEPT { return &m_value; } Type * operator->() VULKAN_HPP_NOEXCEPT { return &m_value; } Type const& operator*() const VULKAN_HPP_NOEXCEPT { return m_value; } Type & operator*() VULKAN_HPP_NOEXCEPT { return m_value; } const Type & get() const VULKAN_HPP_NOEXCEPT { return m_value; } Type & get() VULKAN_HPP_NOEXCEPT { return m_value; } void reset( Type const& value = Type() ) VULKAN_HPP_NOEXCEPT { if ( m_value != value ) { if ( m_value ) this->destroy( m_value ); m_value = value; } } Type release() VULKAN_HPP_NOEXCEPT { Type value = m_value; m_value = nullptr; return value; } void swap( UniqueHandle & rhs ) VULKAN_HPP_NOEXCEPT { std::swap(m_value, rhs.m_value); std::swap(static_cast(*this), static_cast(rhs)); } private: Type m_value; }; template VULKAN_HPP_INLINE std::vector uniqueToRaw(std::vector const& handles) { std::vector newBuffer(handles.size()); std::transform(handles.begin(), handles.end(), newBuffer.begin(), [](UniqueType const& handle) { return handle.get(); }); return newBuffer; } template VULKAN_HPP_INLINE void swap( UniqueHandle & lhs, UniqueHandle & rhs ) VULKAN_HPP_NOEXCEPT { lhs.swap( rhs ); } #endif )"; static const std::string constExpressionArrayCopy = R"( template class ConstExpressionArrayCopy { public: VULKAN_HPP_CONSTEXPR_14 static void copy(T dst[N], std::array const& src) VULKAN_HPP_NOEXCEPT { dst[I-1] = src[I-1]; ConstExpressionArrayCopy::copy(dst, src); } }; template class ConstExpressionArrayCopy { public: VULKAN_HPP_CONSTEXPR_14 static void copy(T /*dst*/[N], std::array const& /*src*/) VULKAN_HPP_NOEXCEPT {} }; )"; static const std::string defines = R"( // includes through some other header // this results in major(x) being resolved to gnu_dev_major(x) // which is an expression in a constructor initializer list. #if defined(major) #undef major #endif #if defined(minor) #undef minor #endif // Windows defines MemoryBarrier which is deprecated and collides // with the VULKAN_HPP_NAMESPACE::MemoryBarrier struct. #if defined(MemoryBarrier) #undef MemoryBarrier #endif #if !defined(VULKAN_HPP_HAS_UNRESTRICTED_UNIONS) # if defined(__clang__) # if __has_feature(cxx_unrestricted_unions) # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # elif defined(__GNUC__) # define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) # if 40600 <= GCC_VERSION # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # elif defined(_MSC_VER) # if 1900 <= _MSC_VER # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # endif #endif #if !defined(VULKAN_HPP_INLINE) # if defined(__clang__) # if __has_attribute(always_inline) # define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__ # else # define VULKAN_HPP_INLINE inline # endif # elif defined(__GNUC__) # define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__ # elif defined(_MSC_VER) # define VULKAN_HPP_INLINE inline # else # define VULKAN_HPP_INLINE inline # endif #endif #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) # define VULKAN_HPP_TYPESAFE_EXPLICIT #else # define VULKAN_HPP_TYPESAFE_EXPLICIT explicit #endif #if defined(__cpp_constexpr) # define VULKAN_HPP_CONSTEXPR constexpr # if __cpp_constexpr >= 201304 # define VULKAN_HPP_CONSTEXPR_14 constexpr # else # define VULKAN_HPP_CONSTEXPR_14 # endif # define VULKAN_HPP_CONST_OR_CONSTEXPR constexpr #else # define VULKAN_HPP_CONSTEXPR # define VULKAN_HPP_CONSTEXPR_14 # define VULKAN_HPP_CONST_OR_CONSTEXPR const #endif #if !defined(VULKAN_HPP_NOEXCEPT) # if defined(_MSC_VER) && (_MSC_VER <= 1800) # define VULKAN_HPP_NOEXCEPT # else # define VULKAN_HPP_NOEXCEPT noexcept # define VULKAN_HPP_HAS_NOEXCEPT 1 # endif #endif #if !defined(VULKAN_HPP_NAMESPACE) #define VULKAN_HPP_NAMESPACE vk #endif #define VULKAN_HPP_STRINGIFY2(text) #text #define VULKAN_HPP_STRINGIFY(text) VULKAN_HPP_STRINGIFY2(text) #define VULKAN_HPP_NAMESPACE_STRING VULKAN_HPP_STRINGIFY(VULKAN_HPP_NAMESPACE) )"; static const std::string exceptions = R"( class ErrorCategoryImpl : public std::error_category { public: virtual const char* name() const VULKAN_HPP_NOEXCEPT override { return VULKAN_HPP_NAMESPACE_STRING"::Result"; } virtual std::string message(int ev) const override { return to_string(static_cast(ev)); } }; class Error { public: Error() VULKAN_HPP_NOEXCEPT = default; Error(const Error&) VULKAN_HPP_NOEXCEPT = default; virtual ~Error() VULKAN_HPP_NOEXCEPT = default; virtual const char* what() const VULKAN_HPP_NOEXCEPT = 0; }; class LogicError : public Error, public std::logic_error { public: explicit LogicError( const std::string& what ) : Error(), std::logic_error(what) {} explicit LogicError( char const * what ) : Error(), std::logic_error(what) {} virtual const char* what() const VULKAN_HPP_NOEXCEPT { return std::logic_error::what(); } }; class SystemError : public Error, public std::system_error { public: SystemError( std::error_code ec ) : Error(), std::system_error(ec) {} SystemError( std::error_code ec, std::string const& what ) : Error(), std::system_error(ec, what) {} SystemError( std::error_code ec, char const * what ) : Error(), std::system_error(ec, what) {} SystemError( int ev, std::error_category const& ecat ) : Error(), std::system_error(ev, ecat) {} SystemError( int ev, std::error_category const& ecat, std::string const& what) : Error(), std::system_error(ev, ecat, what) {} SystemError( int ev, std::error_category const& ecat, char const * what) : Error(), std::system_error(ev, ecat, what) {} virtual const char* what() const VULKAN_HPP_NOEXCEPT { return std::system_error::what(); } }; VULKAN_HPP_INLINE const std::error_category& errorCategory() VULKAN_HPP_NOEXCEPT { static ErrorCategoryImpl instance; return instance; } VULKAN_HPP_INLINE std::error_code make_error_code(Result e) VULKAN_HPP_NOEXCEPT { return std::error_code(static_cast(e), errorCategory()); } VULKAN_HPP_INLINE std::error_condition make_error_condition(Result e) VULKAN_HPP_NOEXCEPT { return std::error_condition(static_cast(e), errorCategory()); } )"; static const std::string includes = R"( #ifndef VULKAN_HPP #define VULKAN_HPP #include #include #include #include #include #include #include #include #include #include #include #if !defined(VULKAN_HPP_DISABLE_ENHANCED_MODE) # include # include #endif #if !defined(VULKAN_HPP_ASSERT) # include # define VULKAN_HPP_ASSERT assert #endif #if !defined(VULKAN_HPP_ENABLE_DYNAMIC_LOADER_TOOL) # define VULKAN_HPP_ENABLE_DYNAMIC_LOADER_TOOL 1 #endif #if VULKAN_HPP_ENABLE_DYNAMIC_LOADER_TOOL == 1 # if defined(__linux__) || defined(__APPLE__) # include # endif # if defined(_WIN32) # include # endif #endif )"; static const std::string is_error_code_enum = R"( #ifndef VULKAN_HPP_NO_EXCEPTIONS namespace std { template <> struct is_error_code_enum : public true_type {}; } #endif )"; static const std::string structResultValue = R"( template void ignore(T const&) VULKAN_HPP_NOEXCEPT {} template struct ResultValue { #ifdef VULKAN_HPP_HAS_NOEXCEPT ResultValue( Result r, T & v ) VULKAN_HPP_NOEXCEPT(VULKAN_HPP_NOEXCEPT(T(v))) #else ResultValue( Result r, T & v ) #endif : result( r ) , value( v ) {} #ifdef VULKAN_HPP_HAS_NOEXCEPT ResultValue( Result r, T && v ) VULKAN_HPP_NOEXCEPT(VULKAN_HPP_NOEXCEPT(T(std::move(v)))) #else ResultValue( Result r, T && v ) #endif : result( r ) , value( std::move( v ) ) {} Result result; T value; operator std::tuple() VULKAN_HPP_NOEXCEPT { return std::tuple(result, value); } }; template struct ResultValueType { #ifdef VULKAN_HPP_NO_EXCEPTIONS typedef ResultValue type; #else typedef T type; #endif }; template <> struct ResultValueType { #ifdef VULKAN_HPP_NO_EXCEPTIONS typedef Result type; #else typedef void type; #endif }; VULKAN_HPP_INLINE ResultValueType::type createResultValue( Result result, char const * message ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS ignore(message); VULKAN_HPP_ASSERT( result == Result::eSuccess ); return result; #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } #endif } template VULKAN_HPP_INLINE typename ResultValueType::type createResultValue( Result result, T & data, char const * message ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS ignore(message); VULKAN_HPP_ASSERT( result == Result::eSuccess ); return ResultValue( result, std::move( data ) ); #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } return std::move( data ); #endif } VULKAN_HPP_INLINE Result createResultValue( Result result, char const * message, std::initializer_list successCodes ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS ignore(message); VULKAN_HPP_ASSERT( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() ); #else if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() ) { throwResultException( result, message ); } #endif return result; } template VULKAN_HPP_INLINE ResultValue createResultValue( Result result, T & data, char const * message, std::initializer_list successCodes ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS ignore(message); VULKAN_HPP_ASSERT( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() ); #else if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() ) { throwResultException( result, message ); } #endif return ResultValue( result, data ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE template VULKAN_HPP_INLINE typename ResultValueType>::type createResultValue( Result result, T & data, char const * message, typename UniqueHandleTraits::deleter const& deleter ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS ignore(message); VULKAN_HPP_ASSERT( result == Result::eSuccess ); return ResultValue>( result, UniqueHandle(data, deleter) ); #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } return UniqueHandle(data, deleter); #endif } #endif )"; static const std::string typeTraits = R"( template struct cpp_type { }; )"; try { tinyxml2::XMLDocument doc; std::string filename = (argc == 1) ? VK_SPEC : argv[1]; std::cout << "Loading vk.xml from " << filename << std::endl; std::cout << "Writing vulkan.hpp to " << VULKAN_HPP_FILE << std::endl; tinyxml2::XMLError error = doc.LoadFile(filename.c_str()); if (error != tinyxml2::XML_SUCCESS) { std::cout << "VkGenerate: failed to load file " << filename << " . Error code: " << error << std::endl; return -1; } VulkanHppGenerator generator; tinyxml2::XMLElement const* registryElement = doc.FirstChildElement(); checkAttributes(getAttributes(registryElement), registryElement->GetLineNum(), {}, {}); assert(strcmp(registryElement->Value(), "registry") == 0); assert(!registryElement->NextSiblingElement()); std::vector children = getChildElements(registryElement); checkElements(children, { "commands", "comment", "enums", "extensions", "feature", "tags", "types", "vendorids", "platforms" }); for (auto child : children) { const std::string value = child->Value(); if (value == "commands") { generator.readCommands(child); } else if (value == "comment") { generator.readComment(child); } else if (value == "enums") { generator.readEnums(child); } else if (value == "extensions") { generator.readExtensions(child); } else if (value == "feature") { generator.readFeature(child); } else if (value == "platforms") { generator.readPlatforms(child); } else if (value == "tags") { generator.readTags(child); } else if (value == "types") { generator.readTypes(child); } else { std::cerr << "warning: Unhandled tag " << value << " at line number: " << std::to_string(child->GetLineNum()) << "!" << std::endl; } } generator.checkCorrectness(); std::string str; static const size_t estimatedLength = 4 * 1024 * 1024; str.reserve(estimatedLength); str += generator.getVulkanLicenseHeader() + includes + "\n"; appendVersionCheck(str, generator.getVersion()); appendTypesafeStuff(str, generator.getTypesafeCheck()); str += defines + "\n" + "namespace VULKAN_HPP_NAMESPACE\n" + "{\n" + classArrayProxy + classFlags + classOptional + classStructureChain + classUniqueHandle; generator.appendDispatchLoaderStatic(str); generator.appendDispatchLoaderDefault(str); str += classObjectDestroy + classObjectFree + classPoolFree + constExpressionArrayCopy + "\n"; generator.appendBaseTypes(str); generator.appendEnums(str); str += typeTraits; generator.appendBitmasks(str); str += "} // namespace VULKAN_HPP_NAMESPACE\n" + is_error_code_enum + "\n" + "namespace VULKAN_HPP_NAMESPACE\n" + "{\n" + "#ifndef VULKAN_HPP_NO_EXCEPTIONS" + exceptions; generator.appendResultExceptions(str); generator.appendThrowExceptions(str); str += "#endif\n" + structResultValue; generator.appendForwardDeclarations(str); generator.appendHandles(str); generator.appendStructs(str); generator.appendHandlesCommandDefintions(str); generator.appendStructureChainValidation(str); generator.appendDispatchLoaderDynamic(str); str += "} // namespace VULKAN_HPP_NAMESPACE\n" "#endif\n"; assert(str.length() < estimatedLength); cleanup(str); std::ofstream ofs(VULKAN_HPP_FILE); assert(!ofs.fail()); ofs << str; ofs.close(); } catch (std::exception const& e) { std::cout << "caught exception: " << e.what() << std::endl; return -1; } catch (...) { std::cout << "caught unknown exception" << std::endl; return -1; } }