Vulkan-Hpp/samples/MultipleSets/MultipleSets.cpp
2024-03-19 09:08:53 +01:00

287 lines
13 KiB
C++

// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// VulkanHpp Samples : MultipleSets
// Use multiple descriptor sets to draw a textured cube.
#if defined( _MSC_VER )
// no need to ignore any warnings with MSVC
#elif defined( __clang__ )
# pragma clang diagnostic ignored "-Wmissing-braces"
#elif defined( __GNUC__ )
#else
// unknow compiler... just ignore the warnings for yourselves ;)
#endif
#include "../utils/geometries.hpp"
#include "../utils/math.hpp"
#include "../utils/shaders.hpp"
#include "../utils/utils.hpp"
#include "SPIRV/GlslangToSpv.h"
#include "glslang/Public/ShaderLang.h"
#include <iostream>
#include <thread>
static char const * AppName = "MultipleSets";
static char const * EngineName = "Vulkan.hpp";
const std::string vertexShaderText = R"(
#version 400
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (std140, set = 0, binding = 0) uniform buffer
{
mat4 mvp;
} uniformBuffer;
layout (set = 1, binding = 0) uniform sampler2D surface;
layout (location = 0) in vec4 pos;
layout (location = 1) in vec2 inTexCoord;
layout (location = 0) out vec4 outColor;
layout (location = 1) out vec2 outTexCoord;
void main()
{
outColor = texture(surface, vec2(0.0f));
outTexCoord = inTexCoord;
gl_Position = uniformBuffer.mvp * pos;
}
)";
const std::string fragmentShaderText = R"(
#version 400
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (location = 0) in vec4 inColor;
layout (location = 1) in vec2 inTexCoord;
layout (location = 0) out vec4 outColor;
void main()
{
outColor = inColor;
// create a border to see the cube more easily
if ((inTexCoord.x < 0.01f) || (0.99f < inTexCoord.x) || (inTexCoord.y < 0.01f) || (0.99f < inTexCoord.y))
{
outColor *= vec4(0.1f, 0.1f, 0.1f, 1.0f);
}
}
)";
int main( int /*argc*/, char ** /*argv*/ )
{
try
{
vk::Instance instance = vk::su::createInstance( AppName, EngineName, {}, vk::su::getInstanceExtensions() );
#if !defined( NDEBUG )
vk::DebugUtilsMessengerEXT debugUtilsMessenger = instance.createDebugUtilsMessengerEXT( vk::su::makeDebugUtilsMessengerCreateInfoEXT() );
#endif
vk::PhysicalDevice physicalDevice = instance.enumeratePhysicalDevices().front();
vk::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) );
std::pair<uint32_t, uint32_t> graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, surfaceData.surface );
vk::Device device = vk::su::createDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() );
vk::CommandPool commandPool = device.createCommandPool( { {}, graphicsAndPresentQueueFamilyIndex.first } );
vk::CommandBuffer commandBuffer =
device.allocateCommandBuffers( vk::CommandBufferAllocateInfo( commandPool, vk::CommandBufferLevel::ePrimary, 1 ) ).front();
vk::Queue graphicsQueue = device.getQueue( graphicsAndPresentQueueFamilyIndex.first, 0 );
vk::Queue presentQueue = device.getQueue( graphicsAndPresentQueueFamilyIndex.second, 0 );
vk::su::SwapChainData swapChainData( physicalDevice,
device,
surfaceData.surface,
surfaceData.extent,
vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc,
{},
graphicsAndPresentQueueFamilyIndex.first,
graphicsAndPresentQueueFamilyIndex.second );
vk::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent );
vk::su::TextureData textureData( physicalDevice, device );
commandBuffer.begin( vk::CommandBufferBeginInfo() );
textureData.setImage( device, commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) );
vk::su::BufferData uniformBufferData( physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer );
glm::mat4x4 mvpcMatrix = vk::su::createModelViewProjectionClipMatrix( surfaceData.extent );
vk::su::copyToDevice( device, uniformBufferData.deviceMemory, mvpcMatrix );
vk::RenderPass renderPass = vk::su::createRenderPass(
device, vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface ) ).format, depthBufferData.format );
glslang::InitializeProcess();
vk::ShaderModule vertexShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText );
vk::ShaderModule fragmentShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText );
glslang::FinalizeProcess();
std::vector<vk::Framebuffer> framebuffers =
vk::su::createFramebuffers( device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent );
vk::su::BufferData vertexBufferData( physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer );
vk::su::copyToDevice( device, vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) );
/* VULKAN_KEY_START */
// Create first layout to contain uniform buffer data
vk::DescriptorSetLayoutBinding uniformBinding( 0, vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex );
vk::DescriptorSetLayout uniformLayout =
device.createDescriptorSetLayout( vk::DescriptorSetLayoutCreateInfo( vk::DescriptorSetLayoutCreateFlags(), uniformBinding ) );
// Create second layout containing combined sampler/image data
vk::DescriptorSetLayoutBinding sampler2DBinding( 0, vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eVertex );
vk::DescriptorSetLayout samplerLayout =
device.createDescriptorSetLayout( vk::DescriptorSetLayoutCreateInfo( vk::DescriptorSetLayoutCreateFlags(), sampler2DBinding ) );
// Create pipeline layout with multiple descriptor sets
std::array<vk::DescriptorSetLayout, 2> descriptorSetLayouts = { { uniformLayout, samplerLayout } };
vk::PipelineLayout pipelineLayout = device.createPipelineLayout( vk::PipelineLayoutCreateInfo( vk::PipelineLayoutCreateFlags(), descriptorSetLayouts ) );
// Create a single pool to contain data for our two descriptor sets
std::array<vk::DescriptorPoolSize, 2> poolSizes = { vk::DescriptorPoolSize( vk::DescriptorType::eUniformBuffer, 1 ),
vk::DescriptorPoolSize( vk::DescriptorType::eCombinedImageSampler, 1 ) };
vk::DescriptorPool descriptorPool =
device.createDescriptorPool( vk::DescriptorPoolCreateInfo( vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 2, poolSizes ) );
// Populate descriptor sets
vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo( descriptorPool, descriptorSetLayouts );
std::vector<vk::DescriptorSet> descriptorSets = device.allocateDescriptorSets( descriptorSetAllocateInfo );
// Populate with info about our uniform buffer
vk::DescriptorBufferInfo uniformBufferInfo( uniformBufferData.buffer, 0, sizeof( glm::mat4x4 ) );
vk::DescriptorImageInfo textureImageInfo( textureData.sampler, textureData.imageData->imageView, vk::ImageLayout::eShaderReadOnlyOptimal );
std::array<vk::WriteDescriptorSet, 2> writeDescriptorSets = {
{ vk::WriteDescriptorSet( descriptorSets[0], 0, 0, vk::DescriptorType::eUniformBuffer, {}, uniformBufferInfo ),
vk::WriteDescriptorSet( descriptorSets[1], 0, 0, vk::DescriptorType::eCombinedImageSampler, textureImageInfo ) }
};
device.updateDescriptorSets( writeDescriptorSets, nullptr );
/* VULKAN_KEY_END */
vk::PipelineCache pipelineCache = device.createPipelineCache( vk::PipelineCacheCreateInfo() );
vk::Pipeline graphicsPipeline = vk::su::createGraphicsPipeline( device,
pipelineCache,
std::make_pair( vertexShaderModule, nullptr ),
std::make_pair( fragmentShaderModule, nullptr ),
sizeof( texturedCubeData[0] ),
{ { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } },
vk::FrontFace::eClockwise,
true,
pipelineLayout,
renderPass );
// Get the index of the next available swapchain image:
vk::Semaphore imageAcquiredSemaphore = device.createSemaphore( vk::SemaphoreCreateInfo() );
vk::ResultValue<uint32_t> currentBuffer = device.acquireNextImageKHR( swapChainData.swapChain, vk::su::FenceTimeout, imageAcquiredSemaphore, nullptr );
assert( currentBuffer.result == vk::Result::eSuccess );
assert( currentBuffer.value < framebuffers.size() );
std::array<vk::ClearValue, 2> clearValues;
clearValues[0].color = vk::ClearColorValue( 0.2f, 0.2f, 0.2f, 0.2f );
clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 );
vk::RenderPassBeginInfo renderPassBeginInfo(
renderPass, framebuffers[currentBuffer.value], vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ), clearValues );
commandBuffer.beginRenderPass( renderPassBeginInfo, vk::SubpassContents::eInline );
commandBuffer.bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline );
commandBuffer.bindDescriptorSets( vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, { descriptorSets[0], descriptorSets[1] }, nullptr );
commandBuffer.bindVertexBuffers( 0, vertexBufferData.buffer, { 0 } );
commandBuffer.setViewport(
0, vk::Viewport( 0.0f, 0.0f, static_cast<float>( surfaceData.extent.width ), static_cast<float>( surfaceData.extent.height ), 0.0f, 1.0f ) );
commandBuffer.setScissor( 0, vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ) );
commandBuffer.draw( 12 * 3, 1, 0, 0 );
commandBuffer.endRenderPass();
commandBuffer.end();
vk::Fence drawFence = device.createFence( vk::FenceCreateInfo() );
vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput );
vk::SubmitInfo submitInfo( imageAcquiredSemaphore, waitDestinationStageMask, commandBuffer );
graphicsQueue.submit( submitInfo, drawFence );
while ( vk::Result::eTimeout == device.waitForFences( drawFence, VK_TRUE, vk::su::FenceTimeout ) )
;
vk::Result result = presentQueue.presentKHR( vk::PresentInfoKHR( {}, swapChainData.swapChain, currentBuffer.value ) );
switch ( result )
{
case vk::Result::eSuccess: break;
case vk::Result::eSuboptimalKHR: std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n"; break;
default: assert( false ); // an unexpected result is returned !
}
std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) );
device.waitIdle();
device.destroyFence( drawFence );
device.destroySemaphore( imageAcquiredSemaphore );
device.destroyPipeline( graphicsPipeline );
device.destroyPipelineCache( pipelineCache );
device.freeDescriptorSets( descriptorPool, descriptorSets );
device.destroyDescriptorPool( descriptorPool );
device.destroyPipelineLayout( pipelineLayout );
device.destroyDescriptorSetLayout( samplerLayout );
device.destroyDescriptorSetLayout( uniformLayout );
vertexBufferData.clear( device );
for ( auto framebuffer : framebuffers )
{
device.destroyFramebuffer( framebuffer );
}
device.destroyShaderModule( fragmentShaderModule );
device.destroyShaderModule( vertexShaderModule );
device.destroyRenderPass( renderPass );
uniformBufferData.clear( device );
textureData.clear( device );
depthBufferData.clear( device );
swapChainData.clear( device );
device.freeCommandBuffers( commandPool, commandBuffer );
device.destroyCommandPool( commandPool );
device.destroy();
instance.destroySurfaceKHR( surfaceData.surface );
#if !defined( NDEBUG )
instance.destroyDebugUtilsMessengerEXT( debugUtilsMessenger );
#endif
instance.destroy();
}
catch ( vk::SystemError & err )
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit( -1 );
}
catch ( std::exception & err )
{
std::cout << "std::exception: " << err.what() << std::endl;
exit( -1 );
}
catch ( ... )
{
std::cout << "unknown error\n";
exit( -1 );
}
return 0;
}