Vulkan-Hpp/vulkan/vulkan.hpp

35276 lines
1.3 MiB

// Copyright (c) 2015-2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This header is generated from the Khronos Vulkan XML API Registry.
#ifndef VULKAN_HPP
#define VULKAN_HPP
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <string>
#include <system_error>
#include <tuple>
#include <type_traits>
#include <vulkan/vulkan.h>
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
# include <memory>
# include <vector>
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
static_assert( VK_HEADER_VERSION == 65 , "Wrong VK_HEADER_VERSION!" );
// 32-bit vulkan is not typesafe for handles, so don't allow copy constructors on this platform by default.
// To enable this feature on 32-bit platforms please define VULKAN_HPP_TYPESAFE_CONVERSION
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
# if !defined( VULKAN_HPP_TYPESAFE_CONVERSION )
# define VULKAN_HPP_TYPESAFE_CONVERSION
# endif
#endif
#if !defined(VULKAN_HPP_HAS_UNRESTRICTED_UNIONS)
# if defined(__clang__)
# if __has_feature(cxx_unrestricted_unions)
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# elif defined(__GNUC__)
# define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
# if 40600 <= GCC_VERSION
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# elif defined(_MSC_VER)
# if 1900 <= _MSC_VER
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# endif
#endif
#if !defined(VULKAN_HPP_INLINE)
# if defined(__clang___)
# if __has_attribute(always_inline)
# define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__
# else
# define VULKAN_HPP_INLINE inline
# endif
# elif defined(__GNUC__)
# define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__
# elif defined(_MSC_VER)
# define VULKAN_HPP_INLINE __forceinline
# else
# define VULKAN_HPP_INLINE inline
# endif
#endif
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
# define VULKAN_HPP_TYPESAFE_EXPLICIT
#else
# define VULKAN_HPP_TYPESAFE_EXPLICIT explicit
#endif
#if !defined(VULKAN_HPP_NAMESPACE)
#define VULKAN_HPP_NAMESPACE vk
#endif
namespace VULKAN_HPP_NAMESPACE
{
template <typename FlagBitsType> struct FlagTraits
{
enum { allFlags = 0 };
};
template <typename BitType, typename MaskType = VkFlags>
class Flags
{
public:
Flags()
: m_mask(0)
{
}
Flags(BitType bit)
: m_mask(static_cast<MaskType>(bit))
{
}
Flags(Flags<BitType> const& rhs)
: m_mask(rhs.m_mask)
{
}
Flags<BitType> & operator=(Flags<BitType> const& rhs)
{
m_mask = rhs.m_mask;
return *this;
}
Flags<BitType> & operator|=(Flags<BitType> const& rhs)
{
m_mask |= rhs.m_mask;
return *this;
}
Flags<BitType> & operator&=(Flags<BitType> const& rhs)
{
m_mask &= rhs.m_mask;
return *this;
}
Flags<BitType> & operator^=(Flags<BitType> const& rhs)
{
m_mask ^= rhs.m_mask;
return *this;
}
Flags<BitType> operator|(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result |= rhs;
return result;
}
Flags<BitType> operator&(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result &= rhs;
return result;
}
Flags<BitType> operator^(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result ^= rhs;
return result;
}
bool operator!() const
{
return !m_mask;
}
Flags<BitType> operator~() const
{
Flags<BitType> result(*this);
result.m_mask ^= FlagTraits<BitType>::allFlags;
return result;
}
bool operator==(Flags<BitType> const& rhs) const
{
return m_mask == rhs.m_mask;
}
bool operator!=(Flags<BitType> const& rhs) const
{
return m_mask != rhs.m_mask;
}
explicit operator bool() const
{
return !!m_mask;
}
explicit operator MaskType() const
{
return m_mask;
}
private:
MaskType m_mask;
};
template <typename BitType>
Flags<BitType> operator|(BitType bit, Flags<BitType> const& flags)
{
return flags | bit;
}
template <typename BitType>
Flags<BitType> operator&(BitType bit, Flags<BitType> const& flags)
{
return flags & bit;
}
template <typename BitType>
Flags<BitType> operator^(BitType bit, Flags<BitType> const& flags)
{
return flags ^ bit;
}
template <typename RefType>
class Optional
{
public:
Optional(RefType & reference) { m_ptr = &reference; }
Optional(RefType * ptr) { m_ptr = ptr; }
Optional(std::nullptr_t) { m_ptr = nullptr; }
operator RefType*() const { return m_ptr; }
RefType const* operator->() const { return m_ptr; }
explicit operator bool() const { return !!m_ptr; }
private:
RefType *m_ptr;
};
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
class ArrayProxy
{
public:
ArrayProxy(std::nullptr_t)
: m_count(0)
, m_ptr(nullptr)
{}
ArrayProxy(T & ptr)
: m_count(1)
, m_ptr(&ptr)
{}
ArrayProxy(uint32_t count, T * ptr)
: m_count(count)
, m_ptr(ptr)
{}
template <size_t N>
ArrayProxy(std::array<typename std::remove_const<T>::type, N> & data)
: m_count(N)
, m_ptr(data.data())
{}
template <size_t N>
ArrayProxy(std::array<typename std::remove_const<T>::type, N> const& data)
: m_count(N)
, m_ptr(data.data())
{}
template <class Allocator = std::allocator<typename std::remove_const<T>::type>>
ArrayProxy(std::vector<typename std::remove_const<T>::type, Allocator> & data)
: m_count(static_cast<uint32_t>(data.size()))
, m_ptr(data.data())
{}
template <class Allocator = std::allocator<typename std::remove_const<T>::type>>
ArrayProxy(std::vector<typename std::remove_const<T>::type, Allocator> const& data)
: m_count(static_cast<uint32_t>(data.size()))
, m_ptr(data.data())
{}
ArrayProxy(std::initializer_list<T> const& data)
: m_count(static_cast<uint32_t>(data.end() - data.begin()))
, m_ptr(data.begin())
{}
const T * begin() const
{
return m_ptr;
}
const T * end() const
{
return m_ptr + m_count;
}
const T & front() const
{
assert(m_count && m_ptr);
return *m_ptr;
}
const T & back() const
{
assert(m_count && m_ptr);
return *(m_ptr + m_count - 1);
}
bool empty() const
{
return (m_count == 0);
}
uint32_t size() const
{
return m_count;
}
T * data() const
{
return m_ptr;
}
private:
uint32_t m_count;
T * m_ptr;
};
#endif
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Type, typename Deleter>
class UniqueHandle
{
public:
explicit UniqueHandle( Type const& value = Type(), Deleter const& deleter = Deleter() )
: m_value( value )
, m_deleter( deleter )
{}
UniqueHandle( UniqueHandle const& ) = delete;
UniqueHandle( UniqueHandle && other )
: m_value( other.release() )
, m_deleter( std::move( other.m_deleter ) )
{}
~UniqueHandle()
{
destroy();
}
UniqueHandle & operator=( UniqueHandle const& ) = delete;
UniqueHandle & operator=( UniqueHandle && other )
{
reset( other.release() );
m_deleter = std::move( other.m_deleter );
return *this;
}
explicit operator bool() const
{
return m_value.operator bool();
}
Type const* operator->() const
{
return &m_value;
}
Type * operator->()
{
return &m_value;
}
Type const& operator*() const
{
return m_value;
}
Type & operator*()
{
return m_value;
}
const Type & get() const
{
return m_value;
}
Type & get()
{
return m_value;
}
Deleter & getDeleter()
{
return m_deleter;
}
Deleter const& getDeleter() const
{
return m_deleter;
}
void reset( Type const& value = Type() )
{
if ( m_value != value )
{
destroy();
m_value = value;
}
}
Type release()
{
Type value = m_value;
m_value = nullptr;
return value;
}
void swap( UniqueHandle<Type, Deleter> & rhs )
{
std::swap(m_value, rhs.m_value);
std::swap(m_deleter, rhs.m_deleter);
}
private:
void destroy()
{
if ( m_value )
{
m_deleter( m_value );
}
}
private:
Type m_value;
Deleter m_deleter;
};
template <typename Type, typename Deleter>
VULKAN_HPP_INLINE void swap( UniqueHandle<Type,Deleter> & lhs, UniqueHandle<Type,Deleter> & rhs )
{
lhs.swap( rhs );
}
#endif
template <typename X, typename Y> struct isStructureChainValid { enum { value = false }; };
template <class Element>
class StructureChainElement
{
public:
explicit operator Element&() { return value; }
explicit operator const Element&() const { return value; }
private:
Element value;
};
template<typename ...StructureElements>
class StructureChain : private StructureChainElement<StructureElements>...
{
public:
StructureChain()
{
link<StructureElements...>();
}
StructureChain(StructureChain const &rhs)
{
linkAndCopy<StructureElements...>(rhs);
}
StructureChain& operator=(StructureChain const &rhs)
{
linkAndCopy<StructureElements...>(rhs);
return *this;
}
template<typename ClassType> ClassType& get() { return static_cast<ClassType&>(*this);}
private:
template<typename X>
void link()
{
}
template<typename X, typename Y, typename ...Z>
void link()
{
static_assert(isStructureChainValid<X,Y>::value, "The structure chain is not valid!");
X& x = static_cast<X&>(*this);
Y& y = static_cast<Y&>(*this);
x.pNext = &y;
link<Y, Z...>();
}
template<typename X>
void linkAndCopy(StructureChain const &rhs)
{
static_cast<X&>(*this) = static_cast<X const &>(rhs);
}
template<typename X, typename Y, typename ...Z>
void linkAndCopy(StructureChain const &rhs)
{
static_assert(isStructureChainValid<X,Y>::value, "The structure chain is not valid!");
X& x = static_cast<X&>(*this);
Y& y = static_cast<Y&>(*this);
x = static_cast<X const &>(rhs);
x.pNext = &y;
linkAndCopy<Y, Z...>(rhs);
}
};
enum class Result
{
eSuccess = VK_SUCCESS,
eNotReady = VK_NOT_READY,
eTimeout = VK_TIMEOUT,
eEventSet = VK_EVENT_SET,
eEventReset = VK_EVENT_RESET,
eIncomplete = VK_INCOMPLETE,
eErrorOutOfHostMemory = VK_ERROR_OUT_OF_HOST_MEMORY,
eErrorOutOfDeviceMemory = VK_ERROR_OUT_OF_DEVICE_MEMORY,
eErrorInitializationFailed = VK_ERROR_INITIALIZATION_FAILED,
eErrorDeviceLost = VK_ERROR_DEVICE_LOST,
eErrorMemoryMapFailed = VK_ERROR_MEMORY_MAP_FAILED,
eErrorLayerNotPresent = VK_ERROR_LAYER_NOT_PRESENT,
eErrorExtensionNotPresent = VK_ERROR_EXTENSION_NOT_PRESENT,
eErrorFeatureNotPresent = VK_ERROR_FEATURE_NOT_PRESENT,
eErrorIncompatibleDriver = VK_ERROR_INCOMPATIBLE_DRIVER,
eErrorTooManyObjects = VK_ERROR_TOO_MANY_OBJECTS,
eErrorFormatNotSupported = VK_ERROR_FORMAT_NOT_SUPPORTED,
eErrorFragmentedPool = VK_ERROR_FRAGMENTED_POOL,
eErrorSurfaceLostKHR = VK_ERROR_SURFACE_LOST_KHR,
eErrorNativeWindowInUseKHR = VK_ERROR_NATIVE_WINDOW_IN_USE_KHR,
eSuboptimalKHR = VK_SUBOPTIMAL_KHR,
eErrorOutOfDateKHR = VK_ERROR_OUT_OF_DATE_KHR,
eErrorIncompatibleDisplayKHR = VK_ERROR_INCOMPATIBLE_DISPLAY_KHR,
eErrorValidationFailedEXT = VK_ERROR_VALIDATION_FAILED_EXT,
eErrorInvalidShaderNV = VK_ERROR_INVALID_SHADER_NV,
eErrorOutOfPoolMemoryKHR = VK_ERROR_OUT_OF_POOL_MEMORY_KHR,
eErrorInvalidExternalHandleKHR = VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
eErrorNotPermittedEXT = VK_ERROR_NOT_PERMITTED_EXT
};
VULKAN_HPP_INLINE std::string to_string(Result value)
{
switch (value)
{
case Result::eSuccess: return "Success";
case Result::eNotReady: return "NotReady";
case Result::eTimeout: return "Timeout";
case Result::eEventSet: return "EventSet";
case Result::eEventReset: return "EventReset";
case Result::eIncomplete: return "Incomplete";
case Result::eErrorOutOfHostMemory: return "ErrorOutOfHostMemory";
case Result::eErrorOutOfDeviceMemory: return "ErrorOutOfDeviceMemory";
case Result::eErrorInitializationFailed: return "ErrorInitializationFailed";
case Result::eErrorDeviceLost: return "ErrorDeviceLost";
case Result::eErrorMemoryMapFailed: return "ErrorMemoryMapFailed";
case Result::eErrorLayerNotPresent: return "ErrorLayerNotPresent";
case Result::eErrorExtensionNotPresent: return "ErrorExtensionNotPresent";
case Result::eErrorFeatureNotPresent: return "ErrorFeatureNotPresent";
case Result::eErrorIncompatibleDriver: return "ErrorIncompatibleDriver";
case Result::eErrorTooManyObjects: return "ErrorTooManyObjects";
case Result::eErrorFormatNotSupported: return "ErrorFormatNotSupported";
case Result::eErrorFragmentedPool: return "ErrorFragmentedPool";
case Result::eErrorSurfaceLostKHR: return "ErrorSurfaceLostKHR";
case Result::eErrorNativeWindowInUseKHR: return "ErrorNativeWindowInUseKHR";
case Result::eSuboptimalKHR: return "SuboptimalKHR";
case Result::eErrorOutOfDateKHR: return "ErrorOutOfDateKHR";
case Result::eErrorIncompatibleDisplayKHR: return "ErrorIncompatibleDisplayKHR";
case Result::eErrorValidationFailedEXT: return "ErrorValidationFailedEXT";
case Result::eErrorInvalidShaderNV: return "ErrorInvalidShaderNV";
case Result::eErrorOutOfPoolMemoryKHR: return "ErrorOutOfPoolMemoryKHR";
case Result::eErrorInvalidExternalHandleKHR: return "ErrorInvalidExternalHandleKHR";
case Result::eErrorNotPermittedEXT: return "ErrorNotPermittedEXT";
default: return "invalid";
}
}
#ifndef VULKAN_HPP_NO_EXCEPTIONS
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# define noexcept _NOEXCEPT
#endif
class ErrorCategoryImpl : public std::error_category
{
public:
virtual const char* name() const noexcept override { return "VULKAN_HPP_NAMESPACE::Result"; }
virtual std::string message(int ev) const override { return to_string(static_cast<Result>(ev)); }
};
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# undef noexcept
#endif
VULKAN_HPP_INLINE const std::error_category& errorCategory()
{
static ErrorCategoryImpl instance;
return instance;
}
VULKAN_HPP_INLINE std::error_code make_error_code(Result e)
{
return std::error_code(static_cast<int>(e), errorCategory());
}
VULKAN_HPP_INLINE std::error_condition make_error_condition(Result e)
{
return std::error_condition(static_cast<int>(e), errorCategory());
}
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# define noexcept _NOEXCEPT
#endif
class Error
{
public:
virtual ~Error() = default;
virtual const char* what() const noexcept = 0;
};
class LogicError : public Error, public std::logic_error
{
public:
explicit LogicError( const std::string& what )
: Error(), std::logic_error(what) {}
explicit LogicError( char const * what )
: Error(), std::logic_error(what) {}
virtual ~LogicError() = default;
virtual const char* what() const noexcept { return std::logic_error::what(); }
};
class SystemError : public Error, public std::system_error
{
public:
SystemError( std::error_code ec )
: Error(), std::system_error(ec) {}
SystemError( std::error_code ec, std::string const& what )
: Error(), std::system_error(ec, what) {}
SystemError( std::error_code ec, char const * what )
: Error(), std::system_error(ec, what) {}
SystemError( int ev, std::error_category const& ecat )
: Error(), std::system_error(ev, ecat) {}
SystemError( int ev, std::error_category const& ecat, std::string const& what)
: Error(), std::system_error(ev, ecat, what) {}
SystemError( int ev, std::error_category const& ecat, char const * what)
: Error(), std::system_error(ev, ecat, what) {}
virtual ~SystemError() = default;
virtual const char* what() const noexcept { return std::system_error::what(); }
};
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# undef noexcept
#endif
class OutOfHostMemoryError : public SystemError
{
public:
OutOfHostMemoryError( std::string const& message )
: SystemError( make_error_code( Result::eErrorOutOfHostMemory ), message ) {}
OutOfHostMemoryError( char const * message )
: SystemError( make_error_code( Result::eErrorOutOfHostMemory ), message ) {}
};
class OutOfDeviceMemoryError : public SystemError
{
public:
OutOfDeviceMemoryError( std::string const& message )
: SystemError( make_error_code( Result::eErrorOutOfDeviceMemory ), message ) {}
OutOfDeviceMemoryError( char const * message )
: SystemError( make_error_code( Result::eErrorOutOfDeviceMemory ), message ) {}
};
class InitializationFailedError : public SystemError
{
public:
InitializationFailedError( std::string const& message )
: SystemError( make_error_code( Result::eErrorInitializationFailed ), message ) {}
InitializationFailedError( char const * message )
: SystemError( make_error_code( Result::eErrorInitializationFailed ), message ) {}
};
class DeviceLostError : public SystemError
{
public:
DeviceLostError( std::string const& message )
: SystemError( make_error_code( Result::eErrorDeviceLost ), message ) {}
DeviceLostError( char const * message )
: SystemError( make_error_code( Result::eErrorDeviceLost ), message ) {}
};
class MemoryMapFailedError : public SystemError
{
public:
MemoryMapFailedError( std::string const& message )
: SystemError( make_error_code( Result::eErrorMemoryMapFailed ), message ) {}
MemoryMapFailedError( char const * message )
: SystemError( make_error_code( Result::eErrorMemoryMapFailed ), message ) {}
};
class LayerNotPresentError : public SystemError
{
public:
LayerNotPresentError( std::string const& message )
: SystemError( make_error_code( Result::eErrorLayerNotPresent ), message ) {}
LayerNotPresentError( char const * message )
: SystemError( make_error_code( Result::eErrorLayerNotPresent ), message ) {}
};
class ExtensionNotPresentError : public SystemError
{
public:
ExtensionNotPresentError( std::string const& message )
: SystemError( make_error_code( Result::eErrorExtensionNotPresent ), message ) {}
ExtensionNotPresentError( char const * message )
: SystemError( make_error_code( Result::eErrorExtensionNotPresent ), message ) {}
};
class FeatureNotPresentError : public SystemError
{
public:
FeatureNotPresentError( std::string const& message )
: SystemError( make_error_code( Result::eErrorFeatureNotPresent ), message ) {}
FeatureNotPresentError( char const * message )
: SystemError( make_error_code( Result::eErrorFeatureNotPresent ), message ) {}
};
class IncompatibleDriverError : public SystemError
{
public:
IncompatibleDriverError( std::string const& message )
: SystemError( make_error_code( Result::eErrorIncompatibleDriver ), message ) {}
IncompatibleDriverError( char const * message )
: SystemError( make_error_code( Result::eErrorIncompatibleDriver ), message ) {}
};
class TooManyObjectsError : public SystemError
{
public:
TooManyObjectsError( std::string const& message )
: SystemError( make_error_code( Result::eErrorTooManyObjects ), message ) {}
TooManyObjectsError( char const * message )
: SystemError( make_error_code( Result::eErrorTooManyObjects ), message ) {}
};
class FormatNotSupportedError : public SystemError
{
public:
FormatNotSupportedError( std::string const& message )
: SystemError( make_error_code( Result::eErrorFormatNotSupported ), message ) {}
FormatNotSupportedError( char const * message )
: SystemError( make_error_code( Result::eErrorFormatNotSupported ), message ) {}
};
class FragmentedPoolError : public SystemError
{
public:
FragmentedPoolError( std::string const& message )
: SystemError( make_error_code( Result::eErrorFragmentedPool ), message ) {}
FragmentedPoolError( char const * message )
: SystemError( make_error_code( Result::eErrorFragmentedPool ), message ) {}
};
class SurfaceLostKHRError : public SystemError
{
public:
SurfaceLostKHRError( std::string const& message )
: SystemError( make_error_code( Result::eErrorSurfaceLostKHR ), message ) {}
SurfaceLostKHRError( char const * message )
: SystemError( make_error_code( Result::eErrorSurfaceLostKHR ), message ) {}
};
class NativeWindowInUseKHRError : public SystemError
{
public:
NativeWindowInUseKHRError( std::string const& message )
: SystemError( make_error_code( Result::eErrorNativeWindowInUseKHR ), message ) {}
NativeWindowInUseKHRError( char const * message )
: SystemError( make_error_code( Result::eErrorNativeWindowInUseKHR ), message ) {}
};
class OutOfDateKHRError : public SystemError
{
public:
OutOfDateKHRError( std::string const& message )
: SystemError( make_error_code( Result::eErrorOutOfDateKHR ), message ) {}
OutOfDateKHRError( char const * message )
: SystemError( make_error_code( Result::eErrorOutOfDateKHR ), message ) {}
};
class IncompatibleDisplayKHRError : public SystemError
{
public:
IncompatibleDisplayKHRError( std::string const& message )
: SystemError( make_error_code( Result::eErrorIncompatibleDisplayKHR ), message ) {}
IncompatibleDisplayKHRError( char const * message )
: SystemError( make_error_code( Result::eErrorIncompatibleDisplayKHR ), message ) {}
};
class ValidationFailedEXTError : public SystemError
{
public:
ValidationFailedEXTError( std::string const& message )
: SystemError( make_error_code( Result::eErrorValidationFailedEXT ), message ) {}
ValidationFailedEXTError( char const * message )
: SystemError( make_error_code( Result::eErrorValidationFailedEXT ), message ) {}
};
class InvalidShaderNVError : public SystemError
{
public:
InvalidShaderNVError( std::string const& message )
: SystemError( make_error_code( Result::eErrorInvalidShaderNV ), message ) {}
InvalidShaderNVError( char const * message )
: SystemError( make_error_code( Result::eErrorInvalidShaderNV ), message ) {}
};
class OutOfPoolMemoryKHRError : public SystemError
{
public:
OutOfPoolMemoryKHRError( std::string const& message )
: SystemError( make_error_code( Result::eErrorOutOfPoolMemoryKHR ), message ) {}
OutOfPoolMemoryKHRError( char const * message )
: SystemError( make_error_code( Result::eErrorOutOfPoolMemoryKHR ), message ) {}
};
class InvalidExternalHandleKHRError : public SystemError
{
public:
InvalidExternalHandleKHRError( std::string const& message )
: SystemError( make_error_code( Result::eErrorInvalidExternalHandleKHR ), message ) {}
InvalidExternalHandleKHRError( char const * message )
: SystemError( make_error_code( Result::eErrorInvalidExternalHandleKHR ), message ) {}
};
class NotPermittedEXTError : public SystemError
{
public:
NotPermittedEXTError( std::string const& message )
: SystemError( make_error_code( Result::eErrorNotPermittedEXT ), message ) {}
NotPermittedEXTError( char const * message )
: SystemError( make_error_code( Result::eErrorNotPermittedEXT ), message ) {}
};
VULKAN_HPP_INLINE void throwResultException( Result result, char const * message )
{
assert ( static_cast<long long int>(result) < 0 );
switch ( result )
{
case Result::eErrorOutOfHostMemory: throw OutOfHostMemoryError ( message );
case Result::eErrorOutOfDeviceMemory: throw OutOfDeviceMemoryError ( message );
case Result::eErrorInitializationFailed: throw InitializationFailedError ( message );
case Result::eErrorDeviceLost: throw DeviceLostError ( message );
case Result::eErrorMemoryMapFailed: throw MemoryMapFailedError ( message );
case Result::eErrorLayerNotPresent: throw LayerNotPresentError ( message );
case Result::eErrorExtensionNotPresent: throw ExtensionNotPresentError ( message );
case Result::eErrorFeatureNotPresent: throw FeatureNotPresentError ( message );
case Result::eErrorIncompatibleDriver: throw IncompatibleDriverError ( message );
case Result::eErrorTooManyObjects: throw TooManyObjectsError ( message );
case Result::eErrorFormatNotSupported: throw FormatNotSupportedError ( message );
case Result::eErrorFragmentedPool: throw FragmentedPoolError ( message );
case Result::eErrorSurfaceLostKHR: throw SurfaceLostKHRError ( message );
case Result::eErrorNativeWindowInUseKHR: throw NativeWindowInUseKHRError ( message );
case Result::eErrorOutOfDateKHR: throw OutOfDateKHRError ( message );
case Result::eErrorIncompatibleDisplayKHR: throw IncompatibleDisplayKHRError ( message );
case Result::eErrorValidationFailedEXT: throw ValidationFailedEXTError ( message );
case Result::eErrorInvalidShaderNV: throw InvalidShaderNVError ( message );
case Result::eErrorOutOfPoolMemoryKHR: throw OutOfPoolMemoryKHRError ( message );
case Result::eErrorInvalidExternalHandleKHR: throw InvalidExternalHandleKHRError ( message );
case Result::eErrorNotPermittedEXT: throw NotPermittedEXTError ( message );
default: throw SystemError( make_error_code( result ) );
}
}
#endif
} // namespace VULKAN_HPP_NAMESPACE
namespace std
{
template <>
struct is_error_code_enum<VULKAN_HPP_NAMESPACE::Result> : public true_type
{};
}
namespace VULKAN_HPP_NAMESPACE
{
template <typename T>
struct ResultValue
{
ResultValue( Result r, T & v )
: result( r )
, value( v )
{}
Result result;
T value;
operator std::tuple<Result&, T&>() { return std::tuple<Result&, T&>(result, value); }
};
template <typename T>
struct ResultValueType
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
typedef ResultValue<T> type;
#else
typedef T type;
#endif
};
template <>
struct ResultValueType<void>
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
typedef Result type;
#else
typedef void type;
#endif
};
VULKAN_HPP_INLINE ResultValueType<void>::type createResultValue( Result result, char const * message )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( result == Result::eSuccess );
return result;
#else
if ( result != Result::eSuccess )
{
throwResultException( result, message );
}
#endif
}
template <typename T>
VULKAN_HPP_INLINE typename ResultValueType<T>::type createResultValue( Result result, T & data, char const * message )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( result == Result::eSuccess );
return ResultValue<T>( result, data );
#else
if ( result != Result::eSuccess )
{
throwResultException( result, message );
}
return data;
#endif
}
VULKAN_HPP_INLINE Result createResultValue( Result result, char const * message, std::initializer_list<Result> successCodes )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() );
#else
if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() )
{
throwResultException( result, message );
}
#endif
return result;
}
template <typename T>
VULKAN_HPP_INLINE ResultValue<T> createResultValue( Result result, T & data, char const * message, std::initializer_list<Result> successCodes )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() );
#else
if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() )
{
throwResultException( result, message );
}
#endif
return ResultValue<T>( result, data );
}
using SampleMask = uint32_t;
using Bool32 = uint32_t;
using DeviceSize = uint64_t;
enum class FramebufferCreateFlagBits
{
};
using FramebufferCreateFlags = Flags<FramebufferCreateFlagBits, VkFramebufferCreateFlags>;
enum class QueryPoolCreateFlagBits
{
};
using QueryPoolCreateFlags = Flags<QueryPoolCreateFlagBits, VkQueryPoolCreateFlags>;
enum class RenderPassCreateFlagBits
{
};
using RenderPassCreateFlags = Flags<RenderPassCreateFlagBits, VkRenderPassCreateFlags>;
enum class SamplerCreateFlagBits
{
};
using SamplerCreateFlags = Flags<SamplerCreateFlagBits, VkSamplerCreateFlags>;
enum class PipelineLayoutCreateFlagBits
{
};
using PipelineLayoutCreateFlags = Flags<PipelineLayoutCreateFlagBits, VkPipelineLayoutCreateFlags>;
enum class PipelineCacheCreateFlagBits
{
};
using PipelineCacheCreateFlags = Flags<PipelineCacheCreateFlagBits, VkPipelineCacheCreateFlags>;
enum class PipelineDepthStencilStateCreateFlagBits
{
};
using PipelineDepthStencilStateCreateFlags = Flags<PipelineDepthStencilStateCreateFlagBits, VkPipelineDepthStencilStateCreateFlags>;
enum class PipelineDynamicStateCreateFlagBits
{
};
using PipelineDynamicStateCreateFlags = Flags<PipelineDynamicStateCreateFlagBits, VkPipelineDynamicStateCreateFlags>;
enum class PipelineColorBlendStateCreateFlagBits
{
};
using PipelineColorBlendStateCreateFlags = Flags<PipelineColorBlendStateCreateFlagBits, VkPipelineColorBlendStateCreateFlags>;
enum class PipelineMultisampleStateCreateFlagBits
{
};
using PipelineMultisampleStateCreateFlags = Flags<PipelineMultisampleStateCreateFlagBits, VkPipelineMultisampleStateCreateFlags>;
enum class PipelineRasterizationStateCreateFlagBits
{
};
using PipelineRasterizationStateCreateFlags = Flags<PipelineRasterizationStateCreateFlagBits, VkPipelineRasterizationStateCreateFlags>;
enum class PipelineViewportStateCreateFlagBits
{
};
using PipelineViewportStateCreateFlags = Flags<PipelineViewportStateCreateFlagBits, VkPipelineViewportStateCreateFlags>;
enum class PipelineTessellationStateCreateFlagBits
{
};
using PipelineTessellationStateCreateFlags = Flags<PipelineTessellationStateCreateFlagBits, VkPipelineTessellationStateCreateFlags>;
enum class PipelineInputAssemblyStateCreateFlagBits
{
};
using PipelineInputAssemblyStateCreateFlags = Flags<PipelineInputAssemblyStateCreateFlagBits, VkPipelineInputAssemblyStateCreateFlags>;
enum class PipelineVertexInputStateCreateFlagBits
{
};
using PipelineVertexInputStateCreateFlags = Flags<PipelineVertexInputStateCreateFlagBits, VkPipelineVertexInputStateCreateFlags>;
enum class PipelineShaderStageCreateFlagBits
{
};
using PipelineShaderStageCreateFlags = Flags<PipelineShaderStageCreateFlagBits, VkPipelineShaderStageCreateFlags>;
enum class BufferViewCreateFlagBits
{
};
using BufferViewCreateFlags = Flags<BufferViewCreateFlagBits, VkBufferViewCreateFlags>;
enum class InstanceCreateFlagBits
{
};
using InstanceCreateFlags = Flags<InstanceCreateFlagBits, VkInstanceCreateFlags>;
enum class DeviceCreateFlagBits
{
};
using DeviceCreateFlags = Flags<DeviceCreateFlagBits, VkDeviceCreateFlags>;
enum class DeviceQueueCreateFlagBits
{
};
using DeviceQueueCreateFlags = Flags<DeviceQueueCreateFlagBits, VkDeviceQueueCreateFlags>;
enum class ImageViewCreateFlagBits
{
};
using ImageViewCreateFlags = Flags<ImageViewCreateFlagBits, VkImageViewCreateFlags>;
enum class SemaphoreCreateFlagBits
{
};
using SemaphoreCreateFlags = Flags<SemaphoreCreateFlagBits, VkSemaphoreCreateFlags>;
enum class ShaderModuleCreateFlagBits
{
};
using ShaderModuleCreateFlags = Flags<ShaderModuleCreateFlagBits, VkShaderModuleCreateFlags>;
enum class EventCreateFlagBits
{
};
using EventCreateFlags = Flags<EventCreateFlagBits, VkEventCreateFlags>;
enum class MemoryMapFlagBits
{
};
using MemoryMapFlags = Flags<MemoryMapFlagBits, VkMemoryMapFlags>;
enum class DescriptorPoolResetFlagBits
{
};
using DescriptorPoolResetFlags = Flags<DescriptorPoolResetFlagBits, VkDescriptorPoolResetFlags>;
enum class DescriptorUpdateTemplateCreateFlagBitsKHR
{
};
using DescriptorUpdateTemplateCreateFlagsKHR = Flags<DescriptorUpdateTemplateCreateFlagBitsKHR, VkDescriptorUpdateTemplateCreateFlagsKHR>;
enum class DisplayModeCreateFlagBitsKHR
{
};
using DisplayModeCreateFlagsKHR = Flags<DisplayModeCreateFlagBitsKHR, VkDisplayModeCreateFlagsKHR>;
enum class DisplaySurfaceCreateFlagBitsKHR
{
};
using DisplaySurfaceCreateFlagsKHR = Flags<DisplaySurfaceCreateFlagBitsKHR, VkDisplaySurfaceCreateFlagsKHR>;
#ifdef VK_USE_PLATFORM_ANDROID_KHR
enum class AndroidSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_ANDROID_KHR
using AndroidSurfaceCreateFlagsKHR = Flags<AndroidSurfaceCreateFlagBitsKHR, VkAndroidSurfaceCreateFlagsKHR>;
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
enum class MirSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
using MirSurfaceCreateFlagsKHR = Flags<MirSurfaceCreateFlagBitsKHR, VkMirSurfaceCreateFlagsKHR>;
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_VI_NN
enum class ViSurfaceCreateFlagBitsNN
{
};
#endif /*VK_USE_PLATFORM_VI_NN*/
#ifdef VK_USE_PLATFORM_VI_NN
using ViSurfaceCreateFlagsNN = Flags<ViSurfaceCreateFlagBitsNN, VkViSurfaceCreateFlagsNN>;
#endif /*VK_USE_PLATFORM_VI_NN*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
enum class WaylandSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
using WaylandSurfaceCreateFlagsKHR = Flags<WaylandSurfaceCreateFlagBitsKHR, VkWaylandSurfaceCreateFlagsKHR>;
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
enum class Win32SurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
using Win32SurfaceCreateFlagsKHR = Flags<Win32SurfaceCreateFlagBitsKHR, VkWin32SurfaceCreateFlagsKHR>;
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
enum class XlibSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
using XlibSurfaceCreateFlagsKHR = Flags<XlibSurfaceCreateFlagBitsKHR, VkXlibSurfaceCreateFlagsKHR>;
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
enum class XcbSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
using XcbSurfaceCreateFlagsKHR = Flags<XcbSurfaceCreateFlagBitsKHR, VkXcbSurfaceCreateFlagsKHR>;
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifdef VK_USE_PLATFORM_IOS_MVK
enum class IOSSurfaceCreateFlagBitsMVK
{
};
#endif /*VK_USE_PLATFORM_IOS_MVK*/
#ifdef VK_USE_PLATFORM_IOS_MVK
using IOSSurfaceCreateFlagsMVK = Flags<IOSSurfaceCreateFlagBitsMVK, VkIOSSurfaceCreateFlagsMVK>;
#endif /*VK_USE_PLATFORM_IOS_MVK*/
#ifdef VK_USE_PLATFORM_MACOS_MVK
enum class MacOSSurfaceCreateFlagBitsMVK
{
};
#endif /*VK_USE_PLATFORM_MACOS_MVK*/
#ifdef VK_USE_PLATFORM_MACOS_MVK
using MacOSSurfaceCreateFlagsMVK = Flags<MacOSSurfaceCreateFlagBitsMVK, VkMacOSSurfaceCreateFlagsMVK>;
#endif /*VK_USE_PLATFORM_MACOS_MVK*/
enum class CommandPoolTrimFlagBitsKHR
{
};
using CommandPoolTrimFlagsKHR = Flags<CommandPoolTrimFlagBitsKHR, VkCommandPoolTrimFlagsKHR>;
enum class PipelineViewportSwizzleStateCreateFlagBitsNV
{
};
using PipelineViewportSwizzleStateCreateFlagsNV = Flags<PipelineViewportSwizzleStateCreateFlagBitsNV, VkPipelineViewportSwizzleStateCreateFlagsNV>;
enum class PipelineDiscardRectangleStateCreateFlagBitsEXT
{
};
using PipelineDiscardRectangleStateCreateFlagsEXT = Flags<PipelineDiscardRectangleStateCreateFlagBitsEXT, VkPipelineDiscardRectangleStateCreateFlagsEXT>;
enum class PipelineCoverageToColorStateCreateFlagBitsNV
{
};
using PipelineCoverageToColorStateCreateFlagsNV = Flags<PipelineCoverageToColorStateCreateFlagBitsNV, VkPipelineCoverageToColorStateCreateFlagsNV>;
enum class PipelineCoverageModulationStateCreateFlagBitsNV
{
};
using PipelineCoverageModulationStateCreateFlagsNV = Flags<PipelineCoverageModulationStateCreateFlagBitsNV, VkPipelineCoverageModulationStateCreateFlagsNV>;
enum class ValidationCacheCreateFlagBitsEXT
{
};
using ValidationCacheCreateFlagsEXT = Flags<ValidationCacheCreateFlagBitsEXT, VkValidationCacheCreateFlagsEXT>;
class DeviceMemory
{
public:
DeviceMemory()
: m_deviceMemory(VK_NULL_HANDLE)
{}
DeviceMemory( std::nullptr_t )
: m_deviceMemory(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT DeviceMemory( VkDeviceMemory deviceMemory )
: m_deviceMemory( deviceMemory )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DeviceMemory & operator=(VkDeviceMemory deviceMemory)
{
m_deviceMemory = deviceMemory;
return *this;
}
#endif
DeviceMemory & operator=( std::nullptr_t )
{
m_deviceMemory = VK_NULL_HANDLE;
return *this;
}
bool operator==( DeviceMemory const & rhs ) const
{
return m_deviceMemory == rhs.m_deviceMemory;
}
bool operator!=(DeviceMemory const & rhs ) const
{
return m_deviceMemory != rhs.m_deviceMemory;
}
bool operator<(DeviceMemory const & rhs ) const
{
return m_deviceMemory < rhs.m_deviceMemory;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDeviceMemory() const
{
return m_deviceMemory;
}
explicit operator bool() const
{
return m_deviceMemory != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_deviceMemory == VK_NULL_HANDLE;
}
private:
VkDeviceMemory m_deviceMemory;
};
static_assert( sizeof( DeviceMemory ) == sizeof( VkDeviceMemory ), "handle and wrapper have different size!" );
class CommandPool
{
public:
CommandPool()
: m_commandPool(VK_NULL_HANDLE)
{}
CommandPool( std::nullptr_t )
: m_commandPool(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT CommandPool( VkCommandPool commandPool )
: m_commandPool( commandPool )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
CommandPool & operator=(VkCommandPool commandPool)
{
m_commandPool = commandPool;
return *this;
}
#endif
CommandPool & operator=( std::nullptr_t )
{
m_commandPool = VK_NULL_HANDLE;
return *this;
}
bool operator==( CommandPool const & rhs ) const
{
return m_commandPool == rhs.m_commandPool;
}
bool operator!=(CommandPool const & rhs ) const
{
return m_commandPool != rhs.m_commandPool;
}
bool operator<(CommandPool const & rhs ) const
{
return m_commandPool < rhs.m_commandPool;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkCommandPool() const
{
return m_commandPool;
}
explicit operator bool() const
{
return m_commandPool != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_commandPool == VK_NULL_HANDLE;
}
private:
VkCommandPool m_commandPool;
};
static_assert( sizeof( CommandPool ) == sizeof( VkCommandPool ), "handle and wrapper have different size!" );
class Buffer
{
public:
Buffer()
: m_buffer(VK_NULL_HANDLE)
{}
Buffer( std::nullptr_t )
: m_buffer(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Buffer( VkBuffer buffer )
: m_buffer( buffer )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Buffer & operator=(VkBuffer buffer)
{
m_buffer = buffer;
return *this;
}
#endif
Buffer & operator=( std::nullptr_t )
{
m_buffer = VK_NULL_HANDLE;
return *this;
}
bool operator==( Buffer const & rhs ) const
{
return m_buffer == rhs.m_buffer;
}
bool operator!=(Buffer const & rhs ) const
{
return m_buffer != rhs.m_buffer;
}
bool operator<(Buffer const & rhs ) const
{
return m_buffer < rhs.m_buffer;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkBuffer() const
{
return m_buffer;
}
explicit operator bool() const
{
return m_buffer != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_buffer == VK_NULL_HANDLE;
}
private:
VkBuffer m_buffer;
};
static_assert( sizeof( Buffer ) == sizeof( VkBuffer ), "handle and wrapper have different size!" );
class BufferView
{
public:
BufferView()
: m_bufferView(VK_NULL_HANDLE)
{}
BufferView( std::nullptr_t )
: m_bufferView(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT BufferView( VkBufferView bufferView )
: m_bufferView( bufferView )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
BufferView & operator=(VkBufferView bufferView)
{
m_bufferView = bufferView;
return *this;
}
#endif
BufferView & operator=( std::nullptr_t )
{
m_bufferView = VK_NULL_HANDLE;
return *this;
}
bool operator==( BufferView const & rhs ) const
{
return m_bufferView == rhs.m_bufferView;
}
bool operator!=(BufferView const & rhs ) const
{
return m_bufferView != rhs.m_bufferView;
}
bool operator<(BufferView const & rhs ) const
{
return m_bufferView < rhs.m_bufferView;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkBufferView() const
{
return m_bufferView;
}
explicit operator bool() const
{
return m_bufferView != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_bufferView == VK_NULL_HANDLE;
}
private:
VkBufferView m_bufferView;
};
static_assert( sizeof( BufferView ) == sizeof( VkBufferView ), "handle and wrapper have different size!" );
class Image
{
public:
Image()
: m_image(VK_NULL_HANDLE)
{}
Image( std::nullptr_t )
: m_image(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Image( VkImage image )
: m_image( image )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Image & operator=(VkImage image)
{
m_image = image;
return *this;
}
#endif
Image & operator=( std::nullptr_t )
{
m_image = VK_NULL_HANDLE;
return *this;
}
bool operator==( Image const & rhs ) const
{
return m_image == rhs.m_image;
}
bool operator!=(Image const & rhs ) const
{
return m_image != rhs.m_image;
}
bool operator<(Image const & rhs ) const
{
return m_image < rhs.m_image;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkImage() const
{
return m_image;
}
explicit operator bool() const
{
return m_image != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_image == VK_NULL_HANDLE;
}
private:
VkImage m_image;
};
static_assert( sizeof( Image ) == sizeof( VkImage ), "handle and wrapper have different size!" );
class ImageView
{
public:
ImageView()
: m_imageView(VK_NULL_HANDLE)
{}
ImageView( std::nullptr_t )
: m_imageView(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT ImageView( VkImageView imageView )
: m_imageView( imageView )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
ImageView & operator=(VkImageView imageView)
{
m_imageView = imageView;
return *this;
}
#endif
ImageView & operator=( std::nullptr_t )
{
m_imageView = VK_NULL_HANDLE;
return *this;
}
bool operator==( ImageView const & rhs ) const
{
return m_imageView == rhs.m_imageView;
}
bool operator!=(ImageView const & rhs ) const
{
return m_imageView != rhs.m_imageView;
}
bool operator<(ImageView const & rhs ) const
{
return m_imageView < rhs.m_imageView;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkImageView() const
{
return m_imageView;
}
explicit operator bool() const
{
return m_imageView != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_imageView == VK_NULL_HANDLE;
}
private:
VkImageView m_imageView;
};
static_assert( sizeof( ImageView ) == sizeof( VkImageView ), "handle and wrapper have different size!" );
class ShaderModule
{
public:
ShaderModule()
: m_shaderModule(VK_NULL_HANDLE)
{}
ShaderModule( std::nullptr_t )
: m_shaderModule(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT ShaderModule( VkShaderModule shaderModule )
: m_shaderModule( shaderModule )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
ShaderModule & operator=(VkShaderModule shaderModule)
{
m_shaderModule = shaderModule;
return *this;
}
#endif
ShaderModule & operator=( std::nullptr_t )
{
m_shaderModule = VK_NULL_HANDLE;
return *this;
}
bool operator==( ShaderModule const & rhs ) const
{
return m_shaderModule == rhs.m_shaderModule;
}
bool operator!=(ShaderModule const & rhs ) const
{
return m_shaderModule != rhs.m_shaderModule;
}
bool operator<(ShaderModule const & rhs ) const
{
return m_shaderModule < rhs.m_shaderModule;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkShaderModule() const
{
return m_shaderModule;
}
explicit operator bool() const
{
return m_shaderModule != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_shaderModule == VK_NULL_HANDLE;
}
private:
VkShaderModule m_shaderModule;
};
static_assert( sizeof( ShaderModule ) == sizeof( VkShaderModule ), "handle and wrapper have different size!" );
class Pipeline
{
public:
Pipeline()
: m_pipeline(VK_NULL_HANDLE)
{}
Pipeline( std::nullptr_t )
: m_pipeline(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Pipeline( VkPipeline pipeline )
: m_pipeline( pipeline )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Pipeline & operator=(VkPipeline pipeline)
{
m_pipeline = pipeline;
return *this;
}
#endif
Pipeline & operator=( std::nullptr_t )
{
m_pipeline = VK_NULL_HANDLE;
return *this;
}
bool operator==( Pipeline const & rhs ) const
{
return m_pipeline == rhs.m_pipeline;
}
bool operator!=(Pipeline const & rhs ) const
{
return m_pipeline != rhs.m_pipeline;
}
bool operator<(Pipeline const & rhs ) const
{
return m_pipeline < rhs.m_pipeline;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkPipeline() const
{
return m_pipeline;
}
explicit operator bool() const
{
return m_pipeline != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_pipeline == VK_NULL_HANDLE;
}
private:
VkPipeline m_pipeline;
};
static_assert( sizeof( Pipeline ) == sizeof( VkPipeline ), "handle and wrapper have different size!" );
class PipelineLayout
{
public:
PipelineLayout()
: m_pipelineLayout(VK_NULL_HANDLE)
{}
PipelineLayout( std::nullptr_t )
: m_pipelineLayout(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT PipelineLayout( VkPipelineLayout pipelineLayout )
: m_pipelineLayout( pipelineLayout )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
PipelineLayout & operator=(VkPipelineLayout pipelineLayout)
{
m_pipelineLayout = pipelineLayout;
return *this;
}
#endif
PipelineLayout & operator=( std::nullptr_t )
{
m_pipelineLayout = VK_NULL_HANDLE;
return *this;
}
bool operator==( PipelineLayout const & rhs ) const
{
return m_pipelineLayout == rhs.m_pipelineLayout;
}
bool operator!=(PipelineLayout const & rhs ) const
{
return m_pipelineLayout != rhs.m_pipelineLayout;
}
bool operator<(PipelineLayout const & rhs ) const
{
return m_pipelineLayout < rhs.m_pipelineLayout;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkPipelineLayout() const
{
return m_pipelineLayout;
}
explicit operator bool() const
{
return m_pipelineLayout != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_pipelineLayout == VK_NULL_HANDLE;
}
private:
VkPipelineLayout m_pipelineLayout;
};
static_assert( sizeof( PipelineLayout ) == sizeof( VkPipelineLayout ), "handle and wrapper have different size!" );
class Sampler
{
public:
Sampler()
: m_sampler(VK_NULL_HANDLE)
{}
Sampler( std::nullptr_t )
: m_sampler(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Sampler( VkSampler sampler )
: m_sampler( sampler )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Sampler & operator=(VkSampler sampler)
{
m_sampler = sampler;
return *this;
}
#endif
Sampler & operator=( std::nullptr_t )
{
m_sampler = VK_NULL_HANDLE;
return *this;
}
bool operator==( Sampler const & rhs ) const
{
return m_sampler == rhs.m_sampler;
}
bool operator!=(Sampler const & rhs ) const
{
return m_sampler != rhs.m_sampler;
}
bool operator<(Sampler const & rhs ) const
{
return m_sampler < rhs.m_sampler;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSampler() const
{
return m_sampler;
}
explicit operator bool() const
{
return m_sampler != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_sampler == VK_NULL_HANDLE;
}
private:
VkSampler m_sampler;
};
static_assert( sizeof( Sampler ) == sizeof( VkSampler ), "handle and wrapper have different size!" );
class DescriptorSet
{
public:
DescriptorSet()
: m_descriptorSet(VK_NULL_HANDLE)
{}
DescriptorSet( std::nullptr_t )
: m_descriptorSet(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT DescriptorSet( VkDescriptorSet descriptorSet )
: m_descriptorSet( descriptorSet )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DescriptorSet & operator=(VkDescriptorSet descriptorSet)
{
m_descriptorSet = descriptorSet;
return *this;
}
#endif
DescriptorSet & operator=( std::nullptr_t )
{
m_descriptorSet = VK_NULL_HANDLE;
return *this;
}
bool operator==( DescriptorSet const & rhs ) const
{
return m_descriptorSet == rhs.m_descriptorSet;
}
bool operator!=(DescriptorSet const & rhs ) const
{
return m_descriptorSet != rhs.m_descriptorSet;
}
bool operator<(DescriptorSet const & rhs ) const
{
return m_descriptorSet < rhs.m_descriptorSet;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDescriptorSet() const
{
return m_descriptorSet;
}
explicit operator bool() const
{
return m_descriptorSet != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_descriptorSet == VK_NULL_HANDLE;
}
private:
VkDescriptorSet m_descriptorSet;
};
static_assert( sizeof( DescriptorSet ) == sizeof( VkDescriptorSet ), "handle and wrapper have different size!" );
class DescriptorSetLayout
{
public:
DescriptorSetLayout()
: m_descriptorSetLayout(VK_NULL_HANDLE)
{}
DescriptorSetLayout( std::nullptr_t )
: m_descriptorSetLayout(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT DescriptorSetLayout( VkDescriptorSetLayout descriptorSetLayout )
: m_descriptorSetLayout( descriptorSetLayout )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DescriptorSetLayout & operator=(VkDescriptorSetLayout descriptorSetLayout)
{
m_descriptorSetLayout = descriptorSetLayout;
return *this;
}
#endif
DescriptorSetLayout & operator=( std::nullptr_t )
{
m_descriptorSetLayout = VK_NULL_HANDLE;
return *this;
}
bool operator==( DescriptorSetLayout const & rhs ) const
{
return m_descriptorSetLayout == rhs.m_descriptorSetLayout;
}
bool operator!=(DescriptorSetLayout const & rhs ) const
{
return m_descriptorSetLayout != rhs.m_descriptorSetLayout;
}
bool operator<(DescriptorSetLayout const & rhs ) const
{
return m_descriptorSetLayout < rhs.m_descriptorSetLayout;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDescriptorSetLayout() const
{
return m_descriptorSetLayout;
}
explicit operator bool() const
{
return m_descriptorSetLayout != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_descriptorSetLayout == VK_NULL_HANDLE;
}
private:
VkDescriptorSetLayout m_descriptorSetLayout;
};
static_assert( sizeof( DescriptorSetLayout ) == sizeof( VkDescriptorSetLayout ), "handle and wrapper have different size!" );
class DescriptorPool
{
public:
DescriptorPool()
: m_descriptorPool(VK_NULL_HANDLE)
{}
DescriptorPool( std::nullptr_t )
: m_descriptorPool(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT DescriptorPool( VkDescriptorPool descriptorPool )
: m_descriptorPool( descriptorPool )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DescriptorPool & operator=(VkDescriptorPool descriptorPool)
{
m_descriptorPool = descriptorPool;
return *this;
}
#endif
DescriptorPool & operator=( std::nullptr_t )
{
m_descriptorPool = VK_NULL_HANDLE;
return *this;
}
bool operator==( DescriptorPool const & rhs ) const
{
return m_descriptorPool == rhs.m_descriptorPool;
}
bool operator!=(DescriptorPool const & rhs ) const
{
return m_descriptorPool != rhs.m_descriptorPool;
}
bool operator<(DescriptorPool const & rhs ) const
{
return m_descriptorPool < rhs.m_descriptorPool;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDescriptorPool() const
{
return m_descriptorPool;
}
explicit operator bool() const
{
return m_descriptorPool != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_descriptorPool == VK_NULL_HANDLE;
}
private:
VkDescriptorPool m_descriptorPool;
};
static_assert( sizeof( DescriptorPool ) == sizeof( VkDescriptorPool ), "handle and wrapper have different size!" );
class Fence
{
public:
Fence()
: m_fence(VK_NULL_HANDLE)
{}
Fence( std::nullptr_t )
: m_fence(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Fence( VkFence fence )
: m_fence( fence )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Fence & operator=(VkFence fence)
{
m_fence = fence;
return *this;
}
#endif
Fence & operator=( std::nullptr_t )
{
m_fence = VK_NULL_HANDLE;
return *this;
}
bool operator==( Fence const & rhs ) const
{
return m_fence == rhs.m_fence;
}
bool operator!=(Fence const & rhs ) const
{
return m_fence != rhs.m_fence;
}
bool operator<(Fence const & rhs ) const
{
return m_fence < rhs.m_fence;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkFence() const
{
return m_fence;
}
explicit operator bool() const
{
return m_fence != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_fence == VK_NULL_HANDLE;
}
private:
VkFence m_fence;
};
static_assert( sizeof( Fence ) == sizeof( VkFence ), "handle and wrapper have different size!" );
class Semaphore
{
public:
Semaphore()
: m_semaphore(VK_NULL_HANDLE)
{}
Semaphore( std::nullptr_t )
: m_semaphore(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Semaphore( VkSemaphore semaphore )
: m_semaphore( semaphore )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Semaphore & operator=(VkSemaphore semaphore)
{
m_semaphore = semaphore;
return *this;
}
#endif
Semaphore & operator=( std::nullptr_t )
{
m_semaphore = VK_NULL_HANDLE;
return *this;
}
bool operator==( Semaphore const & rhs ) const
{
return m_semaphore == rhs.m_semaphore;
}
bool operator!=(Semaphore const & rhs ) const
{
return m_semaphore != rhs.m_semaphore;
}
bool operator<(Semaphore const & rhs ) const
{
return m_semaphore < rhs.m_semaphore;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSemaphore() const
{
return m_semaphore;
}
explicit operator bool() const
{
return m_semaphore != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_semaphore == VK_NULL_HANDLE;
}
private:
VkSemaphore m_semaphore;
};
static_assert( sizeof( Semaphore ) == sizeof( VkSemaphore ), "handle and wrapper have different size!" );
class Event
{
public:
Event()
: m_event(VK_NULL_HANDLE)
{}
Event( std::nullptr_t )
: m_event(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Event( VkEvent event )
: m_event( event )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Event & operator=(VkEvent event)
{
m_event = event;
return *this;
}
#endif
Event & operator=( std::nullptr_t )
{
m_event = VK_NULL_HANDLE;
return *this;
}
bool operator==( Event const & rhs ) const
{
return m_event == rhs.m_event;
}
bool operator!=(Event const & rhs ) const
{
return m_event != rhs.m_event;
}
bool operator<(Event const & rhs ) const
{
return m_event < rhs.m_event;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkEvent() const
{
return m_event;
}
explicit operator bool() const
{
return m_event != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_event == VK_NULL_HANDLE;
}
private:
VkEvent m_event;
};
static_assert( sizeof( Event ) == sizeof( VkEvent ), "handle and wrapper have different size!" );
class QueryPool
{
public:
QueryPool()
: m_queryPool(VK_NULL_HANDLE)
{}
QueryPool( std::nullptr_t )
: m_queryPool(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT QueryPool( VkQueryPool queryPool )
: m_queryPool( queryPool )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
QueryPool & operator=(VkQueryPool queryPool)
{
m_queryPool = queryPool;
return *this;
}
#endif
QueryPool & operator=( std::nullptr_t )
{
m_queryPool = VK_NULL_HANDLE;
return *this;
}
bool operator==( QueryPool const & rhs ) const
{
return m_queryPool == rhs.m_queryPool;
}
bool operator!=(QueryPool const & rhs ) const
{
return m_queryPool != rhs.m_queryPool;
}
bool operator<(QueryPool const & rhs ) const
{
return m_queryPool < rhs.m_queryPool;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkQueryPool() const
{
return m_queryPool;
}
explicit operator bool() const
{
return m_queryPool != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_queryPool == VK_NULL_HANDLE;
}
private:
VkQueryPool m_queryPool;
};
static_assert( sizeof( QueryPool ) == sizeof( VkQueryPool ), "handle and wrapper have different size!" );
class Framebuffer
{
public:
Framebuffer()
: m_framebuffer(VK_NULL_HANDLE)
{}
Framebuffer( std::nullptr_t )
: m_framebuffer(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Framebuffer( VkFramebuffer framebuffer )
: m_framebuffer( framebuffer )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Framebuffer & operator=(VkFramebuffer framebuffer)
{
m_framebuffer = framebuffer;
return *this;
}
#endif
Framebuffer & operator=( std::nullptr_t )
{
m_framebuffer = VK_NULL_HANDLE;
return *this;
}
bool operator==( Framebuffer const & rhs ) const
{
return m_framebuffer == rhs.m_framebuffer;
}
bool operator!=(Framebuffer const & rhs ) const
{
return m_framebuffer != rhs.m_framebuffer;
}
bool operator<(Framebuffer const & rhs ) const
{
return m_framebuffer < rhs.m_framebuffer;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkFramebuffer() const
{
return m_framebuffer;
}
explicit operator bool() const
{
return m_framebuffer != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_framebuffer == VK_NULL_HANDLE;
}
private:
VkFramebuffer m_framebuffer;
};
static_assert( sizeof( Framebuffer ) == sizeof( VkFramebuffer ), "handle and wrapper have different size!" );
class RenderPass
{
public:
RenderPass()
: m_renderPass(VK_NULL_HANDLE)
{}
RenderPass( std::nullptr_t )
: m_renderPass(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT RenderPass( VkRenderPass renderPass )
: m_renderPass( renderPass )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
RenderPass & operator=(VkRenderPass renderPass)
{
m_renderPass = renderPass;
return *this;
}
#endif
RenderPass & operator=( std::nullptr_t )
{
m_renderPass = VK_NULL_HANDLE;
return *this;
}
bool operator==( RenderPass const & rhs ) const
{
return m_renderPass == rhs.m_renderPass;
}
bool operator!=(RenderPass const & rhs ) const
{
return m_renderPass != rhs.m_renderPass;
}
bool operator<(RenderPass const & rhs ) const
{
return m_renderPass < rhs.m_renderPass;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkRenderPass() const
{
return m_renderPass;
}
explicit operator bool() const
{
return m_renderPass != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_renderPass == VK_NULL_HANDLE;
}
private:
VkRenderPass m_renderPass;
};
static_assert( sizeof( RenderPass ) == sizeof( VkRenderPass ), "handle and wrapper have different size!" );
class PipelineCache
{
public:
PipelineCache()
: m_pipelineCache(VK_NULL_HANDLE)
{}
PipelineCache( std::nullptr_t )
: m_pipelineCache(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT PipelineCache( VkPipelineCache pipelineCache )
: m_pipelineCache( pipelineCache )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
PipelineCache & operator=(VkPipelineCache pipelineCache)
{
m_pipelineCache = pipelineCache;
return *this;
}
#endif
PipelineCache & operator=( std::nullptr_t )
{
m_pipelineCache = VK_NULL_HANDLE;
return *this;
}
bool operator==( PipelineCache const & rhs ) const
{
return m_pipelineCache == rhs.m_pipelineCache;
}
bool operator!=(PipelineCache const & rhs ) const
{
return m_pipelineCache != rhs.m_pipelineCache;
}
bool operator<(PipelineCache const & rhs ) const
{
return m_pipelineCache < rhs.m_pipelineCache;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkPipelineCache() const
{
return m_pipelineCache;
}
explicit operator bool() const
{
return m_pipelineCache != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_pipelineCache == VK_NULL_HANDLE;
}
private:
VkPipelineCache m_pipelineCache;
};
static_assert( sizeof( PipelineCache ) == sizeof( VkPipelineCache ), "handle and wrapper have different size!" );
class ObjectTableNVX
{
public:
ObjectTableNVX()
: m_objectTableNVX(VK_NULL_HANDLE)
{}
ObjectTableNVX( std::nullptr_t )
: m_objectTableNVX(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT ObjectTableNVX( VkObjectTableNVX objectTableNVX )
: m_objectTableNVX( objectTableNVX )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
ObjectTableNVX & operator=(VkObjectTableNVX objectTableNVX)
{
m_objectTableNVX = objectTableNVX;
return *this;
}
#endif
ObjectTableNVX & operator=( std::nullptr_t )
{
m_objectTableNVX = VK_NULL_HANDLE;
return *this;
}
bool operator==( ObjectTableNVX const & rhs ) const
{
return m_objectTableNVX == rhs.m_objectTableNVX;
}
bool operator!=(ObjectTableNVX const & rhs ) const
{
return m_objectTableNVX != rhs.m_objectTableNVX;
}
bool operator<(ObjectTableNVX const & rhs ) const
{
return m_objectTableNVX < rhs.m_objectTableNVX;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkObjectTableNVX() const
{
return m_objectTableNVX;
}
explicit operator bool() const
{
return m_objectTableNVX != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_objectTableNVX == VK_NULL_HANDLE;
}
private:
VkObjectTableNVX m_objectTableNVX;
};
static_assert( sizeof( ObjectTableNVX ) == sizeof( VkObjectTableNVX ), "handle and wrapper have different size!" );
class IndirectCommandsLayoutNVX
{
public:
IndirectCommandsLayoutNVX()
: m_indirectCommandsLayoutNVX(VK_NULL_HANDLE)
{}
IndirectCommandsLayoutNVX( std::nullptr_t )
: m_indirectCommandsLayoutNVX(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT IndirectCommandsLayoutNVX( VkIndirectCommandsLayoutNVX indirectCommandsLayoutNVX )
: m_indirectCommandsLayoutNVX( indirectCommandsLayoutNVX )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
IndirectCommandsLayoutNVX & operator=(VkIndirectCommandsLayoutNVX indirectCommandsLayoutNVX)
{
m_indirectCommandsLayoutNVX = indirectCommandsLayoutNVX;
return *this;
}
#endif
IndirectCommandsLayoutNVX & operator=( std::nullptr_t )
{
m_indirectCommandsLayoutNVX = VK_NULL_HANDLE;
return *this;
}
bool operator==( IndirectCommandsLayoutNVX const & rhs ) const
{
return m_indirectCommandsLayoutNVX == rhs.m_indirectCommandsLayoutNVX;
}
bool operator!=(IndirectCommandsLayoutNVX const & rhs ) const
{
return m_indirectCommandsLayoutNVX != rhs.m_indirectCommandsLayoutNVX;
}
bool operator<(IndirectCommandsLayoutNVX const & rhs ) const
{
return m_indirectCommandsLayoutNVX < rhs.m_indirectCommandsLayoutNVX;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkIndirectCommandsLayoutNVX() const
{
return m_indirectCommandsLayoutNVX;
}
explicit operator bool() const
{
return m_indirectCommandsLayoutNVX != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_indirectCommandsLayoutNVX == VK_NULL_HANDLE;
}
private:
VkIndirectCommandsLayoutNVX m_indirectCommandsLayoutNVX;
};
static_assert( sizeof( IndirectCommandsLayoutNVX ) == sizeof( VkIndirectCommandsLayoutNVX ), "handle and wrapper have different size!" );
class DescriptorUpdateTemplateKHR
{
public:
DescriptorUpdateTemplateKHR()
: m_descriptorUpdateTemplateKHR(VK_NULL_HANDLE)
{}
DescriptorUpdateTemplateKHR( std::nullptr_t )
: m_descriptorUpdateTemplateKHR(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT DescriptorUpdateTemplateKHR( VkDescriptorUpdateTemplateKHR descriptorUpdateTemplateKHR )
: m_descriptorUpdateTemplateKHR( descriptorUpdateTemplateKHR )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DescriptorUpdateTemplateKHR & operator=(VkDescriptorUpdateTemplateKHR descriptorUpdateTemplateKHR)
{
m_descriptorUpdateTemplateKHR = descriptorUpdateTemplateKHR;
return *this;
}
#endif
DescriptorUpdateTemplateKHR & operator=( std::nullptr_t )
{
m_descriptorUpdateTemplateKHR = VK_NULL_HANDLE;
return *this;
}
bool operator==( DescriptorUpdateTemplateKHR const & rhs ) const
{
return m_descriptorUpdateTemplateKHR == rhs.m_descriptorUpdateTemplateKHR;
}
bool operator!=(DescriptorUpdateTemplateKHR const & rhs ) const
{
return m_descriptorUpdateTemplateKHR != rhs.m_descriptorUpdateTemplateKHR;
}
bool operator<(DescriptorUpdateTemplateKHR const & rhs ) const
{
return m_descriptorUpdateTemplateKHR < rhs.m_descriptorUpdateTemplateKHR;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDescriptorUpdateTemplateKHR() const
{
return m_descriptorUpdateTemplateKHR;
}
explicit operator bool() const
{
return m_descriptorUpdateTemplateKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_descriptorUpdateTemplateKHR == VK_NULL_HANDLE;
}
private:
VkDescriptorUpdateTemplateKHR m_descriptorUpdateTemplateKHR;
};
static_assert( sizeof( DescriptorUpdateTemplateKHR ) == sizeof( VkDescriptorUpdateTemplateKHR ), "handle and wrapper have different size!" );
class SamplerYcbcrConversionKHR
{
public:
SamplerYcbcrConversionKHR()
: m_samplerYcbcrConversionKHR(VK_NULL_HANDLE)
{}
SamplerYcbcrConversionKHR( std::nullptr_t )
: m_samplerYcbcrConversionKHR(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT SamplerYcbcrConversionKHR( VkSamplerYcbcrConversionKHR samplerYcbcrConversionKHR )
: m_samplerYcbcrConversionKHR( samplerYcbcrConversionKHR )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
SamplerYcbcrConversionKHR & operator=(VkSamplerYcbcrConversionKHR samplerYcbcrConversionKHR)
{
m_samplerYcbcrConversionKHR = samplerYcbcrConversionKHR;
return *this;
}
#endif
SamplerYcbcrConversionKHR & operator=( std::nullptr_t )
{
m_samplerYcbcrConversionKHR = VK_NULL_HANDLE;
return *this;
}
bool operator==( SamplerYcbcrConversionKHR const & rhs ) const
{
return m_samplerYcbcrConversionKHR == rhs.m_samplerYcbcrConversionKHR;
}
bool operator!=(SamplerYcbcrConversionKHR const & rhs ) const
{
return m_samplerYcbcrConversionKHR != rhs.m_samplerYcbcrConversionKHR;
}
bool operator<(SamplerYcbcrConversionKHR const & rhs ) const
{
return m_samplerYcbcrConversionKHR < rhs.m_samplerYcbcrConversionKHR;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSamplerYcbcrConversionKHR() const
{
return m_samplerYcbcrConversionKHR;
}
explicit operator bool() const
{
return m_samplerYcbcrConversionKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_samplerYcbcrConversionKHR == VK_NULL_HANDLE;
}
private:
VkSamplerYcbcrConversionKHR m_samplerYcbcrConversionKHR;
};
static_assert( sizeof( SamplerYcbcrConversionKHR ) == sizeof( VkSamplerYcbcrConversionKHR ), "handle and wrapper have different size!" );
class ValidationCacheEXT
{
public:
ValidationCacheEXT()
: m_validationCacheEXT(VK_NULL_HANDLE)
{}
ValidationCacheEXT( std::nullptr_t )
: m_validationCacheEXT(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT ValidationCacheEXT( VkValidationCacheEXT validationCacheEXT )
: m_validationCacheEXT( validationCacheEXT )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
ValidationCacheEXT & operator=(VkValidationCacheEXT validationCacheEXT)
{
m_validationCacheEXT = validationCacheEXT;
return *this;
}
#endif
ValidationCacheEXT & operator=( std::nullptr_t )
{
m_validationCacheEXT = VK_NULL_HANDLE;
return *this;
}
bool operator==( ValidationCacheEXT const & rhs ) const
{
return m_validationCacheEXT == rhs.m_validationCacheEXT;
}
bool operator!=(ValidationCacheEXT const & rhs ) const
{
return m_validationCacheEXT != rhs.m_validationCacheEXT;
}
bool operator<(ValidationCacheEXT const & rhs ) const
{
return m_validationCacheEXT < rhs.m_validationCacheEXT;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkValidationCacheEXT() const
{
return m_validationCacheEXT;
}
explicit operator bool() const
{
return m_validationCacheEXT != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_validationCacheEXT == VK_NULL_HANDLE;
}
private:
VkValidationCacheEXT m_validationCacheEXT;
};
static_assert( sizeof( ValidationCacheEXT ) == sizeof( VkValidationCacheEXT ), "handle and wrapper have different size!" );
class DisplayKHR
{
public:
DisplayKHR()
: m_displayKHR(VK_NULL_HANDLE)
{}
DisplayKHR( std::nullptr_t )
: m_displayKHR(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT DisplayKHR( VkDisplayKHR displayKHR )
: m_displayKHR( displayKHR )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DisplayKHR & operator=(VkDisplayKHR displayKHR)
{
m_displayKHR = displayKHR;
return *this;
}
#endif
DisplayKHR & operator=( std::nullptr_t )
{
m_displayKHR = VK_NULL_HANDLE;
return *this;
}
bool operator==( DisplayKHR const & rhs ) const
{
return m_displayKHR == rhs.m_displayKHR;
}
bool operator!=(DisplayKHR const & rhs ) const
{
return m_displayKHR != rhs.m_displayKHR;
}
bool operator<(DisplayKHR const & rhs ) const
{
return m_displayKHR < rhs.m_displayKHR;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDisplayKHR() const
{
return m_displayKHR;
}
explicit operator bool() const
{
return m_displayKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_displayKHR == VK_NULL_HANDLE;
}
private:
VkDisplayKHR m_displayKHR;
};
static_assert( sizeof( DisplayKHR ) == sizeof( VkDisplayKHR ), "handle and wrapper have different size!" );
class DisplayModeKHR
{
public:
DisplayModeKHR()
: m_displayModeKHR(VK_NULL_HANDLE)
{}
DisplayModeKHR( std::nullptr_t )
: m_displayModeKHR(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT DisplayModeKHR( VkDisplayModeKHR displayModeKHR )
: m_displayModeKHR( displayModeKHR )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DisplayModeKHR & operator=(VkDisplayModeKHR displayModeKHR)
{
m_displayModeKHR = displayModeKHR;
return *this;
}
#endif
DisplayModeKHR & operator=( std::nullptr_t )
{
m_displayModeKHR = VK_NULL_HANDLE;
return *this;
}
bool operator==( DisplayModeKHR const & rhs ) const
{
return m_displayModeKHR == rhs.m_displayModeKHR;
}
bool operator!=(DisplayModeKHR const & rhs ) const
{
return m_displayModeKHR != rhs.m_displayModeKHR;
}
bool operator<(DisplayModeKHR const & rhs ) const
{
return m_displayModeKHR < rhs.m_displayModeKHR;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDisplayModeKHR() const
{
return m_displayModeKHR;
}
explicit operator bool() const
{
return m_displayModeKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_displayModeKHR == VK_NULL_HANDLE;
}
private:
VkDisplayModeKHR m_displayModeKHR;
};
static_assert( sizeof( DisplayModeKHR ) == sizeof( VkDisplayModeKHR ), "handle and wrapper have different size!" );
class SurfaceKHR
{
public:
SurfaceKHR()
: m_surfaceKHR(VK_NULL_HANDLE)
{}
SurfaceKHR( std::nullptr_t )
: m_surfaceKHR(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT SurfaceKHR( VkSurfaceKHR surfaceKHR )
: m_surfaceKHR( surfaceKHR )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
SurfaceKHR & operator=(VkSurfaceKHR surfaceKHR)
{
m_surfaceKHR = surfaceKHR;
return *this;
}
#endif
SurfaceKHR & operator=( std::nullptr_t )
{
m_surfaceKHR = VK_NULL_HANDLE;
return *this;
}
bool operator==( SurfaceKHR const & rhs ) const
{
return m_surfaceKHR == rhs.m_surfaceKHR;
}
bool operator!=(SurfaceKHR const & rhs ) const
{
return m_surfaceKHR != rhs.m_surfaceKHR;
}
bool operator<(SurfaceKHR const & rhs ) const
{
return m_surfaceKHR < rhs.m_surfaceKHR;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSurfaceKHR() const
{
return m_surfaceKHR;
}
explicit operator bool() const
{
return m_surfaceKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_surfaceKHR == VK_NULL_HANDLE;
}
private:
VkSurfaceKHR m_surfaceKHR;
};
static_assert( sizeof( SurfaceKHR ) == sizeof( VkSurfaceKHR ), "handle and wrapper have different size!" );
class SwapchainKHR
{
public:
SwapchainKHR()
: m_swapchainKHR(VK_NULL_HANDLE)
{}
SwapchainKHR( std::nullptr_t )
: m_swapchainKHR(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT SwapchainKHR( VkSwapchainKHR swapchainKHR )
: m_swapchainKHR( swapchainKHR )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
SwapchainKHR & operator=(VkSwapchainKHR swapchainKHR)
{
m_swapchainKHR = swapchainKHR;
return *this;
}
#endif
SwapchainKHR & operator=( std::nullptr_t )
{
m_swapchainKHR = VK_NULL_HANDLE;
return *this;
}
bool operator==( SwapchainKHR const & rhs ) const
{
return m_swapchainKHR == rhs.m_swapchainKHR;
}
bool operator!=(SwapchainKHR const & rhs ) const
{
return m_swapchainKHR != rhs.m_swapchainKHR;
}
bool operator<(SwapchainKHR const & rhs ) const
{
return m_swapchainKHR < rhs.m_swapchainKHR;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSwapchainKHR() const
{
return m_swapchainKHR;
}
explicit operator bool() const
{
return m_swapchainKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_swapchainKHR == VK_NULL_HANDLE;
}
private:
VkSwapchainKHR m_swapchainKHR;
};
static_assert( sizeof( SwapchainKHR ) == sizeof( VkSwapchainKHR ), "handle and wrapper have different size!" );
class DebugReportCallbackEXT
{
public:
DebugReportCallbackEXT()
: m_debugReportCallbackEXT(VK_NULL_HANDLE)
{}
DebugReportCallbackEXT( std::nullptr_t )
: m_debugReportCallbackEXT(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT DebugReportCallbackEXT( VkDebugReportCallbackEXT debugReportCallbackEXT )
: m_debugReportCallbackEXT( debugReportCallbackEXT )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DebugReportCallbackEXT & operator=(VkDebugReportCallbackEXT debugReportCallbackEXT)
{
m_debugReportCallbackEXT = debugReportCallbackEXT;
return *this;
}
#endif
DebugReportCallbackEXT & operator=( std::nullptr_t )
{
m_debugReportCallbackEXT = VK_NULL_HANDLE;
return *this;
}
bool operator==( DebugReportCallbackEXT const & rhs ) const
{
return m_debugReportCallbackEXT == rhs.m_debugReportCallbackEXT;
}
bool operator!=(DebugReportCallbackEXT const & rhs ) const
{
return m_debugReportCallbackEXT != rhs.m_debugReportCallbackEXT;
}
bool operator<(DebugReportCallbackEXT const & rhs ) const
{
return m_debugReportCallbackEXT < rhs.m_debugReportCallbackEXT;
}
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDebugReportCallbackEXT() const
{
return m_debugReportCallbackEXT;
}
explicit operator bool() const
{
return m_debugReportCallbackEXT != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_debugReportCallbackEXT == VK_NULL_HANDLE;
}
private:
VkDebugReportCallbackEXT m_debugReportCallbackEXT;
};
static_assert( sizeof( DebugReportCallbackEXT ) == sizeof( VkDebugReportCallbackEXT ), "handle and wrapper have different size!" );
struct Offset2D
{
Offset2D( int32_t x_ = 0, int32_t y_ = 0 )
: x( x_ )
, y( y_ )
{
}
Offset2D( VkOffset2D const & rhs )
{
memcpy( this, &rhs, sizeof( Offset2D ) );
}
Offset2D& operator=( VkOffset2D const & rhs )
{
memcpy( this, &rhs, sizeof( Offset2D ) );
return *this;
}
Offset2D& setX( int32_t x_ )
{
x = x_;
return *this;
}
Offset2D& setY( int32_t y_ )
{
y = y_;
return *this;
}
operator const VkOffset2D&() const
{
return *reinterpret_cast<const VkOffset2D*>(this);
}
bool operator==( Offset2D const& rhs ) const
{
return ( x == rhs.x )
&& ( y == rhs.y );
}
bool operator!=( Offset2D const& rhs ) const
{
return !operator==( rhs );
}
int32_t x;
int32_t y;
};
static_assert( sizeof( Offset2D ) == sizeof( VkOffset2D ), "struct and wrapper have different size!" );
struct Offset3D
{
Offset3D( int32_t x_ = 0, int32_t y_ = 0, int32_t z_ = 0 )
: x( x_ )
, y( y_ )
, z( z_ )
{
}
Offset3D( VkOffset3D const & rhs )
{
memcpy( this, &rhs, sizeof( Offset3D ) );
}
Offset3D& operator=( VkOffset3D const & rhs )
{
memcpy( this, &rhs, sizeof( Offset3D ) );
return *this;
}
Offset3D& setX( int32_t x_ )
{
x = x_;
return *this;
}
Offset3D& setY( int32_t y_ )
{
y = y_;
return *this;
}
Offset3D& setZ( int32_t z_ )
{
z = z_;
return *this;
}
operator const VkOffset3D&() const
{
return *reinterpret_cast<const VkOffset3D*>(this);
}
bool operator==( Offset3D const& rhs ) const
{
return ( x == rhs.x )
&& ( y == rhs.y )
&& ( z == rhs.z );
}
bool operator!=( Offset3D const& rhs ) const
{
return !operator==( rhs );
}
int32_t x;
int32_t y;
int32_t z;
};
static_assert( sizeof( Offset3D ) == sizeof( VkOffset3D ), "struct and wrapper have different size!" );
struct Extent2D
{
Extent2D( uint32_t width_ = 0, uint32_t height_ = 0 )
: width( width_ )
, height( height_ )
{
}
Extent2D( VkExtent2D const & rhs )
{
memcpy( this, &rhs, sizeof( Extent2D ) );
}
Extent2D& operator=( VkExtent2D const & rhs )
{
memcpy( this, &rhs, sizeof( Extent2D ) );
return *this;
}
Extent2D& setWidth( uint32_t width_ )
{
width = width_;
return *this;
}
Extent2D& setHeight( uint32_t height_ )
{
height = height_;
return *this;
}
operator const VkExtent2D&() const
{
return *reinterpret_cast<const VkExtent2D*>(this);
}
bool operator==( Extent2D const& rhs ) const
{
return ( width == rhs.width )
&& ( height == rhs.height );
}
bool operator!=( Extent2D const& rhs ) const
{
return !operator==( rhs );
}
uint32_t width;
uint32_t height;
};
static_assert( sizeof( Extent2D ) == sizeof( VkExtent2D ), "struct and wrapper have different size!" );
struct Extent3D
{
Extent3D( uint32_t width_ = 0, uint32_t height_ = 0, uint32_t depth_ = 0 )
: width( width_ )
, height( height_ )
, depth( depth_ )
{
}
Extent3D( VkExtent3D const & rhs )
{
memcpy( this, &rhs, sizeof( Extent3D ) );
}
Extent3D& operator=( VkExtent3D const & rhs )
{
memcpy( this, &rhs, sizeof( Extent3D ) );
return *this;
}
Extent3D& setWidth( uint32_t width_ )
{
width = width_;
return *this;
}
Extent3D& setHeight( uint32_t height_ )
{
height = height_;
return *this;
}
Extent3D& setDepth( uint32_t depth_ )
{
depth = depth_;
return *this;
}
operator const VkExtent3D&() const
{
return *reinterpret_cast<const VkExtent3D*>(this);
}
bool operator==( Extent3D const& rhs ) const
{
return ( width == rhs.width )
&& ( height == rhs.height )
&& ( depth == rhs.depth );
}
bool operator!=( Extent3D const& rhs ) const
{
return !operator==( rhs );
}
uint32_t width;
uint32_t height;
uint32_t depth;
};
static_assert( sizeof( Extent3D ) == sizeof( VkExtent3D ), "struct and wrapper have different size!" );
struct Viewport
{
Viewport( float x_ = 0, float y_ = 0, float width_ = 0, float height_ = 0, float minDepth_ = 0, float maxDepth_ = 0 )
: x( x_ )
, y( y_ )
, width( width_ )
, height( height_ )
, minDepth( minDepth_ )
, maxDepth( maxDepth_ )
{
}
Viewport( VkViewport const & rhs )
{
memcpy( this, &rhs, sizeof( Viewport ) );
}
Viewport& operator=( VkViewport const & rhs )
{
memcpy( this, &rhs, sizeof( Viewport ) );
return *this;
}
Viewport& setX( float x_ )
{
x = x_;
return *this;
}
Viewport& setY( float y_ )
{
y = y_;
return *this;
}
Viewport& setWidth( float width_ )
{
width = width_;
return *this;
}
Viewport& setHeight( float height_ )
{
height = height_;
return *this;
}
Viewport& setMinDepth( float minDepth_ )
{
minDepth = minDepth_;
return *this;
}
Viewport& setMaxDepth( float maxDepth_ )
{
maxDepth = maxDepth_;
return *this;
}
operator const VkViewport&() const
{
return *reinterpret_cast<const VkViewport*>(this);
}
bool operator==( Viewport const& rhs ) const
{
return ( x == rhs.x )
&& ( y == rhs.y )
&& ( width == rhs.width )
&& ( height == rhs.height )
&& ( minDepth == rhs.minDepth )
&& ( maxDepth == rhs.maxDepth );
}
bool operator!=( Viewport const& rhs ) const
{
return !operator==( rhs );
}
float x;
float y;
float width;
float height;
float minDepth;
float maxDepth;
};
static_assert( sizeof( Viewport ) == sizeof( VkViewport ), "struct and wrapper have different size!" );
struct Rect2D
{
Rect2D( Offset2D offset_ = Offset2D(), Extent2D extent_ = Extent2D() )
: offset( offset_ )
, extent( extent_ )
{
}
Rect2D( VkRect2D const & rhs )
{
memcpy( this, &rhs, sizeof( Rect2D ) );
}
Rect2D& operator=( VkRect2D const & rhs )
{
memcpy( this, &rhs, sizeof( Rect2D ) );
return *this;
}
Rect2D& setOffset( Offset2D offset_ )
{
offset = offset_;
return *this;
}
Rect2D& setExtent( Extent2D extent_ )
{
extent = extent_;
return *this;
}
operator const VkRect2D&() const
{
return *reinterpret_cast<const VkRect2D*>(this);
}
bool operator==( Rect2D const& rhs ) const
{
return ( offset == rhs.offset )
&& ( extent == rhs.extent );
}
bool operator!=( Rect2D const& rhs ) const
{
return !operator==( rhs );
}
Offset2D offset;
Extent2D extent;
};
static_assert( sizeof( Rect2D ) == sizeof( VkRect2D ), "struct and wrapper have different size!" );
struct ClearRect
{
ClearRect( Rect2D rect_ = Rect2D(), uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0 )
: rect( rect_ )
, baseArrayLayer( baseArrayLayer_ )
, layerCount( layerCount_ )
{
}
ClearRect( VkClearRect const & rhs )
{
memcpy( this, &rhs, sizeof( ClearRect ) );
}
ClearRect& operator=( VkClearRect const & rhs )
{
memcpy( this, &rhs, sizeof( ClearRect ) );
return *this;
}
ClearRect& setRect( Rect2D rect_ )
{
rect = rect_;
return *this;
}
ClearRect& setBaseArrayLayer( uint32_t baseArrayLayer_ )
{
baseArrayLayer = baseArrayLayer_;
return *this;
}
ClearRect& setLayerCount( uint32_t layerCount_ )
{
layerCount = layerCount_;
return *this;
}
operator const VkClearRect&() const
{
return *reinterpret_cast<const VkClearRect*>(this);
}
bool operator==( ClearRect const& rhs ) const
{
return ( rect == rhs.rect )
&& ( baseArrayLayer == rhs.baseArrayLayer )
&& ( layerCount == rhs.layerCount );
}
bool operator!=( ClearRect const& rhs ) const
{
return !operator==( rhs );
}
Rect2D rect;
uint32_t baseArrayLayer;
uint32_t layerCount;
};
static_assert( sizeof( ClearRect ) == sizeof( VkClearRect ), "struct and wrapper have different size!" );
struct ExtensionProperties
{
operator const VkExtensionProperties&() const
{
return *reinterpret_cast<const VkExtensionProperties*>(this);
}
bool operator==( ExtensionProperties const& rhs ) const
{
return ( memcmp( extensionName, rhs.extensionName, VK_MAX_EXTENSION_NAME_SIZE * sizeof( char ) ) == 0 )
&& ( specVersion == rhs.specVersion );
}
bool operator!=( ExtensionProperties const& rhs ) const
{
return !operator==( rhs );
}
char extensionName[VK_MAX_EXTENSION_NAME_SIZE];
uint32_t specVersion;
};
static_assert( sizeof( ExtensionProperties ) == sizeof( VkExtensionProperties ), "struct and wrapper have different size!" );
struct LayerProperties
{
operator const VkLayerProperties&() const
{
return *reinterpret_cast<const VkLayerProperties*>(this);
}
bool operator==( LayerProperties const& rhs ) const
{
return ( memcmp( layerName, rhs.layerName, VK_MAX_EXTENSION_NAME_SIZE * sizeof( char ) ) == 0 )
&& ( specVersion == rhs.specVersion )
&& ( implementationVersion == rhs.implementationVersion )
&& ( memcmp( description, rhs.description, VK_MAX_DESCRIPTION_SIZE * sizeof( char ) ) == 0 );
}
bool operator!=( LayerProperties const& rhs ) const
{
return !operator==( rhs );
}
char layerName[VK_MAX_EXTENSION_NAME_SIZE];
uint32_t specVersion;
uint32_t implementationVersion;
char description[VK_MAX_DESCRIPTION_SIZE];
};
static_assert( sizeof( LayerProperties ) == sizeof( VkLayerProperties ), "struct and wrapper have different size!" );
struct AllocationCallbacks
{
AllocationCallbacks( void* pUserData_ = nullptr, PFN_vkAllocationFunction pfnAllocation_ = nullptr, PFN_vkReallocationFunction pfnReallocation_ = nullptr, PFN_vkFreeFunction pfnFree_ = nullptr, PFN_vkInternalAllocationNotification pfnInternalAllocation_ = nullptr, PFN_vkInternalFreeNotification pfnInternalFree_ = nullptr )
: pUserData( pUserData_ )
, pfnAllocation( pfnAllocation_ )
, pfnReallocation( pfnReallocation_ )
, pfnFree( pfnFree_ )
, pfnInternalAllocation( pfnInternalAllocation_ )
, pfnInternalFree( pfnInternalFree_ )
{
}
AllocationCallbacks( VkAllocationCallbacks const & rhs )
{
memcpy( this, &rhs, sizeof( AllocationCallbacks ) );
}
AllocationCallbacks& operator=( VkAllocationCallbacks const & rhs )
{
memcpy( this, &rhs, sizeof( AllocationCallbacks ) );
return *this;
}
AllocationCallbacks& setPUserData( void* pUserData_ )
{
pUserData = pUserData_;
return *this;
}
AllocationCallbacks& setPfnAllocation( PFN_vkAllocationFunction pfnAllocation_ )
{
pfnAllocation = pfnAllocation_;
return *this;
}
AllocationCallbacks& setPfnReallocation( PFN_vkReallocationFunction pfnReallocation_ )
{
pfnReallocation = pfnReallocation_;
return *this;
}
AllocationCallbacks& setPfnFree( PFN_vkFreeFunction pfnFree_ )
{
pfnFree = pfnFree_;
return *this;
}
AllocationCallbacks& setPfnInternalAllocation( PFN_vkInternalAllocationNotification pfnInternalAllocation_ )
{
pfnInternalAllocation = pfnInternalAllocation_;
return *this;
}
AllocationCallbacks& setPfnInternalFree( PFN_vkInternalFreeNotification pfnInternalFree_ )
{
pfnInternalFree = pfnInternalFree_;
return *this;
}
operator const VkAllocationCallbacks&() const
{
return *reinterpret_cast<const VkAllocationCallbacks*>(this);
}
bool operator==( AllocationCallbacks const& rhs ) const
{
return ( pUserData == rhs.pUserData )
&& ( pfnAllocation == rhs.pfnAllocation )
&& ( pfnReallocation == rhs.pfnReallocation )
&& ( pfnFree == rhs.pfnFree )
&& ( pfnInternalAllocation == rhs.pfnInternalAllocation )
&& ( pfnInternalFree == rhs.pfnInternalFree );
}
bool operator!=( AllocationCallbacks const& rhs ) const
{
return !operator==( rhs );
}
void* pUserData;
PFN_vkAllocationFunction pfnAllocation;
PFN_vkReallocationFunction pfnReallocation;
PFN_vkFreeFunction pfnFree;
PFN_vkInternalAllocationNotification pfnInternalAllocation;
PFN_vkInternalFreeNotification pfnInternalFree;
};
static_assert( sizeof( AllocationCallbacks ) == sizeof( VkAllocationCallbacks ), "struct and wrapper have different size!" );
struct MemoryRequirements
{
operator const VkMemoryRequirements&() const
{
return *reinterpret_cast<const VkMemoryRequirements*>(this);
}
bool operator==( MemoryRequirements const& rhs ) const
{
return ( size == rhs.size )
&& ( alignment == rhs.alignment )
&& ( memoryTypeBits == rhs.memoryTypeBits );
}
bool operator!=( MemoryRequirements const& rhs ) const
{
return !operator==( rhs );
}
DeviceSize size;
DeviceSize alignment;
uint32_t memoryTypeBits;
};
static_assert( sizeof( MemoryRequirements ) == sizeof( VkMemoryRequirements ), "struct and wrapper have different size!" );
struct DescriptorBufferInfo
{
DescriptorBufferInfo( Buffer buffer_ = Buffer(), DeviceSize offset_ = 0, DeviceSize range_ = 0 )
: buffer( buffer_ )
, offset( offset_ )
, range( range_ )
{
}
DescriptorBufferInfo( VkDescriptorBufferInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorBufferInfo ) );
}
DescriptorBufferInfo& operator=( VkDescriptorBufferInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorBufferInfo ) );
return *this;
}
DescriptorBufferInfo& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
DescriptorBufferInfo& setOffset( DeviceSize offset_ )
{
offset = offset_;
return *this;
}
DescriptorBufferInfo& setRange( DeviceSize range_ )
{
range = range_;
return *this;
}
operator const VkDescriptorBufferInfo&() const
{
return *reinterpret_cast<const VkDescriptorBufferInfo*>(this);
}
bool operator==( DescriptorBufferInfo const& rhs ) const
{
return ( buffer == rhs.buffer )
&& ( offset == rhs.offset )
&& ( range == rhs.range );
}
bool operator!=( DescriptorBufferInfo const& rhs ) const
{
return !operator==( rhs );
}
Buffer buffer;
DeviceSize offset;
DeviceSize range;
};
static_assert( sizeof( DescriptorBufferInfo ) == sizeof( VkDescriptorBufferInfo ), "struct and wrapper have different size!" );
struct SubresourceLayout
{
operator const VkSubresourceLayout&() const
{
return *reinterpret_cast<const VkSubresourceLayout*>(this);
}
bool operator==( SubresourceLayout const& rhs ) const
{
return ( offset == rhs.offset )
&& ( size == rhs.size )
&& ( rowPitch == rhs.rowPitch )
&& ( arrayPitch == rhs.arrayPitch )
&& ( depthPitch == rhs.depthPitch );
}
bool operator!=( SubresourceLayout const& rhs ) const
{
return !operator==( rhs );
}
DeviceSize offset;
DeviceSize size;
DeviceSize rowPitch;
DeviceSize arrayPitch;
DeviceSize depthPitch;
};
static_assert( sizeof( SubresourceLayout ) == sizeof( VkSubresourceLayout ), "struct and wrapper have different size!" );
struct BufferCopy
{
BufferCopy( DeviceSize srcOffset_ = 0, DeviceSize dstOffset_ = 0, DeviceSize size_ = 0 )
: srcOffset( srcOffset_ )
, dstOffset( dstOffset_ )
, size( size_ )
{
}
BufferCopy( VkBufferCopy const & rhs )
{
memcpy( this, &rhs, sizeof( BufferCopy ) );
}
BufferCopy& operator=( VkBufferCopy const & rhs )
{
memcpy( this, &rhs, sizeof( BufferCopy ) );
return *this;
}
BufferCopy& setSrcOffset( DeviceSize srcOffset_ )
{
srcOffset = srcOffset_;
return *this;
}
BufferCopy& setDstOffset( DeviceSize dstOffset_ )
{
dstOffset = dstOffset_;
return *this;
}
BufferCopy& setSize( DeviceSize size_ )
{
size = size_;
return *this;
}
operator const VkBufferCopy&() const
{
return *reinterpret_cast<const VkBufferCopy*>(this);
}
bool operator==( BufferCopy const& rhs ) const
{
return ( srcOffset == rhs.srcOffset )
&& ( dstOffset == rhs.dstOffset )
&& ( size == rhs.size );
}
bool operator!=( BufferCopy const& rhs ) const
{
return !operator==( rhs );
}
DeviceSize srcOffset;
DeviceSize dstOffset;
DeviceSize size;
};
static_assert( sizeof( BufferCopy ) == sizeof( VkBufferCopy ), "struct and wrapper have different size!" );
struct SpecializationMapEntry
{
SpecializationMapEntry( uint32_t constantID_ = 0, uint32_t offset_ = 0, size_t size_ = 0 )
: constantID( constantID_ )
, offset( offset_ )
, size( size_ )
{
}
SpecializationMapEntry( VkSpecializationMapEntry const & rhs )
{
memcpy( this, &rhs, sizeof( SpecializationMapEntry ) );
}
SpecializationMapEntry& operator=( VkSpecializationMapEntry const & rhs )
{
memcpy( this, &rhs, sizeof( SpecializationMapEntry ) );
return *this;
}
SpecializationMapEntry& setConstantID( uint32_t constantID_ )
{
constantID = constantID_;
return *this;
}
SpecializationMapEntry& setOffset( uint32_t offset_ )
{
offset = offset_;
return *this;
}
SpecializationMapEntry& setSize( size_t size_ )
{
size = size_;
return *this;
}
operator const VkSpecializationMapEntry&() const
{
return *reinterpret_cast<const VkSpecializationMapEntry*>(this);
}
bool operator==( SpecializationMapEntry const& rhs ) const
{
return ( constantID == rhs.constantID )
&& ( offset == rhs.offset )
&& ( size == rhs.size );
}
bool operator!=( SpecializationMapEntry const& rhs ) const
{
return !operator==( rhs );
}
uint32_t constantID;
uint32_t offset;
size_t size;
};
static_assert( sizeof( SpecializationMapEntry ) == sizeof( VkSpecializationMapEntry ), "struct and wrapper have different size!" );
struct SpecializationInfo
{
SpecializationInfo( uint32_t mapEntryCount_ = 0, const SpecializationMapEntry* pMapEntries_ = nullptr, size_t dataSize_ = 0, const void* pData_ = nullptr )
: mapEntryCount( mapEntryCount_ )
, pMapEntries( pMapEntries_ )
, dataSize( dataSize_ )
, pData( pData_ )
{
}
SpecializationInfo( VkSpecializationInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SpecializationInfo ) );
}
SpecializationInfo& operator=( VkSpecializationInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SpecializationInfo ) );
return *this;
}
SpecializationInfo& setMapEntryCount( uint32_t mapEntryCount_ )
{
mapEntryCount = mapEntryCount_;
return *this;
}
SpecializationInfo& setPMapEntries( const SpecializationMapEntry* pMapEntries_ )
{
pMapEntries = pMapEntries_;
return *this;
}
SpecializationInfo& setDataSize( size_t dataSize_ )
{
dataSize = dataSize_;
return *this;
}
SpecializationInfo& setPData( const void* pData_ )
{
pData = pData_;
return *this;
}
operator const VkSpecializationInfo&() const
{
return *reinterpret_cast<const VkSpecializationInfo*>(this);
}
bool operator==( SpecializationInfo const& rhs ) const
{
return ( mapEntryCount == rhs.mapEntryCount )
&& ( pMapEntries == rhs.pMapEntries )
&& ( dataSize == rhs.dataSize )
&& ( pData == rhs.pData );
}
bool operator!=( SpecializationInfo const& rhs ) const
{
return !operator==( rhs );
}
uint32_t mapEntryCount;
const SpecializationMapEntry* pMapEntries;
size_t dataSize;
const void* pData;
};
static_assert( sizeof( SpecializationInfo ) == sizeof( VkSpecializationInfo ), "struct and wrapper have different size!" );
union ClearColorValue
{
ClearColorValue( const std::array<float,4>& float32_ = { {0} } )
{
memcpy( &float32, float32_.data(), 4 * sizeof( float ) );
}
ClearColorValue( const std::array<int32_t,4>& int32_ )
{
memcpy( &int32, int32_.data(), 4 * sizeof( int32_t ) );
}
ClearColorValue( const std::array<uint32_t,4>& uint32_ )
{
memcpy( &uint32, uint32_.data(), 4 * sizeof( uint32_t ) );
}
ClearColorValue& setFloat32( std::array<float,4> float32_ )
{
memcpy( &float32, float32_.data(), 4 * sizeof( float ) );
return *this;
}
ClearColorValue& setInt32( std::array<int32_t,4> int32_ )
{
memcpy( &int32, int32_.data(), 4 * sizeof( int32_t ) );
return *this;
}
ClearColorValue& setUint32( std::array<uint32_t,4> uint32_ )
{
memcpy( &uint32, uint32_.data(), 4 * sizeof( uint32_t ) );
return *this;
}
operator VkClearColorValue const& () const
{
return *reinterpret_cast<const VkClearColorValue*>(this);
}
float float32[4];
int32_t int32[4];
uint32_t uint32[4];
};
struct ClearDepthStencilValue
{
ClearDepthStencilValue( float depth_ = 0, uint32_t stencil_ = 0 )
: depth( depth_ )
, stencil( stencil_ )
{
}
ClearDepthStencilValue( VkClearDepthStencilValue const & rhs )
{
memcpy( this, &rhs, sizeof( ClearDepthStencilValue ) );
}
ClearDepthStencilValue& operator=( VkClearDepthStencilValue const & rhs )
{
memcpy( this, &rhs, sizeof( ClearDepthStencilValue ) );
return *this;
}
ClearDepthStencilValue& setDepth( float depth_ )
{
depth = depth_;
return *this;
}
ClearDepthStencilValue& setStencil( uint32_t stencil_ )
{
stencil = stencil_;
return *this;
}
operator const VkClearDepthStencilValue&() const
{
return *reinterpret_cast<const VkClearDepthStencilValue*>(this);
}
bool operator==( ClearDepthStencilValue const& rhs ) const
{
return ( depth == rhs.depth )
&& ( stencil == rhs.stencil );
}
bool operator!=( ClearDepthStencilValue const& rhs ) const
{
return !operator==( rhs );
}
float depth;
uint32_t stencil;
};
static_assert( sizeof( ClearDepthStencilValue ) == sizeof( VkClearDepthStencilValue ), "struct and wrapper have different size!" );
union ClearValue
{
ClearValue( ClearColorValue color_ = ClearColorValue() )
{
color = color_;
}
ClearValue( ClearDepthStencilValue depthStencil_ )
{
depthStencil = depthStencil_;
}
ClearValue& setColor( ClearColorValue color_ )
{
color = color_;
return *this;
}
ClearValue& setDepthStencil( ClearDepthStencilValue depthStencil_ )
{
depthStencil = depthStencil_;
return *this;
}
operator VkClearValue const& () const
{
return *reinterpret_cast<const VkClearValue*>(this);
}
#ifdef VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
ClearColorValue color;
ClearDepthStencilValue depthStencil;
#else
VkClearColorValue color;
VkClearDepthStencilValue depthStencil;
#endif // VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
};
struct PhysicalDeviceFeatures
{
PhysicalDeviceFeatures( Bool32 robustBufferAccess_ = 0, Bool32 fullDrawIndexUint32_ = 0, Bool32 imageCubeArray_ = 0, Bool32 independentBlend_ = 0, Bool32 geometryShader_ = 0, Bool32 tessellationShader_ = 0, Bool32 sampleRateShading_ = 0, Bool32 dualSrcBlend_ = 0, Bool32 logicOp_ = 0, Bool32 multiDrawIndirect_ = 0, Bool32 drawIndirectFirstInstance_ = 0, Bool32 depthClamp_ = 0, Bool32 depthBiasClamp_ = 0, Bool32 fillModeNonSolid_ = 0, Bool32 depthBounds_ = 0, Bool32 wideLines_ = 0, Bool32 largePoints_ = 0, Bool32 alphaToOne_ = 0, Bool32 multiViewport_ = 0, Bool32 samplerAnisotropy_ = 0, Bool32 textureCompressionETC2_ = 0, Bool32 textureCompressionASTC_LDR_ = 0, Bool32 textureCompressionBC_ = 0, Bool32 occlusionQueryPrecise_ = 0, Bool32 pipelineStatisticsQuery_ = 0, Bool32 vertexPipelineStoresAndAtomics_ = 0, Bool32 fragmentStoresAndAtomics_ = 0, Bool32 shaderTessellationAndGeometryPointSize_ = 0, Bool32 shaderImageGatherExtended_ = 0, Bool32 shaderStorageImageExtendedFormats_ = 0, Bool32 shaderStorageImageMultisample_ = 0, Bool32 shaderStorageImageReadWithoutFormat_ = 0, Bool32 shaderStorageImageWriteWithoutFormat_ = 0, Bool32 shaderUniformBufferArrayDynamicIndexing_ = 0, Bool32 shaderSampledImageArrayDynamicIndexing_ = 0, Bool32 shaderStorageBufferArrayDynamicIndexing_ = 0, Bool32 shaderStorageImageArrayDynamicIndexing_ = 0, Bool32 shaderClipDistance_ = 0, Bool32 shaderCullDistance_ = 0, Bool32 shaderFloat64_ = 0, Bool32 shaderInt64_ = 0, Bool32 shaderInt16_ = 0, Bool32 shaderResourceResidency_ = 0, Bool32 shaderResourceMinLod_ = 0, Bool32 sparseBinding_ = 0, Bool32 sparseResidencyBuffer_ = 0, Bool32 sparseResidencyImage2D_ = 0, Bool32 sparseResidencyImage3D_ = 0, Bool32 sparseResidency2Samples_ = 0, Bool32 sparseResidency4Samples_ = 0, Bool32 sparseResidency8Samples_ = 0, Bool32 sparseResidency16Samples_ = 0, Bool32 sparseResidencyAliased_ = 0, Bool32 variableMultisampleRate_ = 0, Bool32 inheritedQueries_ = 0 )
: robustBufferAccess( robustBufferAccess_ )
, fullDrawIndexUint32( fullDrawIndexUint32_ )
, imageCubeArray( imageCubeArray_ )
, independentBlend( independentBlend_ )
, geometryShader( geometryShader_ )
, tessellationShader( tessellationShader_ )
, sampleRateShading( sampleRateShading_ )
, dualSrcBlend( dualSrcBlend_ )
, logicOp( logicOp_ )
, multiDrawIndirect( multiDrawIndirect_ )
, drawIndirectFirstInstance( drawIndirectFirstInstance_ )
, depthClamp( depthClamp_ )
, depthBiasClamp( depthBiasClamp_ )
, fillModeNonSolid( fillModeNonSolid_ )
, depthBounds( depthBounds_ )
, wideLines( wideLines_ )
, largePoints( largePoints_ )
, alphaToOne( alphaToOne_ )
, multiViewport( multiViewport_ )
, samplerAnisotropy( samplerAnisotropy_ )
, textureCompressionETC2( textureCompressionETC2_ )
, textureCompressionASTC_LDR( textureCompressionASTC_LDR_ )
, textureCompressionBC( textureCompressionBC_ )
, occlusionQueryPrecise( occlusionQueryPrecise_ )
, pipelineStatisticsQuery( pipelineStatisticsQuery_ )
, vertexPipelineStoresAndAtomics( vertexPipelineStoresAndAtomics_ )
, fragmentStoresAndAtomics( fragmentStoresAndAtomics_ )
, shaderTessellationAndGeometryPointSize( shaderTessellationAndGeometryPointSize_ )
, shaderImageGatherExtended( shaderImageGatherExtended_ )
, shaderStorageImageExtendedFormats( shaderStorageImageExtendedFormats_ )
, shaderStorageImageMultisample( shaderStorageImageMultisample_ )
, shaderStorageImageReadWithoutFormat( shaderStorageImageReadWithoutFormat_ )
, shaderStorageImageWriteWithoutFormat( shaderStorageImageWriteWithoutFormat_ )
, shaderUniformBufferArrayDynamicIndexing( shaderUniformBufferArrayDynamicIndexing_ )
, shaderSampledImageArrayDynamicIndexing( shaderSampledImageArrayDynamicIndexing_ )
, shaderStorageBufferArrayDynamicIndexing( shaderStorageBufferArrayDynamicIndexing_ )
, shaderStorageImageArrayDynamicIndexing( shaderStorageImageArrayDynamicIndexing_ )
, shaderClipDistance( shaderClipDistance_ )
, shaderCullDistance( shaderCullDistance_ )
, shaderFloat64( shaderFloat64_ )
, shaderInt64( shaderInt64_ )
, shaderInt16( shaderInt16_ )
, shaderResourceResidency( shaderResourceResidency_ )
, shaderResourceMinLod( shaderResourceMinLod_ )
, sparseBinding( sparseBinding_ )
, sparseResidencyBuffer( sparseResidencyBuffer_ )
, sparseResidencyImage2D( sparseResidencyImage2D_ )
, sparseResidencyImage3D( sparseResidencyImage3D_ )
, sparseResidency2Samples( sparseResidency2Samples_ )
, sparseResidency4Samples( sparseResidency4Samples_ )
, sparseResidency8Samples( sparseResidency8Samples_ )
, sparseResidency16Samples( sparseResidency16Samples_ )
, sparseResidencyAliased( sparseResidencyAliased_ )
, variableMultisampleRate( variableMultisampleRate_ )
, inheritedQueries( inheritedQueries_ )
{
}
PhysicalDeviceFeatures( VkPhysicalDeviceFeatures const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceFeatures ) );
}
PhysicalDeviceFeatures& operator=( VkPhysicalDeviceFeatures const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceFeatures ) );
return *this;
}
PhysicalDeviceFeatures& setRobustBufferAccess( Bool32 robustBufferAccess_ )
{
robustBufferAccess = robustBufferAccess_;
return *this;
}
PhysicalDeviceFeatures& setFullDrawIndexUint32( Bool32 fullDrawIndexUint32_ )
{
fullDrawIndexUint32 = fullDrawIndexUint32_;
return *this;
}
PhysicalDeviceFeatures& setImageCubeArray( Bool32 imageCubeArray_ )
{
imageCubeArray = imageCubeArray_;
return *this;
}
PhysicalDeviceFeatures& setIndependentBlend( Bool32 independentBlend_ )
{
independentBlend = independentBlend_;
return *this;
}
PhysicalDeviceFeatures& setGeometryShader( Bool32 geometryShader_ )
{
geometryShader = geometryShader_;
return *this;
}
PhysicalDeviceFeatures& setTessellationShader( Bool32 tessellationShader_ )
{
tessellationShader = tessellationShader_;
return *this;
}
PhysicalDeviceFeatures& setSampleRateShading( Bool32 sampleRateShading_ )
{
sampleRateShading = sampleRateShading_;
return *this;
}
PhysicalDeviceFeatures& setDualSrcBlend( Bool32 dualSrcBlend_ )
{
dualSrcBlend = dualSrcBlend_;
return *this;
}
PhysicalDeviceFeatures& setLogicOp( Bool32 logicOp_ )
{
logicOp = logicOp_;
return *this;
}
PhysicalDeviceFeatures& setMultiDrawIndirect( Bool32 multiDrawIndirect_ )
{
multiDrawIndirect = multiDrawIndirect_;
return *this;
}
PhysicalDeviceFeatures& setDrawIndirectFirstInstance( Bool32 drawIndirectFirstInstance_ )
{
drawIndirectFirstInstance = drawIndirectFirstInstance_;
return *this;
}
PhysicalDeviceFeatures& setDepthClamp( Bool32 depthClamp_ )
{
depthClamp = depthClamp_;
return *this;
}
PhysicalDeviceFeatures& setDepthBiasClamp( Bool32 depthBiasClamp_ )
{
depthBiasClamp = depthBiasClamp_;
return *this;
}
PhysicalDeviceFeatures& setFillModeNonSolid( Bool32 fillModeNonSolid_ )
{
fillModeNonSolid = fillModeNonSolid_;
return *this;
}
PhysicalDeviceFeatures& setDepthBounds( Bool32 depthBounds_ )
{
depthBounds = depthBounds_;
return *this;
}
PhysicalDeviceFeatures& setWideLines( Bool32 wideLines_ )
{
wideLines = wideLines_;
return *this;
}
PhysicalDeviceFeatures& setLargePoints( Bool32 largePoints_ )
{
largePoints = largePoints_;
return *this;
}
PhysicalDeviceFeatures& setAlphaToOne( Bool32 alphaToOne_ )
{
alphaToOne = alphaToOne_;
return *this;
}
PhysicalDeviceFeatures& setMultiViewport( Bool32 multiViewport_ )
{
multiViewport = multiViewport_;
return *this;
}
PhysicalDeviceFeatures& setSamplerAnisotropy( Bool32 samplerAnisotropy_ )
{
samplerAnisotropy = samplerAnisotropy_;
return *this;
}
PhysicalDeviceFeatures& setTextureCompressionETC2( Bool32 textureCompressionETC2_ )
{
textureCompressionETC2 = textureCompressionETC2_;
return *this;
}
PhysicalDeviceFeatures& setTextureCompressionASTC_LDR( Bool32 textureCompressionASTC_LDR_ )
{
textureCompressionASTC_LDR = textureCompressionASTC_LDR_;
return *this;
}
PhysicalDeviceFeatures& setTextureCompressionBC( Bool32 textureCompressionBC_ )
{
textureCompressionBC = textureCompressionBC_;
return *this;
}
PhysicalDeviceFeatures& setOcclusionQueryPrecise( Bool32 occlusionQueryPrecise_ )
{
occlusionQueryPrecise = occlusionQueryPrecise_;
return *this;
}
PhysicalDeviceFeatures& setPipelineStatisticsQuery( Bool32 pipelineStatisticsQuery_ )
{
pipelineStatisticsQuery = pipelineStatisticsQuery_;
return *this;
}
PhysicalDeviceFeatures& setVertexPipelineStoresAndAtomics( Bool32 vertexPipelineStoresAndAtomics_ )
{
vertexPipelineStoresAndAtomics = vertexPipelineStoresAndAtomics_;
return *this;
}
PhysicalDeviceFeatures& setFragmentStoresAndAtomics( Bool32 fragmentStoresAndAtomics_ )
{
fragmentStoresAndAtomics = fragmentStoresAndAtomics_;
return *this;
}
PhysicalDeviceFeatures& setShaderTessellationAndGeometryPointSize( Bool32 shaderTessellationAndGeometryPointSize_ )
{
shaderTessellationAndGeometryPointSize = shaderTessellationAndGeometryPointSize_;
return *this;
}
PhysicalDeviceFeatures& setShaderImageGatherExtended( Bool32 shaderImageGatherExtended_ )
{
shaderImageGatherExtended = shaderImageGatherExtended_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageExtendedFormats( Bool32 shaderStorageImageExtendedFormats_ )
{
shaderStorageImageExtendedFormats = shaderStorageImageExtendedFormats_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageMultisample( Bool32 shaderStorageImageMultisample_ )
{
shaderStorageImageMultisample = shaderStorageImageMultisample_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageReadWithoutFormat( Bool32 shaderStorageImageReadWithoutFormat_ )
{
shaderStorageImageReadWithoutFormat = shaderStorageImageReadWithoutFormat_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageWriteWithoutFormat( Bool32 shaderStorageImageWriteWithoutFormat_ )
{
shaderStorageImageWriteWithoutFormat = shaderStorageImageWriteWithoutFormat_;
return *this;
}
PhysicalDeviceFeatures& setShaderUniformBufferArrayDynamicIndexing( Bool32 shaderUniformBufferArrayDynamicIndexing_ )
{
shaderUniformBufferArrayDynamicIndexing = shaderUniformBufferArrayDynamicIndexing_;
return *this;
}
PhysicalDeviceFeatures& setShaderSampledImageArrayDynamicIndexing( Bool32 shaderSampledImageArrayDynamicIndexing_ )
{
shaderSampledImageArrayDynamicIndexing = shaderSampledImageArrayDynamicIndexing_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageBufferArrayDynamicIndexing( Bool32 shaderStorageBufferArrayDynamicIndexing_ )
{
shaderStorageBufferArrayDynamicIndexing = shaderStorageBufferArrayDynamicIndexing_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageArrayDynamicIndexing( Bool32 shaderStorageImageArrayDynamicIndexing_ )
{
shaderStorageImageArrayDynamicIndexing = shaderStorageImageArrayDynamicIndexing_;
return *this;
}
PhysicalDeviceFeatures& setShaderClipDistance( Bool32 shaderClipDistance_ )
{
shaderClipDistance = shaderClipDistance_;
return *this;
}
PhysicalDeviceFeatures& setShaderCullDistance( Bool32 shaderCullDistance_ )
{
shaderCullDistance = shaderCullDistance_;
return *this;
}
PhysicalDeviceFeatures& setShaderFloat64( Bool32 shaderFloat64_ )
{
shaderFloat64 = shaderFloat64_;
return *this;
}
PhysicalDeviceFeatures& setShaderInt64( Bool32 shaderInt64_ )
{
shaderInt64 = shaderInt64_;
return *this;
}
PhysicalDeviceFeatures& setShaderInt16( Bool32 shaderInt16_ )
{
shaderInt16 = shaderInt16_;
return *this;
}
PhysicalDeviceFeatures& setShaderResourceResidency( Bool32 shaderResourceResidency_ )
{
shaderResourceResidency = shaderResourceResidency_;
return *this;
}
PhysicalDeviceFeatures& setShaderResourceMinLod( Bool32 shaderResourceMinLod_ )
{
shaderResourceMinLod = shaderResourceMinLod_;
return *this;
}
PhysicalDeviceFeatures& setSparseBinding( Bool32 sparseBinding_ )
{
sparseBinding = sparseBinding_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidencyBuffer( Bool32 sparseResidencyBuffer_ )
{
sparseResidencyBuffer = sparseResidencyBuffer_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidencyImage2D( Bool32 sparseResidencyImage2D_ )
{
sparseResidencyImage2D = sparseResidencyImage2D_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidencyImage3D( Bool32 sparseResidencyImage3D_ )
{
sparseResidencyImage3D = sparseResidencyImage3D_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidency2Samples( Bool32 sparseResidency2Samples_ )
{
sparseResidency2Samples = sparseResidency2Samples_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidency4Samples( Bool32 sparseResidency4Samples_ )
{
sparseResidency4Samples = sparseResidency4Samples_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidency8Samples( Bool32 sparseResidency8Samples_ )
{
sparseResidency8Samples = sparseResidency8Samples_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidency16Samples( Bool32 sparseResidency16Samples_ )
{
sparseResidency16Samples = sparseResidency16Samples_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidencyAliased( Bool32 sparseResidencyAliased_ )
{
sparseResidencyAliased = sparseResidencyAliased_;
return *this;
}
PhysicalDeviceFeatures& setVariableMultisampleRate( Bool32 variableMultisampleRate_ )
{
variableMultisampleRate = variableMultisampleRate_;
return *this;
}
PhysicalDeviceFeatures& setInheritedQueries( Bool32 inheritedQueries_ )
{
inheritedQueries = inheritedQueries_;
return *this;
}
operator const VkPhysicalDeviceFeatures&() const
{
return *reinterpret_cast<const VkPhysicalDeviceFeatures*>(this);
}
bool operator==( PhysicalDeviceFeatures const& rhs ) const
{
return ( robustBufferAccess == rhs.robustBufferAccess )
&& ( fullDrawIndexUint32 == rhs.fullDrawIndexUint32 )
&& ( imageCubeArray == rhs.imageCubeArray )
&& ( independentBlend == rhs.independentBlend )
&& ( geometryShader == rhs.geometryShader )
&& ( tessellationShader == rhs.tessellationShader )
&& ( sampleRateShading == rhs.sampleRateShading )
&& ( dualSrcBlend == rhs.dualSrcBlend )
&& ( logicOp == rhs.logicOp )
&& ( multiDrawIndirect == rhs.multiDrawIndirect )
&& ( drawIndirectFirstInstance == rhs.drawIndirectFirstInstance )
&& ( depthClamp == rhs.depthClamp )
&& ( depthBiasClamp == rhs.depthBiasClamp )
&& ( fillModeNonSolid == rhs.fillModeNonSolid )
&& ( depthBounds == rhs.depthBounds )
&& ( wideLines == rhs.wideLines )
&& ( largePoints == rhs.largePoints )
&& ( alphaToOne == rhs.alphaToOne )
&& ( multiViewport == rhs.multiViewport )
&& ( samplerAnisotropy == rhs.samplerAnisotropy )
&& ( textureCompressionETC2 == rhs.textureCompressionETC2 )
&& ( textureCompressionASTC_LDR == rhs.textureCompressionASTC_LDR )
&& ( textureCompressionBC == rhs.textureCompressionBC )
&& ( occlusionQueryPrecise == rhs.occlusionQueryPrecise )
&& ( pipelineStatisticsQuery == rhs.pipelineStatisticsQuery )
&& ( vertexPipelineStoresAndAtomics == rhs.vertexPipelineStoresAndAtomics )
&& ( fragmentStoresAndAtomics == rhs.fragmentStoresAndAtomics )
&& ( shaderTessellationAndGeometryPointSize == rhs.shaderTessellationAndGeometryPointSize )
&& ( shaderImageGatherExtended == rhs.shaderImageGatherExtended )
&& ( shaderStorageImageExtendedFormats == rhs.shaderStorageImageExtendedFormats )
&& ( shaderStorageImageMultisample == rhs.shaderStorageImageMultisample )
&& ( shaderStorageImageReadWithoutFormat == rhs.shaderStorageImageReadWithoutFormat )
&& ( shaderStorageImageWriteWithoutFormat == rhs.shaderStorageImageWriteWithoutFormat )
&& ( shaderUniformBufferArrayDynamicIndexing == rhs.shaderUniformBufferArrayDynamicIndexing )
&& ( shaderSampledImageArrayDynamicIndexing == rhs.shaderSampledImageArrayDynamicIndexing )
&& ( shaderStorageBufferArrayDynamicIndexing == rhs.shaderStorageBufferArrayDynamicIndexing )
&& ( shaderStorageImageArrayDynamicIndexing == rhs.shaderStorageImageArrayDynamicIndexing )
&& ( shaderClipDistance == rhs.shaderClipDistance )
&& ( shaderCullDistance == rhs.shaderCullDistance )
&& ( shaderFloat64 == rhs.shaderFloat64 )
&& ( shaderInt64 == rhs.shaderInt64 )
&& ( shaderInt16 == rhs.shaderInt16 )
&& ( shaderResourceResidency == rhs.shaderResourceResidency )
&& ( shaderResourceMinLod == rhs.shaderResourceMinLod )
&& ( sparseBinding == rhs.sparseBinding )
&& ( sparseResidencyBuffer == rhs.sparseResidencyBuffer )
&& ( sparseResidencyImage2D == rhs.sparseResidencyImage2D )
&& ( sparseResidencyImage3D == rhs.sparseResidencyImage3D )
&& ( sparseResidency2Samples == rhs.sparseResidency2Samples )
&& ( sparseResidency4Samples == rhs.sparseResidency4Samples )
&& ( sparseResidency8Samples == rhs.sparseResidency8Samples )
&& ( sparseResidency16Samples == rhs.sparseResidency16Samples )
&& ( sparseResidencyAliased == rhs.sparseResidencyAliased )
&& ( variableMultisampleRate == rhs.variableMultisampleRate )
&& ( inheritedQueries == rhs.inheritedQueries );
}
bool operator!=( PhysicalDeviceFeatures const& rhs ) const
{
return !operator==( rhs );
}
Bool32 robustBufferAccess;
Bool32 fullDrawIndexUint32;
Bool32 imageCubeArray;
Bool32 independentBlend;
Bool32 geometryShader;
Bool32 tessellationShader;
Bool32 sampleRateShading;
Bool32 dualSrcBlend;
Bool32 logicOp;
Bool32 multiDrawIndirect;
Bool32 drawIndirectFirstInstance;
Bool32 depthClamp;
Bool32 depthBiasClamp;
Bool32 fillModeNonSolid;
Bool32 depthBounds;
Bool32 wideLines;
Bool32 largePoints;
Bool32 alphaToOne;
Bool32 multiViewport;
Bool32 samplerAnisotropy;
Bool32 textureCompressionETC2;
Bool32 textureCompressionASTC_LDR;
Bool32 textureCompressionBC;
Bool32 occlusionQueryPrecise;
Bool32 pipelineStatisticsQuery;
Bool32 vertexPipelineStoresAndAtomics;
Bool32 fragmentStoresAndAtomics;
Bool32 shaderTessellationAndGeometryPointSize;
Bool32 shaderImageGatherExtended;
Bool32 shaderStorageImageExtendedFormats;
Bool32 shaderStorageImageMultisample;
Bool32 shaderStorageImageReadWithoutFormat;
Bool32 shaderStorageImageWriteWithoutFormat;
Bool32 shaderUniformBufferArrayDynamicIndexing;
Bool32 shaderSampledImageArrayDynamicIndexing;
Bool32 shaderStorageBufferArrayDynamicIndexing;
Bool32 shaderStorageImageArrayDynamicIndexing;
Bool32 shaderClipDistance;
Bool32 shaderCullDistance;
Bool32 shaderFloat64;
Bool32 shaderInt64;
Bool32 shaderInt16;
Bool32 shaderResourceResidency;
Bool32 shaderResourceMinLod;
Bool32 sparseBinding;
Bool32 sparseResidencyBuffer;
Bool32 sparseResidencyImage2D;
Bool32 sparseResidencyImage3D;
Bool32 sparseResidency2Samples;
Bool32 sparseResidency4Samples;
Bool32 sparseResidency8Samples;
Bool32 sparseResidency16Samples;
Bool32 sparseResidencyAliased;
Bool32 variableMultisampleRate;
Bool32 inheritedQueries;
};
static_assert( sizeof( PhysicalDeviceFeatures ) == sizeof( VkPhysicalDeviceFeatures ), "struct and wrapper have different size!" );
struct PhysicalDeviceSparseProperties
{
operator const VkPhysicalDeviceSparseProperties&() const
{
return *reinterpret_cast<const VkPhysicalDeviceSparseProperties*>(this);
}
bool operator==( PhysicalDeviceSparseProperties const& rhs ) const
{
return ( residencyStandard2DBlockShape == rhs.residencyStandard2DBlockShape )
&& ( residencyStandard2DMultisampleBlockShape == rhs.residencyStandard2DMultisampleBlockShape )
&& ( residencyStandard3DBlockShape == rhs.residencyStandard3DBlockShape )
&& ( residencyAlignedMipSize == rhs.residencyAlignedMipSize )
&& ( residencyNonResidentStrict == rhs.residencyNonResidentStrict );
}
bool operator!=( PhysicalDeviceSparseProperties const& rhs ) const
{
return !operator==( rhs );
}
Bool32 residencyStandard2DBlockShape;
Bool32 residencyStandard2DMultisampleBlockShape;
Bool32 residencyStandard3DBlockShape;
Bool32 residencyAlignedMipSize;
Bool32 residencyNonResidentStrict;
};
static_assert( sizeof( PhysicalDeviceSparseProperties ) == sizeof( VkPhysicalDeviceSparseProperties ), "struct and wrapper have different size!" );
struct DrawIndirectCommand
{
DrawIndirectCommand( uint32_t vertexCount_ = 0, uint32_t instanceCount_ = 0, uint32_t firstVertex_ = 0, uint32_t firstInstance_ = 0 )
: vertexCount( vertexCount_ )
, instanceCount( instanceCount_ )
, firstVertex( firstVertex_ )
, firstInstance( firstInstance_ )
{
}
DrawIndirectCommand( VkDrawIndirectCommand const & rhs )
{
memcpy( this, &rhs, sizeof( DrawIndirectCommand ) );
}
DrawIndirectCommand& operator=( VkDrawIndirectCommand const & rhs )
{
memcpy( this, &rhs, sizeof( DrawIndirectCommand ) );
return *this;
}
DrawIndirectCommand& setVertexCount( uint32_t vertexCount_ )
{
vertexCount = vertexCount_;
return *this;
}
DrawIndirectCommand& setInstanceCount( uint32_t instanceCount_ )
{
instanceCount = instanceCount_;
return *this;
}
DrawIndirectCommand& setFirstVertex( uint32_t firstVertex_ )
{
firstVertex = firstVertex_;
return *this;
}
DrawIndirectCommand& setFirstInstance( uint32_t firstInstance_ )
{
firstInstance = firstInstance_;
return *this;
}
operator const VkDrawIndirectCommand&() const
{
return *reinterpret_cast<const VkDrawIndirectCommand*>(this);
}
bool operator==( DrawIndirectCommand const& rhs ) const
{
return ( vertexCount == rhs.vertexCount )
&& ( instanceCount == rhs.instanceCount )
&& ( firstVertex == rhs.firstVertex )
&& ( firstInstance == rhs.firstInstance );
}
bool operator!=( DrawIndirectCommand const& rhs ) const
{
return !operator==( rhs );
}
uint32_t vertexCount;
uint32_t instanceCount;
uint32_t firstVertex;
uint32_t firstInstance;
};
static_assert( sizeof( DrawIndirectCommand ) == sizeof( VkDrawIndirectCommand ), "struct and wrapper have different size!" );
struct DrawIndexedIndirectCommand
{
DrawIndexedIndirectCommand( uint32_t indexCount_ = 0, uint32_t instanceCount_ = 0, uint32_t firstIndex_ = 0, int32_t vertexOffset_ = 0, uint32_t firstInstance_ = 0 )
: indexCount( indexCount_ )
, instanceCount( instanceCount_ )
, firstIndex( firstIndex_ )
, vertexOffset( vertexOffset_ )
, firstInstance( firstInstance_ )
{
}
DrawIndexedIndirectCommand( VkDrawIndexedIndirectCommand const & rhs )
{
memcpy( this, &rhs, sizeof( DrawIndexedIndirectCommand ) );
}
DrawIndexedIndirectCommand& operator=( VkDrawIndexedIndirectCommand const & rhs )
{
memcpy( this, &rhs, sizeof( DrawIndexedIndirectCommand ) );
return *this;
}
DrawIndexedIndirectCommand& setIndexCount( uint32_t indexCount_ )
{
indexCount = indexCount_;
return *this;
}
DrawIndexedIndirectCommand& setInstanceCount( uint32_t instanceCount_ )
{
instanceCount = instanceCount_;
return *this;
}
DrawIndexedIndirectCommand& setFirstIndex( uint32_t firstIndex_ )
{
firstIndex = firstIndex_;
return *this;
}
DrawIndexedIndirectCommand& setVertexOffset( int32_t vertexOffset_ )
{
vertexOffset = vertexOffset_;
return *this;
}
DrawIndexedIndirectCommand& setFirstInstance( uint32_t firstInstance_ )
{
firstInstance = firstInstance_;
return *this;
}
operator const VkDrawIndexedIndirectCommand&() const
{
return *reinterpret_cast<const VkDrawIndexedIndirectCommand*>(this);
}
bool operator==( DrawIndexedIndirectCommand const& rhs ) const
{
return ( indexCount == rhs.indexCount )
&& ( instanceCount == rhs.instanceCount )
&& ( firstIndex == rhs.firstIndex )
&& ( vertexOffset == rhs.vertexOffset )
&& ( firstInstance == rhs.firstInstance );
}
bool operator!=( DrawIndexedIndirectCommand const& rhs ) const
{
return !operator==( rhs );
}
uint32_t indexCount;
uint32_t instanceCount;
uint32_t firstIndex;
int32_t vertexOffset;
uint32_t firstInstance;
};
static_assert( sizeof( DrawIndexedIndirectCommand ) == sizeof( VkDrawIndexedIndirectCommand ), "struct and wrapper have different size!" );
struct DispatchIndirectCommand
{
DispatchIndirectCommand( uint32_t x_ = 0, uint32_t y_ = 0, uint32_t z_ = 0 )
: x( x_ )
, y( y_ )
, z( z_ )
{
}
DispatchIndirectCommand( VkDispatchIndirectCommand const & rhs )
{
memcpy( this, &rhs, sizeof( DispatchIndirectCommand ) );
}
DispatchIndirectCommand& operator=( VkDispatchIndirectCommand const & rhs )
{
memcpy( this, &rhs, sizeof( DispatchIndirectCommand ) );
return *this;
}
DispatchIndirectCommand& setX( uint32_t x_ )
{
x = x_;
return *this;
}
DispatchIndirectCommand& setY( uint32_t y_ )
{
y = y_;
return *this;
}
DispatchIndirectCommand& setZ( uint32_t z_ )
{
z = z_;
return *this;
}
operator const VkDispatchIndirectCommand&() const
{
return *reinterpret_cast<const VkDispatchIndirectCommand*>(this);
}
bool operator==( DispatchIndirectCommand const& rhs ) const
{
return ( x == rhs.x )
&& ( y == rhs.y )
&& ( z == rhs.z );
}
bool operator!=( DispatchIndirectCommand const& rhs ) const
{
return !operator==( rhs );
}
uint32_t x;
uint32_t y;
uint32_t z;
};
static_assert( sizeof( DispatchIndirectCommand ) == sizeof( VkDispatchIndirectCommand ), "struct and wrapper have different size!" );
struct DisplayPlanePropertiesKHR
{
operator const VkDisplayPlanePropertiesKHR&() const
{
return *reinterpret_cast<const VkDisplayPlanePropertiesKHR*>(this);
}
bool operator==( DisplayPlanePropertiesKHR const& rhs ) const
{
return ( currentDisplay == rhs.currentDisplay )
&& ( currentStackIndex == rhs.currentStackIndex );
}
bool operator!=( DisplayPlanePropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
DisplayKHR currentDisplay;
uint32_t currentStackIndex;
};
static_assert( sizeof( DisplayPlanePropertiesKHR ) == sizeof( VkDisplayPlanePropertiesKHR ), "struct and wrapper have different size!" );
struct DisplayModeParametersKHR
{
DisplayModeParametersKHR( Extent2D visibleRegion_ = Extent2D(), uint32_t refreshRate_ = 0 )
: visibleRegion( visibleRegion_ )
, refreshRate( refreshRate_ )
{
}
DisplayModeParametersKHR( VkDisplayModeParametersKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayModeParametersKHR ) );
}
DisplayModeParametersKHR& operator=( VkDisplayModeParametersKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayModeParametersKHR ) );
return *this;
}
DisplayModeParametersKHR& setVisibleRegion( Extent2D visibleRegion_ )
{
visibleRegion = visibleRegion_;
return *this;
}
DisplayModeParametersKHR& setRefreshRate( uint32_t refreshRate_ )
{
refreshRate = refreshRate_;
return *this;
}
operator const VkDisplayModeParametersKHR&() const
{
return *reinterpret_cast<const VkDisplayModeParametersKHR*>(this);
}
bool operator==( DisplayModeParametersKHR const& rhs ) const
{
return ( visibleRegion == rhs.visibleRegion )
&& ( refreshRate == rhs.refreshRate );
}
bool operator!=( DisplayModeParametersKHR const& rhs ) const
{
return !operator==( rhs );
}
Extent2D visibleRegion;
uint32_t refreshRate;
};
static_assert( sizeof( DisplayModeParametersKHR ) == sizeof( VkDisplayModeParametersKHR ), "struct and wrapper have different size!" );
struct DisplayModePropertiesKHR
{
operator const VkDisplayModePropertiesKHR&() const
{
return *reinterpret_cast<const VkDisplayModePropertiesKHR*>(this);
}
bool operator==( DisplayModePropertiesKHR const& rhs ) const
{
return ( displayMode == rhs.displayMode )
&& ( parameters == rhs.parameters );
}
bool operator!=( DisplayModePropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
DisplayModeKHR displayMode;
DisplayModeParametersKHR parameters;
};
static_assert( sizeof( DisplayModePropertiesKHR ) == sizeof( VkDisplayModePropertiesKHR ), "struct and wrapper have different size!" );
struct RectLayerKHR
{
RectLayerKHR( Offset2D offset_ = Offset2D(), Extent2D extent_ = Extent2D(), uint32_t layer_ = 0 )
: offset( offset_ )
, extent( extent_ )
, layer( layer_ )
{
}
RectLayerKHR( VkRectLayerKHR const & rhs )
{
memcpy( this, &rhs, sizeof( RectLayerKHR ) );
}
RectLayerKHR& operator=( VkRectLayerKHR const & rhs )
{
memcpy( this, &rhs, sizeof( RectLayerKHR ) );
return *this;
}
RectLayerKHR& setOffset( Offset2D offset_ )
{
offset = offset_;
return *this;
}
RectLayerKHR& setExtent( Extent2D extent_ )
{
extent = extent_;
return *this;
}
RectLayerKHR& setLayer( uint32_t layer_ )
{
layer = layer_;
return *this;
}
operator const VkRectLayerKHR&() const
{
return *reinterpret_cast<const VkRectLayerKHR*>(this);
}
bool operator==( RectLayerKHR const& rhs ) const
{
return ( offset == rhs.offset )
&& ( extent == rhs.extent )
&& ( layer == rhs.layer );
}
bool operator!=( RectLayerKHR const& rhs ) const
{
return !operator==( rhs );
}
Offset2D offset;
Extent2D extent;
uint32_t layer;
};
static_assert( sizeof( RectLayerKHR ) == sizeof( VkRectLayerKHR ), "struct and wrapper have different size!" );
struct PresentRegionKHR
{
PresentRegionKHR( uint32_t rectangleCount_ = 0, const RectLayerKHR* pRectangles_ = nullptr )
: rectangleCount( rectangleCount_ )
, pRectangles( pRectangles_ )
{
}
PresentRegionKHR( VkPresentRegionKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PresentRegionKHR ) );
}
PresentRegionKHR& operator=( VkPresentRegionKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PresentRegionKHR ) );
return *this;
}
PresentRegionKHR& setRectangleCount( uint32_t rectangleCount_ )
{
rectangleCount = rectangleCount_;
return *this;
}
PresentRegionKHR& setPRectangles( const RectLayerKHR* pRectangles_ )
{
pRectangles = pRectangles_;
return *this;
}
operator const VkPresentRegionKHR&() const
{
return *reinterpret_cast<const VkPresentRegionKHR*>(this);
}
bool operator==( PresentRegionKHR const& rhs ) const
{
return ( rectangleCount == rhs.rectangleCount )
&& ( pRectangles == rhs.pRectangles );
}
bool operator!=( PresentRegionKHR const& rhs ) const
{
return !operator==( rhs );
}
uint32_t rectangleCount;
const RectLayerKHR* pRectangles;
};
static_assert( sizeof( PresentRegionKHR ) == sizeof( VkPresentRegionKHR ), "struct and wrapper have different size!" );
struct XYColorEXT
{
XYColorEXT( float x_ = 0, float y_ = 0 )
: x( x_ )
, y( y_ )
{
}
XYColorEXT( VkXYColorEXT const & rhs )
{
memcpy( this, &rhs, sizeof( XYColorEXT ) );
}
XYColorEXT& operator=( VkXYColorEXT const & rhs )
{
memcpy( this, &rhs, sizeof( XYColorEXT ) );
return *this;
}
XYColorEXT& setX( float x_ )
{
x = x_;
return *this;
}
XYColorEXT& setY( float y_ )
{
y = y_;
return *this;
}
operator const VkXYColorEXT&() const
{
return *reinterpret_cast<const VkXYColorEXT*>(this);
}
bool operator==( XYColorEXT const& rhs ) const
{
return ( x == rhs.x )
&& ( y == rhs.y );
}
bool operator!=( XYColorEXT const& rhs ) const
{
return !operator==( rhs );
}
float x;
float y;
};
static_assert( sizeof( XYColorEXT ) == sizeof( VkXYColorEXT ), "struct and wrapper have different size!" );
struct RefreshCycleDurationGOOGLE
{
RefreshCycleDurationGOOGLE( uint64_t refreshDuration_ = 0 )
: refreshDuration( refreshDuration_ )
{
}
RefreshCycleDurationGOOGLE( VkRefreshCycleDurationGOOGLE const & rhs )
{
memcpy( this, &rhs, sizeof( RefreshCycleDurationGOOGLE ) );
}
RefreshCycleDurationGOOGLE& operator=( VkRefreshCycleDurationGOOGLE const & rhs )
{
memcpy( this, &rhs, sizeof( RefreshCycleDurationGOOGLE ) );
return *this;
}
RefreshCycleDurationGOOGLE& setRefreshDuration( uint64_t refreshDuration_ )
{
refreshDuration = refreshDuration_;
return *this;
}
operator const VkRefreshCycleDurationGOOGLE&() const
{
return *reinterpret_cast<const VkRefreshCycleDurationGOOGLE*>(this);
}
bool operator==( RefreshCycleDurationGOOGLE const& rhs ) const
{
return ( refreshDuration == rhs.refreshDuration );
}
bool operator!=( RefreshCycleDurationGOOGLE const& rhs ) const
{
return !operator==( rhs );
}
uint64_t refreshDuration;
};
static_assert( sizeof( RefreshCycleDurationGOOGLE ) == sizeof( VkRefreshCycleDurationGOOGLE ), "struct and wrapper have different size!" );
struct PastPresentationTimingGOOGLE
{
PastPresentationTimingGOOGLE( uint32_t presentID_ = 0, uint64_t desiredPresentTime_ = 0, uint64_t actualPresentTime_ = 0, uint64_t earliestPresentTime_ = 0, uint64_t presentMargin_ = 0 )
: presentID( presentID_ )
, desiredPresentTime( desiredPresentTime_ )
, actualPresentTime( actualPresentTime_ )
, earliestPresentTime( earliestPresentTime_ )
, presentMargin( presentMargin_ )
{
}
PastPresentationTimingGOOGLE( VkPastPresentationTimingGOOGLE const & rhs )
{
memcpy( this, &rhs, sizeof( PastPresentationTimingGOOGLE ) );
}
PastPresentationTimingGOOGLE& operator=( VkPastPresentationTimingGOOGLE const & rhs )
{
memcpy( this, &rhs, sizeof( PastPresentationTimingGOOGLE ) );
return *this;
}
PastPresentationTimingGOOGLE& setPresentID( uint32_t presentID_ )
{
presentID = presentID_;
return *this;
}
PastPresentationTimingGOOGLE& setDesiredPresentTime( uint64_t desiredPresentTime_ )
{
desiredPresentTime = desiredPresentTime_;
return *this;
}
PastPresentationTimingGOOGLE& setActualPresentTime( uint64_t actualPresentTime_ )
{
actualPresentTime = actualPresentTime_;
return *this;
}
PastPresentationTimingGOOGLE& setEarliestPresentTime( uint64_t earliestPresentTime_ )
{
earliestPresentTime = earliestPresentTime_;
return *this;
}
PastPresentationTimingGOOGLE& setPresentMargin( uint64_t presentMargin_ )
{
presentMargin = presentMargin_;
return *this;
}
operator const VkPastPresentationTimingGOOGLE&() const
{
return *reinterpret_cast<const VkPastPresentationTimingGOOGLE*>(this);
}
bool operator==( PastPresentationTimingGOOGLE const& rhs ) const
{
return ( presentID == rhs.presentID )
&& ( desiredPresentTime == rhs.desiredPresentTime )
&& ( actualPresentTime == rhs.actualPresentTime )
&& ( earliestPresentTime == rhs.earliestPresentTime )
&& ( presentMargin == rhs.presentMargin );
}
bool operator!=( PastPresentationTimingGOOGLE const& rhs ) const
{
return !operator==( rhs );
}
uint32_t presentID;
uint64_t desiredPresentTime;
uint64_t actualPresentTime;
uint64_t earliestPresentTime;
uint64_t presentMargin;
};
static_assert( sizeof( PastPresentationTimingGOOGLE ) == sizeof( VkPastPresentationTimingGOOGLE ), "struct and wrapper have different size!" );
struct PresentTimeGOOGLE
{
PresentTimeGOOGLE( uint32_t presentID_ = 0, uint64_t desiredPresentTime_ = 0 )
: presentID( presentID_ )
, desiredPresentTime( desiredPresentTime_ )
{
}
PresentTimeGOOGLE( VkPresentTimeGOOGLE const & rhs )
{
memcpy( this, &rhs, sizeof( PresentTimeGOOGLE ) );
}
PresentTimeGOOGLE& operator=( VkPresentTimeGOOGLE const & rhs )
{
memcpy( this, &rhs, sizeof( PresentTimeGOOGLE ) );
return *this;
}
PresentTimeGOOGLE& setPresentID( uint32_t presentID_ )
{
presentID = presentID_;
return *this;
}
PresentTimeGOOGLE& setDesiredPresentTime( uint64_t desiredPresentTime_ )
{
desiredPresentTime = desiredPresentTime_;
return *this;
}
operator const VkPresentTimeGOOGLE&() const
{
return *reinterpret_cast<const VkPresentTimeGOOGLE*>(this);
}
bool operator==( PresentTimeGOOGLE const& rhs ) const
{
return ( presentID == rhs.presentID )
&& ( desiredPresentTime == rhs.desiredPresentTime );
}
bool operator!=( PresentTimeGOOGLE const& rhs ) const
{
return !operator==( rhs );
}
uint32_t presentID;
uint64_t desiredPresentTime;
};
static_assert( sizeof( PresentTimeGOOGLE ) == sizeof( VkPresentTimeGOOGLE ), "struct and wrapper have different size!" );
struct ViewportWScalingNV
{
ViewportWScalingNV( float xcoeff_ = 0, float ycoeff_ = 0 )
: xcoeff( xcoeff_ )
, ycoeff( ycoeff_ )
{
}
ViewportWScalingNV( VkViewportWScalingNV const & rhs )
{
memcpy( this, &rhs, sizeof( ViewportWScalingNV ) );
}
ViewportWScalingNV& operator=( VkViewportWScalingNV const & rhs )
{
memcpy( this, &rhs, sizeof( ViewportWScalingNV ) );
return *this;
}
ViewportWScalingNV& setXcoeff( float xcoeff_ )
{
xcoeff = xcoeff_;
return *this;
}
ViewportWScalingNV& setYcoeff( float ycoeff_ )
{
ycoeff = ycoeff_;
return *this;
}
operator const VkViewportWScalingNV&() const
{
return *reinterpret_cast<const VkViewportWScalingNV*>(this);
}
bool operator==( ViewportWScalingNV const& rhs ) const
{
return ( xcoeff == rhs.xcoeff )
&& ( ycoeff == rhs.ycoeff );
}
bool operator!=( ViewportWScalingNV const& rhs ) const
{
return !operator==( rhs );
}
float xcoeff;
float ycoeff;
};
static_assert( sizeof( ViewportWScalingNV ) == sizeof( VkViewportWScalingNV ), "struct and wrapper have different size!" );
struct SampleLocationEXT
{
SampleLocationEXT( float x_ = 0, float y_ = 0 )
: x( x_ )
, y( y_ )
{
}
SampleLocationEXT( VkSampleLocationEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SampleLocationEXT ) );
}
SampleLocationEXT& operator=( VkSampleLocationEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SampleLocationEXT ) );
return *this;
}
SampleLocationEXT& setX( float x_ )
{
x = x_;
return *this;
}
SampleLocationEXT& setY( float y_ )
{
y = y_;
return *this;
}
operator const VkSampleLocationEXT&() const
{
return *reinterpret_cast<const VkSampleLocationEXT*>(this);
}
bool operator==( SampleLocationEXT const& rhs ) const
{
return ( x == rhs.x )
&& ( y == rhs.y );
}
bool operator!=( SampleLocationEXT const& rhs ) const
{
return !operator==( rhs );
}
float x;
float y;
};
static_assert( sizeof( SampleLocationEXT ) == sizeof( VkSampleLocationEXT ), "struct and wrapper have different size!" );
struct ShaderResourceUsageAMD
{
operator const VkShaderResourceUsageAMD&() const
{
return *reinterpret_cast<const VkShaderResourceUsageAMD*>(this);
}
bool operator==( ShaderResourceUsageAMD const& rhs ) const
{
return ( numUsedVgprs == rhs.numUsedVgprs )
&& ( numUsedSgprs == rhs.numUsedSgprs )
&& ( ldsSizePerLocalWorkGroup == rhs.ldsSizePerLocalWorkGroup )
&& ( ldsUsageSizeInBytes == rhs.ldsUsageSizeInBytes )
&& ( scratchMemUsageInBytes == rhs.scratchMemUsageInBytes );
}
bool operator!=( ShaderResourceUsageAMD const& rhs ) const
{
return !operator==( rhs );
}
uint32_t numUsedVgprs;
uint32_t numUsedSgprs;
uint32_t ldsSizePerLocalWorkGroup;
size_t ldsUsageSizeInBytes;
size_t scratchMemUsageInBytes;
};
static_assert( sizeof( ShaderResourceUsageAMD ) == sizeof( VkShaderResourceUsageAMD ), "struct and wrapper have different size!" );
enum class ImageLayout
{
eUndefined = VK_IMAGE_LAYOUT_UNDEFINED,
eGeneral = VK_IMAGE_LAYOUT_GENERAL,
eColorAttachmentOptimal = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
eDepthStencilAttachmentOptimal = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
eDepthStencilReadOnlyOptimal = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
eShaderReadOnlyOptimal = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
eTransferSrcOptimal = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
eTransferDstOptimal = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
ePreinitialized = VK_IMAGE_LAYOUT_PREINITIALIZED,
ePresentSrcKHR = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
eSharedPresentKHR = VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR,
eDepthReadOnlyStencilAttachmentOptimalKHR = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR,
eDepthAttachmentStencilReadOnlyOptimalKHR = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR
};
struct DescriptorImageInfo
{
DescriptorImageInfo( Sampler sampler_ = Sampler(), ImageView imageView_ = ImageView(), ImageLayout imageLayout_ = ImageLayout::eUndefined )
: sampler( sampler_ )
, imageView( imageView_ )
, imageLayout( imageLayout_ )
{
}
DescriptorImageInfo( VkDescriptorImageInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorImageInfo ) );
}
DescriptorImageInfo& operator=( VkDescriptorImageInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorImageInfo ) );
return *this;
}
DescriptorImageInfo& setSampler( Sampler sampler_ )
{
sampler = sampler_;
return *this;
}
DescriptorImageInfo& setImageView( ImageView imageView_ )
{
imageView = imageView_;
return *this;
}
DescriptorImageInfo& setImageLayout( ImageLayout imageLayout_ )
{
imageLayout = imageLayout_;
return *this;
}
operator const VkDescriptorImageInfo&() const
{
return *reinterpret_cast<const VkDescriptorImageInfo*>(this);
}
bool operator==( DescriptorImageInfo const& rhs ) const
{
return ( sampler == rhs.sampler )
&& ( imageView == rhs.imageView )
&& ( imageLayout == rhs.imageLayout );
}
bool operator!=( DescriptorImageInfo const& rhs ) const
{
return !operator==( rhs );
}
Sampler sampler;
ImageView imageView;
ImageLayout imageLayout;
};
static_assert( sizeof( DescriptorImageInfo ) == sizeof( VkDescriptorImageInfo ), "struct and wrapper have different size!" );
struct AttachmentReference
{
AttachmentReference( uint32_t attachment_ = 0, ImageLayout layout_ = ImageLayout::eUndefined )
: attachment( attachment_ )
, layout( layout_ )
{
}
AttachmentReference( VkAttachmentReference const & rhs )
{
memcpy( this, &rhs, sizeof( AttachmentReference ) );
}
AttachmentReference& operator=( VkAttachmentReference const & rhs )
{
memcpy( this, &rhs, sizeof( AttachmentReference ) );
return *this;
}
AttachmentReference& setAttachment( uint32_t attachment_ )
{
attachment = attachment_;
return *this;
}
AttachmentReference& setLayout( ImageLayout layout_ )
{
layout = layout_;
return *this;
}
operator const VkAttachmentReference&() const
{
return *reinterpret_cast<const VkAttachmentReference*>(this);
}
bool operator==( AttachmentReference const& rhs ) const
{
return ( attachment == rhs.attachment )
&& ( layout == rhs.layout );
}
bool operator!=( AttachmentReference const& rhs ) const
{
return !operator==( rhs );
}
uint32_t attachment;
ImageLayout layout;
};
static_assert( sizeof( AttachmentReference ) == sizeof( VkAttachmentReference ), "struct and wrapper have different size!" );
enum class AttachmentLoadOp
{
eLoad = VK_ATTACHMENT_LOAD_OP_LOAD,
eClear = VK_ATTACHMENT_LOAD_OP_CLEAR,
eDontCare = VK_ATTACHMENT_LOAD_OP_DONT_CARE
};
enum class AttachmentStoreOp
{
eStore = VK_ATTACHMENT_STORE_OP_STORE,
eDontCare = VK_ATTACHMENT_STORE_OP_DONT_CARE
};
enum class ImageType
{
e1D = VK_IMAGE_TYPE_1D,
e2D = VK_IMAGE_TYPE_2D,
e3D = VK_IMAGE_TYPE_3D
};
enum class ImageTiling
{
eOptimal = VK_IMAGE_TILING_OPTIMAL,
eLinear = VK_IMAGE_TILING_LINEAR
};
enum class ImageViewType
{
e1D = VK_IMAGE_VIEW_TYPE_1D,
e2D = VK_IMAGE_VIEW_TYPE_2D,
e3D = VK_IMAGE_VIEW_TYPE_3D,
eCube = VK_IMAGE_VIEW_TYPE_CUBE,
e1DArray = VK_IMAGE_VIEW_TYPE_1D_ARRAY,
e2DArray = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
eCubeArray = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY
};
enum class CommandBufferLevel
{
ePrimary = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
eSecondary = VK_COMMAND_BUFFER_LEVEL_SECONDARY
};
enum class ComponentSwizzle
{
eIdentity = VK_COMPONENT_SWIZZLE_IDENTITY,
eZero = VK_COMPONENT_SWIZZLE_ZERO,
eOne = VK_COMPONENT_SWIZZLE_ONE,
eR = VK_COMPONENT_SWIZZLE_R,
eG = VK_COMPONENT_SWIZZLE_G,
eB = VK_COMPONENT_SWIZZLE_B,
eA = VK_COMPONENT_SWIZZLE_A
};
struct ComponentMapping
{
ComponentMapping( ComponentSwizzle r_ = ComponentSwizzle::eIdentity, ComponentSwizzle g_ = ComponentSwizzle::eIdentity, ComponentSwizzle b_ = ComponentSwizzle::eIdentity, ComponentSwizzle a_ = ComponentSwizzle::eIdentity )
: r( r_ )
, g( g_ )
, b( b_ )
, a( a_ )
{
}
ComponentMapping( VkComponentMapping const & rhs )
{
memcpy( this, &rhs, sizeof( ComponentMapping ) );
}
ComponentMapping& operator=( VkComponentMapping const & rhs )
{
memcpy( this, &rhs, sizeof( ComponentMapping ) );
return *this;
}
ComponentMapping& setR( ComponentSwizzle r_ )
{
r = r_;
return *this;
}
ComponentMapping& setG( ComponentSwizzle g_ )
{
g = g_;
return *this;
}
ComponentMapping& setB( ComponentSwizzle b_ )
{
b = b_;
return *this;
}
ComponentMapping& setA( ComponentSwizzle a_ )
{
a = a_;
return *this;
}
operator const VkComponentMapping&() const
{
return *reinterpret_cast<const VkComponentMapping*>(this);
}
bool operator==( ComponentMapping const& rhs ) const
{
return ( r == rhs.r )
&& ( g == rhs.g )
&& ( b == rhs.b )
&& ( a == rhs.a );
}
bool operator!=( ComponentMapping const& rhs ) const
{
return !operator==( rhs );
}
ComponentSwizzle r;
ComponentSwizzle g;
ComponentSwizzle b;
ComponentSwizzle a;
};
static_assert( sizeof( ComponentMapping ) == sizeof( VkComponentMapping ), "struct and wrapper have different size!" );
enum class DescriptorType
{
eSampler = VK_DESCRIPTOR_TYPE_SAMPLER,
eCombinedImageSampler = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
eSampledImage = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
eStorageImage = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
eUniformTexelBuffer = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
eStorageTexelBuffer = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
eUniformBuffer = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
eStorageBuffer = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
eUniformBufferDynamic = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
eStorageBufferDynamic = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC,
eInputAttachment = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT
};
struct DescriptorPoolSize
{
DescriptorPoolSize( DescriptorType type_ = DescriptorType::eSampler, uint32_t descriptorCount_ = 0 )
: type( type_ )
, descriptorCount( descriptorCount_ )
{
}
DescriptorPoolSize( VkDescriptorPoolSize const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorPoolSize ) );
}
DescriptorPoolSize& operator=( VkDescriptorPoolSize const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorPoolSize ) );
return *this;
}
DescriptorPoolSize& setType( DescriptorType type_ )
{
type = type_;
return *this;
}
DescriptorPoolSize& setDescriptorCount( uint32_t descriptorCount_ )
{
descriptorCount = descriptorCount_;
return *this;
}
operator const VkDescriptorPoolSize&() const
{
return *reinterpret_cast<const VkDescriptorPoolSize*>(this);
}
bool operator==( DescriptorPoolSize const& rhs ) const
{
return ( type == rhs.type )
&& ( descriptorCount == rhs.descriptorCount );
}
bool operator!=( DescriptorPoolSize const& rhs ) const
{
return !operator==( rhs );
}
DescriptorType type;
uint32_t descriptorCount;
};
static_assert( sizeof( DescriptorPoolSize ) == sizeof( VkDescriptorPoolSize ), "struct and wrapper have different size!" );
struct DescriptorUpdateTemplateEntryKHR
{
DescriptorUpdateTemplateEntryKHR( uint32_t dstBinding_ = 0, uint32_t dstArrayElement_ = 0, uint32_t descriptorCount_ = 0, DescriptorType descriptorType_ = DescriptorType::eSampler, size_t offset_ = 0, size_t stride_ = 0 )
: dstBinding( dstBinding_ )
, dstArrayElement( dstArrayElement_ )
, descriptorCount( descriptorCount_ )
, descriptorType( descriptorType_ )
, offset( offset_ )
, stride( stride_ )
{
}
DescriptorUpdateTemplateEntryKHR( VkDescriptorUpdateTemplateEntryKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorUpdateTemplateEntryKHR ) );
}
DescriptorUpdateTemplateEntryKHR& operator=( VkDescriptorUpdateTemplateEntryKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorUpdateTemplateEntryKHR ) );
return *this;
}
DescriptorUpdateTemplateEntryKHR& setDstBinding( uint32_t dstBinding_ )
{
dstBinding = dstBinding_;
return *this;
}
DescriptorUpdateTemplateEntryKHR& setDstArrayElement( uint32_t dstArrayElement_ )
{
dstArrayElement = dstArrayElement_;
return *this;
}
DescriptorUpdateTemplateEntryKHR& setDescriptorCount( uint32_t descriptorCount_ )
{
descriptorCount = descriptorCount_;
return *this;
}
DescriptorUpdateTemplateEntryKHR& setDescriptorType( DescriptorType descriptorType_ )
{
descriptorType = descriptorType_;
return *this;
}
DescriptorUpdateTemplateEntryKHR& setOffset( size_t offset_ )
{
offset = offset_;
return *this;
}
DescriptorUpdateTemplateEntryKHR& setStride( size_t stride_ )
{
stride = stride_;
return *this;
}
operator const VkDescriptorUpdateTemplateEntryKHR&() const
{
return *reinterpret_cast<const VkDescriptorUpdateTemplateEntryKHR*>(this);
}
bool operator==( DescriptorUpdateTemplateEntryKHR const& rhs ) const
{
return ( dstBinding == rhs.dstBinding )
&& ( dstArrayElement == rhs.dstArrayElement )
&& ( descriptorCount == rhs.descriptorCount )
&& ( descriptorType == rhs.descriptorType )
&& ( offset == rhs.offset )
&& ( stride == rhs.stride );
}
bool operator!=( DescriptorUpdateTemplateEntryKHR const& rhs ) const
{
return !operator==( rhs );
}
uint32_t dstBinding;
uint32_t dstArrayElement;
uint32_t descriptorCount;
DescriptorType descriptorType;
size_t offset;
size_t stride;
};
static_assert( sizeof( DescriptorUpdateTemplateEntryKHR ) == sizeof( VkDescriptorUpdateTemplateEntryKHR ), "struct and wrapper have different size!" );
enum class QueryType
{
eOcclusion = VK_QUERY_TYPE_OCCLUSION,
ePipelineStatistics = VK_QUERY_TYPE_PIPELINE_STATISTICS,
eTimestamp = VK_QUERY_TYPE_TIMESTAMP
};
enum class BorderColor
{
eFloatTransparentBlack = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK,
eIntTransparentBlack = VK_BORDER_COLOR_INT_TRANSPARENT_BLACK,
eFloatOpaqueBlack = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK,
eIntOpaqueBlack = VK_BORDER_COLOR_INT_OPAQUE_BLACK,
eFloatOpaqueWhite = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE,
eIntOpaqueWhite = VK_BORDER_COLOR_INT_OPAQUE_WHITE
};
enum class PipelineBindPoint
{
eGraphics = VK_PIPELINE_BIND_POINT_GRAPHICS,
eCompute = VK_PIPELINE_BIND_POINT_COMPUTE
};
enum class PipelineCacheHeaderVersion
{
eOne = VK_PIPELINE_CACHE_HEADER_VERSION_ONE
};
enum class PrimitiveTopology
{
ePointList = VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
eLineList = VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
eLineStrip = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP,
eTriangleList = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
eTriangleStrip = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
eTriangleFan = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,
eLineListWithAdjacency = VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
eLineStripWithAdjacency = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY,
eTriangleListWithAdjacency = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY,
eTriangleStripWithAdjacency = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY,
ePatchList = VK_PRIMITIVE_TOPOLOGY_PATCH_LIST
};
enum class SharingMode
{
eExclusive = VK_SHARING_MODE_EXCLUSIVE,
eConcurrent = VK_SHARING_MODE_CONCURRENT
};
enum class IndexType
{
eUint16 = VK_INDEX_TYPE_UINT16,
eUint32 = VK_INDEX_TYPE_UINT32
};
enum class Filter
{
eNearest = VK_FILTER_NEAREST,
eLinear = VK_FILTER_LINEAR,
eCubicIMG = VK_FILTER_CUBIC_IMG
};
enum class SamplerMipmapMode
{
eNearest = VK_SAMPLER_MIPMAP_MODE_NEAREST,
eLinear = VK_SAMPLER_MIPMAP_MODE_LINEAR
};
enum class SamplerAddressMode
{
eRepeat = VK_SAMPLER_ADDRESS_MODE_REPEAT,
eMirroredRepeat = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT,
eClampToEdge = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
eClampToBorder = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
eMirrorClampToEdge = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE
};
enum class CompareOp
{
eNever = VK_COMPARE_OP_NEVER,
eLess = VK_COMPARE_OP_LESS,
eEqual = VK_COMPARE_OP_EQUAL,
eLessOrEqual = VK_COMPARE_OP_LESS_OR_EQUAL,
eGreater = VK_COMPARE_OP_GREATER,
eNotEqual = VK_COMPARE_OP_NOT_EQUAL,
eGreaterOrEqual = VK_COMPARE_OP_GREATER_OR_EQUAL,
eAlways = VK_COMPARE_OP_ALWAYS
};
enum class PolygonMode
{
eFill = VK_POLYGON_MODE_FILL,
eLine = VK_POLYGON_MODE_LINE,
ePoint = VK_POLYGON_MODE_POINT,
eFillRectangleNV = VK_POLYGON_MODE_FILL_RECTANGLE_NV
};
enum class CullModeFlagBits
{
eNone = VK_CULL_MODE_NONE,
eFront = VK_CULL_MODE_FRONT_BIT,
eBack = VK_CULL_MODE_BACK_BIT,
eFrontAndBack = VK_CULL_MODE_FRONT_AND_BACK
};
using CullModeFlags = Flags<CullModeFlagBits, VkCullModeFlags>;
VULKAN_HPP_INLINE CullModeFlags operator|( CullModeFlagBits bit0, CullModeFlagBits bit1 )
{
return CullModeFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE CullModeFlags operator~( CullModeFlagBits bits )
{
return ~( CullModeFlags( bits ) );
}
template <> struct FlagTraits<CullModeFlagBits>
{
enum
{
allFlags = VkFlags(CullModeFlagBits::eNone) | VkFlags(CullModeFlagBits::eFront) | VkFlags(CullModeFlagBits::eBack) | VkFlags(CullModeFlagBits::eFrontAndBack)
};
};
enum class FrontFace
{
eCounterClockwise = VK_FRONT_FACE_COUNTER_CLOCKWISE,
eClockwise = VK_FRONT_FACE_CLOCKWISE
};
enum class BlendFactor
{
eZero = VK_BLEND_FACTOR_ZERO,
eOne = VK_BLEND_FACTOR_ONE,
eSrcColor = VK_BLEND_FACTOR_SRC_COLOR,
eOneMinusSrcColor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR,
eDstColor = VK_BLEND_FACTOR_DST_COLOR,
eOneMinusDstColor = VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR,
eSrcAlpha = VK_BLEND_FACTOR_SRC_ALPHA,
eOneMinusSrcAlpha = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
eDstAlpha = VK_BLEND_FACTOR_DST_ALPHA,
eOneMinusDstAlpha = VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA,
eConstantColor = VK_BLEND_FACTOR_CONSTANT_COLOR,
eOneMinusConstantColor = VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR,
eConstantAlpha = VK_BLEND_FACTOR_CONSTANT_ALPHA,
eOneMinusConstantAlpha = VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA,
eSrcAlphaSaturate = VK_BLEND_FACTOR_SRC_ALPHA_SATURATE,
eSrc1Color = VK_BLEND_FACTOR_SRC1_COLOR,
eOneMinusSrc1Color = VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
eSrc1Alpha = VK_BLEND_FACTOR_SRC1_ALPHA,
eOneMinusSrc1Alpha = VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA
};
enum class BlendOp
{
eAdd = VK_BLEND_OP_ADD,
eSubtract = VK_BLEND_OP_SUBTRACT,
eReverseSubtract = VK_BLEND_OP_REVERSE_SUBTRACT,
eMin = VK_BLEND_OP_MIN,
eMax = VK_BLEND_OP_MAX,
eZeroEXT = VK_BLEND_OP_ZERO_EXT,
eSrcEXT = VK_BLEND_OP_SRC_EXT,
eDstEXT = VK_BLEND_OP_DST_EXT,
eSrcOverEXT = VK_BLEND_OP_SRC_OVER_EXT,
eDstOverEXT = VK_BLEND_OP_DST_OVER_EXT,
eSrcInEXT = VK_BLEND_OP_SRC_IN_EXT,
eDstInEXT = VK_BLEND_OP_DST_IN_EXT,
eSrcOutEXT = VK_BLEND_OP_SRC_OUT_EXT,
eDstOutEXT = VK_BLEND_OP_DST_OUT_EXT,
eSrcAtopEXT = VK_BLEND_OP_SRC_ATOP_EXT,
eDstAtopEXT = VK_BLEND_OP_DST_ATOP_EXT,
eXorEXT = VK_BLEND_OP_XOR_EXT,
eMultiplyEXT = VK_BLEND_OP_MULTIPLY_EXT,
eScreenEXT = VK_BLEND_OP_SCREEN_EXT,
eOverlayEXT = VK_BLEND_OP_OVERLAY_EXT,
eDarkenEXT = VK_BLEND_OP_DARKEN_EXT,
eLightenEXT = VK_BLEND_OP_LIGHTEN_EXT,
eColordodgeEXT = VK_BLEND_OP_COLORDODGE_EXT,
eColorburnEXT = VK_BLEND_OP_COLORBURN_EXT,
eHardlightEXT = VK_BLEND_OP_HARDLIGHT_EXT,
eSoftlightEXT = VK_BLEND_OP_SOFTLIGHT_EXT,
eDifferenceEXT = VK_BLEND_OP_DIFFERENCE_EXT,
eExclusionEXT = VK_BLEND_OP_EXCLUSION_EXT,
eInvertEXT = VK_BLEND_OP_INVERT_EXT,
eInvertRgbEXT = VK_BLEND_OP_INVERT_RGB_EXT,
eLineardodgeEXT = VK_BLEND_OP_LINEARDODGE_EXT,
eLinearburnEXT = VK_BLEND_OP_LINEARBURN_EXT,
eVividlightEXT = VK_BLEND_OP_VIVIDLIGHT_EXT,
eLinearlightEXT = VK_BLEND_OP_LINEARLIGHT_EXT,
ePinlightEXT = VK_BLEND_OP_PINLIGHT_EXT,
eHardmixEXT = VK_BLEND_OP_HARDMIX_EXT,
eHslHueEXT = VK_BLEND_OP_HSL_HUE_EXT,
eHslSaturationEXT = VK_BLEND_OP_HSL_SATURATION_EXT,
eHslColorEXT = VK_BLEND_OP_HSL_COLOR_EXT,
eHslLuminosityEXT = VK_BLEND_OP_HSL_LUMINOSITY_EXT,
ePlusEXT = VK_BLEND_OP_PLUS_EXT,
ePlusClampedEXT = VK_BLEND_OP_PLUS_CLAMPED_EXT,
ePlusClampedAlphaEXT = VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT,
ePlusDarkerEXT = VK_BLEND_OP_PLUS_DARKER_EXT,
eMinusEXT = VK_BLEND_OP_MINUS_EXT,
eMinusClampedEXT = VK_BLEND_OP_MINUS_CLAMPED_EXT,
eContrastEXT = VK_BLEND_OP_CONTRAST_EXT,
eInvertOvgEXT = VK_BLEND_OP_INVERT_OVG_EXT,
eRedEXT = VK_BLEND_OP_RED_EXT,
eGreenEXT = VK_BLEND_OP_GREEN_EXT,
eBlueEXT = VK_BLEND_OP_BLUE_EXT
};
enum class StencilOp
{
eKeep = VK_STENCIL_OP_KEEP,
eZero = VK_STENCIL_OP_ZERO,
eReplace = VK_STENCIL_OP_REPLACE,
eIncrementAndClamp = VK_STENCIL_OP_INCREMENT_AND_CLAMP,
eDecrementAndClamp = VK_STENCIL_OP_DECREMENT_AND_CLAMP,
eInvert = VK_STENCIL_OP_INVERT,
eIncrementAndWrap = VK_STENCIL_OP_INCREMENT_AND_WRAP,
eDecrementAndWrap = VK_STENCIL_OP_DECREMENT_AND_WRAP
};
struct StencilOpState
{
StencilOpState( StencilOp failOp_ = StencilOp::eKeep, StencilOp passOp_ = StencilOp::eKeep, StencilOp depthFailOp_ = StencilOp::eKeep, CompareOp compareOp_ = CompareOp::eNever, uint32_t compareMask_ = 0, uint32_t writeMask_ = 0, uint32_t reference_ = 0 )
: failOp( failOp_ )
, passOp( passOp_ )
, depthFailOp( depthFailOp_ )
, compareOp( compareOp_ )
, compareMask( compareMask_ )
, writeMask( writeMask_ )
, reference( reference_ )
{
}
StencilOpState( VkStencilOpState const & rhs )
{
memcpy( this, &rhs, sizeof( StencilOpState ) );
}
StencilOpState& operator=( VkStencilOpState const & rhs )
{
memcpy( this, &rhs, sizeof( StencilOpState ) );
return *this;
}
StencilOpState& setFailOp( StencilOp failOp_ )
{
failOp = failOp_;
return *this;
}
StencilOpState& setPassOp( StencilOp passOp_ )
{
passOp = passOp_;
return *this;
}
StencilOpState& setDepthFailOp( StencilOp depthFailOp_ )
{
depthFailOp = depthFailOp_;
return *this;
}
StencilOpState& setCompareOp( CompareOp compareOp_ )
{
compareOp = compareOp_;
return *this;
}
StencilOpState& setCompareMask( uint32_t compareMask_ )
{
compareMask = compareMask_;
return *this;
}
StencilOpState& setWriteMask( uint32_t writeMask_ )
{
writeMask = writeMask_;
return *this;
}
StencilOpState& setReference( uint32_t reference_ )
{
reference = reference_;
return *this;
}
operator const VkStencilOpState&() const
{
return *reinterpret_cast<const VkStencilOpState*>(this);
}
bool operator==( StencilOpState const& rhs ) const
{
return ( failOp == rhs.failOp )
&& ( passOp == rhs.passOp )
&& ( depthFailOp == rhs.depthFailOp )
&& ( compareOp == rhs.compareOp )
&& ( compareMask == rhs.compareMask )
&& ( writeMask == rhs.writeMask )
&& ( reference == rhs.reference );
}
bool operator!=( StencilOpState const& rhs ) const
{
return !operator==( rhs );
}
StencilOp failOp;
StencilOp passOp;
StencilOp depthFailOp;
CompareOp compareOp;
uint32_t compareMask;
uint32_t writeMask;
uint32_t reference;
};
static_assert( sizeof( StencilOpState ) == sizeof( VkStencilOpState ), "struct and wrapper have different size!" );
enum class LogicOp
{
eClear = VK_LOGIC_OP_CLEAR,
eAnd = VK_LOGIC_OP_AND,
eAndReverse = VK_LOGIC_OP_AND_REVERSE,
eCopy = VK_LOGIC_OP_COPY,
eAndInverted = VK_LOGIC_OP_AND_INVERTED,
eNoOp = VK_LOGIC_OP_NO_OP,
eXor = VK_LOGIC_OP_XOR,
eOr = VK_LOGIC_OP_OR,
eNor = VK_LOGIC_OP_NOR,
eEquivalent = VK_LOGIC_OP_EQUIVALENT,
eInvert = VK_LOGIC_OP_INVERT,
eOrReverse = VK_LOGIC_OP_OR_REVERSE,
eCopyInverted = VK_LOGIC_OP_COPY_INVERTED,
eOrInverted = VK_LOGIC_OP_OR_INVERTED,
eNand = VK_LOGIC_OP_NAND,
eSet = VK_LOGIC_OP_SET
};
enum class InternalAllocationType
{
eExecutable = VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE
};
enum class SystemAllocationScope
{
eCommand = VK_SYSTEM_ALLOCATION_SCOPE_COMMAND,
eObject = VK_SYSTEM_ALLOCATION_SCOPE_OBJECT,
eCache = VK_SYSTEM_ALLOCATION_SCOPE_CACHE,
eDevice = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE,
eInstance = VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE
};
enum class PhysicalDeviceType
{
eOther = VK_PHYSICAL_DEVICE_TYPE_OTHER,
eIntegratedGpu = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
eDiscreteGpu = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU,
eVirtualGpu = VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU,
eCpu = VK_PHYSICAL_DEVICE_TYPE_CPU
};
enum class VertexInputRate
{
eVertex = VK_VERTEX_INPUT_RATE_VERTEX,
eInstance = VK_VERTEX_INPUT_RATE_INSTANCE
};
struct VertexInputBindingDescription
{
VertexInputBindingDescription( uint32_t binding_ = 0, uint32_t stride_ = 0, VertexInputRate inputRate_ = VertexInputRate::eVertex )
: binding( binding_ )
, stride( stride_ )
, inputRate( inputRate_ )
{
}
VertexInputBindingDescription( VkVertexInputBindingDescription const & rhs )
{
memcpy( this, &rhs, sizeof( VertexInputBindingDescription ) );
}
VertexInputBindingDescription& operator=( VkVertexInputBindingDescription const & rhs )
{
memcpy( this, &rhs, sizeof( VertexInputBindingDescription ) );
return *this;
}
VertexInputBindingDescription& setBinding( uint32_t binding_ )
{
binding = binding_;
return *this;
}
VertexInputBindingDescription& setStride( uint32_t stride_ )
{
stride = stride_;
return *this;
}
VertexInputBindingDescription& setInputRate( VertexInputRate inputRate_ )
{
inputRate = inputRate_;
return *this;
}
operator const VkVertexInputBindingDescription&() const
{
return *reinterpret_cast<const VkVertexInputBindingDescription*>(this);
}
bool operator==( VertexInputBindingDescription const& rhs ) const
{
return ( binding == rhs.binding )
&& ( stride == rhs.stride )
&& ( inputRate == rhs.inputRate );
}
bool operator!=( VertexInputBindingDescription const& rhs ) const
{
return !operator==( rhs );
}
uint32_t binding;
uint32_t stride;
VertexInputRate inputRate;
};
static_assert( sizeof( VertexInputBindingDescription ) == sizeof( VkVertexInputBindingDescription ), "struct and wrapper have different size!" );
enum class Format
{
eUndefined = VK_FORMAT_UNDEFINED,
eR4G4UnormPack8 = VK_FORMAT_R4G4_UNORM_PACK8,
eR4G4B4A4UnormPack16 = VK_FORMAT_R4G4B4A4_UNORM_PACK16,
eB4G4R4A4UnormPack16 = VK_FORMAT_B4G4R4A4_UNORM_PACK16,
eR5G6B5UnormPack16 = VK_FORMAT_R5G6B5_UNORM_PACK16,
eB5G6R5UnormPack16 = VK_FORMAT_B5G6R5_UNORM_PACK16,
eR5G5B5A1UnormPack16 = VK_FORMAT_R5G5B5A1_UNORM_PACK16,
eB5G5R5A1UnormPack16 = VK_FORMAT_B5G5R5A1_UNORM_PACK16,
eA1R5G5B5UnormPack16 = VK_FORMAT_A1R5G5B5_UNORM_PACK16,
eR8Unorm = VK_FORMAT_R8_UNORM,
eR8Snorm = VK_FORMAT_R8_SNORM,
eR8Uscaled = VK_FORMAT_R8_USCALED,
eR8Sscaled = VK_FORMAT_R8_SSCALED,
eR8Uint = VK_FORMAT_R8_UINT,
eR8Sint = VK_FORMAT_R8_SINT,
eR8Srgb = VK_FORMAT_R8_SRGB,
eR8G8Unorm = VK_FORMAT_R8G8_UNORM,
eR8G8Snorm = VK_FORMAT_R8G8_SNORM,
eR8G8Uscaled = VK_FORMAT_R8G8_USCALED,
eR8G8Sscaled = VK_FORMAT_R8G8_SSCALED,
eR8G8Uint = VK_FORMAT_R8G8_UINT,
eR8G8Sint = VK_FORMAT_R8G8_SINT,
eR8G8Srgb = VK_FORMAT_R8G8_SRGB,
eR8G8B8Unorm = VK_FORMAT_R8G8B8_UNORM,
eR8G8B8Snorm = VK_FORMAT_R8G8B8_SNORM,
eR8G8B8Uscaled = VK_FORMAT_R8G8B8_USCALED,
eR8G8B8Sscaled = VK_FORMAT_R8G8B8_SSCALED,
eR8G8B8Uint = VK_FORMAT_R8G8B8_UINT,
eR8G8B8Sint = VK_FORMAT_R8G8B8_SINT,
eR8G8B8Srgb = VK_FORMAT_R8G8B8_SRGB,
eB8G8R8Unorm = VK_FORMAT_B8G8R8_UNORM,
eB8G8R8Snorm = VK_FORMAT_B8G8R8_SNORM,
eB8G8R8Uscaled = VK_FORMAT_B8G8R8_USCALED,
eB8G8R8Sscaled = VK_FORMAT_B8G8R8_SSCALED,
eB8G8R8Uint = VK_FORMAT_B8G8R8_UINT,
eB8G8R8Sint = VK_FORMAT_B8G8R8_SINT,
eB8G8R8Srgb = VK_FORMAT_B8G8R8_SRGB,
eR8G8B8A8Unorm = VK_FORMAT_R8G8B8A8_UNORM,
eR8G8B8A8Snorm = VK_FORMAT_R8G8B8A8_SNORM,
eR8G8B8A8Uscaled = VK_FORMAT_R8G8B8A8_USCALED,
eR8G8B8A8Sscaled = VK_FORMAT_R8G8B8A8_SSCALED,
eR8G8B8A8Uint = VK_FORMAT_R8G8B8A8_UINT,
eR8G8B8A8Sint = VK_FORMAT_R8G8B8A8_SINT,
eR8G8B8A8Srgb = VK_FORMAT_R8G8B8A8_SRGB,
eB8G8R8A8Unorm = VK_FORMAT_B8G8R8A8_UNORM,
eB8G8R8A8Snorm = VK_FORMAT_B8G8R8A8_SNORM,
eB8G8R8A8Uscaled = VK_FORMAT_B8G8R8A8_USCALED,
eB8G8R8A8Sscaled = VK_FORMAT_B8G8R8A8_SSCALED,
eB8G8R8A8Uint = VK_FORMAT_B8G8R8A8_UINT,
eB8G8R8A8Sint = VK_FORMAT_B8G8R8A8_SINT,
eB8G8R8A8Srgb = VK_FORMAT_B8G8R8A8_SRGB,
eA8B8G8R8UnormPack32 = VK_FORMAT_A8B8G8R8_UNORM_PACK32,
eA8B8G8R8SnormPack32 = VK_FORMAT_A8B8G8R8_SNORM_PACK32,
eA8B8G8R8UscaledPack32 = VK_FORMAT_A8B8G8R8_USCALED_PACK32,
eA8B8G8R8SscaledPack32 = VK_FORMAT_A8B8G8R8_SSCALED_PACK32,
eA8B8G8R8UintPack32 = VK_FORMAT_A8B8G8R8_UINT_PACK32,
eA8B8G8R8SintPack32 = VK_FORMAT_A8B8G8R8_SINT_PACK32,
eA8B8G8R8SrgbPack32 = VK_FORMAT_A8B8G8R8_SRGB_PACK32,
eA2R10G10B10UnormPack32 = VK_FORMAT_A2R10G10B10_UNORM_PACK32,
eA2R10G10B10SnormPack32 = VK_FORMAT_A2R10G10B10_SNORM_PACK32,
eA2R10G10B10UscaledPack32 = VK_FORMAT_A2R10G10B10_USCALED_PACK32,
eA2R10G10B10SscaledPack32 = VK_FORMAT_A2R10G10B10_SSCALED_PACK32,
eA2R10G10B10UintPack32 = VK_FORMAT_A2R10G10B10_UINT_PACK32,
eA2R10G10B10SintPack32 = VK_FORMAT_A2R10G10B10_SINT_PACK32,
eA2B10G10R10UnormPack32 = VK_FORMAT_A2B10G10R10_UNORM_PACK32,
eA2B10G10R10SnormPack32 = VK_FORMAT_A2B10G10R10_SNORM_PACK32,
eA2B10G10R10UscaledPack32 = VK_FORMAT_A2B10G10R10_USCALED_PACK32,
eA2B10G10R10SscaledPack32 = VK_FORMAT_A2B10G10R10_SSCALED_PACK32,
eA2B10G10R10UintPack32 = VK_FORMAT_A2B10G10R10_UINT_PACK32,
eA2B10G10R10SintPack32 = VK_FORMAT_A2B10G10R10_SINT_PACK32,
eR16Unorm = VK_FORMAT_R16_UNORM,
eR16Snorm = VK_FORMAT_R16_SNORM,
eR16Uscaled = VK_FORMAT_R16_USCALED,
eR16Sscaled = VK_FORMAT_R16_SSCALED,
eR16Uint = VK_FORMAT_R16_UINT,
eR16Sint = VK_FORMAT_R16_SINT,
eR16Sfloat = VK_FORMAT_R16_SFLOAT,
eR16G16Unorm = VK_FORMAT_R16G16_UNORM,
eR16G16Snorm = VK_FORMAT_R16G16_SNORM,
eR16G16Uscaled = VK_FORMAT_R16G16_USCALED,
eR16G16Sscaled = VK_FORMAT_R16G16_SSCALED,
eR16G16Uint = VK_FORMAT_R16G16_UINT,
eR16G16Sint = VK_FORMAT_R16G16_SINT,
eR16G16Sfloat = VK_FORMAT_R16G16_SFLOAT,
eR16G16B16Unorm = VK_FORMAT_R16G16B16_UNORM,
eR16G16B16Snorm = VK_FORMAT_R16G16B16_SNORM,
eR16G16B16Uscaled = VK_FORMAT_R16G16B16_USCALED,
eR16G16B16Sscaled = VK_FORMAT_R16G16B16_SSCALED,
eR16G16B16Uint = VK_FORMAT_R16G16B16_UINT,
eR16G16B16Sint = VK_FORMAT_R16G16B16_SINT,
eR16G16B16Sfloat = VK_FORMAT_R16G16B16_SFLOAT,
eR16G16B16A16Unorm = VK_FORMAT_R16G16B16A16_UNORM,
eR16G16B16A16Snorm = VK_FORMAT_R16G16B16A16_SNORM,
eR16G16B16A16Uscaled = VK_FORMAT_R16G16B16A16_USCALED,
eR16G16B16A16Sscaled = VK_FORMAT_R16G16B16A16_SSCALED,
eR16G16B16A16Uint = VK_FORMAT_R16G16B16A16_UINT,
eR16G16B16A16Sint = VK_FORMAT_R16G16B16A16_SINT,
eR16G16B16A16Sfloat = VK_FORMAT_R16G16B16A16_SFLOAT,
eR32Uint = VK_FORMAT_R32_UINT,
eR32Sint = VK_FORMAT_R32_SINT,
eR32Sfloat = VK_FORMAT_R32_SFLOAT,
eR32G32Uint = VK_FORMAT_R32G32_UINT,
eR32G32Sint = VK_FORMAT_R32G32_SINT,
eR32G32Sfloat = VK_FORMAT_R32G32_SFLOAT,
eR32G32B32Uint = VK_FORMAT_R32G32B32_UINT,
eR32G32B32Sint = VK_FORMAT_R32G32B32_SINT,
eR32G32B32Sfloat = VK_FORMAT_R32G32B32_SFLOAT,
eR32G32B32A32Uint = VK_FORMAT_R32G32B32A32_UINT,
eR32G32B32A32Sint = VK_FORMAT_R32G32B32A32_SINT,
eR32G32B32A32Sfloat = VK_FORMAT_R32G32B32A32_SFLOAT,
eR64Uint = VK_FORMAT_R64_UINT,
eR64Sint = VK_FORMAT_R64_SINT,
eR64Sfloat = VK_FORMAT_R64_SFLOAT,
eR64G64Uint = VK_FORMAT_R64G64_UINT,
eR64G64Sint = VK_FORMAT_R64G64_SINT,
eR64G64Sfloat = VK_FORMAT_R64G64_SFLOAT,
eR64G64B64Uint = VK_FORMAT_R64G64B64_UINT,
eR64G64B64Sint = VK_FORMAT_R64G64B64_SINT,
eR64G64B64Sfloat = VK_FORMAT_R64G64B64_SFLOAT,
eR64G64B64A64Uint = VK_FORMAT_R64G64B64A64_UINT,
eR64G64B64A64Sint = VK_FORMAT_R64G64B64A64_SINT,
eR64G64B64A64Sfloat = VK_FORMAT_R64G64B64A64_SFLOAT,
eB10G11R11UfloatPack32 = VK_FORMAT_B10G11R11_UFLOAT_PACK32,
eE5B9G9R9UfloatPack32 = VK_FORMAT_E5B9G9R9_UFLOAT_PACK32,
eD16Unorm = VK_FORMAT_D16_UNORM,
eX8D24UnormPack32 = VK_FORMAT_X8_D24_UNORM_PACK32,
eD32Sfloat = VK_FORMAT_D32_SFLOAT,
eS8Uint = VK_FORMAT_S8_UINT,
eD16UnormS8Uint = VK_FORMAT_D16_UNORM_S8_UINT,
eD24UnormS8Uint = VK_FORMAT_D24_UNORM_S8_UINT,
eD32SfloatS8Uint = VK_FORMAT_D32_SFLOAT_S8_UINT,
eBc1RgbUnormBlock = VK_FORMAT_BC1_RGB_UNORM_BLOCK,
eBc1RgbSrgbBlock = VK_FORMAT_BC1_RGB_SRGB_BLOCK,
eBc1RgbaUnormBlock = VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
eBc1RgbaSrgbBlock = VK_FORMAT_BC1_RGBA_SRGB_BLOCK,
eBc2UnormBlock = VK_FORMAT_BC2_UNORM_BLOCK,
eBc2SrgbBlock = VK_FORMAT_BC2_SRGB_BLOCK,
eBc3UnormBlock = VK_FORMAT_BC3_UNORM_BLOCK,
eBc3SrgbBlock = VK_FORMAT_BC3_SRGB_BLOCK,
eBc4UnormBlock = VK_FORMAT_BC4_UNORM_BLOCK,
eBc4SnormBlock = VK_FORMAT_BC4_SNORM_BLOCK,
eBc5UnormBlock = VK_FORMAT_BC5_UNORM_BLOCK,
eBc5SnormBlock = VK_FORMAT_BC5_SNORM_BLOCK,
eBc6HUfloatBlock = VK_FORMAT_BC6H_UFLOAT_BLOCK,
eBc6HSfloatBlock = VK_FORMAT_BC6H_SFLOAT_BLOCK,
eBc7UnormBlock = VK_FORMAT_BC7_UNORM_BLOCK,
eBc7SrgbBlock = VK_FORMAT_BC7_SRGB_BLOCK,
eEtc2R8G8B8UnormBlock = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
eEtc2R8G8B8SrgbBlock = VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK,
eEtc2R8G8B8A1UnormBlock = VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,
eEtc2R8G8B8A1SrgbBlock = VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK,
eEtc2R8G8B8A8UnormBlock = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
eEtc2R8G8B8A8SrgbBlock = VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK,
eEacR11UnormBlock = VK_FORMAT_EAC_R11_UNORM_BLOCK,
eEacR11SnormBlock = VK_FORMAT_EAC_R11_SNORM_BLOCK,
eEacR11G11UnormBlock = VK_FORMAT_EAC_R11G11_UNORM_BLOCK,
eEacR11G11SnormBlock = VK_FORMAT_EAC_R11G11_SNORM_BLOCK,
eAstc4x4UnormBlock = VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
eAstc4x4SrgbBlock = VK_FORMAT_ASTC_4x4_SRGB_BLOCK,
eAstc5x4UnormBlock = VK_FORMAT_ASTC_5x4_UNORM_BLOCK,
eAstc5x4SrgbBlock = VK_FORMAT_ASTC_5x4_SRGB_BLOCK,
eAstc5x5UnormBlock = VK_FORMAT_ASTC_5x5_UNORM_BLOCK,
eAstc5x5SrgbBlock = VK_FORMAT_ASTC_5x5_SRGB_BLOCK,
eAstc6x5UnormBlock = VK_FORMAT_ASTC_6x5_UNORM_BLOCK,
eAstc6x5SrgbBlock = VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
eAstc6x6UnormBlock = VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
eAstc6x6SrgbBlock = VK_FORMAT_ASTC_6x6_SRGB_BLOCK,
eAstc8x5UnormBlock = VK_FORMAT_ASTC_8x5_UNORM_BLOCK,
eAstc8x5SrgbBlock = VK_FORMAT_ASTC_8x5_SRGB_BLOCK,
eAstc8x6UnormBlock = VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
eAstc8x6SrgbBlock = VK_FORMAT_ASTC_8x6_SRGB_BLOCK,
eAstc8x8UnormBlock = VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
eAstc8x8SrgbBlock = VK_FORMAT_ASTC_8x8_SRGB_BLOCK,
eAstc10x5UnormBlock = VK_FORMAT_ASTC_10x5_UNORM_BLOCK,
eAstc10x5SrgbBlock = VK_FORMAT_ASTC_10x5_SRGB_BLOCK,
eAstc10x6UnormBlock = VK_FORMAT_ASTC_10x6_UNORM_BLOCK,
eAstc10x6SrgbBlock = VK_FORMAT_ASTC_10x6_SRGB_BLOCK,
eAstc10x8UnormBlock = VK_FORMAT_ASTC_10x8_UNORM_BLOCK,
eAstc10x8SrgbBlock = VK_FORMAT_ASTC_10x8_SRGB_BLOCK,
eAstc10x10UnormBlock = VK_FORMAT_ASTC_10x10_UNORM_BLOCK,
eAstc10x10SrgbBlock = VK_FORMAT_ASTC_10x10_SRGB_BLOCK,
eAstc12x10UnormBlock = VK_FORMAT_ASTC_12x10_UNORM_BLOCK,
eAstc12x10SrgbBlock = VK_FORMAT_ASTC_12x10_SRGB_BLOCK,
eAstc12x12UnormBlock = VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
eAstc12x12SrgbBlock = VK_FORMAT_ASTC_12x12_SRGB_BLOCK,
ePvrtc12BppUnormBlockIMG = VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG,
ePvrtc14BppUnormBlockIMG = VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG,
ePvrtc22BppUnormBlockIMG = VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG,
ePvrtc24BppUnormBlockIMG = VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG,
ePvrtc12BppSrgbBlockIMG = VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG,
ePvrtc14BppSrgbBlockIMG = VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG,
ePvrtc22BppSrgbBlockIMG = VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG,
ePvrtc24BppSrgbBlockIMG = VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG,
eG8B8G8R8422UnormKHR = VK_FORMAT_G8B8G8R8_422_UNORM_KHR,
eB8G8R8G8422UnormKHR = VK_FORMAT_B8G8R8G8_422_UNORM_KHR,
eG8B8R83Plane420UnormKHR = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR,
eG8B8R82Plane420UnormKHR = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR,
eG8B8R83Plane422UnormKHR = VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM_KHR,
eG8B8R82Plane422UnormKHR = VK_FORMAT_G8_B8R8_2PLANE_422_UNORM_KHR,
eG8B8R83Plane444UnormKHR = VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM_KHR,
eR10X6UnormPack16KHR = VK_FORMAT_R10X6_UNORM_PACK16_KHR,
eR10X6G10X6Unorm2Pack16KHR = VK_FORMAT_R10X6G10X6_UNORM_2PACK16_KHR,
eR10X6G10X6B10X6A10X6Unorm4Pack16KHR = VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16_KHR,
eG10X6B10X6G10X6R10X6422Unorm4Pack16KHR = VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16_KHR,
eB10X6G10X6R10X6G10X6422Unorm4Pack16KHR = VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16_KHR,
eG10X6B10X6R10X63Plane420Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16_KHR,
eG10X6B10X6R10X62Plane420Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16_KHR,
eG10X6B10X6R10X63Plane422Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16_KHR,
eG10X6B10X6R10X62Plane422Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16_KHR,
eG10X6B10X6R10X63Plane444Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16_KHR,
eR12X4UnormPack16KHR = VK_FORMAT_R12X4_UNORM_PACK16_KHR,
eR12X4G12X4Unorm2Pack16KHR = VK_FORMAT_R12X4G12X4_UNORM_2PACK16_KHR,
eR12X4G12X4B12X4A12X4Unorm4Pack16KHR = VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16_KHR,
eG12X4B12X4G12X4R12X4422Unorm4Pack16KHR = VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16_KHR,
eB12X4G12X4R12X4G12X4422Unorm4Pack16KHR = VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16_KHR,
eG12X4B12X4R12X43Plane420Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16_KHR,
eG12X4B12X4R12X42Plane420Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16_KHR,
eG12X4B12X4R12X43Plane422Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16_KHR,
eG12X4B12X4R12X42Plane422Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16_KHR,
eG12X4B12X4R12X43Plane444Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16_KHR,
eG16B16G16R16422UnormKHR = VK_FORMAT_G16B16G16R16_422_UNORM_KHR,
eB16G16R16G16422UnormKHR = VK_FORMAT_B16G16R16G16_422_UNORM_KHR,
eG16B16R163Plane420UnormKHR = VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM_KHR,
eG16B16R162Plane420UnormKHR = VK_FORMAT_G16_B16R16_2PLANE_420_UNORM_KHR,
eG16B16R163Plane422UnormKHR = VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM_KHR,
eG16B16R162Plane422UnormKHR = VK_FORMAT_G16_B16R16_2PLANE_422_UNORM_KHR,
eG16B16R163Plane444UnormKHR = VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM_KHR
};
struct VertexInputAttributeDescription
{
VertexInputAttributeDescription( uint32_t location_ = 0, uint32_t binding_ = 0, Format format_ = Format::eUndefined, uint32_t offset_ = 0 )
: location( location_ )
, binding( binding_ )
, format( format_ )
, offset( offset_ )
{
}
VertexInputAttributeDescription( VkVertexInputAttributeDescription const & rhs )
{
memcpy( this, &rhs, sizeof( VertexInputAttributeDescription ) );
}
VertexInputAttributeDescription& operator=( VkVertexInputAttributeDescription const & rhs )
{
memcpy( this, &rhs, sizeof( VertexInputAttributeDescription ) );
return *this;
}
VertexInputAttributeDescription& setLocation( uint32_t location_ )
{
location = location_;
return *this;
}
VertexInputAttributeDescription& setBinding( uint32_t binding_ )
{
binding = binding_;
return *this;
}
VertexInputAttributeDescription& setFormat( Format format_ )
{
format = format_;
return *this;
}
VertexInputAttributeDescription& setOffset( uint32_t offset_ )
{
offset = offset_;
return *this;
}
operator const VkVertexInputAttributeDescription&() const
{
return *reinterpret_cast<const VkVertexInputAttributeDescription*>(this);
}
bool operator==( VertexInputAttributeDescription const& rhs ) const
{
return ( location == rhs.location )
&& ( binding == rhs.binding )
&& ( format == rhs.format )
&& ( offset == rhs.offset );
}
bool operator!=( VertexInputAttributeDescription const& rhs ) const
{
return !operator==( rhs );
}
uint32_t location;
uint32_t binding;
Format format;
uint32_t offset;
};
static_assert( sizeof( VertexInputAttributeDescription ) == sizeof( VkVertexInputAttributeDescription ), "struct and wrapper have different size!" );
enum class StructureType
{
eApplicationInfo = VK_STRUCTURE_TYPE_APPLICATION_INFO,
eInstanceCreateInfo = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
eDeviceQueueCreateInfo = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
eDeviceCreateInfo = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
eSubmitInfo = VK_STRUCTURE_TYPE_SUBMIT_INFO,
eMemoryAllocateInfo = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
eMappedMemoryRange = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
eBindSparseInfo = VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,
eFenceCreateInfo = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
eSemaphoreCreateInfo = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
eEventCreateInfo = VK_STRUCTURE_TYPE_EVENT_CREATE_INFO,
eQueryPoolCreateInfo = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
eBufferCreateInfo = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
eBufferViewCreateInfo = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
eImageCreateInfo = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
eImageViewCreateInfo = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
eShaderModuleCreateInfo = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
ePipelineCacheCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO,
ePipelineShaderStageCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
ePipelineVertexInputStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
ePipelineInputAssemblyStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
ePipelineTessellationStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
ePipelineViewportStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
ePipelineRasterizationStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
ePipelineMultisampleStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
ePipelineDepthStencilStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
ePipelineColorBlendStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
ePipelineDynamicStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
eGraphicsPipelineCreateInfo = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
eComputePipelineCreateInfo = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
ePipelineLayoutCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
eSamplerCreateInfo = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
eDescriptorSetLayoutCreateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
eDescriptorPoolCreateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
eDescriptorSetAllocateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
eWriteDescriptorSet = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
eCopyDescriptorSet = VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET,
eFramebufferCreateInfo = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
eRenderPassCreateInfo = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
eCommandPoolCreateInfo = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
eCommandBufferAllocateInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
eCommandBufferInheritanceInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO,
eCommandBufferBeginInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
eRenderPassBeginInfo = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
eBufferMemoryBarrier = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
eImageMemoryBarrier = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
eMemoryBarrier = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
eLoaderInstanceCreateInfo = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO,
eLoaderDeviceCreateInfo = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO,
eSwapchainCreateInfoKHR = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
ePresentInfoKHR = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
eDisplayModeCreateInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR,
eDisplaySurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR,
eDisplayPresentInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR,
eXlibSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR,
eXcbSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR,
eWaylandSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR,
eMirSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_MIR_SURFACE_CREATE_INFO_KHR,
eAndroidSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR,
eWin32SurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR,
eDebugReportCallbackCreateInfoEXT = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT,
ePipelineRasterizationStateRasterizationOrderAMD = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD,
eDebugMarkerObjectNameInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT,
eDebugMarkerObjectTagInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT,
eDebugMarkerMarkerInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT,
eDedicatedAllocationImageCreateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV,
eDedicatedAllocationBufferCreateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV,
eDedicatedAllocationMemoryAllocateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV,
eTextureLodGatherFormatPropertiesAMD = VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD,
eRenderPassMultiviewCreateInfoKHX = VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO_KHX,
ePhysicalDeviceMultiviewFeaturesKHX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX,
ePhysicalDeviceMultiviewPropertiesKHX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX,
eExternalMemoryImageCreateInfoNV = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV,
eExportMemoryAllocateInfoNV = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV,
eImportMemoryWin32HandleInfoNV = VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV,
eExportMemoryWin32HandleInfoNV = VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV,
eWin32KeyedMutexAcquireReleaseInfoNV = VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV,
ePhysicalDeviceFeatures2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR,
ePhysicalDeviceProperties2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR,
eFormatProperties2KHR = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR,
eImageFormatProperties2KHR = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR,
ePhysicalDeviceImageFormatInfo2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2_KHR,
eQueueFamilyProperties2KHR = VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR,
ePhysicalDeviceMemoryProperties2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR,
eSparseImageFormatProperties2KHR = VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR,
ePhysicalDeviceSparseImageFormatInfo2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2_KHR,
eMemoryAllocateFlagsInfoKHX = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHX,
eDeviceGroupRenderPassBeginInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO_KHX,
eDeviceGroupCommandBufferBeginInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO_KHX,
eDeviceGroupSubmitInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO_KHX,
eDeviceGroupBindSparseInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHX,
eAcquireNextImageInfoKHX = VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHX,
eBindBufferMemoryDeviceGroupInfoKHX = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO_KHX,
eBindImageMemoryDeviceGroupInfoKHX = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO_KHX,
eDeviceGroupPresentCapabilitiesKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHX,
eImageSwapchainCreateInfoKHX = VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHX,
eBindImageMemorySwapchainInfoKHX = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHX,
eDeviceGroupPresentInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHX,
eDeviceGroupSwapchainCreateInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHX,
eValidationFlagsEXT = VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT,
eViSurfaceCreateInfoNN = VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN,
ePhysicalDeviceGroupPropertiesKHX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHX,
eDeviceGroupDeviceCreateInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO_KHX,
ePhysicalDeviceExternalImageFormatInfoKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO_KHR,
eExternalImageFormatPropertiesKHR = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR,
ePhysicalDeviceExternalBufferInfoKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO_KHR,
eExternalBufferPropertiesKHR = VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES_KHR,
ePhysicalDeviceIdPropertiesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR,
eExternalMemoryBufferCreateInfoKHR = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR,
eExternalMemoryImageCreateInfoKHR = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR,
eExportMemoryAllocateInfoKHR = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR,
eImportMemoryWin32HandleInfoKHR = VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR,
eExportMemoryWin32HandleInfoKHR = VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR,
eMemoryWin32HandlePropertiesKHR = VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR,
eMemoryGetWin32HandleInfoKHR = VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR,
eImportMemoryFdInfoKHR = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR,
eMemoryFdPropertiesKHR = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR,
eMemoryGetFdInfoKHR = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR,
eWin32KeyedMutexAcquireReleaseInfoKHR = VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR,
ePhysicalDeviceExternalSemaphoreInfoKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO_KHR,
eExternalSemaphorePropertiesKHR = VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES_KHR,
eExportSemaphoreCreateInfoKHR = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO_KHR,
eImportSemaphoreWin32HandleInfoKHR = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR,
eExportSemaphoreWin32HandleInfoKHR = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR,
eD3D12FenceSubmitInfoKHR = VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR,
eSemaphoreGetWin32HandleInfoKHR = VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR,
eImportSemaphoreFdInfoKHR = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR,
eSemaphoreGetFdInfoKHR = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR,
ePhysicalDevicePushDescriptorPropertiesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR,
ePhysicalDevice16BitStorageFeaturesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR,
ePresentRegionsKHR = VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR,
eDescriptorUpdateTemplateCreateInfoKHR = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO_KHR,
eObjectTableCreateInfoNVX = VK_STRUCTURE_TYPE_OBJECT_TABLE_CREATE_INFO_NVX,
eIndirectCommandsLayoutCreateInfoNVX = VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NVX,
eCmdProcessCommandsInfoNVX = VK_STRUCTURE_TYPE_CMD_PROCESS_COMMANDS_INFO_NVX,
eCmdReserveSpaceForCommandsInfoNVX = VK_STRUCTURE_TYPE_CMD_RESERVE_SPACE_FOR_COMMANDS_INFO_NVX,
eDeviceGeneratedCommandsLimitsNVX = VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_LIMITS_NVX,
eDeviceGeneratedCommandsFeaturesNVX = VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_FEATURES_NVX,
ePipelineViewportWScalingStateCreateInfoNV = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV,
eSurfaceCapabilities2EXT = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT,
eDisplayPowerInfoEXT = VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT,
eDeviceEventInfoEXT = VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT,
eDisplayEventInfoEXT = VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT,
eSwapchainCounterCreateInfoEXT = VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT,
ePresentTimesInfoGOOGLE = VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE,
ePhysicalDeviceMultiviewPerViewAttributesPropertiesNVX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX,
ePipelineViewportSwizzleStateCreateInfoNV = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV,
ePhysicalDeviceDiscardRectanglePropertiesEXT = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT,
ePipelineDiscardRectangleStateCreateInfoEXT = VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT,
eHdrMetadataEXT = VK_STRUCTURE_TYPE_HDR_METADATA_EXT,
eSharedPresentSurfaceCapabilitiesKHR = VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR,
ePhysicalDeviceExternalFenceInfoKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO_KHR,
eExternalFencePropertiesKHR = VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES_KHR,
eExportFenceCreateInfoKHR = VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO_KHR,
eImportFenceWin32HandleInfoKHR = VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR,
eExportFenceWin32HandleInfoKHR = VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR,
eFenceGetWin32HandleInfoKHR = VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR,
eImportFenceFdInfoKHR = VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR,
eFenceGetFdInfoKHR = VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR,
ePhysicalDevicePointClippingPropertiesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR,
eRenderPassInputAttachmentAspectCreateInfoKHR = VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO_KHR,
eImageViewUsageCreateInfoKHR = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO_KHR,
ePipelineTessellationDomainOriginStateCreateInfoKHR = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR,
ePhysicalDeviceSurfaceInfo2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR,
eSurfaceCapabilities2KHR = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR,
eSurfaceFormat2KHR = VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR,
ePhysicalDeviceVariablePointerFeaturesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR,
eIosSurfaceCreateInfoMVK = VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK,
eMacosSurfaceCreateInfoMVK = VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK,
eMemoryDedicatedRequirementsKHR = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR,
eMemoryDedicatedAllocateInfoKHR = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR,
ePhysicalDeviceSamplerFilterMinmaxPropertiesEXT = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT,
eSamplerReductionModeCreateInfoEXT = VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT,
eSampleLocationsInfoEXT = VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT,
eRenderPassSampleLocationsBeginInfoEXT = VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT,
ePipelineSampleLocationsStateCreateInfoEXT = VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT,
ePhysicalDeviceSampleLocationsPropertiesEXT = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT,
eMultisamplePropertiesEXT = VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT,
eBufferMemoryRequirementsInfo2KHR = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR,
eImageMemoryRequirementsInfo2KHR = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR,
eImageSparseMemoryRequirementsInfo2KHR = VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2_KHR,
eMemoryRequirements2KHR = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR,
eSparseImageMemoryRequirements2KHR = VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2_KHR,
eImageFormatListCreateInfoKHR = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR,
ePhysicalDeviceBlendOperationAdvancedFeaturesEXT = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT,
ePhysicalDeviceBlendOperationAdvancedPropertiesEXT = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT,
ePipelineColorBlendAdvancedStateCreateInfoEXT = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_ADVANCED_STATE_CREATE_INFO_EXT,
ePipelineCoverageToColorStateCreateInfoNV = VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_TO_COLOR_STATE_CREATE_INFO_NV,
ePipelineCoverageModulationStateCreateInfoNV = VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV,
eSamplerYcbcrConversionCreateInfoKHR = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO_KHR,
eSamplerYcbcrConversionInfoKHR = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO_KHR,
eBindImagePlaneMemoryInfoKHR = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR,
eImagePlaneMemoryRequirementsInfoKHR = VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR,
ePhysicalDeviceSamplerYcbcrConversionFeaturesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR,
eSamplerYcbcrConversionImageFormatPropertiesKHR = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES_KHR,
eBindBufferMemoryInfoKHR = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
eBindImageMemoryInfoKHR = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR,
eValidationCacheCreateInfoEXT = VK_STRUCTURE_TYPE_VALIDATION_CACHE_CREATE_INFO_EXT,
eShaderModuleValidationCacheCreateInfoEXT = VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT,
eDeviceQueueGlobalPriorityCreateInfoEXT = VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT
};
struct ApplicationInfo
{
ApplicationInfo( const char* pApplicationName_ = nullptr, uint32_t applicationVersion_ = 0, const char* pEngineName_ = nullptr, uint32_t engineVersion_ = 0, uint32_t apiVersion_ = 0 )
: sType( StructureType::eApplicationInfo )
, pNext( nullptr )
, pApplicationName( pApplicationName_ )
, applicationVersion( applicationVersion_ )
, pEngineName( pEngineName_ )
, engineVersion( engineVersion_ )
, apiVersion( apiVersion_ )
{
}
ApplicationInfo( VkApplicationInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ApplicationInfo ) );
}
ApplicationInfo& operator=( VkApplicationInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ApplicationInfo ) );
return *this;
}
ApplicationInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ApplicationInfo& setPApplicationName( const char* pApplicationName_ )
{
pApplicationName = pApplicationName_;
return *this;
}
ApplicationInfo& setApplicationVersion( uint32_t applicationVersion_ )
{
applicationVersion = applicationVersion_;
return *this;
}
ApplicationInfo& setPEngineName( const char* pEngineName_ )
{
pEngineName = pEngineName_;
return *this;
}
ApplicationInfo& setEngineVersion( uint32_t engineVersion_ )
{
engineVersion = engineVersion_;
return *this;
}
ApplicationInfo& setApiVersion( uint32_t apiVersion_ )
{
apiVersion = apiVersion_;
return *this;
}
operator const VkApplicationInfo&() const
{
return *reinterpret_cast<const VkApplicationInfo*>(this);
}
bool operator==( ApplicationInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( pApplicationName == rhs.pApplicationName )
&& ( applicationVersion == rhs.applicationVersion )
&& ( pEngineName == rhs.pEngineName )
&& ( engineVersion == rhs.engineVersion )
&& ( apiVersion == rhs.apiVersion );
}
bool operator!=( ApplicationInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
const char* pApplicationName;
uint32_t applicationVersion;
const char* pEngineName;
uint32_t engineVersion;
uint32_t apiVersion;
};
static_assert( sizeof( ApplicationInfo ) == sizeof( VkApplicationInfo ), "struct and wrapper have different size!" );
struct DeviceQueueCreateInfo
{
DeviceQueueCreateInfo( DeviceQueueCreateFlags flags_ = DeviceQueueCreateFlags(), uint32_t queueFamilyIndex_ = 0, uint32_t queueCount_ = 0, const float* pQueuePriorities_ = nullptr )
: sType( StructureType::eDeviceQueueCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, queueFamilyIndex( queueFamilyIndex_ )
, queueCount( queueCount_ )
, pQueuePriorities( pQueuePriorities_ )
{
}
DeviceQueueCreateInfo( VkDeviceQueueCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceQueueCreateInfo ) );
}
DeviceQueueCreateInfo& operator=( VkDeviceQueueCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceQueueCreateInfo ) );
return *this;
}
DeviceQueueCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceQueueCreateInfo& setFlags( DeviceQueueCreateFlags flags_ )
{
flags = flags_;
return *this;
}
DeviceQueueCreateInfo& setQueueFamilyIndex( uint32_t queueFamilyIndex_ )
{
queueFamilyIndex = queueFamilyIndex_;
return *this;
}
DeviceQueueCreateInfo& setQueueCount( uint32_t queueCount_ )
{
queueCount = queueCount_;
return *this;
}
DeviceQueueCreateInfo& setPQueuePriorities( const float* pQueuePriorities_ )
{
pQueuePriorities = pQueuePriorities_;
return *this;
}
operator const VkDeviceQueueCreateInfo&() const
{
return *reinterpret_cast<const VkDeviceQueueCreateInfo*>(this);
}
bool operator==( DeviceQueueCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( queueFamilyIndex == rhs.queueFamilyIndex )
&& ( queueCount == rhs.queueCount )
&& ( pQueuePriorities == rhs.pQueuePriorities );
}
bool operator!=( DeviceQueueCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DeviceQueueCreateFlags flags;
uint32_t queueFamilyIndex;
uint32_t queueCount;
const float* pQueuePriorities;
};
static_assert( sizeof( DeviceQueueCreateInfo ) == sizeof( VkDeviceQueueCreateInfo ), "struct and wrapper have different size!" );
struct DeviceCreateInfo
{
DeviceCreateInfo( DeviceCreateFlags flags_ = DeviceCreateFlags(), uint32_t queueCreateInfoCount_ = 0, const DeviceQueueCreateInfo* pQueueCreateInfos_ = nullptr, uint32_t enabledLayerCount_ = 0, const char* const* ppEnabledLayerNames_ = nullptr, uint32_t enabledExtensionCount_ = 0, const char* const* ppEnabledExtensionNames_ = nullptr, const PhysicalDeviceFeatures* pEnabledFeatures_ = nullptr )
: sType( StructureType::eDeviceCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, queueCreateInfoCount( queueCreateInfoCount_ )
, pQueueCreateInfos( pQueueCreateInfos_ )
, enabledLayerCount( enabledLayerCount_ )
, ppEnabledLayerNames( ppEnabledLayerNames_ )
, enabledExtensionCount( enabledExtensionCount_ )
, ppEnabledExtensionNames( ppEnabledExtensionNames_ )
, pEnabledFeatures( pEnabledFeatures_ )
{
}
DeviceCreateInfo( VkDeviceCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceCreateInfo ) );
}
DeviceCreateInfo& operator=( VkDeviceCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceCreateInfo ) );
return *this;
}
DeviceCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceCreateInfo& setFlags( DeviceCreateFlags flags_ )
{
flags = flags_;
return *this;
}
DeviceCreateInfo& setQueueCreateInfoCount( uint32_t queueCreateInfoCount_ )
{
queueCreateInfoCount = queueCreateInfoCount_;
return *this;
}
DeviceCreateInfo& setPQueueCreateInfos( const DeviceQueueCreateInfo* pQueueCreateInfos_ )
{
pQueueCreateInfos = pQueueCreateInfos_;
return *this;
}
DeviceCreateInfo& setEnabledLayerCount( uint32_t enabledLayerCount_ )
{
enabledLayerCount = enabledLayerCount_;
return *this;
}
DeviceCreateInfo& setPpEnabledLayerNames( const char* const* ppEnabledLayerNames_ )
{
ppEnabledLayerNames = ppEnabledLayerNames_;
return *this;
}
DeviceCreateInfo& setEnabledExtensionCount( uint32_t enabledExtensionCount_ )
{
enabledExtensionCount = enabledExtensionCount_;
return *this;
}
DeviceCreateInfo& setPpEnabledExtensionNames( const char* const* ppEnabledExtensionNames_ )
{
ppEnabledExtensionNames = ppEnabledExtensionNames_;
return *this;
}
DeviceCreateInfo& setPEnabledFeatures( const PhysicalDeviceFeatures* pEnabledFeatures_ )
{
pEnabledFeatures = pEnabledFeatures_;
return *this;
}
operator const VkDeviceCreateInfo&() const
{
return *reinterpret_cast<const VkDeviceCreateInfo*>(this);
}
bool operator==( DeviceCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( queueCreateInfoCount == rhs.queueCreateInfoCount )
&& ( pQueueCreateInfos == rhs.pQueueCreateInfos )
&& ( enabledLayerCount == rhs.enabledLayerCount )
&& ( ppEnabledLayerNames == rhs.ppEnabledLayerNames )
&& ( enabledExtensionCount == rhs.enabledExtensionCount )
&& ( ppEnabledExtensionNames == rhs.ppEnabledExtensionNames )
&& ( pEnabledFeatures == rhs.pEnabledFeatures );
}
bool operator!=( DeviceCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DeviceCreateFlags flags;
uint32_t queueCreateInfoCount;
const DeviceQueueCreateInfo* pQueueCreateInfos;
uint32_t enabledLayerCount;
const char* const* ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* const* ppEnabledExtensionNames;
const PhysicalDeviceFeatures* pEnabledFeatures;
};
static_assert( sizeof( DeviceCreateInfo ) == sizeof( VkDeviceCreateInfo ), "struct and wrapper have different size!" );
struct InstanceCreateInfo
{
InstanceCreateInfo( InstanceCreateFlags flags_ = InstanceCreateFlags(), const ApplicationInfo* pApplicationInfo_ = nullptr, uint32_t enabledLayerCount_ = 0, const char* const* ppEnabledLayerNames_ = nullptr, uint32_t enabledExtensionCount_ = 0, const char* const* ppEnabledExtensionNames_ = nullptr )
: sType( StructureType::eInstanceCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, pApplicationInfo( pApplicationInfo_ )
, enabledLayerCount( enabledLayerCount_ )
, ppEnabledLayerNames( ppEnabledLayerNames_ )
, enabledExtensionCount( enabledExtensionCount_ )
, ppEnabledExtensionNames( ppEnabledExtensionNames_ )
{
}
InstanceCreateInfo( VkInstanceCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( InstanceCreateInfo ) );
}
InstanceCreateInfo& operator=( VkInstanceCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( InstanceCreateInfo ) );
return *this;
}
InstanceCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
InstanceCreateInfo& setFlags( InstanceCreateFlags flags_ )
{
flags = flags_;
return *this;
}
InstanceCreateInfo& setPApplicationInfo( const ApplicationInfo* pApplicationInfo_ )
{
pApplicationInfo = pApplicationInfo_;
return *this;
}
InstanceCreateInfo& setEnabledLayerCount( uint32_t enabledLayerCount_ )
{
enabledLayerCount = enabledLayerCount_;
return *this;
}
InstanceCreateInfo& setPpEnabledLayerNames( const char* const* ppEnabledLayerNames_ )
{
ppEnabledLayerNames = ppEnabledLayerNames_;
return *this;
}
InstanceCreateInfo& setEnabledExtensionCount( uint32_t enabledExtensionCount_ )
{
enabledExtensionCount = enabledExtensionCount_;
return *this;
}
InstanceCreateInfo& setPpEnabledExtensionNames( const char* const* ppEnabledExtensionNames_ )
{
ppEnabledExtensionNames = ppEnabledExtensionNames_;
return *this;
}
operator const VkInstanceCreateInfo&() const
{
return *reinterpret_cast<const VkInstanceCreateInfo*>(this);
}
bool operator==( InstanceCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( pApplicationInfo == rhs.pApplicationInfo )
&& ( enabledLayerCount == rhs.enabledLayerCount )
&& ( ppEnabledLayerNames == rhs.ppEnabledLayerNames )
&& ( enabledExtensionCount == rhs.enabledExtensionCount )
&& ( ppEnabledExtensionNames == rhs.ppEnabledExtensionNames );
}
bool operator!=( InstanceCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
InstanceCreateFlags flags;
const ApplicationInfo* pApplicationInfo;
uint32_t enabledLayerCount;
const char* const* ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* const* ppEnabledExtensionNames;
};
static_assert( sizeof( InstanceCreateInfo ) == sizeof( VkInstanceCreateInfo ), "struct and wrapper have different size!" );
struct MemoryAllocateInfo
{
MemoryAllocateInfo( DeviceSize allocationSize_ = 0, uint32_t memoryTypeIndex_ = 0 )
: sType( StructureType::eMemoryAllocateInfo )
, pNext( nullptr )
, allocationSize( allocationSize_ )
, memoryTypeIndex( memoryTypeIndex_ )
{
}
MemoryAllocateInfo( VkMemoryAllocateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryAllocateInfo ) );
}
MemoryAllocateInfo& operator=( VkMemoryAllocateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryAllocateInfo ) );
return *this;
}
MemoryAllocateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MemoryAllocateInfo& setAllocationSize( DeviceSize allocationSize_ )
{
allocationSize = allocationSize_;
return *this;
}
MemoryAllocateInfo& setMemoryTypeIndex( uint32_t memoryTypeIndex_ )
{
memoryTypeIndex = memoryTypeIndex_;
return *this;
}
operator const VkMemoryAllocateInfo&() const
{
return *reinterpret_cast<const VkMemoryAllocateInfo*>(this);
}
bool operator==( MemoryAllocateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( allocationSize == rhs.allocationSize )
&& ( memoryTypeIndex == rhs.memoryTypeIndex );
}
bool operator!=( MemoryAllocateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DeviceSize allocationSize;
uint32_t memoryTypeIndex;
};
static_assert( sizeof( MemoryAllocateInfo ) == sizeof( VkMemoryAllocateInfo ), "struct and wrapper have different size!" );
struct MappedMemoryRange
{
MappedMemoryRange( DeviceMemory memory_ = DeviceMemory(), DeviceSize offset_ = 0, DeviceSize size_ = 0 )
: sType( StructureType::eMappedMemoryRange )
, pNext( nullptr )
, memory( memory_ )
, offset( offset_ )
, size( size_ )
{
}
MappedMemoryRange( VkMappedMemoryRange const & rhs )
{
memcpy( this, &rhs, sizeof( MappedMemoryRange ) );
}
MappedMemoryRange& operator=( VkMappedMemoryRange const & rhs )
{
memcpy( this, &rhs, sizeof( MappedMemoryRange ) );
return *this;
}
MappedMemoryRange& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MappedMemoryRange& setMemory( DeviceMemory memory_ )
{
memory = memory_;
return *this;
}
MappedMemoryRange& setOffset( DeviceSize offset_ )
{
offset = offset_;
return *this;
}
MappedMemoryRange& setSize( DeviceSize size_ )
{
size = size_;
return *this;
}
operator const VkMappedMemoryRange&() const
{
return *reinterpret_cast<const VkMappedMemoryRange*>(this);
}
bool operator==( MappedMemoryRange const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memory == rhs.memory )
&& ( offset == rhs.offset )
&& ( size == rhs.size );
}
bool operator!=( MappedMemoryRange const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DeviceMemory memory;
DeviceSize offset;
DeviceSize size;
};
static_assert( sizeof( MappedMemoryRange ) == sizeof( VkMappedMemoryRange ), "struct and wrapper have different size!" );
struct WriteDescriptorSet
{
WriteDescriptorSet( DescriptorSet dstSet_ = DescriptorSet(), uint32_t dstBinding_ = 0, uint32_t dstArrayElement_ = 0, uint32_t descriptorCount_ = 0, DescriptorType descriptorType_ = DescriptorType::eSampler, const DescriptorImageInfo* pImageInfo_ = nullptr, const DescriptorBufferInfo* pBufferInfo_ = nullptr, const BufferView* pTexelBufferView_ = nullptr )
: sType( StructureType::eWriteDescriptorSet )
, pNext( nullptr )
, dstSet( dstSet_ )
, dstBinding( dstBinding_ )
, dstArrayElement( dstArrayElement_ )
, descriptorCount( descriptorCount_ )
, descriptorType( descriptorType_ )
, pImageInfo( pImageInfo_ )
, pBufferInfo( pBufferInfo_ )
, pTexelBufferView( pTexelBufferView_ )
{
}
WriteDescriptorSet( VkWriteDescriptorSet const & rhs )
{
memcpy( this, &rhs, sizeof( WriteDescriptorSet ) );
}
WriteDescriptorSet& operator=( VkWriteDescriptorSet const & rhs )
{
memcpy( this, &rhs, sizeof( WriteDescriptorSet ) );
return *this;
}
WriteDescriptorSet& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
WriteDescriptorSet& setDstSet( DescriptorSet dstSet_ )
{
dstSet = dstSet_;
return *this;
}
WriteDescriptorSet& setDstBinding( uint32_t dstBinding_ )
{
dstBinding = dstBinding_;
return *this;
}
WriteDescriptorSet& setDstArrayElement( uint32_t dstArrayElement_ )
{
dstArrayElement = dstArrayElement_;
return *this;
}
WriteDescriptorSet& setDescriptorCount( uint32_t descriptorCount_ )
{
descriptorCount = descriptorCount_;
return *this;
}
WriteDescriptorSet& setDescriptorType( DescriptorType descriptorType_ )
{
descriptorType = descriptorType_;
return *this;
}
WriteDescriptorSet& setPImageInfo( const DescriptorImageInfo* pImageInfo_ )
{
pImageInfo = pImageInfo_;
return *this;
}
WriteDescriptorSet& setPBufferInfo( const DescriptorBufferInfo* pBufferInfo_ )
{
pBufferInfo = pBufferInfo_;
return *this;
}
WriteDescriptorSet& setPTexelBufferView( const BufferView* pTexelBufferView_ )
{
pTexelBufferView = pTexelBufferView_;
return *this;
}
operator const VkWriteDescriptorSet&() const
{
return *reinterpret_cast<const VkWriteDescriptorSet*>(this);
}
bool operator==( WriteDescriptorSet const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( dstSet == rhs.dstSet )
&& ( dstBinding == rhs.dstBinding )
&& ( dstArrayElement == rhs.dstArrayElement )
&& ( descriptorCount == rhs.descriptorCount )
&& ( descriptorType == rhs.descriptorType )
&& ( pImageInfo == rhs.pImageInfo )
&& ( pBufferInfo == rhs.pBufferInfo )
&& ( pTexelBufferView == rhs.pTexelBufferView );
}
bool operator!=( WriteDescriptorSet const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorSet dstSet;
uint32_t dstBinding;
uint32_t dstArrayElement;
uint32_t descriptorCount;
DescriptorType descriptorType;
const DescriptorImageInfo* pImageInfo;
const DescriptorBufferInfo* pBufferInfo;
const BufferView* pTexelBufferView;
};
static_assert( sizeof( WriteDescriptorSet ) == sizeof( VkWriteDescriptorSet ), "struct and wrapper have different size!" );
struct CopyDescriptorSet
{
CopyDescriptorSet( DescriptorSet srcSet_ = DescriptorSet(), uint32_t srcBinding_ = 0, uint32_t srcArrayElement_ = 0, DescriptorSet dstSet_ = DescriptorSet(), uint32_t dstBinding_ = 0, uint32_t dstArrayElement_ = 0, uint32_t descriptorCount_ = 0 )
: sType( StructureType::eCopyDescriptorSet )
, pNext( nullptr )
, srcSet( srcSet_ )
, srcBinding( srcBinding_ )
, srcArrayElement( srcArrayElement_ )
, dstSet( dstSet_ )
, dstBinding( dstBinding_ )
, dstArrayElement( dstArrayElement_ )
, descriptorCount( descriptorCount_ )
{
}
CopyDescriptorSet( VkCopyDescriptorSet const & rhs )
{
memcpy( this, &rhs, sizeof( CopyDescriptorSet ) );
}
CopyDescriptorSet& operator=( VkCopyDescriptorSet const & rhs )
{
memcpy( this, &rhs, sizeof( CopyDescriptorSet ) );
return *this;
}
CopyDescriptorSet& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
CopyDescriptorSet& setSrcSet( DescriptorSet srcSet_ )
{
srcSet = srcSet_;
return *this;
}
CopyDescriptorSet& setSrcBinding( uint32_t srcBinding_ )
{
srcBinding = srcBinding_;
return *this;
}
CopyDescriptorSet& setSrcArrayElement( uint32_t srcArrayElement_ )
{
srcArrayElement = srcArrayElement_;
return *this;
}
CopyDescriptorSet& setDstSet( DescriptorSet dstSet_ )
{
dstSet = dstSet_;
return *this;
}
CopyDescriptorSet& setDstBinding( uint32_t dstBinding_ )
{
dstBinding = dstBinding_;
return *this;
}
CopyDescriptorSet& setDstArrayElement( uint32_t dstArrayElement_ )
{
dstArrayElement = dstArrayElement_;
return *this;
}
CopyDescriptorSet& setDescriptorCount( uint32_t descriptorCount_ )
{
descriptorCount = descriptorCount_;
return *this;
}
operator const VkCopyDescriptorSet&() const
{
return *reinterpret_cast<const VkCopyDescriptorSet*>(this);
}
bool operator==( CopyDescriptorSet const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( srcSet == rhs.srcSet )
&& ( srcBinding == rhs.srcBinding )
&& ( srcArrayElement == rhs.srcArrayElement )
&& ( dstSet == rhs.dstSet )
&& ( dstBinding == rhs.dstBinding )
&& ( dstArrayElement == rhs.dstArrayElement )
&& ( descriptorCount == rhs.descriptorCount );
}
bool operator!=( CopyDescriptorSet const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorSet srcSet;
uint32_t srcBinding;
uint32_t srcArrayElement;
DescriptorSet dstSet;
uint32_t dstBinding;
uint32_t dstArrayElement;
uint32_t descriptorCount;
};
static_assert( sizeof( CopyDescriptorSet ) == sizeof( VkCopyDescriptorSet ), "struct and wrapper have different size!" );
struct BufferViewCreateInfo
{
BufferViewCreateInfo( BufferViewCreateFlags flags_ = BufferViewCreateFlags(), Buffer buffer_ = Buffer(), Format format_ = Format::eUndefined, DeviceSize offset_ = 0, DeviceSize range_ = 0 )
: sType( StructureType::eBufferViewCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, buffer( buffer_ )
, format( format_ )
, offset( offset_ )
, range( range_ )
{
}
BufferViewCreateInfo( VkBufferViewCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( BufferViewCreateInfo ) );
}
BufferViewCreateInfo& operator=( VkBufferViewCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( BufferViewCreateInfo ) );
return *this;
}
BufferViewCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BufferViewCreateInfo& setFlags( BufferViewCreateFlags flags_ )
{
flags = flags_;
return *this;
}
BufferViewCreateInfo& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
BufferViewCreateInfo& setFormat( Format format_ )
{
format = format_;
return *this;
}
BufferViewCreateInfo& setOffset( DeviceSize offset_ )
{
offset = offset_;
return *this;
}
BufferViewCreateInfo& setRange( DeviceSize range_ )
{
range = range_;
return *this;
}
operator const VkBufferViewCreateInfo&() const
{
return *reinterpret_cast<const VkBufferViewCreateInfo*>(this);
}
bool operator==( BufferViewCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( buffer == rhs.buffer )
&& ( format == rhs.format )
&& ( offset == rhs.offset )
&& ( range == rhs.range );
}
bool operator!=( BufferViewCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
BufferViewCreateFlags flags;
Buffer buffer;
Format format;
DeviceSize offset;
DeviceSize range;
};
static_assert( sizeof( BufferViewCreateInfo ) == sizeof( VkBufferViewCreateInfo ), "struct and wrapper have different size!" );
struct ShaderModuleCreateInfo
{
ShaderModuleCreateInfo( ShaderModuleCreateFlags flags_ = ShaderModuleCreateFlags(), size_t codeSize_ = 0, const uint32_t* pCode_ = nullptr )
: sType( StructureType::eShaderModuleCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, codeSize( codeSize_ )
, pCode( pCode_ )
{
}
ShaderModuleCreateInfo( VkShaderModuleCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ShaderModuleCreateInfo ) );
}
ShaderModuleCreateInfo& operator=( VkShaderModuleCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ShaderModuleCreateInfo ) );
return *this;
}
ShaderModuleCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ShaderModuleCreateInfo& setFlags( ShaderModuleCreateFlags flags_ )
{
flags = flags_;
return *this;
}
ShaderModuleCreateInfo& setCodeSize( size_t codeSize_ )
{
codeSize = codeSize_;
return *this;
}
ShaderModuleCreateInfo& setPCode( const uint32_t* pCode_ )
{
pCode = pCode_;
return *this;
}
operator const VkShaderModuleCreateInfo&() const
{
return *reinterpret_cast<const VkShaderModuleCreateInfo*>(this);
}
bool operator==( ShaderModuleCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( codeSize == rhs.codeSize )
&& ( pCode == rhs.pCode );
}
bool operator!=( ShaderModuleCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ShaderModuleCreateFlags flags;
size_t codeSize;
const uint32_t* pCode;
};
static_assert( sizeof( ShaderModuleCreateInfo ) == sizeof( VkShaderModuleCreateInfo ), "struct and wrapper have different size!" );
struct DescriptorSetAllocateInfo
{
DescriptorSetAllocateInfo( DescriptorPool descriptorPool_ = DescriptorPool(), uint32_t descriptorSetCount_ = 0, const DescriptorSetLayout* pSetLayouts_ = nullptr )
: sType( StructureType::eDescriptorSetAllocateInfo )
, pNext( nullptr )
, descriptorPool( descriptorPool_ )
, descriptorSetCount( descriptorSetCount_ )
, pSetLayouts( pSetLayouts_ )
{
}
DescriptorSetAllocateInfo( VkDescriptorSetAllocateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorSetAllocateInfo ) );
}
DescriptorSetAllocateInfo& operator=( VkDescriptorSetAllocateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorSetAllocateInfo ) );
return *this;
}
DescriptorSetAllocateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DescriptorSetAllocateInfo& setDescriptorPool( DescriptorPool descriptorPool_ )
{
descriptorPool = descriptorPool_;
return *this;
}
DescriptorSetAllocateInfo& setDescriptorSetCount( uint32_t descriptorSetCount_ )
{
descriptorSetCount = descriptorSetCount_;
return *this;
}
DescriptorSetAllocateInfo& setPSetLayouts( const DescriptorSetLayout* pSetLayouts_ )
{
pSetLayouts = pSetLayouts_;
return *this;
}
operator const VkDescriptorSetAllocateInfo&() const
{
return *reinterpret_cast<const VkDescriptorSetAllocateInfo*>(this);
}
bool operator==( DescriptorSetAllocateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( descriptorPool == rhs.descriptorPool )
&& ( descriptorSetCount == rhs.descriptorSetCount )
&& ( pSetLayouts == rhs.pSetLayouts );
}
bool operator!=( DescriptorSetAllocateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorPool descriptorPool;
uint32_t descriptorSetCount;
const DescriptorSetLayout* pSetLayouts;
};
static_assert( sizeof( DescriptorSetAllocateInfo ) == sizeof( VkDescriptorSetAllocateInfo ), "struct and wrapper have different size!" );
struct PipelineVertexInputStateCreateInfo
{
PipelineVertexInputStateCreateInfo( PipelineVertexInputStateCreateFlags flags_ = PipelineVertexInputStateCreateFlags(), uint32_t vertexBindingDescriptionCount_ = 0, const VertexInputBindingDescription* pVertexBindingDescriptions_ = nullptr, uint32_t vertexAttributeDescriptionCount_ = 0, const VertexInputAttributeDescription* pVertexAttributeDescriptions_ = nullptr )
: sType( StructureType::ePipelineVertexInputStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, vertexBindingDescriptionCount( vertexBindingDescriptionCount_ )
, pVertexBindingDescriptions( pVertexBindingDescriptions_ )
, vertexAttributeDescriptionCount( vertexAttributeDescriptionCount_ )
, pVertexAttributeDescriptions( pVertexAttributeDescriptions_ )
{
}
PipelineVertexInputStateCreateInfo( VkPipelineVertexInputStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineVertexInputStateCreateInfo ) );
}
PipelineVertexInputStateCreateInfo& operator=( VkPipelineVertexInputStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineVertexInputStateCreateInfo ) );
return *this;
}
PipelineVertexInputStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineVertexInputStateCreateInfo& setFlags( PipelineVertexInputStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineVertexInputStateCreateInfo& setVertexBindingDescriptionCount( uint32_t vertexBindingDescriptionCount_ )
{
vertexBindingDescriptionCount = vertexBindingDescriptionCount_;
return *this;
}
PipelineVertexInputStateCreateInfo& setPVertexBindingDescriptions( const VertexInputBindingDescription* pVertexBindingDescriptions_ )
{
pVertexBindingDescriptions = pVertexBindingDescriptions_;
return *this;
}
PipelineVertexInputStateCreateInfo& setVertexAttributeDescriptionCount( uint32_t vertexAttributeDescriptionCount_ )
{
vertexAttributeDescriptionCount = vertexAttributeDescriptionCount_;
return *this;
}
PipelineVertexInputStateCreateInfo& setPVertexAttributeDescriptions( const VertexInputAttributeDescription* pVertexAttributeDescriptions_ )
{
pVertexAttributeDescriptions = pVertexAttributeDescriptions_;
return *this;
}
operator const VkPipelineVertexInputStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineVertexInputStateCreateInfo*>(this);
}
bool operator==( PipelineVertexInputStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( vertexBindingDescriptionCount == rhs.vertexBindingDescriptionCount )
&& ( pVertexBindingDescriptions == rhs.pVertexBindingDescriptions )
&& ( vertexAttributeDescriptionCount == rhs.vertexAttributeDescriptionCount )
&& ( pVertexAttributeDescriptions == rhs.pVertexAttributeDescriptions );
}
bool operator!=( PipelineVertexInputStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineVertexInputStateCreateFlags flags;
uint32_t vertexBindingDescriptionCount;
const VertexInputBindingDescription* pVertexBindingDescriptions;
uint32_t vertexAttributeDescriptionCount;
const VertexInputAttributeDescription* pVertexAttributeDescriptions;
};
static_assert( sizeof( PipelineVertexInputStateCreateInfo ) == sizeof( VkPipelineVertexInputStateCreateInfo ), "struct and wrapper have different size!" );
struct PipelineInputAssemblyStateCreateInfo
{
PipelineInputAssemblyStateCreateInfo( PipelineInputAssemblyStateCreateFlags flags_ = PipelineInputAssemblyStateCreateFlags(), PrimitiveTopology topology_ = PrimitiveTopology::ePointList, Bool32 primitiveRestartEnable_ = 0 )
: sType( StructureType::ePipelineInputAssemblyStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, topology( topology_ )
, primitiveRestartEnable( primitiveRestartEnable_ )
{
}
PipelineInputAssemblyStateCreateInfo( VkPipelineInputAssemblyStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineInputAssemblyStateCreateInfo ) );
}
PipelineInputAssemblyStateCreateInfo& operator=( VkPipelineInputAssemblyStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineInputAssemblyStateCreateInfo ) );
return *this;
}
PipelineInputAssemblyStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineInputAssemblyStateCreateInfo& setFlags( PipelineInputAssemblyStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineInputAssemblyStateCreateInfo& setTopology( PrimitiveTopology topology_ )
{
topology = topology_;
return *this;
}
PipelineInputAssemblyStateCreateInfo& setPrimitiveRestartEnable( Bool32 primitiveRestartEnable_ )
{
primitiveRestartEnable = primitiveRestartEnable_;
return *this;
}
operator const VkPipelineInputAssemblyStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineInputAssemblyStateCreateInfo*>(this);
}
bool operator==( PipelineInputAssemblyStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( topology == rhs.topology )
&& ( primitiveRestartEnable == rhs.primitiveRestartEnable );
}
bool operator!=( PipelineInputAssemblyStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineInputAssemblyStateCreateFlags flags;
PrimitiveTopology topology;
Bool32 primitiveRestartEnable;
};
static_assert( sizeof( PipelineInputAssemblyStateCreateInfo ) == sizeof( VkPipelineInputAssemblyStateCreateInfo ), "struct and wrapper have different size!" );
struct PipelineTessellationStateCreateInfo
{
PipelineTessellationStateCreateInfo( PipelineTessellationStateCreateFlags flags_ = PipelineTessellationStateCreateFlags(), uint32_t patchControlPoints_ = 0 )
: sType( StructureType::ePipelineTessellationStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, patchControlPoints( patchControlPoints_ )
{
}
PipelineTessellationStateCreateInfo( VkPipelineTessellationStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineTessellationStateCreateInfo ) );
}
PipelineTessellationStateCreateInfo& operator=( VkPipelineTessellationStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineTessellationStateCreateInfo ) );
return *this;
}
PipelineTessellationStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineTessellationStateCreateInfo& setFlags( PipelineTessellationStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineTessellationStateCreateInfo& setPatchControlPoints( uint32_t patchControlPoints_ )
{
patchControlPoints = patchControlPoints_;
return *this;
}
operator const VkPipelineTessellationStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineTessellationStateCreateInfo*>(this);
}
bool operator==( PipelineTessellationStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( patchControlPoints == rhs.patchControlPoints );
}
bool operator!=( PipelineTessellationStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineTessellationStateCreateFlags flags;
uint32_t patchControlPoints;
};
static_assert( sizeof( PipelineTessellationStateCreateInfo ) == sizeof( VkPipelineTessellationStateCreateInfo ), "struct and wrapper have different size!" );
struct PipelineViewportStateCreateInfo
{
PipelineViewportStateCreateInfo( PipelineViewportStateCreateFlags flags_ = PipelineViewportStateCreateFlags(), uint32_t viewportCount_ = 0, const Viewport* pViewports_ = nullptr, uint32_t scissorCount_ = 0, const Rect2D* pScissors_ = nullptr )
: sType( StructureType::ePipelineViewportStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, viewportCount( viewportCount_ )
, pViewports( pViewports_ )
, scissorCount( scissorCount_ )
, pScissors( pScissors_ )
{
}
PipelineViewportStateCreateInfo( VkPipelineViewportStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineViewportStateCreateInfo ) );
}
PipelineViewportStateCreateInfo& operator=( VkPipelineViewportStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineViewportStateCreateInfo ) );
return *this;
}
PipelineViewportStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineViewportStateCreateInfo& setFlags( PipelineViewportStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineViewportStateCreateInfo& setViewportCount( uint32_t viewportCount_ )
{
viewportCount = viewportCount_;
return *this;
}
PipelineViewportStateCreateInfo& setPViewports( const Viewport* pViewports_ )
{
pViewports = pViewports_;
return *this;
}
PipelineViewportStateCreateInfo& setScissorCount( uint32_t scissorCount_ )
{
scissorCount = scissorCount_;
return *this;
}
PipelineViewportStateCreateInfo& setPScissors( const Rect2D* pScissors_ )
{
pScissors = pScissors_;
return *this;
}
operator const VkPipelineViewportStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineViewportStateCreateInfo*>(this);
}
bool operator==( PipelineViewportStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( viewportCount == rhs.viewportCount )
&& ( pViewports == rhs.pViewports )
&& ( scissorCount == rhs.scissorCount )
&& ( pScissors == rhs.pScissors );
}
bool operator!=( PipelineViewportStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineViewportStateCreateFlags flags;
uint32_t viewportCount;
const Viewport* pViewports;
uint32_t scissorCount;
const Rect2D* pScissors;
};
static_assert( sizeof( PipelineViewportStateCreateInfo ) == sizeof( VkPipelineViewportStateCreateInfo ), "struct and wrapper have different size!" );
struct PipelineRasterizationStateCreateInfo
{
PipelineRasterizationStateCreateInfo( PipelineRasterizationStateCreateFlags flags_ = PipelineRasterizationStateCreateFlags(), Bool32 depthClampEnable_ = 0, Bool32 rasterizerDiscardEnable_ = 0, PolygonMode polygonMode_ = PolygonMode::eFill, CullModeFlags cullMode_ = CullModeFlags(), FrontFace frontFace_ = FrontFace::eCounterClockwise, Bool32 depthBiasEnable_ = 0, float depthBiasConstantFactor_ = 0, float depthBiasClamp_ = 0, float depthBiasSlopeFactor_ = 0, float lineWidth_ = 0 )
: sType( StructureType::ePipelineRasterizationStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, depthClampEnable( depthClampEnable_ )
, rasterizerDiscardEnable( rasterizerDiscardEnable_ )
, polygonMode( polygonMode_ )
, cullMode( cullMode_ )
, frontFace( frontFace_ )
, depthBiasEnable( depthBiasEnable_ )
, depthBiasConstantFactor( depthBiasConstantFactor_ )
, depthBiasClamp( depthBiasClamp_ )
, depthBiasSlopeFactor( depthBiasSlopeFactor_ )
, lineWidth( lineWidth_ )
{
}
PipelineRasterizationStateCreateInfo( VkPipelineRasterizationStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineRasterizationStateCreateInfo ) );
}
PipelineRasterizationStateCreateInfo& operator=( VkPipelineRasterizationStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineRasterizationStateCreateInfo ) );
return *this;
}
PipelineRasterizationStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineRasterizationStateCreateInfo& setFlags( PipelineRasterizationStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthClampEnable( Bool32 depthClampEnable_ )
{
depthClampEnable = depthClampEnable_;
return *this;
}
PipelineRasterizationStateCreateInfo& setRasterizerDiscardEnable( Bool32 rasterizerDiscardEnable_ )
{
rasterizerDiscardEnable = rasterizerDiscardEnable_;
return *this;
}
PipelineRasterizationStateCreateInfo& setPolygonMode( PolygonMode polygonMode_ )
{
polygonMode = polygonMode_;
return *this;
}
PipelineRasterizationStateCreateInfo& setCullMode( CullModeFlags cullMode_ )
{
cullMode = cullMode_;
return *this;
}
PipelineRasterizationStateCreateInfo& setFrontFace( FrontFace frontFace_ )
{
frontFace = frontFace_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthBiasEnable( Bool32 depthBiasEnable_ )
{
depthBiasEnable = depthBiasEnable_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthBiasConstantFactor( float depthBiasConstantFactor_ )
{
depthBiasConstantFactor = depthBiasConstantFactor_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthBiasClamp( float depthBiasClamp_ )
{
depthBiasClamp = depthBiasClamp_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthBiasSlopeFactor( float depthBiasSlopeFactor_ )
{
depthBiasSlopeFactor = depthBiasSlopeFactor_;
return *this;
}
PipelineRasterizationStateCreateInfo& setLineWidth( float lineWidth_ )
{
lineWidth = lineWidth_;
return *this;
}
operator const VkPipelineRasterizationStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineRasterizationStateCreateInfo*>(this);
}
bool operator==( PipelineRasterizationStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( depthClampEnable == rhs.depthClampEnable )
&& ( rasterizerDiscardEnable == rhs.rasterizerDiscardEnable )
&& ( polygonMode == rhs.polygonMode )
&& ( cullMode == rhs.cullMode )
&& ( frontFace == rhs.frontFace )
&& ( depthBiasEnable == rhs.depthBiasEnable )
&& ( depthBiasConstantFactor == rhs.depthBiasConstantFactor )
&& ( depthBiasClamp == rhs.depthBiasClamp )
&& ( depthBiasSlopeFactor == rhs.depthBiasSlopeFactor )
&& ( lineWidth == rhs.lineWidth );
}
bool operator!=( PipelineRasterizationStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineRasterizationStateCreateFlags flags;
Bool32 depthClampEnable;
Bool32 rasterizerDiscardEnable;
PolygonMode polygonMode;
CullModeFlags cullMode;
FrontFace frontFace;
Bool32 depthBiasEnable;
float depthBiasConstantFactor;
float depthBiasClamp;
float depthBiasSlopeFactor;
float lineWidth;
};
static_assert( sizeof( PipelineRasterizationStateCreateInfo ) == sizeof( VkPipelineRasterizationStateCreateInfo ), "struct and wrapper have different size!" );
struct PipelineDepthStencilStateCreateInfo
{
PipelineDepthStencilStateCreateInfo( PipelineDepthStencilStateCreateFlags flags_ = PipelineDepthStencilStateCreateFlags(), Bool32 depthTestEnable_ = 0, Bool32 depthWriteEnable_ = 0, CompareOp depthCompareOp_ = CompareOp::eNever, Bool32 depthBoundsTestEnable_ = 0, Bool32 stencilTestEnable_ = 0, StencilOpState front_ = StencilOpState(), StencilOpState back_ = StencilOpState(), float minDepthBounds_ = 0, float maxDepthBounds_ = 0 )
: sType( StructureType::ePipelineDepthStencilStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, depthTestEnable( depthTestEnable_ )
, depthWriteEnable( depthWriteEnable_ )
, depthCompareOp( depthCompareOp_ )
, depthBoundsTestEnable( depthBoundsTestEnable_ )
, stencilTestEnable( stencilTestEnable_ )
, front( front_ )
, back( back_ )
, minDepthBounds( minDepthBounds_ )
, maxDepthBounds( maxDepthBounds_ )
{
}
PipelineDepthStencilStateCreateInfo( VkPipelineDepthStencilStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineDepthStencilStateCreateInfo ) );
}
PipelineDepthStencilStateCreateInfo& operator=( VkPipelineDepthStencilStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineDepthStencilStateCreateInfo ) );
return *this;
}
PipelineDepthStencilStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setFlags( PipelineDepthStencilStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setDepthTestEnable( Bool32 depthTestEnable_ )
{
depthTestEnable = depthTestEnable_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setDepthWriteEnable( Bool32 depthWriteEnable_ )
{
depthWriteEnable = depthWriteEnable_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setDepthCompareOp( CompareOp depthCompareOp_ )
{
depthCompareOp = depthCompareOp_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setDepthBoundsTestEnable( Bool32 depthBoundsTestEnable_ )
{
depthBoundsTestEnable = depthBoundsTestEnable_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setStencilTestEnable( Bool32 stencilTestEnable_ )
{
stencilTestEnable = stencilTestEnable_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setFront( StencilOpState front_ )
{
front = front_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setBack( StencilOpState back_ )
{
back = back_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setMinDepthBounds( float minDepthBounds_ )
{
minDepthBounds = minDepthBounds_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setMaxDepthBounds( float maxDepthBounds_ )
{
maxDepthBounds = maxDepthBounds_;
return *this;
}
operator const VkPipelineDepthStencilStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineDepthStencilStateCreateInfo*>(this);
}
bool operator==( PipelineDepthStencilStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( depthTestEnable == rhs.depthTestEnable )
&& ( depthWriteEnable == rhs.depthWriteEnable )
&& ( depthCompareOp == rhs.depthCompareOp )
&& ( depthBoundsTestEnable == rhs.depthBoundsTestEnable )
&& ( stencilTestEnable == rhs.stencilTestEnable )
&& ( front == rhs.front )
&& ( back == rhs.back )
&& ( minDepthBounds == rhs.minDepthBounds )
&& ( maxDepthBounds == rhs.maxDepthBounds );
}
bool operator!=( PipelineDepthStencilStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineDepthStencilStateCreateFlags flags;
Bool32 depthTestEnable;
Bool32 depthWriteEnable;
CompareOp depthCompareOp;
Bool32 depthBoundsTestEnable;
Bool32 stencilTestEnable;
StencilOpState front;
StencilOpState back;
float minDepthBounds;
float maxDepthBounds;
};
static_assert( sizeof( PipelineDepthStencilStateCreateInfo ) == sizeof( VkPipelineDepthStencilStateCreateInfo ), "struct and wrapper have different size!" );
struct PipelineCacheCreateInfo
{
PipelineCacheCreateInfo( PipelineCacheCreateFlags flags_ = PipelineCacheCreateFlags(), size_t initialDataSize_ = 0, const void* pInitialData_ = nullptr )
: sType( StructureType::ePipelineCacheCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, initialDataSize( initialDataSize_ )
, pInitialData( pInitialData_ )
{
}
PipelineCacheCreateInfo( VkPipelineCacheCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineCacheCreateInfo ) );
}
PipelineCacheCreateInfo& operator=( VkPipelineCacheCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineCacheCreateInfo ) );
return *this;
}
PipelineCacheCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineCacheCreateInfo& setFlags( PipelineCacheCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineCacheCreateInfo& setInitialDataSize( size_t initialDataSize_ )
{
initialDataSize = initialDataSize_;
return *this;
}
PipelineCacheCreateInfo& setPInitialData( const void* pInitialData_ )
{
pInitialData = pInitialData_;
return *this;
}
operator const VkPipelineCacheCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineCacheCreateInfo*>(this);
}
bool operator==( PipelineCacheCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( initialDataSize == rhs.initialDataSize )
&& ( pInitialData == rhs.pInitialData );
}
bool operator!=( PipelineCacheCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineCacheCreateFlags flags;
size_t initialDataSize;
const void* pInitialData;
};
static_assert( sizeof( PipelineCacheCreateInfo ) == sizeof( VkPipelineCacheCreateInfo ), "struct and wrapper have different size!" );
struct SamplerCreateInfo
{
SamplerCreateInfo( SamplerCreateFlags flags_ = SamplerCreateFlags(), Filter magFilter_ = Filter::eNearest, Filter minFilter_ = Filter::eNearest, SamplerMipmapMode mipmapMode_ = SamplerMipmapMode::eNearest, SamplerAddressMode addressModeU_ = SamplerAddressMode::eRepeat, SamplerAddressMode addressModeV_ = SamplerAddressMode::eRepeat, SamplerAddressMode addressModeW_ = SamplerAddressMode::eRepeat, float mipLodBias_ = 0, Bool32 anisotropyEnable_ = 0, float maxAnisotropy_ = 0, Bool32 compareEnable_ = 0, CompareOp compareOp_ = CompareOp::eNever, float minLod_ = 0, float maxLod_ = 0, BorderColor borderColor_ = BorderColor::eFloatTransparentBlack, Bool32 unnormalizedCoordinates_ = 0 )
: sType( StructureType::eSamplerCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, magFilter( magFilter_ )
, minFilter( minFilter_ )
, mipmapMode( mipmapMode_ )
, addressModeU( addressModeU_ )
, addressModeV( addressModeV_ )
, addressModeW( addressModeW_ )
, mipLodBias( mipLodBias_ )
, anisotropyEnable( anisotropyEnable_ )
, maxAnisotropy( maxAnisotropy_ )
, compareEnable( compareEnable_ )
, compareOp( compareOp_ )
, minLod( minLod_ )
, maxLod( maxLod_ )
, borderColor( borderColor_ )
, unnormalizedCoordinates( unnormalizedCoordinates_ )
{
}
SamplerCreateInfo( VkSamplerCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SamplerCreateInfo ) );
}
SamplerCreateInfo& operator=( VkSamplerCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SamplerCreateInfo ) );
return *this;
}
SamplerCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SamplerCreateInfo& setFlags( SamplerCreateFlags flags_ )
{
flags = flags_;
return *this;
}
SamplerCreateInfo& setMagFilter( Filter magFilter_ )
{
magFilter = magFilter_;
return *this;
}
SamplerCreateInfo& setMinFilter( Filter minFilter_ )
{
minFilter = minFilter_;
return *this;
}
SamplerCreateInfo& setMipmapMode( SamplerMipmapMode mipmapMode_ )
{
mipmapMode = mipmapMode_;
return *this;
}
SamplerCreateInfo& setAddressModeU( SamplerAddressMode addressModeU_ )
{
addressModeU = addressModeU_;
return *this;
}
SamplerCreateInfo& setAddressModeV( SamplerAddressMode addressModeV_ )
{
addressModeV = addressModeV_;
return *this;
}
SamplerCreateInfo& setAddressModeW( SamplerAddressMode addressModeW_ )
{
addressModeW = addressModeW_;
return *this;
}
SamplerCreateInfo& setMipLodBias( float mipLodBias_ )
{
mipLodBias = mipLodBias_;
return *this;
}
SamplerCreateInfo& setAnisotropyEnable( Bool32 anisotropyEnable_ )
{
anisotropyEnable = anisotropyEnable_;
return *this;
}
SamplerCreateInfo& setMaxAnisotropy( float maxAnisotropy_ )
{
maxAnisotropy = maxAnisotropy_;
return *this;
}
SamplerCreateInfo& setCompareEnable( Bool32 compareEnable_ )
{
compareEnable = compareEnable_;
return *this;
}
SamplerCreateInfo& setCompareOp( CompareOp compareOp_ )
{
compareOp = compareOp_;
return *this;
}
SamplerCreateInfo& setMinLod( float minLod_ )
{
minLod = minLod_;
return *this;
}
SamplerCreateInfo& setMaxLod( float maxLod_ )
{
maxLod = maxLod_;
return *this;
}
SamplerCreateInfo& setBorderColor( BorderColor borderColor_ )
{
borderColor = borderColor_;
return *this;
}
SamplerCreateInfo& setUnnormalizedCoordinates( Bool32 unnormalizedCoordinates_ )
{
unnormalizedCoordinates = unnormalizedCoordinates_;
return *this;
}
operator const VkSamplerCreateInfo&() const
{
return *reinterpret_cast<const VkSamplerCreateInfo*>(this);
}
bool operator==( SamplerCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( magFilter == rhs.magFilter )
&& ( minFilter == rhs.minFilter )
&& ( mipmapMode == rhs.mipmapMode )
&& ( addressModeU == rhs.addressModeU )
&& ( addressModeV == rhs.addressModeV )
&& ( addressModeW == rhs.addressModeW )
&& ( mipLodBias == rhs.mipLodBias )
&& ( anisotropyEnable == rhs.anisotropyEnable )
&& ( maxAnisotropy == rhs.maxAnisotropy )
&& ( compareEnable == rhs.compareEnable )
&& ( compareOp == rhs.compareOp )
&& ( minLod == rhs.minLod )
&& ( maxLod == rhs.maxLod )
&& ( borderColor == rhs.borderColor )
&& ( unnormalizedCoordinates == rhs.unnormalizedCoordinates );
}
bool operator!=( SamplerCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SamplerCreateFlags flags;
Filter magFilter;
Filter minFilter;
SamplerMipmapMode mipmapMode;
SamplerAddressMode addressModeU;
SamplerAddressMode addressModeV;
SamplerAddressMode addressModeW;
float mipLodBias;
Bool32 anisotropyEnable;
float maxAnisotropy;
Bool32 compareEnable;
CompareOp compareOp;
float minLod;
float maxLod;
BorderColor borderColor;
Bool32 unnormalizedCoordinates;
};
static_assert( sizeof( SamplerCreateInfo ) == sizeof( VkSamplerCreateInfo ), "struct and wrapper have different size!" );
struct CommandBufferAllocateInfo
{
CommandBufferAllocateInfo( CommandPool commandPool_ = CommandPool(), CommandBufferLevel level_ = CommandBufferLevel::ePrimary, uint32_t commandBufferCount_ = 0 )
: sType( StructureType::eCommandBufferAllocateInfo )
, pNext( nullptr )
, commandPool( commandPool_ )
, level( level_ )
, commandBufferCount( commandBufferCount_ )
{
}
CommandBufferAllocateInfo( VkCommandBufferAllocateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( CommandBufferAllocateInfo ) );
}
CommandBufferAllocateInfo& operator=( VkCommandBufferAllocateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( CommandBufferAllocateInfo ) );
return *this;
}
CommandBufferAllocateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
CommandBufferAllocateInfo& setCommandPool( CommandPool commandPool_ )
{
commandPool = commandPool_;
return *this;
}
CommandBufferAllocateInfo& setLevel( CommandBufferLevel level_ )
{
level = level_;
return *this;
}
CommandBufferAllocateInfo& setCommandBufferCount( uint32_t commandBufferCount_ )
{
commandBufferCount = commandBufferCount_;
return *this;
}
operator const VkCommandBufferAllocateInfo&() const
{
return *reinterpret_cast<const VkCommandBufferAllocateInfo*>(this);
}
bool operator==( CommandBufferAllocateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( commandPool == rhs.commandPool )
&& ( level == rhs.level )
&& ( commandBufferCount == rhs.commandBufferCount );
}
bool operator!=( CommandBufferAllocateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
CommandPool commandPool;
CommandBufferLevel level;
uint32_t commandBufferCount;
};
static_assert( sizeof( CommandBufferAllocateInfo ) == sizeof( VkCommandBufferAllocateInfo ), "struct and wrapper have different size!" );
struct RenderPassBeginInfo
{
RenderPassBeginInfo( RenderPass renderPass_ = RenderPass(), Framebuffer framebuffer_ = Framebuffer(), Rect2D renderArea_ = Rect2D(), uint32_t clearValueCount_ = 0, const ClearValue* pClearValues_ = nullptr )
: sType( StructureType::eRenderPassBeginInfo )
, pNext( nullptr )
, renderPass( renderPass_ )
, framebuffer( framebuffer_ )
, renderArea( renderArea_ )
, clearValueCount( clearValueCount_ )
, pClearValues( pClearValues_ )
{
}
RenderPassBeginInfo( VkRenderPassBeginInfo const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassBeginInfo ) );
}
RenderPassBeginInfo& operator=( VkRenderPassBeginInfo const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassBeginInfo ) );
return *this;
}
RenderPassBeginInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
RenderPassBeginInfo& setRenderPass( RenderPass renderPass_ )
{
renderPass = renderPass_;
return *this;
}
RenderPassBeginInfo& setFramebuffer( Framebuffer framebuffer_ )
{
framebuffer = framebuffer_;
return *this;
}
RenderPassBeginInfo& setRenderArea( Rect2D renderArea_ )
{
renderArea = renderArea_;
return *this;
}
RenderPassBeginInfo& setClearValueCount( uint32_t clearValueCount_ )
{
clearValueCount = clearValueCount_;
return *this;
}
RenderPassBeginInfo& setPClearValues( const ClearValue* pClearValues_ )
{
pClearValues = pClearValues_;
return *this;
}
operator const VkRenderPassBeginInfo&() const
{
return *reinterpret_cast<const VkRenderPassBeginInfo*>(this);
}
bool operator==( RenderPassBeginInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( renderPass == rhs.renderPass )
&& ( framebuffer == rhs.framebuffer )
&& ( renderArea == rhs.renderArea )
&& ( clearValueCount == rhs.clearValueCount )
&& ( pClearValues == rhs.pClearValues );
}
bool operator!=( RenderPassBeginInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
RenderPass renderPass;
Framebuffer framebuffer;
Rect2D renderArea;
uint32_t clearValueCount;
const ClearValue* pClearValues;
};
static_assert( sizeof( RenderPassBeginInfo ) == sizeof( VkRenderPassBeginInfo ), "struct and wrapper have different size!" );
struct EventCreateInfo
{
EventCreateInfo( EventCreateFlags flags_ = EventCreateFlags() )
: sType( StructureType::eEventCreateInfo )
, pNext( nullptr )
, flags( flags_ )
{
}
EventCreateInfo( VkEventCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( EventCreateInfo ) );
}
EventCreateInfo& operator=( VkEventCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( EventCreateInfo ) );
return *this;
}
EventCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
EventCreateInfo& setFlags( EventCreateFlags flags_ )
{
flags = flags_;
return *this;
}
operator const VkEventCreateInfo&() const
{
return *reinterpret_cast<const VkEventCreateInfo*>(this);
}
bool operator==( EventCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags );
}
bool operator!=( EventCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
EventCreateFlags flags;
};
static_assert( sizeof( EventCreateInfo ) == sizeof( VkEventCreateInfo ), "struct and wrapper have different size!" );
struct SemaphoreCreateInfo
{
SemaphoreCreateInfo( SemaphoreCreateFlags flags_ = SemaphoreCreateFlags() )
: sType( StructureType::eSemaphoreCreateInfo )
, pNext( nullptr )
, flags( flags_ )
{
}
SemaphoreCreateInfo( VkSemaphoreCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SemaphoreCreateInfo ) );
}
SemaphoreCreateInfo& operator=( VkSemaphoreCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SemaphoreCreateInfo ) );
return *this;
}
SemaphoreCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SemaphoreCreateInfo& setFlags( SemaphoreCreateFlags flags_ )
{
flags = flags_;
return *this;
}
operator const VkSemaphoreCreateInfo&() const
{
return *reinterpret_cast<const VkSemaphoreCreateInfo*>(this);
}
bool operator==( SemaphoreCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags );
}
bool operator!=( SemaphoreCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SemaphoreCreateFlags flags;
};
static_assert( sizeof( SemaphoreCreateInfo ) == sizeof( VkSemaphoreCreateInfo ), "struct and wrapper have different size!" );
struct FramebufferCreateInfo
{
FramebufferCreateInfo( FramebufferCreateFlags flags_ = FramebufferCreateFlags(), RenderPass renderPass_ = RenderPass(), uint32_t attachmentCount_ = 0, const ImageView* pAttachments_ = nullptr, uint32_t width_ = 0, uint32_t height_ = 0, uint32_t layers_ = 0 )
: sType( StructureType::eFramebufferCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, renderPass( renderPass_ )
, attachmentCount( attachmentCount_ )
, pAttachments( pAttachments_ )
, width( width_ )
, height( height_ )
, layers( layers_ )
{
}
FramebufferCreateInfo( VkFramebufferCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( FramebufferCreateInfo ) );
}
FramebufferCreateInfo& operator=( VkFramebufferCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( FramebufferCreateInfo ) );
return *this;
}
FramebufferCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
FramebufferCreateInfo& setFlags( FramebufferCreateFlags flags_ )
{
flags = flags_;
return *this;
}
FramebufferCreateInfo& setRenderPass( RenderPass renderPass_ )
{
renderPass = renderPass_;
return *this;
}
FramebufferCreateInfo& setAttachmentCount( uint32_t attachmentCount_ )
{
attachmentCount = attachmentCount_;
return *this;
}
FramebufferCreateInfo& setPAttachments( const ImageView* pAttachments_ )
{
pAttachments = pAttachments_;
return *this;
}
FramebufferCreateInfo& setWidth( uint32_t width_ )
{
width = width_;
return *this;
}
FramebufferCreateInfo& setHeight( uint32_t height_ )
{
height = height_;
return *this;
}
FramebufferCreateInfo& setLayers( uint32_t layers_ )
{
layers = layers_;
return *this;
}
operator const VkFramebufferCreateInfo&() const
{
return *reinterpret_cast<const VkFramebufferCreateInfo*>(this);
}
bool operator==( FramebufferCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( renderPass == rhs.renderPass )
&& ( attachmentCount == rhs.attachmentCount )
&& ( pAttachments == rhs.pAttachments )
&& ( width == rhs.width )
&& ( height == rhs.height )
&& ( layers == rhs.layers );
}
bool operator!=( FramebufferCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
FramebufferCreateFlags flags;
RenderPass renderPass;
uint32_t attachmentCount;
const ImageView* pAttachments;
uint32_t width;
uint32_t height;
uint32_t layers;
};
static_assert( sizeof( FramebufferCreateInfo ) == sizeof( VkFramebufferCreateInfo ), "struct and wrapper have different size!" );
struct DisplayModeCreateInfoKHR
{
DisplayModeCreateInfoKHR( DisplayModeCreateFlagsKHR flags_ = DisplayModeCreateFlagsKHR(), DisplayModeParametersKHR parameters_ = DisplayModeParametersKHR() )
: sType( StructureType::eDisplayModeCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, parameters( parameters_ )
{
}
DisplayModeCreateInfoKHR( VkDisplayModeCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayModeCreateInfoKHR ) );
}
DisplayModeCreateInfoKHR& operator=( VkDisplayModeCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayModeCreateInfoKHR ) );
return *this;
}
DisplayModeCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DisplayModeCreateInfoKHR& setFlags( DisplayModeCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
DisplayModeCreateInfoKHR& setParameters( DisplayModeParametersKHR parameters_ )
{
parameters = parameters_;
return *this;
}
operator const VkDisplayModeCreateInfoKHR&() const
{
return *reinterpret_cast<const VkDisplayModeCreateInfoKHR*>(this);
}
bool operator==( DisplayModeCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( parameters == rhs.parameters );
}
bool operator!=( DisplayModeCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DisplayModeCreateFlagsKHR flags;
DisplayModeParametersKHR parameters;
};
static_assert( sizeof( DisplayModeCreateInfoKHR ) == sizeof( VkDisplayModeCreateInfoKHR ), "struct and wrapper have different size!" );
struct DisplayPresentInfoKHR
{
DisplayPresentInfoKHR( Rect2D srcRect_ = Rect2D(), Rect2D dstRect_ = Rect2D(), Bool32 persistent_ = 0 )
: sType( StructureType::eDisplayPresentInfoKHR )
, pNext( nullptr )
, srcRect( srcRect_ )
, dstRect( dstRect_ )
, persistent( persistent_ )
{
}
DisplayPresentInfoKHR( VkDisplayPresentInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayPresentInfoKHR ) );
}
DisplayPresentInfoKHR& operator=( VkDisplayPresentInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayPresentInfoKHR ) );
return *this;
}
DisplayPresentInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DisplayPresentInfoKHR& setSrcRect( Rect2D srcRect_ )
{
srcRect = srcRect_;
return *this;
}
DisplayPresentInfoKHR& setDstRect( Rect2D dstRect_ )
{
dstRect = dstRect_;
return *this;
}
DisplayPresentInfoKHR& setPersistent( Bool32 persistent_ )
{
persistent = persistent_;
return *this;
}
operator const VkDisplayPresentInfoKHR&() const
{
return *reinterpret_cast<const VkDisplayPresentInfoKHR*>(this);
}
bool operator==( DisplayPresentInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( srcRect == rhs.srcRect )
&& ( dstRect == rhs.dstRect )
&& ( persistent == rhs.persistent );
}
bool operator!=( DisplayPresentInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Rect2D srcRect;
Rect2D dstRect;
Bool32 persistent;
};
static_assert( sizeof( DisplayPresentInfoKHR ) == sizeof( VkDisplayPresentInfoKHR ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_ANDROID_KHR
struct AndroidSurfaceCreateInfoKHR
{
AndroidSurfaceCreateInfoKHR( AndroidSurfaceCreateFlagsKHR flags_ = AndroidSurfaceCreateFlagsKHR(), ANativeWindow* window_ = nullptr )
: sType( StructureType::eAndroidSurfaceCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, window( window_ )
{
}
AndroidSurfaceCreateInfoKHR( VkAndroidSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( AndroidSurfaceCreateInfoKHR ) );
}
AndroidSurfaceCreateInfoKHR& operator=( VkAndroidSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( AndroidSurfaceCreateInfoKHR ) );
return *this;
}
AndroidSurfaceCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
AndroidSurfaceCreateInfoKHR& setFlags( AndroidSurfaceCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
AndroidSurfaceCreateInfoKHR& setWindow( ANativeWindow* window_ )
{
window = window_;
return *this;
}
operator const VkAndroidSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkAndroidSurfaceCreateInfoKHR*>(this);
}
bool operator==( AndroidSurfaceCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( window == rhs.window );
}
bool operator!=( AndroidSurfaceCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
AndroidSurfaceCreateFlagsKHR flags;
ANativeWindow* window;
};
static_assert( sizeof( AndroidSurfaceCreateInfoKHR ) == sizeof( VkAndroidSurfaceCreateInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
struct MirSurfaceCreateInfoKHR
{
MirSurfaceCreateInfoKHR( MirSurfaceCreateFlagsKHR flags_ = MirSurfaceCreateFlagsKHR(), MirConnection* connection_ = nullptr, MirSurface* mirSurface_ = nullptr )
: sType( StructureType::eMirSurfaceCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, connection( connection_ )
, mirSurface( mirSurface_ )
{
}
MirSurfaceCreateInfoKHR( VkMirSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( MirSurfaceCreateInfoKHR ) );
}
MirSurfaceCreateInfoKHR& operator=( VkMirSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( MirSurfaceCreateInfoKHR ) );
return *this;
}
MirSurfaceCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MirSurfaceCreateInfoKHR& setFlags( MirSurfaceCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
MirSurfaceCreateInfoKHR& setConnection( MirConnection* connection_ )
{
connection = connection_;
return *this;
}
MirSurfaceCreateInfoKHR& setMirSurface( MirSurface* mirSurface_ )
{
mirSurface = mirSurface_;
return *this;
}
operator const VkMirSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkMirSurfaceCreateInfoKHR*>(this);
}
bool operator==( MirSurfaceCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( connection == rhs.connection )
&& ( mirSurface == rhs.mirSurface );
}
bool operator!=( MirSurfaceCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
MirSurfaceCreateFlagsKHR flags;
MirConnection* connection;
MirSurface* mirSurface;
};
static_assert( sizeof( MirSurfaceCreateInfoKHR ) == sizeof( VkMirSurfaceCreateInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_VI_NN
struct ViSurfaceCreateInfoNN
{
ViSurfaceCreateInfoNN( ViSurfaceCreateFlagsNN flags_ = ViSurfaceCreateFlagsNN(), void* window_ = nullptr )
: sType( StructureType::eViSurfaceCreateInfoNN )
, pNext( nullptr )
, flags( flags_ )
, window( window_ )
{
}
ViSurfaceCreateInfoNN( VkViSurfaceCreateInfoNN const & rhs )
{
memcpy( this, &rhs, sizeof( ViSurfaceCreateInfoNN ) );
}
ViSurfaceCreateInfoNN& operator=( VkViSurfaceCreateInfoNN const & rhs )
{
memcpy( this, &rhs, sizeof( ViSurfaceCreateInfoNN ) );
return *this;
}
ViSurfaceCreateInfoNN& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ViSurfaceCreateInfoNN& setFlags( ViSurfaceCreateFlagsNN flags_ )
{
flags = flags_;
return *this;
}
ViSurfaceCreateInfoNN& setWindow( void* window_ )
{
window = window_;
return *this;
}
operator const VkViSurfaceCreateInfoNN&() const
{
return *reinterpret_cast<const VkViSurfaceCreateInfoNN*>(this);
}
bool operator==( ViSurfaceCreateInfoNN const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( window == rhs.window );
}
bool operator!=( ViSurfaceCreateInfoNN const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ViSurfaceCreateFlagsNN flags;
void* window;
};
static_assert( sizeof( ViSurfaceCreateInfoNN ) == sizeof( VkViSurfaceCreateInfoNN ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_VI_NN*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
struct WaylandSurfaceCreateInfoKHR
{
WaylandSurfaceCreateInfoKHR( WaylandSurfaceCreateFlagsKHR flags_ = WaylandSurfaceCreateFlagsKHR(), struct wl_display* display_ = nullptr, struct wl_surface* surface_ = nullptr )
: sType( StructureType::eWaylandSurfaceCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, display( display_ )
, surface( surface_ )
{
}
WaylandSurfaceCreateInfoKHR( VkWaylandSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( WaylandSurfaceCreateInfoKHR ) );
}
WaylandSurfaceCreateInfoKHR& operator=( VkWaylandSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( WaylandSurfaceCreateInfoKHR ) );
return *this;
}
WaylandSurfaceCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
WaylandSurfaceCreateInfoKHR& setFlags( WaylandSurfaceCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
WaylandSurfaceCreateInfoKHR& setDisplay( struct wl_display* display_ )
{
display = display_;
return *this;
}
WaylandSurfaceCreateInfoKHR& setSurface( struct wl_surface* surface_ )
{
surface = surface_;
return *this;
}
operator const VkWaylandSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkWaylandSurfaceCreateInfoKHR*>(this);
}
bool operator==( WaylandSurfaceCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( display == rhs.display )
&& ( surface == rhs.surface );
}
bool operator!=( WaylandSurfaceCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
WaylandSurfaceCreateFlagsKHR flags;
struct wl_display* display;
struct wl_surface* surface;
};
static_assert( sizeof( WaylandSurfaceCreateInfoKHR ) == sizeof( VkWaylandSurfaceCreateInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct Win32SurfaceCreateInfoKHR
{
Win32SurfaceCreateInfoKHR( Win32SurfaceCreateFlagsKHR flags_ = Win32SurfaceCreateFlagsKHR(), HINSTANCE hinstance_ = 0, HWND hwnd_ = 0 )
: sType( StructureType::eWin32SurfaceCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, hinstance( hinstance_ )
, hwnd( hwnd_ )
{
}
Win32SurfaceCreateInfoKHR( VkWin32SurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( Win32SurfaceCreateInfoKHR ) );
}
Win32SurfaceCreateInfoKHR& operator=( VkWin32SurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( Win32SurfaceCreateInfoKHR ) );
return *this;
}
Win32SurfaceCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
Win32SurfaceCreateInfoKHR& setFlags( Win32SurfaceCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
Win32SurfaceCreateInfoKHR& setHinstance( HINSTANCE hinstance_ )
{
hinstance = hinstance_;
return *this;
}
Win32SurfaceCreateInfoKHR& setHwnd( HWND hwnd_ )
{
hwnd = hwnd_;
return *this;
}
operator const VkWin32SurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkWin32SurfaceCreateInfoKHR*>(this);
}
bool operator==( Win32SurfaceCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( hinstance == rhs.hinstance )
&& ( hwnd == rhs.hwnd );
}
bool operator!=( Win32SurfaceCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Win32SurfaceCreateFlagsKHR flags;
HINSTANCE hinstance;
HWND hwnd;
};
static_assert( sizeof( Win32SurfaceCreateInfoKHR ) == sizeof( VkWin32SurfaceCreateInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
struct XlibSurfaceCreateInfoKHR
{
XlibSurfaceCreateInfoKHR( XlibSurfaceCreateFlagsKHR flags_ = XlibSurfaceCreateFlagsKHR(), Display* dpy_ = nullptr, Window window_ = 0 )
: sType( StructureType::eXlibSurfaceCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, dpy( dpy_ )
, window( window_ )
{
}
XlibSurfaceCreateInfoKHR( VkXlibSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( XlibSurfaceCreateInfoKHR ) );
}
XlibSurfaceCreateInfoKHR& operator=( VkXlibSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( XlibSurfaceCreateInfoKHR ) );
return *this;
}
XlibSurfaceCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
XlibSurfaceCreateInfoKHR& setFlags( XlibSurfaceCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
XlibSurfaceCreateInfoKHR& setDpy( Display* dpy_ )
{
dpy = dpy_;
return *this;
}
XlibSurfaceCreateInfoKHR& setWindow( Window window_ )
{
window = window_;
return *this;
}
operator const VkXlibSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkXlibSurfaceCreateInfoKHR*>(this);
}
bool operator==( XlibSurfaceCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( dpy == rhs.dpy )
&& ( window == rhs.window );
}
bool operator!=( XlibSurfaceCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
XlibSurfaceCreateFlagsKHR flags;
Display* dpy;
Window window;
};
static_assert( sizeof( XlibSurfaceCreateInfoKHR ) == sizeof( VkXlibSurfaceCreateInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
struct XcbSurfaceCreateInfoKHR
{
XcbSurfaceCreateInfoKHR( XcbSurfaceCreateFlagsKHR flags_ = XcbSurfaceCreateFlagsKHR(), xcb_connection_t* connection_ = nullptr, xcb_window_t window_ = 0 )
: sType( StructureType::eXcbSurfaceCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, connection( connection_ )
, window( window_ )
{
}
XcbSurfaceCreateInfoKHR( VkXcbSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( XcbSurfaceCreateInfoKHR ) );
}
XcbSurfaceCreateInfoKHR& operator=( VkXcbSurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( XcbSurfaceCreateInfoKHR ) );
return *this;
}
XcbSurfaceCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
XcbSurfaceCreateInfoKHR& setFlags( XcbSurfaceCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
XcbSurfaceCreateInfoKHR& setConnection( xcb_connection_t* connection_ )
{
connection = connection_;
return *this;
}
XcbSurfaceCreateInfoKHR& setWindow( xcb_window_t window_ )
{
window = window_;
return *this;
}
operator const VkXcbSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkXcbSurfaceCreateInfoKHR*>(this);
}
bool operator==( XcbSurfaceCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( connection == rhs.connection )
&& ( window == rhs.window );
}
bool operator!=( XcbSurfaceCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
XcbSurfaceCreateFlagsKHR flags;
xcb_connection_t* connection;
xcb_window_t window;
};
static_assert( sizeof( XcbSurfaceCreateInfoKHR ) == sizeof( VkXcbSurfaceCreateInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_XCB_KHR*/
struct DebugMarkerMarkerInfoEXT
{
DebugMarkerMarkerInfoEXT( const char* pMarkerName_ = nullptr, std::array<float,4> const& color_ = { { 0, 0, 0, 0 } } )
: sType( StructureType::eDebugMarkerMarkerInfoEXT )
, pNext( nullptr )
, pMarkerName( pMarkerName_ )
{
memcpy( &color, color_.data(), 4 * sizeof( float ) );
}
DebugMarkerMarkerInfoEXT( VkDebugMarkerMarkerInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DebugMarkerMarkerInfoEXT ) );
}
DebugMarkerMarkerInfoEXT& operator=( VkDebugMarkerMarkerInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DebugMarkerMarkerInfoEXT ) );
return *this;
}
DebugMarkerMarkerInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DebugMarkerMarkerInfoEXT& setPMarkerName( const char* pMarkerName_ )
{
pMarkerName = pMarkerName_;
return *this;
}
DebugMarkerMarkerInfoEXT& setColor( std::array<float,4> color_ )
{
memcpy( &color, color_.data(), 4 * sizeof( float ) );
return *this;
}
operator const VkDebugMarkerMarkerInfoEXT&() const
{
return *reinterpret_cast<const VkDebugMarkerMarkerInfoEXT*>(this);
}
bool operator==( DebugMarkerMarkerInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( pMarkerName == rhs.pMarkerName )
&& ( memcmp( color, rhs.color, 4 * sizeof( float ) ) == 0 );
}
bool operator!=( DebugMarkerMarkerInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
const char* pMarkerName;
float color[4];
};
static_assert( sizeof( DebugMarkerMarkerInfoEXT ) == sizeof( VkDebugMarkerMarkerInfoEXT ), "struct and wrapper have different size!" );
struct DedicatedAllocationImageCreateInfoNV
{
DedicatedAllocationImageCreateInfoNV( Bool32 dedicatedAllocation_ = 0 )
: sType( StructureType::eDedicatedAllocationImageCreateInfoNV )
, pNext( nullptr )
, dedicatedAllocation( dedicatedAllocation_ )
{
}
DedicatedAllocationImageCreateInfoNV( VkDedicatedAllocationImageCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( DedicatedAllocationImageCreateInfoNV ) );
}
DedicatedAllocationImageCreateInfoNV& operator=( VkDedicatedAllocationImageCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( DedicatedAllocationImageCreateInfoNV ) );
return *this;
}
DedicatedAllocationImageCreateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DedicatedAllocationImageCreateInfoNV& setDedicatedAllocation( Bool32 dedicatedAllocation_ )
{
dedicatedAllocation = dedicatedAllocation_;
return *this;
}
operator const VkDedicatedAllocationImageCreateInfoNV&() const
{
return *reinterpret_cast<const VkDedicatedAllocationImageCreateInfoNV*>(this);
}
bool operator==( DedicatedAllocationImageCreateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( dedicatedAllocation == rhs.dedicatedAllocation );
}
bool operator!=( DedicatedAllocationImageCreateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Bool32 dedicatedAllocation;
};
static_assert( sizeof( DedicatedAllocationImageCreateInfoNV ) == sizeof( VkDedicatedAllocationImageCreateInfoNV ), "struct and wrapper have different size!" );
struct DedicatedAllocationBufferCreateInfoNV
{
DedicatedAllocationBufferCreateInfoNV( Bool32 dedicatedAllocation_ = 0 )
: sType( StructureType::eDedicatedAllocationBufferCreateInfoNV )
, pNext( nullptr )
, dedicatedAllocation( dedicatedAllocation_ )
{
}
DedicatedAllocationBufferCreateInfoNV( VkDedicatedAllocationBufferCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( DedicatedAllocationBufferCreateInfoNV ) );
}
DedicatedAllocationBufferCreateInfoNV& operator=( VkDedicatedAllocationBufferCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( DedicatedAllocationBufferCreateInfoNV ) );
return *this;
}
DedicatedAllocationBufferCreateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DedicatedAllocationBufferCreateInfoNV& setDedicatedAllocation( Bool32 dedicatedAllocation_ )
{
dedicatedAllocation = dedicatedAllocation_;
return *this;
}
operator const VkDedicatedAllocationBufferCreateInfoNV&() const
{
return *reinterpret_cast<const VkDedicatedAllocationBufferCreateInfoNV*>(this);
}
bool operator==( DedicatedAllocationBufferCreateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( dedicatedAllocation == rhs.dedicatedAllocation );
}
bool operator!=( DedicatedAllocationBufferCreateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Bool32 dedicatedAllocation;
};
static_assert( sizeof( DedicatedAllocationBufferCreateInfoNV ) == sizeof( VkDedicatedAllocationBufferCreateInfoNV ), "struct and wrapper have different size!" );
struct DedicatedAllocationMemoryAllocateInfoNV
{
DedicatedAllocationMemoryAllocateInfoNV( Image image_ = Image(), Buffer buffer_ = Buffer() )
: sType( StructureType::eDedicatedAllocationMemoryAllocateInfoNV )
, pNext( nullptr )
, image( image_ )
, buffer( buffer_ )
{
}
DedicatedAllocationMemoryAllocateInfoNV( VkDedicatedAllocationMemoryAllocateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( DedicatedAllocationMemoryAllocateInfoNV ) );
}
DedicatedAllocationMemoryAllocateInfoNV& operator=( VkDedicatedAllocationMemoryAllocateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( DedicatedAllocationMemoryAllocateInfoNV ) );
return *this;
}
DedicatedAllocationMemoryAllocateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DedicatedAllocationMemoryAllocateInfoNV& setImage( Image image_ )
{
image = image_;
return *this;
}
DedicatedAllocationMemoryAllocateInfoNV& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
operator const VkDedicatedAllocationMemoryAllocateInfoNV&() const
{
return *reinterpret_cast<const VkDedicatedAllocationMemoryAllocateInfoNV*>(this);
}
bool operator==( DedicatedAllocationMemoryAllocateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( image == rhs.image )
&& ( buffer == rhs.buffer );
}
bool operator!=( DedicatedAllocationMemoryAllocateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Image image;
Buffer buffer;
};
static_assert( sizeof( DedicatedAllocationMemoryAllocateInfoNV ) == sizeof( VkDedicatedAllocationMemoryAllocateInfoNV ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct ExportMemoryWin32HandleInfoNV
{
ExportMemoryWin32HandleInfoNV( const SECURITY_ATTRIBUTES* pAttributes_ = nullptr, DWORD dwAccess_ = 0 )
: sType( StructureType::eExportMemoryWin32HandleInfoNV )
, pNext( nullptr )
, pAttributes( pAttributes_ )
, dwAccess( dwAccess_ )
{
}
ExportMemoryWin32HandleInfoNV( VkExportMemoryWin32HandleInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( ExportMemoryWin32HandleInfoNV ) );
}
ExportMemoryWin32HandleInfoNV& operator=( VkExportMemoryWin32HandleInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( ExportMemoryWin32HandleInfoNV ) );
return *this;
}
ExportMemoryWin32HandleInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExportMemoryWin32HandleInfoNV& setPAttributes( const SECURITY_ATTRIBUTES* pAttributes_ )
{
pAttributes = pAttributes_;
return *this;
}
ExportMemoryWin32HandleInfoNV& setDwAccess( DWORD dwAccess_ )
{
dwAccess = dwAccess_;
return *this;
}
operator const VkExportMemoryWin32HandleInfoNV&() const
{
return *reinterpret_cast<const VkExportMemoryWin32HandleInfoNV*>(this);
}
bool operator==( ExportMemoryWin32HandleInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( pAttributes == rhs.pAttributes )
&& ( dwAccess == rhs.dwAccess );
}
bool operator!=( ExportMemoryWin32HandleInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
const SECURITY_ATTRIBUTES* pAttributes;
DWORD dwAccess;
};
static_assert( sizeof( ExportMemoryWin32HandleInfoNV ) == sizeof( VkExportMemoryWin32HandleInfoNV ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct Win32KeyedMutexAcquireReleaseInfoNV
{
Win32KeyedMutexAcquireReleaseInfoNV( uint32_t acquireCount_ = 0, const DeviceMemory* pAcquireSyncs_ = nullptr, const uint64_t* pAcquireKeys_ = nullptr, const uint32_t* pAcquireTimeoutMilliseconds_ = nullptr, uint32_t releaseCount_ = 0, const DeviceMemory* pReleaseSyncs_ = nullptr, const uint64_t* pReleaseKeys_ = nullptr )
: sType( StructureType::eWin32KeyedMutexAcquireReleaseInfoNV )
, pNext( nullptr )
, acquireCount( acquireCount_ )
, pAcquireSyncs( pAcquireSyncs_ )
, pAcquireKeys( pAcquireKeys_ )
, pAcquireTimeoutMilliseconds( pAcquireTimeoutMilliseconds_ )
, releaseCount( releaseCount_ )
, pReleaseSyncs( pReleaseSyncs_ )
, pReleaseKeys( pReleaseKeys_ )
{
}
Win32KeyedMutexAcquireReleaseInfoNV( VkWin32KeyedMutexAcquireReleaseInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( Win32KeyedMutexAcquireReleaseInfoNV ) );
}
Win32KeyedMutexAcquireReleaseInfoNV& operator=( VkWin32KeyedMutexAcquireReleaseInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( Win32KeyedMutexAcquireReleaseInfoNV ) );
return *this;
}
Win32KeyedMutexAcquireReleaseInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoNV& setAcquireCount( uint32_t acquireCount_ )
{
acquireCount = acquireCount_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoNV& setPAcquireSyncs( const DeviceMemory* pAcquireSyncs_ )
{
pAcquireSyncs = pAcquireSyncs_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoNV& setPAcquireKeys( const uint64_t* pAcquireKeys_ )
{
pAcquireKeys = pAcquireKeys_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoNV& setPAcquireTimeoutMilliseconds( const uint32_t* pAcquireTimeoutMilliseconds_ )
{
pAcquireTimeoutMilliseconds = pAcquireTimeoutMilliseconds_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoNV& setReleaseCount( uint32_t releaseCount_ )
{
releaseCount = releaseCount_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoNV& setPReleaseSyncs( const DeviceMemory* pReleaseSyncs_ )
{
pReleaseSyncs = pReleaseSyncs_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoNV& setPReleaseKeys( const uint64_t* pReleaseKeys_ )
{
pReleaseKeys = pReleaseKeys_;
return *this;
}
operator const VkWin32KeyedMutexAcquireReleaseInfoNV&() const
{
return *reinterpret_cast<const VkWin32KeyedMutexAcquireReleaseInfoNV*>(this);
}
bool operator==( Win32KeyedMutexAcquireReleaseInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( acquireCount == rhs.acquireCount )
&& ( pAcquireSyncs == rhs.pAcquireSyncs )
&& ( pAcquireKeys == rhs.pAcquireKeys )
&& ( pAcquireTimeoutMilliseconds == rhs.pAcquireTimeoutMilliseconds )
&& ( releaseCount == rhs.releaseCount )
&& ( pReleaseSyncs == rhs.pReleaseSyncs )
&& ( pReleaseKeys == rhs.pReleaseKeys );
}
bool operator!=( Win32KeyedMutexAcquireReleaseInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t acquireCount;
const DeviceMemory* pAcquireSyncs;
const uint64_t* pAcquireKeys;
const uint32_t* pAcquireTimeoutMilliseconds;
uint32_t releaseCount;
const DeviceMemory* pReleaseSyncs;
const uint64_t* pReleaseKeys;
};
static_assert( sizeof( Win32KeyedMutexAcquireReleaseInfoNV ) == sizeof( VkWin32KeyedMutexAcquireReleaseInfoNV ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
struct DeviceGeneratedCommandsFeaturesNVX
{
DeviceGeneratedCommandsFeaturesNVX( Bool32 computeBindingPointSupport_ = 0 )
: sType( StructureType::eDeviceGeneratedCommandsFeaturesNVX )
, pNext( nullptr )
, computeBindingPointSupport( computeBindingPointSupport_ )
{
}
DeviceGeneratedCommandsFeaturesNVX( VkDeviceGeneratedCommandsFeaturesNVX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGeneratedCommandsFeaturesNVX ) );
}
DeviceGeneratedCommandsFeaturesNVX& operator=( VkDeviceGeneratedCommandsFeaturesNVX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGeneratedCommandsFeaturesNVX ) );
return *this;
}
DeviceGeneratedCommandsFeaturesNVX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGeneratedCommandsFeaturesNVX& setComputeBindingPointSupport( Bool32 computeBindingPointSupport_ )
{
computeBindingPointSupport = computeBindingPointSupport_;
return *this;
}
operator const VkDeviceGeneratedCommandsFeaturesNVX&() const
{
return *reinterpret_cast<const VkDeviceGeneratedCommandsFeaturesNVX*>(this);
}
bool operator==( DeviceGeneratedCommandsFeaturesNVX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( computeBindingPointSupport == rhs.computeBindingPointSupport );
}
bool operator!=( DeviceGeneratedCommandsFeaturesNVX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Bool32 computeBindingPointSupport;
};
static_assert( sizeof( DeviceGeneratedCommandsFeaturesNVX ) == sizeof( VkDeviceGeneratedCommandsFeaturesNVX ), "struct and wrapper have different size!" );
struct DeviceGeneratedCommandsLimitsNVX
{
DeviceGeneratedCommandsLimitsNVX( uint32_t maxIndirectCommandsLayoutTokenCount_ = 0, uint32_t maxObjectEntryCounts_ = 0, uint32_t minSequenceCountBufferOffsetAlignment_ = 0, uint32_t minSequenceIndexBufferOffsetAlignment_ = 0, uint32_t minCommandsTokenBufferOffsetAlignment_ = 0 )
: sType( StructureType::eDeviceGeneratedCommandsLimitsNVX )
, pNext( nullptr )
, maxIndirectCommandsLayoutTokenCount( maxIndirectCommandsLayoutTokenCount_ )
, maxObjectEntryCounts( maxObjectEntryCounts_ )
, minSequenceCountBufferOffsetAlignment( minSequenceCountBufferOffsetAlignment_ )
, minSequenceIndexBufferOffsetAlignment( minSequenceIndexBufferOffsetAlignment_ )
, minCommandsTokenBufferOffsetAlignment( minCommandsTokenBufferOffsetAlignment_ )
{
}
DeviceGeneratedCommandsLimitsNVX( VkDeviceGeneratedCommandsLimitsNVX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGeneratedCommandsLimitsNVX ) );
}
DeviceGeneratedCommandsLimitsNVX& operator=( VkDeviceGeneratedCommandsLimitsNVX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGeneratedCommandsLimitsNVX ) );
return *this;
}
DeviceGeneratedCommandsLimitsNVX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGeneratedCommandsLimitsNVX& setMaxIndirectCommandsLayoutTokenCount( uint32_t maxIndirectCommandsLayoutTokenCount_ )
{
maxIndirectCommandsLayoutTokenCount = maxIndirectCommandsLayoutTokenCount_;
return *this;
}
DeviceGeneratedCommandsLimitsNVX& setMaxObjectEntryCounts( uint32_t maxObjectEntryCounts_ )
{
maxObjectEntryCounts = maxObjectEntryCounts_;
return *this;
}
DeviceGeneratedCommandsLimitsNVX& setMinSequenceCountBufferOffsetAlignment( uint32_t minSequenceCountBufferOffsetAlignment_ )
{
minSequenceCountBufferOffsetAlignment = minSequenceCountBufferOffsetAlignment_;
return *this;
}
DeviceGeneratedCommandsLimitsNVX& setMinSequenceIndexBufferOffsetAlignment( uint32_t minSequenceIndexBufferOffsetAlignment_ )
{
minSequenceIndexBufferOffsetAlignment = minSequenceIndexBufferOffsetAlignment_;
return *this;
}
DeviceGeneratedCommandsLimitsNVX& setMinCommandsTokenBufferOffsetAlignment( uint32_t minCommandsTokenBufferOffsetAlignment_ )
{
minCommandsTokenBufferOffsetAlignment = minCommandsTokenBufferOffsetAlignment_;
return *this;
}
operator const VkDeviceGeneratedCommandsLimitsNVX&() const
{
return *reinterpret_cast<const VkDeviceGeneratedCommandsLimitsNVX*>(this);
}
bool operator==( DeviceGeneratedCommandsLimitsNVX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( maxIndirectCommandsLayoutTokenCount == rhs.maxIndirectCommandsLayoutTokenCount )
&& ( maxObjectEntryCounts == rhs.maxObjectEntryCounts )
&& ( minSequenceCountBufferOffsetAlignment == rhs.minSequenceCountBufferOffsetAlignment )
&& ( minSequenceIndexBufferOffsetAlignment == rhs.minSequenceIndexBufferOffsetAlignment )
&& ( minCommandsTokenBufferOffsetAlignment == rhs.minCommandsTokenBufferOffsetAlignment );
}
bool operator!=( DeviceGeneratedCommandsLimitsNVX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t maxIndirectCommandsLayoutTokenCount;
uint32_t maxObjectEntryCounts;
uint32_t minSequenceCountBufferOffsetAlignment;
uint32_t minSequenceIndexBufferOffsetAlignment;
uint32_t minCommandsTokenBufferOffsetAlignment;
};
static_assert( sizeof( DeviceGeneratedCommandsLimitsNVX ) == sizeof( VkDeviceGeneratedCommandsLimitsNVX ), "struct and wrapper have different size!" );
struct CmdReserveSpaceForCommandsInfoNVX
{
CmdReserveSpaceForCommandsInfoNVX( ObjectTableNVX objectTable_ = ObjectTableNVX(), IndirectCommandsLayoutNVX indirectCommandsLayout_ = IndirectCommandsLayoutNVX(), uint32_t maxSequencesCount_ = 0 )
: sType( StructureType::eCmdReserveSpaceForCommandsInfoNVX )
, pNext( nullptr )
, objectTable( objectTable_ )
, indirectCommandsLayout( indirectCommandsLayout_ )
, maxSequencesCount( maxSequencesCount_ )
{
}
CmdReserveSpaceForCommandsInfoNVX( VkCmdReserveSpaceForCommandsInfoNVX const & rhs )
{
memcpy( this, &rhs, sizeof( CmdReserveSpaceForCommandsInfoNVX ) );
}
CmdReserveSpaceForCommandsInfoNVX& operator=( VkCmdReserveSpaceForCommandsInfoNVX const & rhs )
{
memcpy( this, &rhs, sizeof( CmdReserveSpaceForCommandsInfoNVX ) );
return *this;
}
CmdReserveSpaceForCommandsInfoNVX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
CmdReserveSpaceForCommandsInfoNVX& setObjectTable( ObjectTableNVX objectTable_ )
{
objectTable = objectTable_;
return *this;
}
CmdReserveSpaceForCommandsInfoNVX& setIndirectCommandsLayout( IndirectCommandsLayoutNVX indirectCommandsLayout_ )
{
indirectCommandsLayout = indirectCommandsLayout_;
return *this;
}
CmdReserveSpaceForCommandsInfoNVX& setMaxSequencesCount( uint32_t maxSequencesCount_ )
{
maxSequencesCount = maxSequencesCount_;
return *this;
}
operator const VkCmdReserveSpaceForCommandsInfoNVX&() const
{
return *reinterpret_cast<const VkCmdReserveSpaceForCommandsInfoNVX*>(this);
}
bool operator==( CmdReserveSpaceForCommandsInfoNVX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( objectTable == rhs.objectTable )
&& ( indirectCommandsLayout == rhs.indirectCommandsLayout )
&& ( maxSequencesCount == rhs.maxSequencesCount );
}
bool operator!=( CmdReserveSpaceForCommandsInfoNVX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ObjectTableNVX objectTable;
IndirectCommandsLayoutNVX indirectCommandsLayout;
uint32_t maxSequencesCount;
};
static_assert( sizeof( CmdReserveSpaceForCommandsInfoNVX ) == sizeof( VkCmdReserveSpaceForCommandsInfoNVX ), "struct and wrapper have different size!" );
struct PhysicalDeviceFeatures2KHR
{
PhysicalDeviceFeatures2KHR( PhysicalDeviceFeatures features_ = PhysicalDeviceFeatures() )
: sType( StructureType::ePhysicalDeviceFeatures2KHR )
, pNext( nullptr )
, features( features_ )
{
}
PhysicalDeviceFeatures2KHR( VkPhysicalDeviceFeatures2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceFeatures2KHR ) );
}
PhysicalDeviceFeatures2KHR& operator=( VkPhysicalDeviceFeatures2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceFeatures2KHR ) );
return *this;
}
PhysicalDeviceFeatures2KHR& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceFeatures2KHR& setFeatures( PhysicalDeviceFeatures features_ )
{
features = features_;
return *this;
}
operator const VkPhysicalDeviceFeatures2KHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceFeatures2KHR*>(this);
}
bool operator==( PhysicalDeviceFeatures2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( features == rhs.features );
}
bool operator!=( PhysicalDeviceFeatures2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
PhysicalDeviceFeatures features;
};
static_assert( sizeof( PhysicalDeviceFeatures2KHR ) == sizeof( VkPhysicalDeviceFeatures2KHR ), "struct and wrapper have different size!" );
struct PhysicalDevicePushDescriptorPropertiesKHR
{
PhysicalDevicePushDescriptorPropertiesKHR( uint32_t maxPushDescriptors_ = 0 )
: sType( StructureType::ePhysicalDevicePushDescriptorPropertiesKHR )
, pNext( nullptr )
, maxPushDescriptors( maxPushDescriptors_ )
{
}
PhysicalDevicePushDescriptorPropertiesKHR( VkPhysicalDevicePushDescriptorPropertiesKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDevicePushDescriptorPropertiesKHR ) );
}
PhysicalDevicePushDescriptorPropertiesKHR& operator=( VkPhysicalDevicePushDescriptorPropertiesKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDevicePushDescriptorPropertiesKHR ) );
return *this;
}
PhysicalDevicePushDescriptorPropertiesKHR& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDevicePushDescriptorPropertiesKHR& setMaxPushDescriptors( uint32_t maxPushDescriptors_ )
{
maxPushDescriptors = maxPushDescriptors_;
return *this;
}
operator const VkPhysicalDevicePushDescriptorPropertiesKHR&() const
{
return *reinterpret_cast<const VkPhysicalDevicePushDescriptorPropertiesKHR*>(this);
}
bool operator==( PhysicalDevicePushDescriptorPropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( maxPushDescriptors == rhs.maxPushDescriptors );
}
bool operator!=( PhysicalDevicePushDescriptorPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t maxPushDescriptors;
};
static_assert( sizeof( PhysicalDevicePushDescriptorPropertiesKHR ) == sizeof( VkPhysicalDevicePushDescriptorPropertiesKHR ), "struct and wrapper have different size!" );
struct PresentRegionsKHR
{
PresentRegionsKHR( uint32_t swapchainCount_ = 0, const PresentRegionKHR* pRegions_ = nullptr )
: sType( StructureType::ePresentRegionsKHR )
, pNext( nullptr )
, swapchainCount( swapchainCount_ )
, pRegions( pRegions_ )
{
}
PresentRegionsKHR( VkPresentRegionsKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PresentRegionsKHR ) );
}
PresentRegionsKHR& operator=( VkPresentRegionsKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PresentRegionsKHR ) );
return *this;
}
PresentRegionsKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PresentRegionsKHR& setSwapchainCount( uint32_t swapchainCount_ )
{
swapchainCount = swapchainCount_;
return *this;
}
PresentRegionsKHR& setPRegions( const PresentRegionKHR* pRegions_ )
{
pRegions = pRegions_;
return *this;
}
operator const VkPresentRegionsKHR&() const
{
return *reinterpret_cast<const VkPresentRegionsKHR*>(this);
}
bool operator==( PresentRegionsKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( swapchainCount == rhs.swapchainCount )
&& ( pRegions == rhs.pRegions );
}
bool operator!=( PresentRegionsKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t swapchainCount;
const PresentRegionKHR* pRegions;
};
static_assert( sizeof( PresentRegionsKHR ) == sizeof( VkPresentRegionsKHR ), "struct and wrapper have different size!" );
struct PhysicalDeviceVariablePointerFeaturesKHR
{
PhysicalDeviceVariablePointerFeaturesKHR( Bool32 variablePointersStorageBuffer_ = 0, Bool32 variablePointers_ = 0 )
: sType( StructureType::ePhysicalDeviceVariablePointerFeaturesKHR )
, pNext( nullptr )
, variablePointersStorageBuffer( variablePointersStorageBuffer_ )
, variablePointers( variablePointers_ )
{
}
PhysicalDeviceVariablePointerFeaturesKHR( VkPhysicalDeviceVariablePointerFeaturesKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceVariablePointerFeaturesKHR ) );
}
PhysicalDeviceVariablePointerFeaturesKHR& operator=( VkPhysicalDeviceVariablePointerFeaturesKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceVariablePointerFeaturesKHR ) );
return *this;
}
PhysicalDeviceVariablePointerFeaturesKHR& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceVariablePointerFeaturesKHR& setVariablePointersStorageBuffer( Bool32 variablePointersStorageBuffer_ )
{
variablePointersStorageBuffer = variablePointersStorageBuffer_;
return *this;
}
PhysicalDeviceVariablePointerFeaturesKHR& setVariablePointers( Bool32 variablePointers_ )
{
variablePointers = variablePointers_;
return *this;
}
operator const VkPhysicalDeviceVariablePointerFeaturesKHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceVariablePointerFeaturesKHR*>(this);
}
bool operator==( PhysicalDeviceVariablePointerFeaturesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( variablePointersStorageBuffer == rhs.variablePointersStorageBuffer )
&& ( variablePointers == rhs.variablePointers );
}
bool operator!=( PhysicalDeviceVariablePointerFeaturesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 variablePointersStorageBuffer;
Bool32 variablePointers;
};
static_assert( sizeof( PhysicalDeviceVariablePointerFeaturesKHR ) == sizeof( VkPhysicalDeviceVariablePointerFeaturesKHR ), "struct and wrapper have different size!" );
struct PhysicalDeviceIDPropertiesKHR
{
operator const VkPhysicalDeviceIDPropertiesKHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceIDPropertiesKHR*>(this);
}
bool operator==( PhysicalDeviceIDPropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memcmp( deviceUUID, rhs.deviceUUID, VK_UUID_SIZE * sizeof( uint8_t ) ) == 0 )
&& ( memcmp( driverUUID, rhs.driverUUID, VK_UUID_SIZE * sizeof( uint8_t ) ) == 0 )
&& ( memcmp( deviceLUID, rhs.deviceLUID, VK_LUID_SIZE_KHR * sizeof( uint8_t ) ) == 0 )
&& ( deviceNodeMask == rhs.deviceNodeMask )
&& ( deviceLUIDValid == rhs.deviceLUIDValid );
}
bool operator!=( PhysicalDeviceIDPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint8_t deviceUUID[VK_UUID_SIZE];
uint8_t driverUUID[VK_UUID_SIZE];
uint8_t deviceLUID[VK_LUID_SIZE_KHR];
uint32_t deviceNodeMask;
Bool32 deviceLUIDValid;
};
static_assert( sizeof( PhysicalDeviceIDPropertiesKHR ) == sizeof( VkPhysicalDeviceIDPropertiesKHR ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct ExportMemoryWin32HandleInfoKHR
{
ExportMemoryWin32HandleInfoKHR( const SECURITY_ATTRIBUTES* pAttributes_ = nullptr, DWORD dwAccess_ = 0, LPCWSTR name_ = 0 )
: sType( StructureType::eExportMemoryWin32HandleInfoKHR )
, pNext( nullptr )
, pAttributes( pAttributes_ )
, dwAccess( dwAccess_ )
, name( name_ )
{
}
ExportMemoryWin32HandleInfoKHR( VkExportMemoryWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportMemoryWin32HandleInfoKHR ) );
}
ExportMemoryWin32HandleInfoKHR& operator=( VkExportMemoryWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportMemoryWin32HandleInfoKHR ) );
return *this;
}
ExportMemoryWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExportMemoryWin32HandleInfoKHR& setPAttributes( const SECURITY_ATTRIBUTES* pAttributes_ )
{
pAttributes = pAttributes_;
return *this;
}
ExportMemoryWin32HandleInfoKHR& setDwAccess( DWORD dwAccess_ )
{
dwAccess = dwAccess_;
return *this;
}
ExportMemoryWin32HandleInfoKHR& setName( LPCWSTR name_ )
{
name = name_;
return *this;
}
operator const VkExportMemoryWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkExportMemoryWin32HandleInfoKHR*>(this);
}
bool operator==( ExportMemoryWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( pAttributes == rhs.pAttributes )
&& ( dwAccess == rhs.dwAccess )
&& ( name == rhs.name );
}
bool operator!=( ExportMemoryWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
const SECURITY_ATTRIBUTES* pAttributes;
DWORD dwAccess;
LPCWSTR name;
};
static_assert( sizeof( ExportMemoryWin32HandleInfoKHR ) == sizeof( VkExportMemoryWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct MemoryWin32HandlePropertiesKHR
{
operator const VkMemoryWin32HandlePropertiesKHR&() const
{
return *reinterpret_cast<const VkMemoryWin32HandlePropertiesKHR*>(this);
}
bool operator==( MemoryWin32HandlePropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memoryTypeBits == rhs.memoryTypeBits );
}
bool operator!=( MemoryWin32HandlePropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t memoryTypeBits;
};
static_assert( sizeof( MemoryWin32HandlePropertiesKHR ) == sizeof( VkMemoryWin32HandlePropertiesKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
struct MemoryFdPropertiesKHR
{
operator const VkMemoryFdPropertiesKHR&() const
{
return *reinterpret_cast<const VkMemoryFdPropertiesKHR*>(this);
}
bool operator==( MemoryFdPropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memoryTypeBits == rhs.memoryTypeBits );
}
bool operator!=( MemoryFdPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t memoryTypeBits;
};
static_assert( sizeof( MemoryFdPropertiesKHR ) == sizeof( VkMemoryFdPropertiesKHR ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct Win32KeyedMutexAcquireReleaseInfoKHR
{
Win32KeyedMutexAcquireReleaseInfoKHR( uint32_t acquireCount_ = 0, const DeviceMemory* pAcquireSyncs_ = nullptr, const uint64_t* pAcquireKeys_ = nullptr, const uint32_t* pAcquireTimeouts_ = nullptr, uint32_t releaseCount_ = 0, const DeviceMemory* pReleaseSyncs_ = nullptr, const uint64_t* pReleaseKeys_ = nullptr )
: sType( StructureType::eWin32KeyedMutexAcquireReleaseInfoKHR )
, pNext( nullptr )
, acquireCount( acquireCount_ )
, pAcquireSyncs( pAcquireSyncs_ )
, pAcquireKeys( pAcquireKeys_ )
, pAcquireTimeouts( pAcquireTimeouts_ )
, releaseCount( releaseCount_ )
, pReleaseSyncs( pReleaseSyncs_ )
, pReleaseKeys( pReleaseKeys_ )
{
}
Win32KeyedMutexAcquireReleaseInfoKHR( VkWin32KeyedMutexAcquireReleaseInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( Win32KeyedMutexAcquireReleaseInfoKHR ) );
}
Win32KeyedMutexAcquireReleaseInfoKHR& operator=( VkWin32KeyedMutexAcquireReleaseInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( Win32KeyedMutexAcquireReleaseInfoKHR ) );
return *this;
}
Win32KeyedMutexAcquireReleaseInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoKHR& setAcquireCount( uint32_t acquireCount_ )
{
acquireCount = acquireCount_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoKHR& setPAcquireSyncs( const DeviceMemory* pAcquireSyncs_ )
{
pAcquireSyncs = pAcquireSyncs_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoKHR& setPAcquireKeys( const uint64_t* pAcquireKeys_ )
{
pAcquireKeys = pAcquireKeys_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoKHR& setPAcquireTimeouts( const uint32_t* pAcquireTimeouts_ )
{
pAcquireTimeouts = pAcquireTimeouts_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoKHR& setReleaseCount( uint32_t releaseCount_ )
{
releaseCount = releaseCount_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoKHR& setPReleaseSyncs( const DeviceMemory* pReleaseSyncs_ )
{
pReleaseSyncs = pReleaseSyncs_;
return *this;
}
Win32KeyedMutexAcquireReleaseInfoKHR& setPReleaseKeys( const uint64_t* pReleaseKeys_ )
{
pReleaseKeys = pReleaseKeys_;
return *this;
}
operator const VkWin32KeyedMutexAcquireReleaseInfoKHR&() const
{
return *reinterpret_cast<const VkWin32KeyedMutexAcquireReleaseInfoKHR*>(this);
}
bool operator==( Win32KeyedMutexAcquireReleaseInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( acquireCount == rhs.acquireCount )
&& ( pAcquireSyncs == rhs.pAcquireSyncs )
&& ( pAcquireKeys == rhs.pAcquireKeys )
&& ( pAcquireTimeouts == rhs.pAcquireTimeouts )
&& ( releaseCount == rhs.releaseCount )
&& ( pReleaseSyncs == rhs.pReleaseSyncs )
&& ( pReleaseKeys == rhs.pReleaseKeys );
}
bool operator!=( Win32KeyedMutexAcquireReleaseInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t acquireCount;
const DeviceMemory* pAcquireSyncs;
const uint64_t* pAcquireKeys;
const uint32_t* pAcquireTimeouts;
uint32_t releaseCount;
const DeviceMemory* pReleaseSyncs;
const uint64_t* pReleaseKeys;
};
static_assert( sizeof( Win32KeyedMutexAcquireReleaseInfoKHR ) == sizeof( VkWin32KeyedMutexAcquireReleaseInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct ExportSemaphoreWin32HandleInfoKHR
{
ExportSemaphoreWin32HandleInfoKHR( const SECURITY_ATTRIBUTES* pAttributes_ = nullptr, DWORD dwAccess_ = 0, LPCWSTR name_ = 0 )
: sType( StructureType::eExportSemaphoreWin32HandleInfoKHR )
, pNext( nullptr )
, pAttributes( pAttributes_ )
, dwAccess( dwAccess_ )
, name( name_ )
{
}
ExportSemaphoreWin32HandleInfoKHR( VkExportSemaphoreWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportSemaphoreWin32HandleInfoKHR ) );
}
ExportSemaphoreWin32HandleInfoKHR& operator=( VkExportSemaphoreWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportSemaphoreWin32HandleInfoKHR ) );
return *this;
}
ExportSemaphoreWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExportSemaphoreWin32HandleInfoKHR& setPAttributes( const SECURITY_ATTRIBUTES* pAttributes_ )
{
pAttributes = pAttributes_;
return *this;
}
ExportSemaphoreWin32HandleInfoKHR& setDwAccess( DWORD dwAccess_ )
{
dwAccess = dwAccess_;
return *this;
}
ExportSemaphoreWin32HandleInfoKHR& setName( LPCWSTR name_ )
{
name = name_;
return *this;
}
operator const VkExportSemaphoreWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkExportSemaphoreWin32HandleInfoKHR*>(this);
}
bool operator==( ExportSemaphoreWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( pAttributes == rhs.pAttributes )
&& ( dwAccess == rhs.dwAccess )
&& ( name == rhs.name );
}
bool operator!=( ExportSemaphoreWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
const SECURITY_ATTRIBUTES* pAttributes;
DWORD dwAccess;
LPCWSTR name;
};
static_assert( sizeof( ExportSemaphoreWin32HandleInfoKHR ) == sizeof( VkExportSemaphoreWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct D3D12FenceSubmitInfoKHR
{
D3D12FenceSubmitInfoKHR( uint32_t waitSemaphoreValuesCount_ = 0, const uint64_t* pWaitSemaphoreValues_ = nullptr, uint32_t signalSemaphoreValuesCount_ = 0, const uint64_t* pSignalSemaphoreValues_ = nullptr )
: sType( StructureType::eD3D12FenceSubmitInfoKHR )
, pNext( nullptr )
, waitSemaphoreValuesCount( waitSemaphoreValuesCount_ )
, pWaitSemaphoreValues( pWaitSemaphoreValues_ )
, signalSemaphoreValuesCount( signalSemaphoreValuesCount_ )
, pSignalSemaphoreValues( pSignalSemaphoreValues_ )
{
}
D3D12FenceSubmitInfoKHR( VkD3D12FenceSubmitInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( D3D12FenceSubmitInfoKHR ) );
}
D3D12FenceSubmitInfoKHR& operator=( VkD3D12FenceSubmitInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( D3D12FenceSubmitInfoKHR ) );
return *this;
}
D3D12FenceSubmitInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
D3D12FenceSubmitInfoKHR& setWaitSemaphoreValuesCount( uint32_t waitSemaphoreValuesCount_ )
{
waitSemaphoreValuesCount = waitSemaphoreValuesCount_;
return *this;
}
D3D12FenceSubmitInfoKHR& setPWaitSemaphoreValues( const uint64_t* pWaitSemaphoreValues_ )
{
pWaitSemaphoreValues = pWaitSemaphoreValues_;
return *this;
}
D3D12FenceSubmitInfoKHR& setSignalSemaphoreValuesCount( uint32_t signalSemaphoreValuesCount_ )
{
signalSemaphoreValuesCount = signalSemaphoreValuesCount_;
return *this;
}
D3D12FenceSubmitInfoKHR& setPSignalSemaphoreValues( const uint64_t* pSignalSemaphoreValues_ )
{
pSignalSemaphoreValues = pSignalSemaphoreValues_;
return *this;
}
operator const VkD3D12FenceSubmitInfoKHR&() const
{
return *reinterpret_cast<const VkD3D12FenceSubmitInfoKHR*>(this);
}
bool operator==( D3D12FenceSubmitInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( waitSemaphoreValuesCount == rhs.waitSemaphoreValuesCount )
&& ( pWaitSemaphoreValues == rhs.pWaitSemaphoreValues )
&& ( signalSemaphoreValuesCount == rhs.signalSemaphoreValuesCount )
&& ( pSignalSemaphoreValues == rhs.pSignalSemaphoreValues );
}
bool operator!=( D3D12FenceSubmitInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t waitSemaphoreValuesCount;
const uint64_t* pWaitSemaphoreValues;
uint32_t signalSemaphoreValuesCount;
const uint64_t* pSignalSemaphoreValues;
};
static_assert( sizeof( D3D12FenceSubmitInfoKHR ) == sizeof( VkD3D12FenceSubmitInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct ExportFenceWin32HandleInfoKHR
{
ExportFenceWin32HandleInfoKHR( const SECURITY_ATTRIBUTES* pAttributes_ = nullptr, DWORD dwAccess_ = 0, LPCWSTR name_ = 0 )
: sType( StructureType::eExportFenceWin32HandleInfoKHR )
, pNext( nullptr )
, pAttributes( pAttributes_ )
, dwAccess( dwAccess_ )
, name( name_ )
{
}
ExportFenceWin32HandleInfoKHR( VkExportFenceWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportFenceWin32HandleInfoKHR ) );
}
ExportFenceWin32HandleInfoKHR& operator=( VkExportFenceWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportFenceWin32HandleInfoKHR ) );
return *this;
}
ExportFenceWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExportFenceWin32HandleInfoKHR& setPAttributes( const SECURITY_ATTRIBUTES* pAttributes_ )
{
pAttributes = pAttributes_;
return *this;
}
ExportFenceWin32HandleInfoKHR& setDwAccess( DWORD dwAccess_ )
{
dwAccess = dwAccess_;
return *this;
}
ExportFenceWin32HandleInfoKHR& setName( LPCWSTR name_ )
{
name = name_;
return *this;
}
operator const VkExportFenceWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkExportFenceWin32HandleInfoKHR*>(this);
}
bool operator==( ExportFenceWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( pAttributes == rhs.pAttributes )
&& ( dwAccess == rhs.dwAccess )
&& ( name == rhs.name );
}
bool operator!=( ExportFenceWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
const SECURITY_ATTRIBUTES* pAttributes;
DWORD dwAccess;
LPCWSTR name;
};
static_assert( sizeof( ExportFenceWin32HandleInfoKHR ) == sizeof( VkExportFenceWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
struct PhysicalDeviceMultiviewFeaturesKHX
{
PhysicalDeviceMultiviewFeaturesKHX( Bool32 multiview_ = 0, Bool32 multiviewGeometryShader_ = 0, Bool32 multiviewTessellationShader_ = 0 )
: sType( StructureType::ePhysicalDeviceMultiviewFeaturesKHX )
, pNext( nullptr )
, multiview( multiview_ )
, multiviewGeometryShader( multiviewGeometryShader_ )
, multiviewTessellationShader( multiviewTessellationShader_ )
{
}
PhysicalDeviceMultiviewFeaturesKHX( VkPhysicalDeviceMultiviewFeaturesKHX const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceMultiviewFeaturesKHX ) );
}
PhysicalDeviceMultiviewFeaturesKHX& operator=( VkPhysicalDeviceMultiviewFeaturesKHX const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceMultiviewFeaturesKHX ) );
return *this;
}
PhysicalDeviceMultiviewFeaturesKHX& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceMultiviewFeaturesKHX& setMultiview( Bool32 multiview_ )
{
multiview = multiview_;
return *this;
}
PhysicalDeviceMultiviewFeaturesKHX& setMultiviewGeometryShader( Bool32 multiviewGeometryShader_ )
{
multiviewGeometryShader = multiviewGeometryShader_;
return *this;
}
PhysicalDeviceMultiviewFeaturesKHX& setMultiviewTessellationShader( Bool32 multiviewTessellationShader_ )
{
multiviewTessellationShader = multiviewTessellationShader_;
return *this;
}
operator const VkPhysicalDeviceMultiviewFeaturesKHX&() const
{
return *reinterpret_cast<const VkPhysicalDeviceMultiviewFeaturesKHX*>(this);
}
bool operator==( PhysicalDeviceMultiviewFeaturesKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( multiview == rhs.multiview )
&& ( multiviewGeometryShader == rhs.multiviewGeometryShader )
&& ( multiviewTessellationShader == rhs.multiviewTessellationShader );
}
bool operator!=( PhysicalDeviceMultiviewFeaturesKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 multiview;
Bool32 multiviewGeometryShader;
Bool32 multiviewTessellationShader;
};
static_assert( sizeof( PhysicalDeviceMultiviewFeaturesKHX ) == sizeof( VkPhysicalDeviceMultiviewFeaturesKHX ), "struct and wrapper have different size!" );
struct PhysicalDeviceMultiviewPropertiesKHX
{
operator const VkPhysicalDeviceMultiviewPropertiesKHX&() const
{
return *reinterpret_cast<const VkPhysicalDeviceMultiviewPropertiesKHX*>(this);
}
bool operator==( PhysicalDeviceMultiviewPropertiesKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( maxMultiviewViewCount == rhs.maxMultiviewViewCount )
&& ( maxMultiviewInstanceIndex == rhs.maxMultiviewInstanceIndex );
}
bool operator!=( PhysicalDeviceMultiviewPropertiesKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t maxMultiviewViewCount;
uint32_t maxMultiviewInstanceIndex;
};
static_assert( sizeof( PhysicalDeviceMultiviewPropertiesKHX ) == sizeof( VkPhysicalDeviceMultiviewPropertiesKHX ), "struct and wrapper have different size!" );
struct RenderPassMultiviewCreateInfoKHX
{
RenderPassMultiviewCreateInfoKHX( uint32_t subpassCount_ = 0, const uint32_t* pViewMasks_ = nullptr, uint32_t dependencyCount_ = 0, const int32_t* pViewOffsets_ = nullptr, uint32_t correlationMaskCount_ = 0, const uint32_t* pCorrelationMasks_ = nullptr )
: sType( StructureType::eRenderPassMultiviewCreateInfoKHX )
, pNext( nullptr )
, subpassCount( subpassCount_ )
, pViewMasks( pViewMasks_ )
, dependencyCount( dependencyCount_ )
, pViewOffsets( pViewOffsets_ )
, correlationMaskCount( correlationMaskCount_ )
, pCorrelationMasks( pCorrelationMasks_ )
{
}
RenderPassMultiviewCreateInfoKHX( VkRenderPassMultiviewCreateInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassMultiviewCreateInfoKHX ) );
}
RenderPassMultiviewCreateInfoKHX& operator=( VkRenderPassMultiviewCreateInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassMultiviewCreateInfoKHX ) );
return *this;
}
RenderPassMultiviewCreateInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
RenderPassMultiviewCreateInfoKHX& setSubpassCount( uint32_t subpassCount_ )
{
subpassCount = subpassCount_;
return *this;
}
RenderPassMultiviewCreateInfoKHX& setPViewMasks( const uint32_t* pViewMasks_ )
{
pViewMasks = pViewMasks_;
return *this;
}
RenderPassMultiviewCreateInfoKHX& setDependencyCount( uint32_t dependencyCount_ )
{
dependencyCount = dependencyCount_;
return *this;
}
RenderPassMultiviewCreateInfoKHX& setPViewOffsets( const int32_t* pViewOffsets_ )
{
pViewOffsets = pViewOffsets_;
return *this;
}
RenderPassMultiviewCreateInfoKHX& setCorrelationMaskCount( uint32_t correlationMaskCount_ )
{
correlationMaskCount = correlationMaskCount_;
return *this;
}
RenderPassMultiviewCreateInfoKHX& setPCorrelationMasks( const uint32_t* pCorrelationMasks_ )
{
pCorrelationMasks = pCorrelationMasks_;
return *this;
}
operator const VkRenderPassMultiviewCreateInfoKHX&() const
{
return *reinterpret_cast<const VkRenderPassMultiviewCreateInfoKHX*>(this);
}
bool operator==( RenderPassMultiviewCreateInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( subpassCount == rhs.subpassCount )
&& ( pViewMasks == rhs.pViewMasks )
&& ( dependencyCount == rhs.dependencyCount )
&& ( pViewOffsets == rhs.pViewOffsets )
&& ( correlationMaskCount == rhs.correlationMaskCount )
&& ( pCorrelationMasks == rhs.pCorrelationMasks );
}
bool operator!=( RenderPassMultiviewCreateInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t subpassCount;
const uint32_t* pViewMasks;
uint32_t dependencyCount;
const int32_t* pViewOffsets;
uint32_t correlationMaskCount;
const uint32_t* pCorrelationMasks;
};
static_assert( sizeof( RenderPassMultiviewCreateInfoKHX ) == sizeof( VkRenderPassMultiviewCreateInfoKHX ), "struct and wrapper have different size!" );
struct BindBufferMemoryInfoKHR
{
BindBufferMemoryInfoKHR( Buffer buffer_ = Buffer(), DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0 )
: sType( StructureType::eBindBufferMemoryInfoKHR )
, pNext( nullptr )
, buffer( buffer_ )
, memory( memory_ )
, memoryOffset( memoryOffset_ )
{
}
BindBufferMemoryInfoKHR( VkBindBufferMemoryInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( BindBufferMemoryInfoKHR ) );
}
BindBufferMemoryInfoKHR& operator=( VkBindBufferMemoryInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( BindBufferMemoryInfoKHR ) );
return *this;
}
BindBufferMemoryInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BindBufferMemoryInfoKHR& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
BindBufferMemoryInfoKHR& setMemory( DeviceMemory memory_ )
{
memory = memory_;
return *this;
}
BindBufferMemoryInfoKHR& setMemoryOffset( DeviceSize memoryOffset_ )
{
memoryOffset = memoryOffset_;
return *this;
}
operator const VkBindBufferMemoryInfoKHR&() const
{
return *reinterpret_cast<const VkBindBufferMemoryInfoKHR*>(this);
}
bool operator==( BindBufferMemoryInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( buffer == rhs.buffer )
&& ( memory == rhs.memory )
&& ( memoryOffset == rhs.memoryOffset );
}
bool operator!=( BindBufferMemoryInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Buffer buffer;
DeviceMemory memory;
DeviceSize memoryOffset;
};
static_assert( sizeof( BindBufferMemoryInfoKHR ) == sizeof( VkBindBufferMemoryInfoKHR ), "struct and wrapper have different size!" );
struct BindBufferMemoryDeviceGroupInfoKHX
{
BindBufferMemoryDeviceGroupInfoKHX( uint32_t deviceIndexCount_ = 0, const uint32_t* pDeviceIndices_ = nullptr )
: sType( StructureType::eBindBufferMemoryDeviceGroupInfoKHX )
, pNext( nullptr )
, deviceIndexCount( deviceIndexCount_ )
, pDeviceIndices( pDeviceIndices_ )
{
}
BindBufferMemoryDeviceGroupInfoKHX( VkBindBufferMemoryDeviceGroupInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( BindBufferMemoryDeviceGroupInfoKHX ) );
}
BindBufferMemoryDeviceGroupInfoKHX& operator=( VkBindBufferMemoryDeviceGroupInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( BindBufferMemoryDeviceGroupInfoKHX ) );
return *this;
}
BindBufferMemoryDeviceGroupInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BindBufferMemoryDeviceGroupInfoKHX& setDeviceIndexCount( uint32_t deviceIndexCount_ )
{
deviceIndexCount = deviceIndexCount_;
return *this;
}
BindBufferMemoryDeviceGroupInfoKHX& setPDeviceIndices( const uint32_t* pDeviceIndices_ )
{
pDeviceIndices = pDeviceIndices_;
return *this;
}
operator const VkBindBufferMemoryDeviceGroupInfoKHX&() const
{
return *reinterpret_cast<const VkBindBufferMemoryDeviceGroupInfoKHX*>(this);
}
bool operator==( BindBufferMemoryDeviceGroupInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( deviceIndexCount == rhs.deviceIndexCount )
&& ( pDeviceIndices == rhs.pDeviceIndices );
}
bool operator!=( BindBufferMemoryDeviceGroupInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t deviceIndexCount;
const uint32_t* pDeviceIndices;
};
static_assert( sizeof( BindBufferMemoryDeviceGroupInfoKHX ) == sizeof( VkBindBufferMemoryDeviceGroupInfoKHX ), "struct and wrapper have different size!" );
struct BindImageMemoryInfoKHR
{
BindImageMemoryInfoKHR( Image image_ = Image(), DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0 )
: sType( StructureType::eBindImageMemoryInfoKHR )
, pNext( nullptr )
, image( image_ )
, memory( memory_ )
, memoryOffset( memoryOffset_ )
{
}
BindImageMemoryInfoKHR( VkBindImageMemoryInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( BindImageMemoryInfoKHR ) );
}
BindImageMemoryInfoKHR& operator=( VkBindImageMemoryInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( BindImageMemoryInfoKHR ) );
return *this;
}
BindImageMemoryInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BindImageMemoryInfoKHR& setImage( Image image_ )
{
image = image_;
return *this;
}
BindImageMemoryInfoKHR& setMemory( DeviceMemory memory_ )
{
memory = memory_;
return *this;
}
BindImageMemoryInfoKHR& setMemoryOffset( DeviceSize memoryOffset_ )
{
memoryOffset = memoryOffset_;
return *this;
}
operator const VkBindImageMemoryInfoKHR&() const
{
return *reinterpret_cast<const VkBindImageMemoryInfoKHR*>(this);
}
bool operator==( BindImageMemoryInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( image == rhs.image )
&& ( memory == rhs.memory )
&& ( memoryOffset == rhs.memoryOffset );
}
bool operator!=( BindImageMemoryInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Image image;
DeviceMemory memory;
DeviceSize memoryOffset;
};
static_assert( sizeof( BindImageMemoryInfoKHR ) == sizeof( VkBindImageMemoryInfoKHR ), "struct and wrapper have different size!" );
struct BindImageMemoryDeviceGroupInfoKHX
{
BindImageMemoryDeviceGroupInfoKHX( uint32_t deviceIndexCount_ = 0, const uint32_t* pDeviceIndices_ = nullptr, uint32_t SFRRectCount_ = 0, const Rect2D* pSFRRects_ = nullptr )
: sType( StructureType::eBindImageMemoryDeviceGroupInfoKHX )
, pNext( nullptr )
, deviceIndexCount( deviceIndexCount_ )
, pDeviceIndices( pDeviceIndices_ )
, SFRRectCount( SFRRectCount_ )
, pSFRRects( pSFRRects_ )
{
}
BindImageMemoryDeviceGroupInfoKHX( VkBindImageMemoryDeviceGroupInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( BindImageMemoryDeviceGroupInfoKHX ) );
}
BindImageMemoryDeviceGroupInfoKHX& operator=( VkBindImageMemoryDeviceGroupInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( BindImageMemoryDeviceGroupInfoKHX ) );
return *this;
}
BindImageMemoryDeviceGroupInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BindImageMemoryDeviceGroupInfoKHX& setDeviceIndexCount( uint32_t deviceIndexCount_ )
{
deviceIndexCount = deviceIndexCount_;
return *this;
}
BindImageMemoryDeviceGroupInfoKHX& setPDeviceIndices( const uint32_t* pDeviceIndices_ )
{
pDeviceIndices = pDeviceIndices_;
return *this;
}
BindImageMemoryDeviceGroupInfoKHX& setSFRRectCount( uint32_t SFRRectCount_ )
{
SFRRectCount = SFRRectCount_;
return *this;
}
BindImageMemoryDeviceGroupInfoKHX& setPSFRRects( const Rect2D* pSFRRects_ )
{
pSFRRects = pSFRRects_;
return *this;
}
operator const VkBindImageMemoryDeviceGroupInfoKHX&() const
{
return *reinterpret_cast<const VkBindImageMemoryDeviceGroupInfoKHX*>(this);
}
bool operator==( BindImageMemoryDeviceGroupInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( deviceIndexCount == rhs.deviceIndexCount )
&& ( pDeviceIndices == rhs.pDeviceIndices )
&& ( SFRRectCount == rhs.SFRRectCount )
&& ( pSFRRects == rhs.pSFRRects );
}
bool operator!=( BindImageMemoryDeviceGroupInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t deviceIndexCount;
const uint32_t* pDeviceIndices;
uint32_t SFRRectCount;
const Rect2D* pSFRRects;
};
static_assert( sizeof( BindImageMemoryDeviceGroupInfoKHX ) == sizeof( VkBindImageMemoryDeviceGroupInfoKHX ), "struct and wrapper have different size!" );
struct DeviceGroupRenderPassBeginInfoKHX
{
DeviceGroupRenderPassBeginInfoKHX( uint32_t deviceMask_ = 0, uint32_t deviceRenderAreaCount_ = 0, const Rect2D* pDeviceRenderAreas_ = nullptr )
: sType( StructureType::eDeviceGroupRenderPassBeginInfoKHX )
, pNext( nullptr )
, deviceMask( deviceMask_ )
, deviceRenderAreaCount( deviceRenderAreaCount_ )
, pDeviceRenderAreas( pDeviceRenderAreas_ )
{
}
DeviceGroupRenderPassBeginInfoKHX( VkDeviceGroupRenderPassBeginInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupRenderPassBeginInfoKHX ) );
}
DeviceGroupRenderPassBeginInfoKHX& operator=( VkDeviceGroupRenderPassBeginInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupRenderPassBeginInfoKHX ) );
return *this;
}
DeviceGroupRenderPassBeginInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGroupRenderPassBeginInfoKHX& setDeviceMask( uint32_t deviceMask_ )
{
deviceMask = deviceMask_;
return *this;
}
DeviceGroupRenderPassBeginInfoKHX& setDeviceRenderAreaCount( uint32_t deviceRenderAreaCount_ )
{
deviceRenderAreaCount = deviceRenderAreaCount_;
return *this;
}
DeviceGroupRenderPassBeginInfoKHX& setPDeviceRenderAreas( const Rect2D* pDeviceRenderAreas_ )
{
pDeviceRenderAreas = pDeviceRenderAreas_;
return *this;
}
operator const VkDeviceGroupRenderPassBeginInfoKHX&() const
{
return *reinterpret_cast<const VkDeviceGroupRenderPassBeginInfoKHX*>(this);
}
bool operator==( DeviceGroupRenderPassBeginInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( deviceMask == rhs.deviceMask )
&& ( deviceRenderAreaCount == rhs.deviceRenderAreaCount )
&& ( pDeviceRenderAreas == rhs.pDeviceRenderAreas );
}
bool operator!=( DeviceGroupRenderPassBeginInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t deviceMask;
uint32_t deviceRenderAreaCount;
const Rect2D* pDeviceRenderAreas;
};
static_assert( sizeof( DeviceGroupRenderPassBeginInfoKHX ) == sizeof( VkDeviceGroupRenderPassBeginInfoKHX ), "struct and wrapper have different size!" );
struct DeviceGroupCommandBufferBeginInfoKHX
{
DeviceGroupCommandBufferBeginInfoKHX( uint32_t deviceMask_ = 0 )
: sType( StructureType::eDeviceGroupCommandBufferBeginInfoKHX )
, pNext( nullptr )
, deviceMask( deviceMask_ )
{
}
DeviceGroupCommandBufferBeginInfoKHX( VkDeviceGroupCommandBufferBeginInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupCommandBufferBeginInfoKHX ) );
}
DeviceGroupCommandBufferBeginInfoKHX& operator=( VkDeviceGroupCommandBufferBeginInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupCommandBufferBeginInfoKHX ) );
return *this;
}
DeviceGroupCommandBufferBeginInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGroupCommandBufferBeginInfoKHX& setDeviceMask( uint32_t deviceMask_ )
{
deviceMask = deviceMask_;
return *this;
}
operator const VkDeviceGroupCommandBufferBeginInfoKHX&() const
{
return *reinterpret_cast<const VkDeviceGroupCommandBufferBeginInfoKHX*>(this);
}
bool operator==( DeviceGroupCommandBufferBeginInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( deviceMask == rhs.deviceMask );
}
bool operator!=( DeviceGroupCommandBufferBeginInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t deviceMask;
};
static_assert( sizeof( DeviceGroupCommandBufferBeginInfoKHX ) == sizeof( VkDeviceGroupCommandBufferBeginInfoKHX ), "struct and wrapper have different size!" );
struct DeviceGroupSubmitInfoKHX
{
DeviceGroupSubmitInfoKHX( uint32_t waitSemaphoreCount_ = 0, const uint32_t* pWaitSemaphoreDeviceIndices_ = nullptr, uint32_t commandBufferCount_ = 0, const uint32_t* pCommandBufferDeviceMasks_ = nullptr, uint32_t signalSemaphoreCount_ = 0, const uint32_t* pSignalSemaphoreDeviceIndices_ = nullptr )
: sType( StructureType::eDeviceGroupSubmitInfoKHX )
, pNext( nullptr )
, waitSemaphoreCount( waitSemaphoreCount_ )
, pWaitSemaphoreDeviceIndices( pWaitSemaphoreDeviceIndices_ )
, commandBufferCount( commandBufferCount_ )
, pCommandBufferDeviceMasks( pCommandBufferDeviceMasks_ )
, signalSemaphoreCount( signalSemaphoreCount_ )
, pSignalSemaphoreDeviceIndices( pSignalSemaphoreDeviceIndices_ )
{
}
DeviceGroupSubmitInfoKHX( VkDeviceGroupSubmitInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupSubmitInfoKHX ) );
}
DeviceGroupSubmitInfoKHX& operator=( VkDeviceGroupSubmitInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupSubmitInfoKHX ) );
return *this;
}
DeviceGroupSubmitInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGroupSubmitInfoKHX& setWaitSemaphoreCount( uint32_t waitSemaphoreCount_ )
{
waitSemaphoreCount = waitSemaphoreCount_;
return *this;
}
DeviceGroupSubmitInfoKHX& setPWaitSemaphoreDeviceIndices( const uint32_t* pWaitSemaphoreDeviceIndices_ )
{
pWaitSemaphoreDeviceIndices = pWaitSemaphoreDeviceIndices_;
return *this;
}
DeviceGroupSubmitInfoKHX& setCommandBufferCount( uint32_t commandBufferCount_ )
{
commandBufferCount = commandBufferCount_;
return *this;
}
DeviceGroupSubmitInfoKHX& setPCommandBufferDeviceMasks( const uint32_t* pCommandBufferDeviceMasks_ )
{
pCommandBufferDeviceMasks = pCommandBufferDeviceMasks_;
return *this;
}
DeviceGroupSubmitInfoKHX& setSignalSemaphoreCount( uint32_t signalSemaphoreCount_ )
{
signalSemaphoreCount = signalSemaphoreCount_;
return *this;
}
DeviceGroupSubmitInfoKHX& setPSignalSemaphoreDeviceIndices( const uint32_t* pSignalSemaphoreDeviceIndices_ )
{
pSignalSemaphoreDeviceIndices = pSignalSemaphoreDeviceIndices_;
return *this;
}
operator const VkDeviceGroupSubmitInfoKHX&() const
{
return *reinterpret_cast<const VkDeviceGroupSubmitInfoKHX*>(this);
}
bool operator==( DeviceGroupSubmitInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( waitSemaphoreCount == rhs.waitSemaphoreCount )
&& ( pWaitSemaphoreDeviceIndices == rhs.pWaitSemaphoreDeviceIndices )
&& ( commandBufferCount == rhs.commandBufferCount )
&& ( pCommandBufferDeviceMasks == rhs.pCommandBufferDeviceMasks )
&& ( signalSemaphoreCount == rhs.signalSemaphoreCount )
&& ( pSignalSemaphoreDeviceIndices == rhs.pSignalSemaphoreDeviceIndices );
}
bool operator!=( DeviceGroupSubmitInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t waitSemaphoreCount;
const uint32_t* pWaitSemaphoreDeviceIndices;
uint32_t commandBufferCount;
const uint32_t* pCommandBufferDeviceMasks;
uint32_t signalSemaphoreCount;
const uint32_t* pSignalSemaphoreDeviceIndices;
};
static_assert( sizeof( DeviceGroupSubmitInfoKHX ) == sizeof( VkDeviceGroupSubmitInfoKHX ), "struct and wrapper have different size!" );
struct DeviceGroupBindSparseInfoKHX
{
DeviceGroupBindSparseInfoKHX( uint32_t resourceDeviceIndex_ = 0, uint32_t memoryDeviceIndex_ = 0 )
: sType( StructureType::eDeviceGroupBindSparseInfoKHX )
, pNext( nullptr )
, resourceDeviceIndex( resourceDeviceIndex_ )
, memoryDeviceIndex( memoryDeviceIndex_ )
{
}
DeviceGroupBindSparseInfoKHX( VkDeviceGroupBindSparseInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupBindSparseInfoKHX ) );
}
DeviceGroupBindSparseInfoKHX& operator=( VkDeviceGroupBindSparseInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupBindSparseInfoKHX ) );
return *this;
}
DeviceGroupBindSparseInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGroupBindSparseInfoKHX& setResourceDeviceIndex( uint32_t resourceDeviceIndex_ )
{
resourceDeviceIndex = resourceDeviceIndex_;
return *this;
}
DeviceGroupBindSparseInfoKHX& setMemoryDeviceIndex( uint32_t memoryDeviceIndex_ )
{
memoryDeviceIndex = memoryDeviceIndex_;
return *this;
}
operator const VkDeviceGroupBindSparseInfoKHX&() const
{
return *reinterpret_cast<const VkDeviceGroupBindSparseInfoKHX*>(this);
}
bool operator==( DeviceGroupBindSparseInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( resourceDeviceIndex == rhs.resourceDeviceIndex )
&& ( memoryDeviceIndex == rhs.memoryDeviceIndex );
}
bool operator!=( DeviceGroupBindSparseInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t resourceDeviceIndex;
uint32_t memoryDeviceIndex;
};
static_assert( sizeof( DeviceGroupBindSparseInfoKHX ) == sizeof( VkDeviceGroupBindSparseInfoKHX ), "struct and wrapper have different size!" );
struct ImageSwapchainCreateInfoKHX
{
ImageSwapchainCreateInfoKHX( SwapchainKHR swapchain_ = SwapchainKHR() )
: sType( StructureType::eImageSwapchainCreateInfoKHX )
, pNext( nullptr )
, swapchain( swapchain_ )
{
}
ImageSwapchainCreateInfoKHX( VkImageSwapchainCreateInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSwapchainCreateInfoKHX ) );
}
ImageSwapchainCreateInfoKHX& operator=( VkImageSwapchainCreateInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSwapchainCreateInfoKHX ) );
return *this;
}
ImageSwapchainCreateInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImageSwapchainCreateInfoKHX& setSwapchain( SwapchainKHR swapchain_ )
{
swapchain = swapchain_;
return *this;
}
operator const VkImageSwapchainCreateInfoKHX&() const
{
return *reinterpret_cast<const VkImageSwapchainCreateInfoKHX*>(this);
}
bool operator==( ImageSwapchainCreateInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( swapchain == rhs.swapchain );
}
bool operator!=( ImageSwapchainCreateInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SwapchainKHR swapchain;
};
static_assert( sizeof( ImageSwapchainCreateInfoKHX ) == sizeof( VkImageSwapchainCreateInfoKHX ), "struct and wrapper have different size!" );
struct BindImageMemorySwapchainInfoKHX
{
BindImageMemorySwapchainInfoKHX( SwapchainKHR swapchain_ = SwapchainKHR(), uint32_t imageIndex_ = 0 )
: sType( StructureType::eBindImageMemorySwapchainInfoKHX )
, pNext( nullptr )
, swapchain( swapchain_ )
, imageIndex( imageIndex_ )
{
}
BindImageMemorySwapchainInfoKHX( VkBindImageMemorySwapchainInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( BindImageMemorySwapchainInfoKHX ) );
}
BindImageMemorySwapchainInfoKHX& operator=( VkBindImageMemorySwapchainInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( BindImageMemorySwapchainInfoKHX ) );
return *this;
}
BindImageMemorySwapchainInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BindImageMemorySwapchainInfoKHX& setSwapchain( SwapchainKHR swapchain_ )
{
swapchain = swapchain_;
return *this;
}
BindImageMemorySwapchainInfoKHX& setImageIndex( uint32_t imageIndex_ )
{
imageIndex = imageIndex_;
return *this;
}
operator const VkBindImageMemorySwapchainInfoKHX&() const
{
return *reinterpret_cast<const VkBindImageMemorySwapchainInfoKHX*>(this);
}
bool operator==( BindImageMemorySwapchainInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( swapchain == rhs.swapchain )
&& ( imageIndex == rhs.imageIndex );
}
bool operator!=( BindImageMemorySwapchainInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SwapchainKHR swapchain;
uint32_t imageIndex;
};
static_assert( sizeof( BindImageMemorySwapchainInfoKHX ) == sizeof( VkBindImageMemorySwapchainInfoKHX ), "struct and wrapper have different size!" );
struct AcquireNextImageInfoKHX
{
AcquireNextImageInfoKHX( SwapchainKHR swapchain_ = SwapchainKHR(), uint64_t timeout_ = 0, Semaphore semaphore_ = Semaphore(), Fence fence_ = Fence(), uint32_t deviceMask_ = 0 )
: sType( StructureType::eAcquireNextImageInfoKHX )
, pNext( nullptr )
, swapchain( swapchain_ )
, timeout( timeout_ )
, semaphore( semaphore_ )
, fence( fence_ )
, deviceMask( deviceMask_ )
{
}
AcquireNextImageInfoKHX( VkAcquireNextImageInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( AcquireNextImageInfoKHX ) );
}
AcquireNextImageInfoKHX& operator=( VkAcquireNextImageInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( AcquireNextImageInfoKHX ) );
return *this;
}
AcquireNextImageInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
AcquireNextImageInfoKHX& setSwapchain( SwapchainKHR swapchain_ )
{
swapchain = swapchain_;
return *this;
}
AcquireNextImageInfoKHX& setTimeout( uint64_t timeout_ )
{
timeout = timeout_;
return *this;
}
AcquireNextImageInfoKHX& setSemaphore( Semaphore semaphore_ )
{
semaphore = semaphore_;
return *this;
}
AcquireNextImageInfoKHX& setFence( Fence fence_ )
{
fence = fence_;
return *this;
}
AcquireNextImageInfoKHX& setDeviceMask( uint32_t deviceMask_ )
{
deviceMask = deviceMask_;
return *this;
}
operator const VkAcquireNextImageInfoKHX&() const
{
return *reinterpret_cast<const VkAcquireNextImageInfoKHX*>(this);
}
bool operator==( AcquireNextImageInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( swapchain == rhs.swapchain )
&& ( timeout == rhs.timeout )
&& ( semaphore == rhs.semaphore )
&& ( fence == rhs.fence )
&& ( deviceMask == rhs.deviceMask );
}
bool operator!=( AcquireNextImageInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SwapchainKHR swapchain;
uint64_t timeout;
Semaphore semaphore;
Fence fence;
uint32_t deviceMask;
};
static_assert( sizeof( AcquireNextImageInfoKHX ) == sizeof( VkAcquireNextImageInfoKHX ), "struct and wrapper have different size!" );
struct HdrMetadataEXT
{
HdrMetadataEXT( XYColorEXT displayPrimaryRed_ = XYColorEXT(), XYColorEXT displayPrimaryGreen_ = XYColorEXT(), XYColorEXT displayPrimaryBlue_ = XYColorEXT(), XYColorEXT whitePoint_ = XYColorEXT(), float maxLuminance_ = 0, float minLuminance_ = 0, float maxContentLightLevel_ = 0, float maxFrameAverageLightLevel_ = 0 )
: sType( StructureType::eHdrMetadataEXT )
, pNext( nullptr )
, displayPrimaryRed( displayPrimaryRed_ )
, displayPrimaryGreen( displayPrimaryGreen_ )
, displayPrimaryBlue( displayPrimaryBlue_ )
, whitePoint( whitePoint_ )
, maxLuminance( maxLuminance_ )
, minLuminance( minLuminance_ )
, maxContentLightLevel( maxContentLightLevel_ )
, maxFrameAverageLightLevel( maxFrameAverageLightLevel_ )
{
}
HdrMetadataEXT( VkHdrMetadataEXT const & rhs )
{
memcpy( this, &rhs, sizeof( HdrMetadataEXT ) );
}
HdrMetadataEXT& operator=( VkHdrMetadataEXT const & rhs )
{
memcpy( this, &rhs, sizeof( HdrMetadataEXT ) );
return *this;
}
HdrMetadataEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
HdrMetadataEXT& setDisplayPrimaryRed( XYColorEXT displayPrimaryRed_ )
{
displayPrimaryRed = displayPrimaryRed_;
return *this;
}
HdrMetadataEXT& setDisplayPrimaryGreen( XYColorEXT displayPrimaryGreen_ )
{
displayPrimaryGreen = displayPrimaryGreen_;
return *this;
}
HdrMetadataEXT& setDisplayPrimaryBlue( XYColorEXT displayPrimaryBlue_ )
{
displayPrimaryBlue = displayPrimaryBlue_;
return *this;
}
HdrMetadataEXT& setWhitePoint( XYColorEXT whitePoint_ )
{
whitePoint = whitePoint_;
return *this;
}
HdrMetadataEXT& setMaxLuminance( float maxLuminance_ )
{
maxLuminance = maxLuminance_;
return *this;
}
HdrMetadataEXT& setMinLuminance( float minLuminance_ )
{
minLuminance = minLuminance_;
return *this;
}
HdrMetadataEXT& setMaxContentLightLevel( float maxContentLightLevel_ )
{
maxContentLightLevel = maxContentLightLevel_;
return *this;
}
HdrMetadataEXT& setMaxFrameAverageLightLevel( float maxFrameAverageLightLevel_ )
{
maxFrameAverageLightLevel = maxFrameAverageLightLevel_;
return *this;
}
operator const VkHdrMetadataEXT&() const
{
return *reinterpret_cast<const VkHdrMetadataEXT*>(this);
}
bool operator==( HdrMetadataEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( displayPrimaryRed == rhs.displayPrimaryRed )
&& ( displayPrimaryGreen == rhs.displayPrimaryGreen )
&& ( displayPrimaryBlue == rhs.displayPrimaryBlue )
&& ( whitePoint == rhs.whitePoint )
&& ( maxLuminance == rhs.maxLuminance )
&& ( minLuminance == rhs.minLuminance )
&& ( maxContentLightLevel == rhs.maxContentLightLevel )
&& ( maxFrameAverageLightLevel == rhs.maxFrameAverageLightLevel );
}
bool operator!=( HdrMetadataEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
XYColorEXT displayPrimaryRed;
XYColorEXT displayPrimaryGreen;
XYColorEXT displayPrimaryBlue;
XYColorEXT whitePoint;
float maxLuminance;
float minLuminance;
float maxContentLightLevel;
float maxFrameAverageLightLevel;
};
static_assert( sizeof( HdrMetadataEXT ) == sizeof( VkHdrMetadataEXT ), "struct and wrapper have different size!" );
struct PresentTimesInfoGOOGLE
{
PresentTimesInfoGOOGLE( uint32_t swapchainCount_ = 0, const PresentTimeGOOGLE* pTimes_ = nullptr )
: sType( StructureType::ePresentTimesInfoGOOGLE )
, pNext( nullptr )
, swapchainCount( swapchainCount_ )
, pTimes( pTimes_ )
{
}
PresentTimesInfoGOOGLE( VkPresentTimesInfoGOOGLE const & rhs )
{
memcpy( this, &rhs, sizeof( PresentTimesInfoGOOGLE ) );
}
PresentTimesInfoGOOGLE& operator=( VkPresentTimesInfoGOOGLE const & rhs )
{
memcpy( this, &rhs, sizeof( PresentTimesInfoGOOGLE ) );
return *this;
}
PresentTimesInfoGOOGLE& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PresentTimesInfoGOOGLE& setSwapchainCount( uint32_t swapchainCount_ )
{
swapchainCount = swapchainCount_;
return *this;
}
PresentTimesInfoGOOGLE& setPTimes( const PresentTimeGOOGLE* pTimes_ )
{
pTimes = pTimes_;
return *this;
}
operator const VkPresentTimesInfoGOOGLE&() const
{
return *reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(this);
}
bool operator==( PresentTimesInfoGOOGLE const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( swapchainCount == rhs.swapchainCount )
&& ( pTimes == rhs.pTimes );
}
bool operator!=( PresentTimesInfoGOOGLE const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t swapchainCount;
const PresentTimeGOOGLE* pTimes;
};
static_assert( sizeof( PresentTimesInfoGOOGLE ) == sizeof( VkPresentTimesInfoGOOGLE ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_IOS_MVK
struct IOSSurfaceCreateInfoMVK
{
IOSSurfaceCreateInfoMVK( IOSSurfaceCreateFlagsMVK flags_ = IOSSurfaceCreateFlagsMVK(), const void* pView_ = nullptr )
: sType( StructureType::eIOSSurfaceCreateInfoMVK )
, pNext( nullptr )
, flags( flags_ )
, pView( pView_ )
{
}
IOSSurfaceCreateInfoMVK( VkIOSSurfaceCreateInfoMVK const & rhs )
{
memcpy( this, &rhs, sizeof( IOSSurfaceCreateInfoMVK ) );
}
IOSSurfaceCreateInfoMVK& operator=( VkIOSSurfaceCreateInfoMVK const & rhs )
{
memcpy( this, &rhs, sizeof( IOSSurfaceCreateInfoMVK ) );
return *this;
}
IOSSurfaceCreateInfoMVK& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
IOSSurfaceCreateInfoMVK& setFlags( IOSSurfaceCreateFlagsMVK flags_ )
{
flags = flags_;
return *this;
}
IOSSurfaceCreateInfoMVK& setPView( const void* pView_ )
{
pView = pView_;
return *this;
}
operator const VkIOSSurfaceCreateInfoMVK&() const
{
return *reinterpret_cast<const VkIOSSurfaceCreateInfoMVK*>(this);
}
bool operator==( IOSSurfaceCreateInfoMVK const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( pView == rhs.pView );
}
bool operator!=( IOSSurfaceCreateInfoMVK const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
IOSSurfaceCreateFlagsMVK flags;
const void* pView;
};
static_assert( sizeof( IOSSurfaceCreateInfoMVK ) == sizeof( VkIOSSurfaceCreateInfoMVK ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_IOS_MVK*/
#ifdef VK_USE_PLATFORM_MACOS_MVK
struct MacOSSurfaceCreateInfoMVK
{
MacOSSurfaceCreateInfoMVK( MacOSSurfaceCreateFlagsMVK flags_ = MacOSSurfaceCreateFlagsMVK(), const void* pView_ = nullptr )
: sType( StructureType::eMacOSSurfaceCreateInfoMVK )
, pNext( nullptr )
, flags( flags_ )
, pView( pView_ )
{
}
MacOSSurfaceCreateInfoMVK( VkMacOSSurfaceCreateInfoMVK const & rhs )
{
memcpy( this, &rhs, sizeof( MacOSSurfaceCreateInfoMVK ) );
}
MacOSSurfaceCreateInfoMVK& operator=( VkMacOSSurfaceCreateInfoMVK const & rhs )
{
memcpy( this, &rhs, sizeof( MacOSSurfaceCreateInfoMVK ) );
return *this;
}
MacOSSurfaceCreateInfoMVK& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MacOSSurfaceCreateInfoMVK& setFlags( MacOSSurfaceCreateFlagsMVK flags_ )
{
flags = flags_;
return *this;
}
MacOSSurfaceCreateInfoMVK& setPView( const void* pView_ )
{
pView = pView_;
return *this;
}
operator const VkMacOSSurfaceCreateInfoMVK&() const
{
return *reinterpret_cast<const VkMacOSSurfaceCreateInfoMVK*>(this);
}
bool operator==( MacOSSurfaceCreateInfoMVK const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( pView == rhs.pView );
}
bool operator!=( MacOSSurfaceCreateInfoMVK const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
MacOSSurfaceCreateFlagsMVK flags;
const void* pView;
};
static_assert( sizeof( MacOSSurfaceCreateInfoMVK ) == sizeof( VkMacOSSurfaceCreateInfoMVK ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_MACOS_MVK*/
struct PipelineViewportWScalingStateCreateInfoNV
{
PipelineViewportWScalingStateCreateInfoNV( Bool32 viewportWScalingEnable_ = 0, uint32_t viewportCount_ = 0, const ViewportWScalingNV* pViewportWScalings_ = nullptr )
: sType( StructureType::ePipelineViewportWScalingStateCreateInfoNV )
, pNext( nullptr )
, viewportWScalingEnable( viewportWScalingEnable_ )
, viewportCount( viewportCount_ )
, pViewportWScalings( pViewportWScalings_ )
{
}
PipelineViewportWScalingStateCreateInfoNV( VkPipelineViewportWScalingStateCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineViewportWScalingStateCreateInfoNV ) );
}
PipelineViewportWScalingStateCreateInfoNV& operator=( VkPipelineViewportWScalingStateCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineViewportWScalingStateCreateInfoNV ) );
return *this;
}
PipelineViewportWScalingStateCreateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineViewportWScalingStateCreateInfoNV& setViewportWScalingEnable( Bool32 viewportWScalingEnable_ )
{
viewportWScalingEnable = viewportWScalingEnable_;
return *this;
}
PipelineViewportWScalingStateCreateInfoNV& setViewportCount( uint32_t viewportCount_ )
{
viewportCount = viewportCount_;
return *this;
}
PipelineViewportWScalingStateCreateInfoNV& setPViewportWScalings( const ViewportWScalingNV* pViewportWScalings_ )
{
pViewportWScalings = pViewportWScalings_;
return *this;
}
operator const VkPipelineViewportWScalingStateCreateInfoNV&() const
{
return *reinterpret_cast<const VkPipelineViewportWScalingStateCreateInfoNV*>(this);
}
bool operator==( PipelineViewportWScalingStateCreateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( viewportWScalingEnable == rhs.viewportWScalingEnable )
&& ( viewportCount == rhs.viewportCount )
&& ( pViewportWScalings == rhs.pViewportWScalings );
}
bool operator!=( PipelineViewportWScalingStateCreateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Bool32 viewportWScalingEnable;
uint32_t viewportCount;
const ViewportWScalingNV* pViewportWScalings;
};
static_assert( sizeof( PipelineViewportWScalingStateCreateInfoNV ) == sizeof( VkPipelineViewportWScalingStateCreateInfoNV ), "struct and wrapper have different size!" );
struct PhysicalDeviceDiscardRectanglePropertiesEXT
{
PhysicalDeviceDiscardRectanglePropertiesEXT( uint32_t maxDiscardRectangles_ = 0 )
: sType( StructureType::ePhysicalDeviceDiscardRectanglePropertiesEXT )
, pNext( nullptr )
, maxDiscardRectangles( maxDiscardRectangles_ )
{
}
PhysicalDeviceDiscardRectanglePropertiesEXT( VkPhysicalDeviceDiscardRectanglePropertiesEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceDiscardRectanglePropertiesEXT ) );
}
PhysicalDeviceDiscardRectanglePropertiesEXT& operator=( VkPhysicalDeviceDiscardRectanglePropertiesEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceDiscardRectanglePropertiesEXT ) );
return *this;
}
PhysicalDeviceDiscardRectanglePropertiesEXT& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceDiscardRectanglePropertiesEXT& setMaxDiscardRectangles( uint32_t maxDiscardRectangles_ )
{
maxDiscardRectangles = maxDiscardRectangles_;
return *this;
}
operator const VkPhysicalDeviceDiscardRectanglePropertiesEXT&() const
{
return *reinterpret_cast<const VkPhysicalDeviceDiscardRectanglePropertiesEXT*>(this);
}
bool operator==( PhysicalDeviceDiscardRectanglePropertiesEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( maxDiscardRectangles == rhs.maxDiscardRectangles );
}
bool operator!=( PhysicalDeviceDiscardRectanglePropertiesEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t maxDiscardRectangles;
};
static_assert( sizeof( PhysicalDeviceDiscardRectanglePropertiesEXT ) == sizeof( VkPhysicalDeviceDiscardRectanglePropertiesEXT ), "struct and wrapper have different size!" );
struct PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX
{
operator const VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX&() const
{
return *reinterpret_cast<const VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX*>(this);
}
bool operator==( PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( perViewPositionAllComponents == rhs.perViewPositionAllComponents );
}
bool operator!=( PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 perViewPositionAllComponents;
};
static_assert( sizeof( PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX ) == sizeof( VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX ), "struct and wrapper have different size!" );
struct PhysicalDeviceSurfaceInfo2KHR
{
PhysicalDeviceSurfaceInfo2KHR( SurfaceKHR surface_ = SurfaceKHR() )
: sType( StructureType::ePhysicalDeviceSurfaceInfo2KHR )
, pNext( nullptr )
, surface( surface_ )
{
}
PhysicalDeviceSurfaceInfo2KHR( VkPhysicalDeviceSurfaceInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceSurfaceInfo2KHR ) );
}
PhysicalDeviceSurfaceInfo2KHR& operator=( VkPhysicalDeviceSurfaceInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceSurfaceInfo2KHR ) );
return *this;
}
PhysicalDeviceSurfaceInfo2KHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceSurfaceInfo2KHR& setSurface( SurfaceKHR surface_ )
{
surface = surface_;
return *this;
}
operator const VkPhysicalDeviceSurfaceInfo2KHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceSurfaceInfo2KHR*>(this);
}
bool operator==( PhysicalDeviceSurfaceInfo2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( surface == rhs.surface );
}
bool operator!=( PhysicalDeviceSurfaceInfo2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SurfaceKHR surface;
};
static_assert( sizeof( PhysicalDeviceSurfaceInfo2KHR ) == sizeof( VkPhysicalDeviceSurfaceInfo2KHR ), "struct and wrapper have different size!" );
struct PhysicalDevice16BitStorageFeaturesKHR
{
PhysicalDevice16BitStorageFeaturesKHR( Bool32 storageBuffer16BitAccess_ = 0, Bool32 uniformAndStorageBuffer16BitAccess_ = 0, Bool32 storagePushConstant16_ = 0, Bool32 storageInputOutput16_ = 0 )
: sType( StructureType::ePhysicalDevice16BitStorageFeaturesKHR )
, pNext( nullptr )
, storageBuffer16BitAccess( storageBuffer16BitAccess_ )
, uniformAndStorageBuffer16BitAccess( uniformAndStorageBuffer16BitAccess_ )
, storagePushConstant16( storagePushConstant16_ )
, storageInputOutput16( storageInputOutput16_ )
{
}
PhysicalDevice16BitStorageFeaturesKHR( VkPhysicalDevice16BitStorageFeaturesKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDevice16BitStorageFeaturesKHR ) );
}
PhysicalDevice16BitStorageFeaturesKHR& operator=( VkPhysicalDevice16BitStorageFeaturesKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDevice16BitStorageFeaturesKHR ) );
return *this;
}
PhysicalDevice16BitStorageFeaturesKHR& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDevice16BitStorageFeaturesKHR& setStorageBuffer16BitAccess( Bool32 storageBuffer16BitAccess_ )
{
storageBuffer16BitAccess = storageBuffer16BitAccess_;
return *this;
}
PhysicalDevice16BitStorageFeaturesKHR& setUniformAndStorageBuffer16BitAccess( Bool32 uniformAndStorageBuffer16BitAccess_ )
{
uniformAndStorageBuffer16BitAccess = uniformAndStorageBuffer16BitAccess_;
return *this;
}
PhysicalDevice16BitStorageFeaturesKHR& setStoragePushConstant16( Bool32 storagePushConstant16_ )
{
storagePushConstant16 = storagePushConstant16_;
return *this;
}
PhysicalDevice16BitStorageFeaturesKHR& setStorageInputOutput16( Bool32 storageInputOutput16_ )
{
storageInputOutput16 = storageInputOutput16_;
return *this;
}
operator const VkPhysicalDevice16BitStorageFeaturesKHR&() const
{
return *reinterpret_cast<const VkPhysicalDevice16BitStorageFeaturesKHR*>(this);
}
bool operator==( PhysicalDevice16BitStorageFeaturesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( storageBuffer16BitAccess == rhs.storageBuffer16BitAccess )
&& ( uniformAndStorageBuffer16BitAccess == rhs.uniformAndStorageBuffer16BitAccess )
&& ( storagePushConstant16 == rhs.storagePushConstant16 )
&& ( storageInputOutput16 == rhs.storageInputOutput16 );
}
bool operator!=( PhysicalDevice16BitStorageFeaturesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 storageBuffer16BitAccess;
Bool32 uniformAndStorageBuffer16BitAccess;
Bool32 storagePushConstant16;
Bool32 storageInputOutput16;
};
static_assert( sizeof( PhysicalDevice16BitStorageFeaturesKHR ) == sizeof( VkPhysicalDevice16BitStorageFeaturesKHR ), "struct and wrapper have different size!" );
struct BufferMemoryRequirementsInfo2KHR
{
BufferMemoryRequirementsInfo2KHR( Buffer buffer_ = Buffer() )
: sType( StructureType::eBufferMemoryRequirementsInfo2KHR )
, pNext( nullptr )
, buffer( buffer_ )
{
}
BufferMemoryRequirementsInfo2KHR( VkBufferMemoryRequirementsInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( BufferMemoryRequirementsInfo2KHR ) );
}
BufferMemoryRequirementsInfo2KHR& operator=( VkBufferMemoryRequirementsInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( BufferMemoryRequirementsInfo2KHR ) );
return *this;
}
BufferMemoryRequirementsInfo2KHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BufferMemoryRequirementsInfo2KHR& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
operator const VkBufferMemoryRequirementsInfo2KHR&() const
{
return *reinterpret_cast<const VkBufferMemoryRequirementsInfo2KHR*>(this);
}
bool operator==( BufferMemoryRequirementsInfo2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( buffer == rhs.buffer );
}
bool operator!=( BufferMemoryRequirementsInfo2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Buffer buffer;
};
static_assert( sizeof( BufferMemoryRequirementsInfo2KHR ) == sizeof( VkBufferMemoryRequirementsInfo2KHR ), "struct and wrapper have different size!" );
struct ImageMemoryRequirementsInfo2KHR
{
ImageMemoryRequirementsInfo2KHR( Image image_ = Image() )
: sType( StructureType::eImageMemoryRequirementsInfo2KHR )
, pNext( nullptr )
, image( image_ )
{
}
ImageMemoryRequirementsInfo2KHR( VkImageMemoryRequirementsInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImageMemoryRequirementsInfo2KHR ) );
}
ImageMemoryRequirementsInfo2KHR& operator=( VkImageMemoryRequirementsInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImageMemoryRequirementsInfo2KHR ) );
return *this;
}
ImageMemoryRequirementsInfo2KHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImageMemoryRequirementsInfo2KHR& setImage( Image image_ )
{
image = image_;
return *this;
}
operator const VkImageMemoryRequirementsInfo2KHR&() const
{
return *reinterpret_cast<const VkImageMemoryRequirementsInfo2KHR*>(this);
}
bool operator==( ImageMemoryRequirementsInfo2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( image == rhs.image );
}
bool operator!=( ImageMemoryRequirementsInfo2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Image image;
};
static_assert( sizeof( ImageMemoryRequirementsInfo2KHR ) == sizeof( VkImageMemoryRequirementsInfo2KHR ), "struct and wrapper have different size!" );
struct ImageSparseMemoryRequirementsInfo2KHR
{
ImageSparseMemoryRequirementsInfo2KHR( Image image_ = Image() )
: sType( StructureType::eImageSparseMemoryRequirementsInfo2KHR )
, pNext( nullptr )
, image( image_ )
{
}
ImageSparseMemoryRequirementsInfo2KHR( VkImageSparseMemoryRequirementsInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSparseMemoryRequirementsInfo2KHR ) );
}
ImageSparseMemoryRequirementsInfo2KHR& operator=( VkImageSparseMemoryRequirementsInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSparseMemoryRequirementsInfo2KHR ) );
return *this;
}
ImageSparseMemoryRequirementsInfo2KHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImageSparseMemoryRequirementsInfo2KHR& setImage( Image image_ )
{
image = image_;
return *this;
}
operator const VkImageSparseMemoryRequirementsInfo2KHR&() const
{
return *reinterpret_cast<const VkImageSparseMemoryRequirementsInfo2KHR*>(this);
}
bool operator==( ImageSparseMemoryRequirementsInfo2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( image == rhs.image );
}
bool operator!=( ImageSparseMemoryRequirementsInfo2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Image image;
};
static_assert( sizeof( ImageSparseMemoryRequirementsInfo2KHR ) == sizeof( VkImageSparseMemoryRequirementsInfo2KHR ), "struct and wrapper have different size!" );
struct MemoryRequirements2KHR
{
operator const VkMemoryRequirements2KHR&() const
{
return *reinterpret_cast<const VkMemoryRequirements2KHR*>(this);
}
bool operator==( MemoryRequirements2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memoryRequirements == rhs.memoryRequirements );
}
bool operator!=( MemoryRequirements2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
MemoryRequirements memoryRequirements;
};
static_assert( sizeof( MemoryRequirements2KHR ) == sizeof( VkMemoryRequirements2KHR ), "struct and wrapper have different size!" );
struct MemoryDedicatedRequirementsKHR
{
operator const VkMemoryDedicatedRequirementsKHR&() const
{
return *reinterpret_cast<const VkMemoryDedicatedRequirementsKHR*>(this);
}
bool operator==( MemoryDedicatedRequirementsKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( prefersDedicatedAllocation == rhs.prefersDedicatedAllocation )
&& ( requiresDedicatedAllocation == rhs.requiresDedicatedAllocation );
}
bool operator!=( MemoryDedicatedRequirementsKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 prefersDedicatedAllocation;
Bool32 requiresDedicatedAllocation;
};
static_assert( sizeof( MemoryDedicatedRequirementsKHR ) == sizeof( VkMemoryDedicatedRequirementsKHR ), "struct and wrapper have different size!" );
struct MemoryDedicatedAllocateInfoKHR
{
MemoryDedicatedAllocateInfoKHR( Image image_ = Image(), Buffer buffer_ = Buffer() )
: sType( StructureType::eMemoryDedicatedAllocateInfoKHR )
, pNext( nullptr )
, image( image_ )
, buffer( buffer_ )
{
}
MemoryDedicatedAllocateInfoKHR( VkMemoryDedicatedAllocateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryDedicatedAllocateInfoKHR ) );
}
MemoryDedicatedAllocateInfoKHR& operator=( VkMemoryDedicatedAllocateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryDedicatedAllocateInfoKHR ) );
return *this;
}
MemoryDedicatedAllocateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MemoryDedicatedAllocateInfoKHR& setImage( Image image_ )
{
image = image_;
return *this;
}
MemoryDedicatedAllocateInfoKHR& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
operator const VkMemoryDedicatedAllocateInfoKHR&() const
{
return *reinterpret_cast<const VkMemoryDedicatedAllocateInfoKHR*>(this);
}
bool operator==( MemoryDedicatedAllocateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( image == rhs.image )
&& ( buffer == rhs.buffer );
}
bool operator!=( MemoryDedicatedAllocateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Image image;
Buffer buffer;
};
static_assert( sizeof( MemoryDedicatedAllocateInfoKHR ) == sizeof( VkMemoryDedicatedAllocateInfoKHR ), "struct and wrapper have different size!" );
struct SamplerYcbcrConversionInfoKHR
{
SamplerYcbcrConversionInfoKHR( SamplerYcbcrConversionKHR conversion_ = SamplerYcbcrConversionKHR() )
: sType( StructureType::eSamplerYcbcrConversionInfoKHR )
, pNext( nullptr )
, conversion( conversion_ )
{
}
SamplerYcbcrConversionInfoKHR( VkSamplerYcbcrConversionInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SamplerYcbcrConversionInfoKHR ) );
}
SamplerYcbcrConversionInfoKHR& operator=( VkSamplerYcbcrConversionInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SamplerYcbcrConversionInfoKHR ) );
return *this;
}
SamplerYcbcrConversionInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SamplerYcbcrConversionInfoKHR& setConversion( SamplerYcbcrConversionKHR conversion_ )
{
conversion = conversion_;
return *this;
}
operator const VkSamplerYcbcrConversionInfoKHR&() const
{
return *reinterpret_cast<const VkSamplerYcbcrConversionInfoKHR*>(this);
}
bool operator==( SamplerYcbcrConversionInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( conversion == rhs.conversion );
}
bool operator!=( SamplerYcbcrConversionInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SamplerYcbcrConversionKHR conversion;
};
static_assert( sizeof( SamplerYcbcrConversionInfoKHR ) == sizeof( VkSamplerYcbcrConversionInfoKHR ), "struct and wrapper have different size!" );
struct PhysicalDeviceSamplerYcbcrConversionFeaturesKHR
{
PhysicalDeviceSamplerYcbcrConversionFeaturesKHR( Bool32 samplerYcbcrConversion_ = 0 )
: sType( StructureType::ePhysicalDeviceSamplerYcbcrConversionFeaturesKHR )
, pNext( nullptr )
, samplerYcbcrConversion( samplerYcbcrConversion_ )
{
}
PhysicalDeviceSamplerYcbcrConversionFeaturesKHR( VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceSamplerYcbcrConversionFeaturesKHR ) );
}
PhysicalDeviceSamplerYcbcrConversionFeaturesKHR& operator=( VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceSamplerYcbcrConversionFeaturesKHR ) );
return *this;
}
PhysicalDeviceSamplerYcbcrConversionFeaturesKHR& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceSamplerYcbcrConversionFeaturesKHR& setSamplerYcbcrConversion( Bool32 samplerYcbcrConversion_ )
{
samplerYcbcrConversion = samplerYcbcrConversion_;
return *this;
}
operator const VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR*>(this);
}
bool operator==( PhysicalDeviceSamplerYcbcrConversionFeaturesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( samplerYcbcrConversion == rhs.samplerYcbcrConversion );
}
bool operator!=( PhysicalDeviceSamplerYcbcrConversionFeaturesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 samplerYcbcrConversion;
};
static_assert( sizeof( PhysicalDeviceSamplerYcbcrConversionFeaturesKHR ) == sizeof( VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR ), "struct and wrapper have different size!" );
struct SamplerYcbcrConversionImageFormatPropertiesKHR
{
operator const VkSamplerYcbcrConversionImageFormatPropertiesKHR&() const
{
return *reinterpret_cast<const VkSamplerYcbcrConversionImageFormatPropertiesKHR*>(this);
}
bool operator==( SamplerYcbcrConversionImageFormatPropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( combinedImageSamplerDescriptorCount == rhs.combinedImageSamplerDescriptorCount );
}
bool operator!=( SamplerYcbcrConversionImageFormatPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t combinedImageSamplerDescriptorCount;
};
static_assert( sizeof( SamplerYcbcrConversionImageFormatPropertiesKHR ) == sizeof( VkSamplerYcbcrConversionImageFormatPropertiesKHR ), "struct and wrapper have different size!" );
struct TextureLODGatherFormatPropertiesAMD
{
operator const VkTextureLODGatherFormatPropertiesAMD&() const
{
return *reinterpret_cast<const VkTextureLODGatherFormatPropertiesAMD*>(this);
}
bool operator==( TextureLODGatherFormatPropertiesAMD const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( supportsTextureGatherLODBiasAMD == rhs.supportsTextureGatherLODBiasAMD );
}
bool operator!=( TextureLODGatherFormatPropertiesAMD const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 supportsTextureGatherLODBiasAMD;
};
static_assert( sizeof( TextureLODGatherFormatPropertiesAMD ) == sizeof( VkTextureLODGatherFormatPropertiesAMD ), "struct and wrapper have different size!" );
struct PipelineCoverageToColorStateCreateInfoNV
{
PipelineCoverageToColorStateCreateInfoNV( PipelineCoverageToColorStateCreateFlagsNV flags_ = PipelineCoverageToColorStateCreateFlagsNV(), Bool32 coverageToColorEnable_ = 0, uint32_t coverageToColorLocation_ = 0 )
: sType( StructureType::ePipelineCoverageToColorStateCreateInfoNV )
, pNext( nullptr )
, flags( flags_ )
, coverageToColorEnable( coverageToColorEnable_ )
, coverageToColorLocation( coverageToColorLocation_ )
{
}
PipelineCoverageToColorStateCreateInfoNV( VkPipelineCoverageToColorStateCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineCoverageToColorStateCreateInfoNV ) );
}
PipelineCoverageToColorStateCreateInfoNV& operator=( VkPipelineCoverageToColorStateCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineCoverageToColorStateCreateInfoNV ) );
return *this;
}
PipelineCoverageToColorStateCreateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineCoverageToColorStateCreateInfoNV& setFlags( PipelineCoverageToColorStateCreateFlagsNV flags_ )
{
flags = flags_;
return *this;
}
PipelineCoverageToColorStateCreateInfoNV& setCoverageToColorEnable( Bool32 coverageToColorEnable_ )
{
coverageToColorEnable = coverageToColorEnable_;
return *this;
}
PipelineCoverageToColorStateCreateInfoNV& setCoverageToColorLocation( uint32_t coverageToColorLocation_ )
{
coverageToColorLocation = coverageToColorLocation_;
return *this;
}
operator const VkPipelineCoverageToColorStateCreateInfoNV&() const
{
return *reinterpret_cast<const VkPipelineCoverageToColorStateCreateInfoNV*>(this);
}
bool operator==( PipelineCoverageToColorStateCreateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( coverageToColorEnable == rhs.coverageToColorEnable )
&& ( coverageToColorLocation == rhs.coverageToColorLocation );
}
bool operator!=( PipelineCoverageToColorStateCreateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineCoverageToColorStateCreateFlagsNV flags;
Bool32 coverageToColorEnable;
uint32_t coverageToColorLocation;
};
static_assert( sizeof( PipelineCoverageToColorStateCreateInfoNV ) == sizeof( VkPipelineCoverageToColorStateCreateInfoNV ), "struct and wrapper have different size!" );
struct PhysicalDeviceSamplerFilterMinmaxPropertiesEXT
{
operator const VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT&() const
{
return *reinterpret_cast<const VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT*>(this);
}
bool operator==( PhysicalDeviceSamplerFilterMinmaxPropertiesEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( filterMinmaxSingleComponentFormats == rhs.filterMinmaxSingleComponentFormats )
&& ( filterMinmaxImageComponentMapping == rhs.filterMinmaxImageComponentMapping );
}
bool operator!=( PhysicalDeviceSamplerFilterMinmaxPropertiesEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 filterMinmaxSingleComponentFormats;
Bool32 filterMinmaxImageComponentMapping;
};
static_assert( sizeof( PhysicalDeviceSamplerFilterMinmaxPropertiesEXT ) == sizeof( VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT ), "struct and wrapper have different size!" );
struct MultisamplePropertiesEXT
{
operator const VkMultisamplePropertiesEXT&() const
{
return *reinterpret_cast<const VkMultisamplePropertiesEXT*>(this);
}
bool operator==( MultisamplePropertiesEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( maxSampleLocationGridSize == rhs.maxSampleLocationGridSize );
}
bool operator!=( MultisamplePropertiesEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Extent2D maxSampleLocationGridSize;
};
static_assert( sizeof( MultisamplePropertiesEXT ) == sizeof( VkMultisamplePropertiesEXT ), "struct and wrapper have different size!" );
struct PhysicalDeviceBlendOperationAdvancedFeaturesEXT
{
PhysicalDeviceBlendOperationAdvancedFeaturesEXT( Bool32 advancedBlendCoherentOperations_ = 0 )
: sType( StructureType::ePhysicalDeviceBlendOperationAdvancedFeaturesEXT )
, pNext( nullptr )
, advancedBlendCoherentOperations( advancedBlendCoherentOperations_ )
{
}
PhysicalDeviceBlendOperationAdvancedFeaturesEXT( VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceBlendOperationAdvancedFeaturesEXT ) );
}
PhysicalDeviceBlendOperationAdvancedFeaturesEXT& operator=( VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceBlendOperationAdvancedFeaturesEXT ) );
return *this;
}
PhysicalDeviceBlendOperationAdvancedFeaturesEXT& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceBlendOperationAdvancedFeaturesEXT& setAdvancedBlendCoherentOperations( Bool32 advancedBlendCoherentOperations_ )
{
advancedBlendCoherentOperations = advancedBlendCoherentOperations_;
return *this;
}
operator const VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT&() const
{
return *reinterpret_cast<const VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT*>(this);
}
bool operator==( PhysicalDeviceBlendOperationAdvancedFeaturesEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( advancedBlendCoherentOperations == rhs.advancedBlendCoherentOperations );
}
bool operator!=( PhysicalDeviceBlendOperationAdvancedFeaturesEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
Bool32 advancedBlendCoherentOperations;
};
static_assert( sizeof( PhysicalDeviceBlendOperationAdvancedFeaturesEXT ) == sizeof( VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT ), "struct and wrapper have different size!" );
struct PhysicalDeviceBlendOperationAdvancedPropertiesEXT
{
operator const VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT&() const
{
return *reinterpret_cast<const VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT*>(this);
}
bool operator==( PhysicalDeviceBlendOperationAdvancedPropertiesEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( advancedBlendMaxColorAttachments == rhs.advancedBlendMaxColorAttachments )
&& ( advancedBlendIndependentBlend == rhs.advancedBlendIndependentBlend )
&& ( advancedBlendNonPremultipliedSrcColor == rhs.advancedBlendNonPremultipliedSrcColor )
&& ( advancedBlendNonPremultipliedDstColor == rhs.advancedBlendNonPremultipliedDstColor )
&& ( advancedBlendCorrelatedOverlap == rhs.advancedBlendCorrelatedOverlap )
&& ( advancedBlendAllOperations == rhs.advancedBlendAllOperations );
}
bool operator!=( PhysicalDeviceBlendOperationAdvancedPropertiesEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t advancedBlendMaxColorAttachments;
Bool32 advancedBlendIndependentBlend;
Bool32 advancedBlendNonPremultipliedSrcColor;
Bool32 advancedBlendNonPremultipliedDstColor;
Bool32 advancedBlendCorrelatedOverlap;
Bool32 advancedBlendAllOperations;
};
static_assert( sizeof( PhysicalDeviceBlendOperationAdvancedPropertiesEXT ) == sizeof( VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT ), "struct and wrapper have different size!" );
struct ImageFormatListCreateInfoKHR
{
ImageFormatListCreateInfoKHR( uint32_t viewFormatCount_ = 0, const Format* pViewFormats_ = nullptr )
: sType( StructureType::eImageFormatListCreateInfoKHR )
, pNext( nullptr )
, viewFormatCount( viewFormatCount_ )
, pViewFormats( pViewFormats_ )
{
}
ImageFormatListCreateInfoKHR( VkImageFormatListCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImageFormatListCreateInfoKHR ) );
}
ImageFormatListCreateInfoKHR& operator=( VkImageFormatListCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImageFormatListCreateInfoKHR ) );
return *this;
}
ImageFormatListCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImageFormatListCreateInfoKHR& setViewFormatCount( uint32_t viewFormatCount_ )
{
viewFormatCount = viewFormatCount_;
return *this;
}
ImageFormatListCreateInfoKHR& setPViewFormats( const Format* pViewFormats_ )
{
pViewFormats = pViewFormats_;
return *this;
}
operator const VkImageFormatListCreateInfoKHR&() const
{
return *reinterpret_cast<const VkImageFormatListCreateInfoKHR*>(this);
}
bool operator==( ImageFormatListCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( viewFormatCount == rhs.viewFormatCount )
&& ( pViewFormats == rhs.pViewFormats );
}
bool operator!=( ImageFormatListCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t viewFormatCount;
const Format* pViewFormats;
};
static_assert( sizeof( ImageFormatListCreateInfoKHR ) == sizeof( VkImageFormatListCreateInfoKHR ), "struct and wrapper have different size!" );
struct ValidationCacheCreateInfoEXT
{
ValidationCacheCreateInfoEXT( ValidationCacheCreateFlagsEXT flags_ = ValidationCacheCreateFlagsEXT(), size_t initialDataSize_ = 0, const void* pInitialData_ = nullptr )
: sType( StructureType::eValidationCacheCreateInfoEXT )
, pNext( nullptr )
, flags( flags_ )
, initialDataSize( initialDataSize_ )
, pInitialData( pInitialData_ )
{
}
ValidationCacheCreateInfoEXT( VkValidationCacheCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( ValidationCacheCreateInfoEXT ) );
}
ValidationCacheCreateInfoEXT& operator=( VkValidationCacheCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( ValidationCacheCreateInfoEXT ) );
return *this;
}
ValidationCacheCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ValidationCacheCreateInfoEXT& setFlags( ValidationCacheCreateFlagsEXT flags_ )
{
flags = flags_;
return *this;
}
ValidationCacheCreateInfoEXT& setInitialDataSize( size_t initialDataSize_ )
{
initialDataSize = initialDataSize_;
return *this;
}
ValidationCacheCreateInfoEXT& setPInitialData( const void* pInitialData_ )
{
pInitialData = pInitialData_;
return *this;
}
operator const VkValidationCacheCreateInfoEXT&() const
{
return *reinterpret_cast<const VkValidationCacheCreateInfoEXT*>(this);
}
bool operator==( ValidationCacheCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( initialDataSize == rhs.initialDataSize )
&& ( pInitialData == rhs.pInitialData );
}
bool operator!=( ValidationCacheCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ValidationCacheCreateFlagsEXT flags;
size_t initialDataSize;
const void* pInitialData;
};
static_assert( sizeof( ValidationCacheCreateInfoEXT ) == sizeof( VkValidationCacheCreateInfoEXT ), "struct and wrapper have different size!" );
struct ShaderModuleValidationCacheCreateInfoEXT
{
ShaderModuleValidationCacheCreateInfoEXT( ValidationCacheEXT validationCache_ = ValidationCacheEXT() )
: sType( StructureType::eShaderModuleValidationCacheCreateInfoEXT )
, pNext( nullptr )
, validationCache( validationCache_ )
{
}
ShaderModuleValidationCacheCreateInfoEXT( VkShaderModuleValidationCacheCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( ShaderModuleValidationCacheCreateInfoEXT ) );
}
ShaderModuleValidationCacheCreateInfoEXT& operator=( VkShaderModuleValidationCacheCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( ShaderModuleValidationCacheCreateInfoEXT ) );
return *this;
}
ShaderModuleValidationCacheCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ShaderModuleValidationCacheCreateInfoEXT& setValidationCache( ValidationCacheEXT validationCache_ )
{
validationCache = validationCache_;
return *this;
}
operator const VkShaderModuleValidationCacheCreateInfoEXT&() const
{
return *reinterpret_cast<const VkShaderModuleValidationCacheCreateInfoEXT*>(this);
}
bool operator==( ShaderModuleValidationCacheCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( validationCache == rhs.validationCache );
}
bool operator!=( ShaderModuleValidationCacheCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ValidationCacheEXT validationCache;
};
static_assert( sizeof( ShaderModuleValidationCacheCreateInfoEXT ) == sizeof( VkShaderModuleValidationCacheCreateInfoEXT ), "struct and wrapper have different size!" );
enum class SubpassContents
{
eInline = VK_SUBPASS_CONTENTS_INLINE,
eSecondaryCommandBuffers = VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS
};
struct PresentInfoKHR
{
PresentInfoKHR( uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, uint32_t swapchainCount_ = 0, const SwapchainKHR* pSwapchains_ = nullptr, const uint32_t* pImageIndices_ = nullptr, Result* pResults_ = nullptr )
: sType( StructureType::ePresentInfoKHR )
, pNext( nullptr )
, waitSemaphoreCount( waitSemaphoreCount_ )
, pWaitSemaphores( pWaitSemaphores_ )
, swapchainCount( swapchainCount_ )
, pSwapchains( pSwapchains_ )
, pImageIndices( pImageIndices_ )
, pResults( pResults_ )
{
}
PresentInfoKHR( VkPresentInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PresentInfoKHR ) );
}
PresentInfoKHR& operator=( VkPresentInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PresentInfoKHR ) );
return *this;
}
PresentInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PresentInfoKHR& setWaitSemaphoreCount( uint32_t waitSemaphoreCount_ )
{
waitSemaphoreCount = waitSemaphoreCount_;
return *this;
}
PresentInfoKHR& setPWaitSemaphores( const Semaphore* pWaitSemaphores_ )
{
pWaitSemaphores = pWaitSemaphores_;
return *this;
}
PresentInfoKHR& setSwapchainCount( uint32_t swapchainCount_ )
{
swapchainCount = swapchainCount_;
return *this;
}
PresentInfoKHR& setPSwapchains( const SwapchainKHR* pSwapchains_ )
{
pSwapchains = pSwapchains_;
return *this;
}
PresentInfoKHR& setPImageIndices( const uint32_t* pImageIndices_ )
{
pImageIndices = pImageIndices_;
return *this;
}
PresentInfoKHR& setPResults( Result* pResults_ )
{
pResults = pResults_;
return *this;
}
operator const VkPresentInfoKHR&() const
{
return *reinterpret_cast<const VkPresentInfoKHR*>(this);
}
bool operator==( PresentInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( waitSemaphoreCount == rhs.waitSemaphoreCount )
&& ( pWaitSemaphores == rhs.pWaitSemaphores )
&& ( swapchainCount == rhs.swapchainCount )
&& ( pSwapchains == rhs.pSwapchains )
&& ( pImageIndices == rhs.pImageIndices )
&& ( pResults == rhs.pResults );
}
bool operator!=( PresentInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t waitSemaphoreCount;
const Semaphore* pWaitSemaphores;
uint32_t swapchainCount;
const SwapchainKHR* pSwapchains;
const uint32_t* pImageIndices;
Result* pResults;
};
static_assert( sizeof( PresentInfoKHR ) == sizeof( VkPresentInfoKHR ), "struct and wrapper have different size!" );
enum class DynamicState
{
eViewport = VK_DYNAMIC_STATE_VIEWPORT,
eScissor = VK_DYNAMIC_STATE_SCISSOR,
eLineWidth = VK_DYNAMIC_STATE_LINE_WIDTH,
eDepthBias = VK_DYNAMIC_STATE_DEPTH_BIAS,
eBlendConstants = VK_DYNAMIC_STATE_BLEND_CONSTANTS,
eDepthBounds = VK_DYNAMIC_STATE_DEPTH_BOUNDS,
eStencilCompareMask = VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
eStencilWriteMask = VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
eStencilReference = VK_DYNAMIC_STATE_STENCIL_REFERENCE,
eViewportWScalingNV = VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV,
eDiscardRectangleEXT = VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT,
eSampleLocationsEXT = VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT
};
struct PipelineDynamicStateCreateInfo
{
PipelineDynamicStateCreateInfo( PipelineDynamicStateCreateFlags flags_ = PipelineDynamicStateCreateFlags(), uint32_t dynamicStateCount_ = 0, const DynamicState* pDynamicStates_ = nullptr )
: sType( StructureType::ePipelineDynamicStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, dynamicStateCount( dynamicStateCount_ )
, pDynamicStates( pDynamicStates_ )
{
}
PipelineDynamicStateCreateInfo( VkPipelineDynamicStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineDynamicStateCreateInfo ) );
}
PipelineDynamicStateCreateInfo& operator=( VkPipelineDynamicStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineDynamicStateCreateInfo ) );
return *this;
}
PipelineDynamicStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineDynamicStateCreateInfo& setFlags( PipelineDynamicStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineDynamicStateCreateInfo& setDynamicStateCount( uint32_t dynamicStateCount_ )
{
dynamicStateCount = dynamicStateCount_;
return *this;
}
PipelineDynamicStateCreateInfo& setPDynamicStates( const DynamicState* pDynamicStates_ )
{
pDynamicStates = pDynamicStates_;
return *this;
}
operator const VkPipelineDynamicStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineDynamicStateCreateInfo*>(this);
}
bool operator==( PipelineDynamicStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( dynamicStateCount == rhs.dynamicStateCount )
&& ( pDynamicStates == rhs.pDynamicStates );
}
bool operator!=( PipelineDynamicStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineDynamicStateCreateFlags flags;
uint32_t dynamicStateCount;
const DynamicState* pDynamicStates;
};
static_assert( sizeof( PipelineDynamicStateCreateInfo ) == sizeof( VkPipelineDynamicStateCreateInfo ), "struct and wrapper have different size!" );
enum class DescriptorUpdateTemplateTypeKHR
{
eDescriptorSet = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR,
ePushDescriptors = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR
};
struct DescriptorUpdateTemplateCreateInfoKHR
{
DescriptorUpdateTemplateCreateInfoKHR( DescriptorUpdateTemplateCreateFlagsKHR flags_ = DescriptorUpdateTemplateCreateFlagsKHR(), uint32_t descriptorUpdateEntryCount_ = 0, const DescriptorUpdateTemplateEntryKHR* pDescriptorUpdateEntries_ = nullptr, DescriptorUpdateTemplateTypeKHR templateType_ = DescriptorUpdateTemplateTypeKHR::eDescriptorSet, DescriptorSetLayout descriptorSetLayout_ = DescriptorSetLayout(), PipelineBindPoint pipelineBindPoint_ = PipelineBindPoint::eGraphics, PipelineLayout pipelineLayout_ = PipelineLayout(), uint32_t set_ = 0 )
: sType( StructureType::eDescriptorUpdateTemplateCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, descriptorUpdateEntryCount( descriptorUpdateEntryCount_ )
, pDescriptorUpdateEntries( pDescriptorUpdateEntries_ )
, templateType( templateType_ )
, descriptorSetLayout( descriptorSetLayout_ )
, pipelineBindPoint( pipelineBindPoint_ )
, pipelineLayout( pipelineLayout_ )
, set( set_ )
{
}
DescriptorUpdateTemplateCreateInfoKHR( VkDescriptorUpdateTemplateCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorUpdateTemplateCreateInfoKHR ) );
}
DescriptorUpdateTemplateCreateInfoKHR& operator=( VkDescriptorUpdateTemplateCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorUpdateTemplateCreateInfoKHR ) );
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setPNext( void* pNext_ )
{
pNext = pNext_;
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setFlags( DescriptorUpdateTemplateCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setDescriptorUpdateEntryCount( uint32_t descriptorUpdateEntryCount_ )
{
descriptorUpdateEntryCount = descriptorUpdateEntryCount_;
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setPDescriptorUpdateEntries( const DescriptorUpdateTemplateEntryKHR* pDescriptorUpdateEntries_ )
{
pDescriptorUpdateEntries = pDescriptorUpdateEntries_;
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setTemplateType( DescriptorUpdateTemplateTypeKHR templateType_ )
{
templateType = templateType_;
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout_ )
{
descriptorSetLayout = descriptorSetLayout_;
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setPipelineBindPoint( PipelineBindPoint pipelineBindPoint_ )
{
pipelineBindPoint = pipelineBindPoint_;
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setPipelineLayout( PipelineLayout pipelineLayout_ )
{
pipelineLayout = pipelineLayout_;
return *this;
}
DescriptorUpdateTemplateCreateInfoKHR& setSet( uint32_t set_ )
{
set = set_;
return *this;
}
operator const VkDescriptorUpdateTemplateCreateInfoKHR&() const
{
return *reinterpret_cast<const VkDescriptorUpdateTemplateCreateInfoKHR*>(this);
}
bool operator==( DescriptorUpdateTemplateCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( descriptorUpdateEntryCount == rhs.descriptorUpdateEntryCount )
&& ( pDescriptorUpdateEntries == rhs.pDescriptorUpdateEntries )
&& ( templateType == rhs.templateType )
&& ( descriptorSetLayout == rhs.descriptorSetLayout )
&& ( pipelineBindPoint == rhs.pipelineBindPoint )
&& ( pipelineLayout == rhs.pipelineLayout )
&& ( set == rhs.set );
}
bool operator!=( DescriptorUpdateTemplateCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
DescriptorUpdateTemplateCreateFlagsKHR flags;
uint32_t descriptorUpdateEntryCount;
const DescriptorUpdateTemplateEntryKHR* pDescriptorUpdateEntries;
DescriptorUpdateTemplateTypeKHR templateType;
DescriptorSetLayout descriptorSetLayout;
PipelineBindPoint pipelineBindPoint;
PipelineLayout pipelineLayout;
uint32_t set;
};
static_assert( sizeof( DescriptorUpdateTemplateCreateInfoKHR ) == sizeof( VkDescriptorUpdateTemplateCreateInfoKHR ), "struct and wrapper have different size!" );
enum class ObjectType
{
eUnknown = VK_OBJECT_TYPE_UNKNOWN,
eInstance = VK_OBJECT_TYPE_INSTANCE,
ePhysicalDevice = VK_OBJECT_TYPE_PHYSICAL_DEVICE,
eDevice = VK_OBJECT_TYPE_DEVICE,
eQueue = VK_OBJECT_TYPE_QUEUE,
eSemaphore = VK_OBJECT_TYPE_SEMAPHORE,
eCommandBuffer = VK_OBJECT_TYPE_COMMAND_BUFFER,
eFence = VK_OBJECT_TYPE_FENCE,
eDeviceMemory = VK_OBJECT_TYPE_DEVICE_MEMORY,
eBuffer = VK_OBJECT_TYPE_BUFFER,
eImage = VK_OBJECT_TYPE_IMAGE,
eEvent = VK_OBJECT_TYPE_EVENT,
eQueryPool = VK_OBJECT_TYPE_QUERY_POOL,
eBufferView = VK_OBJECT_TYPE_BUFFER_VIEW,
eImageView = VK_OBJECT_TYPE_IMAGE_VIEW,
eShaderModule = VK_OBJECT_TYPE_SHADER_MODULE,
ePipelineCache = VK_OBJECT_TYPE_PIPELINE_CACHE,
ePipelineLayout = VK_OBJECT_TYPE_PIPELINE_LAYOUT,
eRenderPass = VK_OBJECT_TYPE_RENDER_PASS,
ePipeline = VK_OBJECT_TYPE_PIPELINE,
eDescriptorSetLayout = VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT,
eSampler = VK_OBJECT_TYPE_SAMPLER,
eDescriptorPool = VK_OBJECT_TYPE_DESCRIPTOR_POOL,
eDescriptorSet = VK_OBJECT_TYPE_DESCRIPTOR_SET,
eFramebuffer = VK_OBJECT_TYPE_FRAMEBUFFER,
eCommandPool = VK_OBJECT_TYPE_COMMAND_POOL,
eSurfaceKHR = VK_OBJECT_TYPE_SURFACE_KHR,
eSwapchainKHR = VK_OBJECT_TYPE_SWAPCHAIN_KHR,
eDisplayKHR = VK_OBJECT_TYPE_DISPLAY_KHR,
eDisplayModeKHR = VK_OBJECT_TYPE_DISPLAY_MODE_KHR,
eDebugReportCallbackEXT = VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT,
eDescriptorUpdateTemplateKHR = VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR,
eObjectTableNVX = VK_OBJECT_TYPE_OBJECT_TABLE_NVX,
eIndirectCommandsLayoutNVX = VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX,
eSamplerYcbcrConversionKHR = VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR,
eValidationCacheEXT = VK_OBJECT_TYPE_VALIDATION_CACHE_EXT
};
enum class QueueFlagBits
{
eGraphics = VK_QUEUE_GRAPHICS_BIT,
eCompute = VK_QUEUE_COMPUTE_BIT,
eTransfer = VK_QUEUE_TRANSFER_BIT,
eSparseBinding = VK_QUEUE_SPARSE_BINDING_BIT
};
using QueueFlags = Flags<QueueFlagBits, VkQueueFlags>;
VULKAN_HPP_INLINE QueueFlags operator|( QueueFlagBits bit0, QueueFlagBits bit1 )
{
return QueueFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE QueueFlags operator~( QueueFlagBits bits )
{
return ~( QueueFlags( bits ) );
}
template <> struct FlagTraits<QueueFlagBits>
{
enum
{
allFlags = VkFlags(QueueFlagBits::eGraphics) | VkFlags(QueueFlagBits::eCompute) | VkFlags(QueueFlagBits::eTransfer) | VkFlags(QueueFlagBits::eSparseBinding)
};
};
struct QueueFamilyProperties
{
operator const VkQueueFamilyProperties&() const
{
return *reinterpret_cast<const VkQueueFamilyProperties*>(this);
}
bool operator==( QueueFamilyProperties const& rhs ) const
{
return ( queueFlags == rhs.queueFlags )
&& ( queueCount == rhs.queueCount )
&& ( timestampValidBits == rhs.timestampValidBits )
&& ( minImageTransferGranularity == rhs.minImageTransferGranularity );
}
bool operator!=( QueueFamilyProperties const& rhs ) const
{
return !operator==( rhs );
}
QueueFlags queueFlags;
uint32_t queueCount;
uint32_t timestampValidBits;
Extent3D minImageTransferGranularity;
};
static_assert( sizeof( QueueFamilyProperties ) == sizeof( VkQueueFamilyProperties ), "struct and wrapper have different size!" );
struct QueueFamilyProperties2KHR
{
operator const VkQueueFamilyProperties2KHR&() const
{
return *reinterpret_cast<const VkQueueFamilyProperties2KHR*>(this);
}
bool operator==( QueueFamilyProperties2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( queueFamilyProperties == rhs.queueFamilyProperties );
}
bool operator!=( QueueFamilyProperties2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
QueueFamilyProperties queueFamilyProperties;
};
static_assert( sizeof( QueueFamilyProperties2KHR ) == sizeof( VkQueueFamilyProperties2KHR ), "struct and wrapper have different size!" );
enum class MemoryPropertyFlagBits
{
eDeviceLocal = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
eHostVisible = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
eHostCoherent = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
eHostCached = VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
eLazilyAllocated = VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
};
using MemoryPropertyFlags = Flags<MemoryPropertyFlagBits, VkMemoryPropertyFlags>;
VULKAN_HPP_INLINE MemoryPropertyFlags operator|( MemoryPropertyFlagBits bit0, MemoryPropertyFlagBits bit1 )
{
return MemoryPropertyFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE MemoryPropertyFlags operator~( MemoryPropertyFlagBits bits )
{
return ~( MemoryPropertyFlags( bits ) );
}
template <> struct FlagTraits<MemoryPropertyFlagBits>
{
enum
{
allFlags = VkFlags(MemoryPropertyFlagBits::eDeviceLocal) | VkFlags(MemoryPropertyFlagBits::eHostVisible) | VkFlags(MemoryPropertyFlagBits::eHostCoherent) | VkFlags(MemoryPropertyFlagBits::eHostCached) | VkFlags(MemoryPropertyFlagBits::eLazilyAllocated)
};
};
struct MemoryType
{
operator const VkMemoryType&() const
{
return *reinterpret_cast<const VkMemoryType*>(this);
}
bool operator==( MemoryType const& rhs ) const
{
return ( propertyFlags == rhs.propertyFlags )
&& ( heapIndex == rhs.heapIndex );
}
bool operator!=( MemoryType const& rhs ) const
{
return !operator==( rhs );
}
MemoryPropertyFlags propertyFlags;
uint32_t heapIndex;
};
static_assert( sizeof( MemoryType ) == sizeof( VkMemoryType ), "struct and wrapper have different size!" );
enum class MemoryHeapFlagBits
{
eDeviceLocal = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
eMultiInstanceKHX = VK_MEMORY_HEAP_MULTI_INSTANCE_BIT_KHX
};
using MemoryHeapFlags = Flags<MemoryHeapFlagBits, VkMemoryHeapFlags>;
VULKAN_HPP_INLINE MemoryHeapFlags operator|( MemoryHeapFlagBits bit0, MemoryHeapFlagBits bit1 )
{
return MemoryHeapFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE MemoryHeapFlags operator~( MemoryHeapFlagBits bits )
{
return ~( MemoryHeapFlags( bits ) );
}
template <> struct FlagTraits<MemoryHeapFlagBits>
{
enum
{
allFlags = VkFlags(MemoryHeapFlagBits::eDeviceLocal) | VkFlags(MemoryHeapFlagBits::eMultiInstanceKHX)
};
};
struct MemoryHeap
{
operator const VkMemoryHeap&() const
{
return *reinterpret_cast<const VkMemoryHeap*>(this);
}
bool operator==( MemoryHeap const& rhs ) const
{
return ( size == rhs.size )
&& ( flags == rhs.flags );
}
bool operator!=( MemoryHeap const& rhs ) const
{
return !operator==( rhs );
}
DeviceSize size;
MemoryHeapFlags flags;
};
static_assert( sizeof( MemoryHeap ) == sizeof( VkMemoryHeap ), "struct and wrapper have different size!" );
struct PhysicalDeviceMemoryProperties
{
operator const VkPhysicalDeviceMemoryProperties&() const
{
return *reinterpret_cast<const VkPhysicalDeviceMemoryProperties*>(this);
}
bool operator==( PhysicalDeviceMemoryProperties const& rhs ) const
{
return ( memoryTypeCount == rhs.memoryTypeCount )
&& ( memcmp( memoryTypes, rhs.memoryTypes, VK_MAX_MEMORY_TYPES * sizeof( MemoryType ) ) == 0 )
&& ( memoryHeapCount == rhs.memoryHeapCount )
&& ( memcmp( memoryHeaps, rhs.memoryHeaps, VK_MAX_MEMORY_HEAPS * sizeof( MemoryHeap ) ) == 0 );
}
bool operator!=( PhysicalDeviceMemoryProperties const& rhs ) const
{
return !operator==( rhs );
}
uint32_t memoryTypeCount;
MemoryType memoryTypes[VK_MAX_MEMORY_TYPES];
uint32_t memoryHeapCount;
MemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];
};
static_assert( sizeof( PhysicalDeviceMemoryProperties ) == sizeof( VkPhysicalDeviceMemoryProperties ), "struct and wrapper have different size!" );
struct PhysicalDeviceMemoryProperties2KHR
{
operator const VkPhysicalDeviceMemoryProperties2KHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceMemoryProperties2KHR*>(this);
}
bool operator==( PhysicalDeviceMemoryProperties2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memoryProperties == rhs.memoryProperties );
}
bool operator!=( PhysicalDeviceMemoryProperties2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
PhysicalDeviceMemoryProperties memoryProperties;
};
static_assert( sizeof( PhysicalDeviceMemoryProperties2KHR ) == sizeof( VkPhysicalDeviceMemoryProperties2KHR ), "struct and wrapper have different size!" );
enum class AccessFlagBits
{
eIndirectCommandRead = VK_ACCESS_INDIRECT_COMMAND_READ_BIT,
eIndexRead = VK_ACCESS_INDEX_READ_BIT,
eVertexAttributeRead = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
eUniformRead = VK_ACCESS_UNIFORM_READ_BIT,
eInputAttachmentRead = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT,
eShaderRead = VK_ACCESS_SHADER_READ_BIT,
eShaderWrite = VK_ACCESS_SHADER_WRITE_BIT,
eColorAttachmentRead = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT,
eColorAttachmentWrite = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
eDepthStencilAttachmentRead = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
eDepthStencilAttachmentWrite = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
eTransferRead = VK_ACCESS_TRANSFER_READ_BIT,
eTransferWrite = VK_ACCESS_TRANSFER_WRITE_BIT,
eHostRead = VK_ACCESS_HOST_READ_BIT,
eHostWrite = VK_ACCESS_HOST_WRITE_BIT,
eMemoryRead = VK_ACCESS_MEMORY_READ_BIT,
eMemoryWrite = VK_ACCESS_MEMORY_WRITE_BIT,
eCommandProcessReadNVX = VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX,
eCommandProcessWriteNVX = VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX,
eColorAttachmentReadNoncoherentEXT = VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT
};
using AccessFlags = Flags<AccessFlagBits, VkAccessFlags>;
VULKAN_HPP_INLINE AccessFlags operator|( AccessFlagBits bit0, AccessFlagBits bit1 )
{
return AccessFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE AccessFlags operator~( AccessFlagBits bits )
{
return ~( AccessFlags( bits ) );
}
template <> struct FlagTraits<AccessFlagBits>
{
enum
{
allFlags = VkFlags(AccessFlagBits::eIndirectCommandRead) | VkFlags(AccessFlagBits::eIndexRead) | VkFlags(AccessFlagBits::eVertexAttributeRead) | VkFlags(AccessFlagBits::eUniformRead) | VkFlags(AccessFlagBits::eInputAttachmentRead) | VkFlags(AccessFlagBits::eShaderRead) | VkFlags(AccessFlagBits::eShaderWrite) | VkFlags(AccessFlagBits::eColorAttachmentRead) | VkFlags(AccessFlagBits::eColorAttachmentWrite) | VkFlags(AccessFlagBits::eDepthStencilAttachmentRead) | VkFlags(AccessFlagBits::eDepthStencilAttachmentWrite) | VkFlags(AccessFlagBits::eTransferRead) | VkFlags(AccessFlagBits::eTransferWrite) | VkFlags(AccessFlagBits::eHostRead) | VkFlags(AccessFlagBits::eHostWrite) | VkFlags(AccessFlagBits::eMemoryRead) | VkFlags(AccessFlagBits::eMemoryWrite) | VkFlags(AccessFlagBits::eCommandProcessReadNVX) | VkFlags(AccessFlagBits::eCommandProcessWriteNVX) | VkFlags(AccessFlagBits::eColorAttachmentReadNoncoherentEXT)
};
};
struct MemoryBarrier
{
MemoryBarrier( AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags() )
: sType( StructureType::eMemoryBarrier )
, pNext( nullptr )
, srcAccessMask( srcAccessMask_ )
, dstAccessMask( dstAccessMask_ )
{
}
MemoryBarrier( VkMemoryBarrier const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryBarrier ) );
}
MemoryBarrier& operator=( VkMemoryBarrier const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryBarrier ) );
return *this;
}
MemoryBarrier& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MemoryBarrier& setSrcAccessMask( AccessFlags srcAccessMask_ )
{
srcAccessMask = srcAccessMask_;
return *this;
}
MemoryBarrier& setDstAccessMask( AccessFlags dstAccessMask_ )
{
dstAccessMask = dstAccessMask_;
return *this;
}
operator const VkMemoryBarrier&() const
{
return *reinterpret_cast<const VkMemoryBarrier*>(this);
}
bool operator==( MemoryBarrier const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( srcAccessMask == rhs.srcAccessMask )
&& ( dstAccessMask == rhs.dstAccessMask );
}
bool operator!=( MemoryBarrier const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
AccessFlags srcAccessMask;
AccessFlags dstAccessMask;
};
static_assert( sizeof( MemoryBarrier ) == sizeof( VkMemoryBarrier ), "struct and wrapper have different size!" );
struct BufferMemoryBarrier
{
BufferMemoryBarrier( AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), uint32_t srcQueueFamilyIndex_ = 0, uint32_t dstQueueFamilyIndex_ = 0, Buffer buffer_ = Buffer(), DeviceSize offset_ = 0, DeviceSize size_ = 0 )
: sType( StructureType::eBufferMemoryBarrier )
, pNext( nullptr )
, srcAccessMask( srcAccessMask_ )
, dstAccessMask( dstAccessMask_ )
, srcQueueFamilyIndex( srcQueueFamilyIndex_ )
, dstQueueFamilyIndex( dstQueueFamilyIndex_ )
, buffer( buffer_ )
, offset( offset_ )
, size( size_ )
{
}
BufferMemoryBarrier( VkBufferMemoryBarrier const & rhs )
{
memcpy( this, &rhs, sizeof( BufferMemoryBarrier ) );
}
BufferMemoryBarrier& operator=( VkBufferMemoryBarrier const & rhs )
{
memcpy( this, &rhs, sizeof( BufferMemoryBarrier ) );
return *this;
}
BufferMemoryBarrier& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BufferMemoryBarrier& setSrcAccessMask( AccessFlags srcAccessMask_ )
{
srcAccessMask = srcAccessMask_;
return *this;
}
BufferMemoryBarrier& setDstAccessMask( AccessFlags dstAccessMask_ )
{
dstAccessMask = dstAccessMask_;
return *this;
}
BufferMemoryBarrier& setSrcQueueFamilyIndex( uint32_t srcQueueFamilyIndex_ )
{
srcQueueFamilyIndex = srcQueueFamilyIndex_;
return *this;
}
BufferMemoryBarrier& setDstQueueFamilyIndex( uint32_t dstQueueFamilyIndex_ )
{
dstQueueFamilyIndex = dstQueueFamilyIndex_;
return *this;
}
BufferMemoryBarrier& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
BufferMemoryBarrier& setOffset( DeviceSize offset_ )
{
offset = offset_;
return *this;
}
BufferMemoryBarrier& setSize( DeviceSize size_ )
{
size = size_;
return *this;
}
operator const VkBufferMemoryBarrier&() const
{
return *reinterpret_cast<const VkBufferMemoryBarrier*>(this);
}
bool operator==( BufferMemoryBarrier const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( srcAccessMask == rhs.srcAccessMask )
&& ( dstAccessMask == rhs.dstAccessMask )
&& ( srcQueueFamilyIndex == rhs.srcQueueFamilyIndex )
&& ( dstQueueFamilyIndex == rhs.dstQueueFamilyIndex )
&& ( buffer == rhs.buffer )
&& ( offset == rhs.offset )
&& ( size == rhs.size );
}
bool operator!=( BufferMemoryBarrier const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
AccessFlags srcAccessMask;
AccessFlags dstAccessMask;
uint32_t srcQueueFamilyIndex;
uint32_t dstQueueFamilyIndex;
Buffer buffer;
DeviceSize offset;
DeviceSize size;
};
static_assert( sizeof( BufferMemoryBarrier ) == sizeof( VkBufferMemoryBarrier ), "struct and wrapper have different size!" );
enum class BufferUsageFlagBits
{
eTransferSrc = VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
eTransferDst = VK_BUFFER_USAGE_TRANSFER_DST_BIT,
eUniformTexelBuffer = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
eStorageTexelBuffer = VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT,
eUniformBuffer = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
eStorageBuffer = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
eIndexBuffer = VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
eVertexBuffer = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
eIndirectBuffer = VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT
};
using BufferUsageFlags = Flags<BufferUsageFlagBits, VkBufferUsageFlags>;
VULKAN_HPP_INLINE BufferUsageFlags operator|( BufferUsageFlagBits bit0, BufferUsageFlagBits bit1 )
{
return BufferUsageFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE BufferUsageFlags operator~( BufferUsageFlagBits bits )
{
return ~( BufferUsageFlags( bits ) );
}
template <> struct FlagTraits<BufferUsageFlagBits>
{
enum
{
allFlags = VkFlags(BufferUsageFlagBits::eTransferSrc) | VkFlags(BufferUsageFlagBits::eTransferDst) | VkFlags(BufferUsageFlagBits::eUniformTexelBuffer) | VkFlags(BufferUsageFlagBits::eStorageTexelBuffer) | VkFlags(BufferUsageFlagBits::eUniformBuffer) | VkFlags(BufferUsageFlagBits::eStorageBuffer) | VkFlags(BufferUsageFlagBits::eIndexBuffer) | VkFlags(BufferUsageFlagBits::eVertexBuffer) | VkFlags(BufferUsageFlagBits::eIndirectBuffer)
};
};
enum class BufferCreateFlagBits
{
eSparseBinding = VK_BUFFER_CREATE_SPARSE_BINDING_BIT,
eSparseResidency = VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT,
eSparseAliased = VK_BUFFER_CREATE_SPARSE_ALIASED_BIT
};
using BufferCreateFlags = Flags<BufferCreateFlagBits, VkBufferCreateFlags>;
VULKAN_HPP_INLINE BufferCreateFlags operator|( BufferCreateFlagBits bit0, BufferCreateFlagBits bit1 )
{
return BufferCreateFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE BufferCreateFlags operator~( BufferCreateFlagBits bits )
{
return ~( BufferCreateFlags( bits ) );
}
template <> struct FlagTraits<BufferCreateFlagBits>
{
enum
{
allFlags = VkFlags(BufferCreateFlagBits::eSparseBinding) | VkFlags(BufferCreateFlagBits::eSparseResidency) | VkFlags(BufferCreateFlagBits::eSparseAliased)
};
};
struct BufferCreateInfo
{
BufferCreateInfo( BufferCreateFlags flags_ = BufferCreateFlags(), DeviceSize size_ = 0, BufferUsageFlags usage_ = BufferUsageFlags(), SharingMode sharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr )
: sType( StructureType::eBufferCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, size( size_ )
, usage( usage_ )
, sharingMode( sharingMode_ )
, queueFamilyIndexCount( queueFamilyIndexCount_ )
, pQueueFamilyIndices( pQueueFamilyIndices_ )
{
}
BufferCreateInfo( VkBufferCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( BufferCreateInfo ) );
}
BufferCreateInfo& operator=( VkBufferCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( BufferCreateInfo ) );
return *this;
}
BufferCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BufferCreateInfo& setFlags( BufferCreateFlags flags_ )
{
flags = flags_;
return *this;
}
BufferCreateInfo& setSize( DeviceSize size_ )
{
size = size_;
return *this;
}
BufferCreateInfo& setUsage( BufferUsageFlags usage_ )
{
usage = usage_;
return *this;
}
BufferCreateInfo& setSharingMode( SharingMode sharingMode_ )
{
sharingMode = sharingMode_;
return *this;
}
BufferCreateInfo& setQueueFamilyIndexCount( uint32_t queueFamilyIndexCount_ )
{
queueFamilyIndexCount = queueFamilyIndexCount_;
return *this;
}
BufferCreateInfo& setPQueueFamilyIndices( const uint32_t* pQueueFamilyIndices_ )
{
pQueueFamilyIndices = pQueueFamilyIndices_;
return *this;
}
operator const VkBufferCreateInfo&() const
{
return *reinterpret_cast<const VkBufferCreateInfo*>(this);
}
bool operator==( BufferCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( size == rhs.size )
&& ( usage == rhs.usage )
&& ( sharingMode == rhs.sharingMode )
&& ( queueFamilyIndexCount == rhs.queueFamilyIndexCount )
&& ( pQueueFamilyIndices == rhs.pQueueFamilyIndices );
}
bool operator!=( BufferCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
BufferCreateFlags flags;
DeviceSize size;
BufferUsageFlags usage;
SharingMode sharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;
};
static_assert( sizeof( BufferCreateInfo ) == sizeof( VkBufferCreateInfo ), "struct and wrapper have different size!" );
enum class ShaderStageFlagBits
{
eVertex = VK_SHADER_STAGE_VERTEX_BIT,
eTessellationControl = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
eTessellationEvaluation = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
eGeometry = VK_SHADER_STAGE_GEOMETRY_BIT,
eFragment = VK_SHADER_STAGE_FRAGMENT_BIT,
eCompute = VK_SHADER_STAGE_COMPUTE_BIT,
eAllGraphics = VK_SHADER_STAGE_ALL_GRAPHICS,
eAll = VK_SHADER_STAGE_ALL
};
using ShaderStageFlags = Flags<ShaderStageFlagBits, VkShaderStageFlags>;
VULKAN_HPP_INLINE ShaderStageFlags operator|( ShaderStageFlagBits bit0, ShaderStageFlagBits bit1 )
{
return ShaderStageFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ShaderStageFlags operator~( ShaderStageFlagBits bits )
{
return ~( ShaderStageFlags( bits ) );
}
template <> struct FlagTraits<ShaderStageFlagBits>
{
enum
{
allFlags = VkFlags(ShaderStageFlagBits::eVertex) | VkFlags(ShaderStageFlagBits::eTessellationControl) | VkFlags(ShaderStageFlagBits::eTessellationEvaluation) | VkFlags(ShaderStageFlagBits::eGeometry) | VkFlags(ShaderStageFlagBits::eFragment) | VkFlags(ShaderStageFlagBits::eCompute) | VkFlags(ShaderStageFlagBits::eAllGraphics) | VkFlags(ShaderStageFlagBits::eAll)
};
};
struct DescriptorSetLayoutBinding
{
DescriptorSetLayoutBinding( uint32_t binding_ = 0, DescriptorType descriptorType_ = DescriptorType::eSampler, uint32_t descriptorCount_ = 0, ShaderStageFlags stageFlags_ = ShaderStageFlags(), const Sampler* pImmutableSamplers_ = nullptr )
: binding( binding_ )
, descriptorType( descriptorType_ )
, descriptorCount( descriptorCount_ )
, stageFlags( stageFlags_ )
, pImmutableSamplers( pImmutableSamplers_ )
{
}
DescriptorSetLayoutBinding( VkDescriptorSetLayoutBinding const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorSetLayoutBinding ) );
}
DescriptorSetLayoutBinding& operator=( VkDescriptorSetLayoutBinding const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorSetLayoutBinding ) );
return *this;
}
DescriptorSetLayoutBinding& setBinding( uint32_t binding_ )
{
binding = binding_;
return *this;
}
DescriptorSetLayoutBinding& setDescriptorType( DescriptorType descriptorType_ )
{
descriptorType = descriptorType_;
return *this;
}
DescriptorSetLayoutBinding& setDescriptorCount( uint32_t descriptorCount_ )
{
descriptorCount = descriptorCount_;
return *this;
}
DescriptorSetLayoutBinding& setStageFlags( ShaderStageFlags stageFlags_ )
{
stageFlags = stageFlags_;
return *this;
}
DescriptorSetLayoutBinding& setPImmutableSamplers( const Sampler* pImmutableSamplers_ )
{
pImmutableSamplers = pImmutableSamplers_;
return *this;
}
operator const VkDescriptorSetLayoutBinding&() const
{
return *reinterpret_cast<const VkDescriptorSetLayoutBinding*>(this);
}
bool operator==( DescriptorSetLayoutBinding const& rhs ) const
{
return ( binding == rhs.binding )
&& ( descriptorType == rhs.descriptorType )
&& ( descriptorCount == rhs.descriptorCount )
&& ( stageFlags == rhs.stageFlags )
&& ( pImmutableSamplers == rhs.pImmutableSamplers );
}
bool operator!=( DescriptorSetLayoutBinding const& rhs ) const
{
return !operator==( rhs );
}
uint32_t binding;
DescriptorType descriptorType;
uint32_t descriptorCount;
ShaderStageFlags stageFlags;
const Sampler* pImmutableSamplers;
};
static_assert( sizeof( DescriptorSetLayoutBinding ) == sizeof( VkDescriptorSetLayoutBinding ), "struct and wrapper have different size!" );
struct PipelineShaderStageCreateInfo
{
PipelineShaderStageCreateInfo( PipelineShaderStageCreateFlags flags_ = PipelineShaderStageCreateFlags(), ShaderStageFlagBits stage_ = ShaderStageFlagBits::eVertex, ShaderModule module_ = ShaderModule(), const char* pName_ = nullptr, const SpecializationInfo* pSpecializationInfo_ = nullptr )
: sType( StructureType::ePipelineShaderStageCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, stage( stage_ )
, module( module_ )
, pName( pName_ )
, pSpecializationInfo( pSpecializationInfo_ )
{
}
PipelineShaderStageCreateInfo( VkPipelineShaderStageCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineShaderStageCreateInfo ) );
}
PipelineShaderStageCreateInfo& operator=( VkPipelineShaderStageCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineShaderStageCreateInfo ) );
return *this;
}
PipelineShaderStageCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineShaderStageCreateInfo& setFlags( PipelineShaderStageCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineShaderStageCreateInfo& setStage( ShaderStageFlagBits stage_ )
{
stage = stage_;
return *this;
}
PipelineShaderStageCreateInfo& setModule( ShaderModule module_ )
{
module = module_;
return *this;
}
PipelineShaderStageCreateInfo& setPName( const char* pName_ )
{
pName = pName_;
return *this;
}
PipelineShaderStageCreateInfo& setPSpecializationInfo( const SpecializationInfo* pSpecializationInfo_ )
{
pSpecializationInfo = pSpecializationInfo_;
return *this;
}
operator const VkPipelineShaderStageCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineShaderStageCreateInfo*>(this);
}
bool operator==( PipelineShaderStageCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( stage == rhs.stage )
&& ( module == rhs.module )
&& ( pName == rhs.pName )
&& ( pSpecializationInfo == rhs.pSpecializationInfo );
}
bool operator!=( PipelineShaderStageCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineShaderStageCreateFlags flags;
ShaderStageFlagBits stage;
ShaderModule module;
const char* pName;
const SpecializationInfo* pSpecializationInfo;
};
static_assert( sizeof( PipelineShaderStageCreateInfo ) == sizeof( VkPipelineShaderStageCreateInfo ), "struct and wrapper have different size!" );
struct PushConstantRange
{
PushConstantRange( ShaderStageFlags stageFlags_ = ShaderStageFlags(), uint32_t offset_ = 0, uint32_t size_ = 0 )
: stageFlags( stageFlags_ )
, offset( offset_ )
, size( size_ )
{
}
PushConstantRange( VkPushConstantRange const & rhs )
{
memcpy( this, &rhs, sizeof( PushConstantRange ) );
}
PushConstantRange& operator=( VkPushConstantRange const & rhs )
{
memcpy( this, &rhs, sizeof( PushConstantRange ) );
return *this;
}
PushConstantRange& setStageFlags( ShaderStageFlags stageFlags_ )
{
stageFlags = stageFlags_;
return *this;
}
PushConstantRange& setOffset( uint32_t offset_ )
{
offset = offset_;
return *this;
}
PushConstantRange& setSize( uint32_t size_ )
{
size = size_;
return *this;
}
operator const VkPushConstantRange&() const
{
return *reinterpret_cast<const VkPushConstantRange*>(this);
}
bool operator==( PushConstantRange const& rhs ) const
{
return ( stageFlags == rhs.stageFlags )
&& ( offset == rhs.offset )
&& ( size == rhs.size );
}
bool operator!=( PushConstantRange const& rhs ) const
{
return !operator==( rhs );
}
ShaderStageFlags stageFlags;
uint32_t offset;
uint32_t size;
};
static_assert( sizeof( PushConstantRange ) == sizeof( VkPushConstantRange ), "struct and wrapper have different size!" );
struct PipelineLayoutCreateInfo
{
PipelineLayoutCreateInfo( PipelineLayoutCreateFlags flags_ = PipelineLayoutCreateFlags(), uint32_t setLayoutCount_ = 0, const DescriptorSetLayout* pSetLayouts_ = nullptr, uint32_t pushConstantRangeCount_ = 0, const PushConstantRange* pPushConstantRanges_ = nullptr )
: sType( StructureType::ePipelineLayoutCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, setLayoutCount( setLayoutCount_ )
, pSetLayouts( pSetLayouts_ )
, pushConstantRangeCount( pushConstantRangeCount_ )
, pPushConstantRanges( pPushConstantRanges_ )
{
}
PipelineLayoutCreateInfo( VkPipelineLayoutCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineLayoutCreateInfo ) );
}
PipelineLayoutCreateInfo& operator=( VkPipelineLayoutCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineLayoutCreateInfo ) );
return *this;
}
PipelineLayoutCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineLayoutCreateInfo& setFlags( PipelineLayoutCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineLayoutCreateInfo& setSetLayoutCount( uint32_t setLayoutCount_ )
{
setLayoutCount = setLayoutCount_;
return *this;
}
PipelineLayoutCreateInfo& setPSetLayouts( const DescriptorSetLayout* pSetLayouts_ )
{
pSetLayouts = pSetLayouts_;
return *this;
}
PipelineLayoutCreateInfo& setPushConstantRangeCount( uint32_t pushConstantRangeCount_ )
{
pushConstantRangeCount = pushConstantRangeCount_;
return *this;
}
PipelineLayoutCreateInfo& setPPushConstantRanges( const PushConstantRange* pPushConstantRanges_ )
{
pPushConstantRanges = pPushConstantRanges_;
return *this;
}
operator const VkPipelineLayoutCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineLayoutCreateInfo*>(this);
}
bool operator==( PipelineLayoutCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( setLayoutCount == rhs.setLayoutCount )
&& ( pSetLayouts == rhs.pSetLayouts )
&& ( pushConstantRangeCount == rhs.pushConstantRangeCount )
&& ( pPushConstantRanges == rhs.pPushConstantRanges );
}
bool operator!=( PipelineLayoutCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineLayoutCreateFlags flags;
uint32_t setLayoutCount;
const DescriptorSetLayout* pSetLayouts;
uint32_t pushConstantRangeCount;
const PushConstantRange* pPushConstantRanges;
};
static_assert( sizeof( PipelineLayoutCreateInfo ) == sizeof( VkPipelineLayoutCreateInfo ), "struct and wrapper have different size!" );
struct ShaderStatisticsInfoAMD
{
operator const VkShaderStatisticsInfoAMD&() const
{
return *reinterpret_cast<const VkShaderStatisticsInfoAMD*>(this);
}
bool operator==( ShaderStatisticsInfoAMD const& rhs ) const
{
return ( shaderStageMask == rhs.shaderStageMask )
&& ( resourceUsage == rhs.resourceUsage )
&& ( numPhysicalVgprs == rhs.numPhysicalVgprs )
&& ( numPhysicalSgprs == rhs.numPhysicalSgprs )
&& ( numAvailableVgprs == rhs.numAvailableVgprs )
&& ( numAvailableSgprs == rhs.numAvailableSgprs )
&& ( memcmp( computeWorkGroupSize, rhs.computeWorkGroupSize, 3 * sizeof( uint32_t ) ) == 0 );
}
bool operator!=( ShaderStatisticsInfoAMD const& rhs ) const
{
return !operator==( rhs );
}
ShaderStageFlags shaderStageMask;
ShaderResourceUsageAMD resourceUsage;
uint32_t numPhysicalVgprs;
uint32_t numPhysicalSgprs;
uint32_t numAvailableVgprs;
uint32_t numAvailableSgprs;
uint32_t computeWorkGroupSize[3];
};
static_assert( sizeof( ShaderStatisticsInfoAMD ) == sizeof( VkShaderStatisticsInfoAMD ), "struct and wrapper have different size!" );
enum class ImageUsageFlagBits
{
eTransferSrc = VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
eTransferDst = VK_IMAGE_USAGE_TRANSFER_DST_BIT,
eSampled = VK_IMAGE_USAGE_SAMPLED_BIT,
eStorage = VK_IMAGE_USAGE_STORAGE_BIT,
eColorAttachment = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
eDepthStencilAttachment = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
eTransientAttachment = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,
eInputAttachment = VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT
};
using ImageUsageFlags = Flags<ImageUsageFlagBits, VkImageUsageFlags>;
VULKAN_HPP_INLINE ImageUsageFlags operator|( ImageUsageFlagBits bit0, ImageUsageFlagBits bit1 )
{
return ImageUsageFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ImageUsageFlags operator~( ImageUsageFlagBits bits )
{
return ~( ImageUsageFlags( bits ) );
}
template <> struct FlagTraits<ImageUsageFlagBits>
{
enum
{
allFlags = VkFlags(ImageUsageFlagBits::eTransferSrc) | VkFlags(ImageUsageFlagBits::eTransferDst) | VkFlags(ImageUsageFlagBits::eSampled) | VkFlags(ImageUsageFlagBits::eStorage) | VkFlags(ImageUsageFlagBits::eColorAttachment) | VkFlags(ImageUsageFlagBits::eDepthStencilAttachment) | VkFlags(ImageUsageFlagBits::eTransientAttachment) | VkFlags(ImageUsageFlagBits::eInputAttachment)
};
};
struct SharedPresentSurfaceCapabilitiesKHR
{
operator const VkSharedPresentSurfaceCapabilitiesKHR&() const
{
return *reinterpret_cast<const VkSharedPresentSurfaceCapabilitiesKHR*>(this);
}
bool operator==( SharedPresentSurfaceCapabilitiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( sharedPresentSupportedUsageFlags == rhs.sharedPresentSupportedUsageFlags );
}
bool operator!=( SharedPresentSurfaceCapabilitiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
ImageUsageFlags sharedPresentSupportedUsageFlags;
};
static_assert( sizeof( SharedPresentSurfaceCapabilitiesKHR ) == sizeof( VkSharedPresentSurfaceCapabilitiesKHR ), "struct and wrapper have different size!" );
struct ImageViewUsageCreateInfoKHR
{
ImageViewUsageCreateInfoKHR( ImageUsageFlags usage_ = ImageUsageFlags() )
: sType( StructureType::eImageViewUsageCreateInfoKHR )
, pNext( nullptr )
, usage( usage_ )
{
}
ImageViewUsageCreateInfoKHR( VkImageViewUsageCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImageViewUsageCreateInfoKHR ) );
}
ImageViewUsageCreateInfoKHR& operator=( VkImageViewUsageCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImageViewUsageCreateInfoKHR ) );
return *this;
}
ImageViewUsageCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImageViewUsageCreateInfoKHR& setUsage( ImageUsageFlags usage_ )
{
usage = usage_;
return *this;
}
operator const VkImageViewUsageCreateInfoKHR&() const
{
return *reinterpret_cast<const VkImageViewUsageCreateInfoKHR*>(this);
}
bool operator==( ImageViewUsageCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( usage == rhs.usage );
}
bool operator!=( ImageViewUsageCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ImageUsageFlags usage;
};
static_assert( sizeof( ImageViewUsageCreateInfoKHR ) == sizeof( VkImageViewUsageCreateInfoKHR ), "struct and wrapper have different size!" );
enum class ImageCreateFlagBits
{
eSparseBinding = VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
eSparseResidency = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT,
eSparseAliased = VK_IMAGE_CREATE_SPARSE_ALIASED_BIT,
eMutableFormat = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
eCubeCompatible = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,
eBindSfrKHX = VK_IMAGE_CREATE_BIND_SFR_BIT_KHX,
e2DArrayCompatibleKHR = VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR,
eBlockTexelViewCompatibleKHR = VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR,
eExtendedUsageKHR = VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR,
eSampleLocationsCompatibleDepthEXT = VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT,
eDisjointKHR = VK_IMAGE_CREATE_DISJOINT_BIT_KHR,
eAliasKHR = VK_IMAGE_CREATE_ALIAS_BIT_KHR
};
using ImageCreateFlags = Flags<ImageCreateFlagBits, VkImageCreateFlags>;
VULKAN_HPP_INLINE ImageCreateFlags operator|( ImageCreateFlagBits bit0, ImageCreateFlagBits bit1 )
{
return ImageCreateFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ImageCreateFlags operator~( ImageCreateFlagBits bits )
{
return ~( ImageCreateFlags( bits ) );
}
template <> struct FlagTraits<ImageCreateFlagBits>
{
enum
{
allFlags = VkFlags(ImageCreateFlagBits::eSparseBinding) | VkFlags(ImageCreateFlagBits::eSparseResidency) | VkFlags(ImageCreateFlagBits::eSparseAliased) | VkFlags(ImageCreateFlagBits::eMutableFormat) | VkFlags(ImageCreateFlagBits::eCubeCompatible) | VkFlags(ImageCreateFlagBits::eBindSfrKHX) | VkFlags(ImageCreateFlagBits::e2DArrayCompatibleKHR) | VkFlags(ImageCreateFlagBits::eBlockTexelViewCompatibleKHR) | VkFlags(ImageCreateFlagBits::eExtendedUsageKHR) | VkFlags(ImageCreateFlagBits::eSampleLocationsCompatibleDepthEXT) | VkFlags(ImageCreateFlagBits::eDisjointKHR) | VkFlags(ImageCreateFlagBits::eAliasKHR)
};
};
struct PhysicalDeviceImageFormatInfo2KHR
{
PhysicalDeviceImageFormatInfo2KHR( Format format_ = Format::eUndefined, ImageType type_ = ImageType::e1D, ImageTiling tiling_ = ImageTiling::eOptimal, ImageUsageFlags usage_ = ImageUsageFlags(), ImageCreateFlags flags_ = ImageCreateFlags() )
: sType( StructureType::ePhysicalDeviceImageFormatInfo2KHR )
, pNext( nullptr )
, format( format_ )
, type( type_ )
, tiling( tiling_ )
, usage( usage_ )
, flags( flags_ )
{
}
PhysicalDeviceImageFormatInfo2KHR( VkPhysicalDeviceImageFormatInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceImageFormatInfo2KHR ) );
}
PhysicalDeviceImageFormatInfo2KHR& operator=( VkPhysicalDeviceImageFormatInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceImageFormatInfo2KHR ) );
return *this;
}
PhysicalDeviceImageFormatInfo2KHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceImageFormatInfo2KHR& setFormat( Format format_ )
{
format = format_;
return *this;
}
PhysicalDeviceImageFormatInfo2KHR& setType( ImageType type_ )
{
type = type_;
return *this;
}
PhysicalDeviceImageFormatInfo2KHR& setTiling( ImageTiling tiling_ )
{
tiling = tiling_;
return *this;
}
PhysicalDeviceImageFormatInfo2KHR& setUsage( ImageUsageFlags usage_ )
{
usage = usage_;
return *this;
}
PhysicalDeviceImageFormatInfo2KHR& setFlags( ImageCreateFlags flags_ )
{
flags = flags_;
return *this;
}
operator const VkPhysicalDeviceImageFormatInfo2KHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceImageFormatInfo2KHR*>(this);
}
bool operator==( PhysicalDeviceImageFormatInfo2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( format == rhs.format )
&& ( type == rhs.type )
&& ( tiling == rhs.tiling )
&& ( usage == rhs.usage )
&& ( flags == rhs.flags );
}
bool operator!=( PhysicalDeviceImageFormatInfo2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Format format;
ImageType type;
ImageTiling tiling;
ImageUsageFlags usage;
ImageCreateFlags flags;
};
static_assert( sizeof( PhysicalDeviceImageFormatInfo2KHR ) == sizeof( VkPhysicalDeviceImageFormatInfo2KHR ), "struct and wrapper have different size!" );
enum class PipelineCreateFlagBits
{
eDisableOptimization = VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT,
eAllowDerivatives = VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT,
eDerivative = VK_PIPELINE_CREATE_DERIVATIVE_BIT,
eViewIndexFromDeviceIndexKHX = VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT_KHX,
eDispatchBaseKHX = VK_PIPELINE_CREATE_DISPATCH_BASE_KHX
};
using PipelineCreateFlags = Flags<PipelineCreateFlagBits, VkPipelineCreateFlags>;
VULKAN_HPP_INLINE PipelineCreateFlags operator|( PipelineCreateFlagBits bit0, PipelineCreateFlagBits bit1 )
{
return PipelineCreateFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE PipelineCreateFlags operator~( PipelineCreateFlagBits bits )
{
return ~( PipelineCreateFlags( bits ) );
}
template <> struct FlagTraits<PipelineCreateFlagBits>
{
enum
{
allFlags = VkFlags(PipelineCreateFlagBits::eDisableOptimization) | VkFlags(PipelineCreateFlagBits::eAllowDerivatives) | VkFlags(PipelineCreateFlagBits::eDerivative) | VkFlags(PipelineCreateFlagBits::eViewIndexFromDeviceIndexKHX) | VkFlags(PipelineCreateFlagBits::eDispatchBaseKHX)
};
};
struct ComputePipelineCreateInfo
{
ComputePipelineCreateInfo( PipelineCreateFlags flags_ = PipelineCreateFlags(), PipelineShaderStageCreateInfo stage_ = PipelineShaderStageCreateInfo(), PipelineLayout layout_ = PipelineLayout(), Pipeline basePipelineHandle_ = Pipeline(), int32_t basePipelineIndex_ = 0 )
: sType( StructureType::eComputePipelineCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, stage( stage_ )
, layout( layout_ )
, basePipelineHandle( basePipelineHandle_ )
, basePipelineIndex( basePipelineIndex_ )
{
}
ComputePipelineCreateInfo( VkComputePipelineCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ComputePipelineCreateInfo ) );
}
ComputePipelineCreateInfo& operator=( VkComputePipelineCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ComputePipelineCreateInfo ) );
return *this;
}
ComputePipelineCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ComputePipelineCreateInfo& setFlags( PipelineCreateFlags flags_ )
{
flags = flags_;
return *this;
}
ComputePipelineCreateInfo& setStage( PipelineShaderStageCreateInfo stage_ )
{
stage = stage_;
return *this;
}
ComputePipelineCreateInfo& setLayout( PipelineLayout layout_ )
{
layout = layout_;
return *this;
}
ComputePipelineCreateInfo& setBasePipelineHandle( Pipeline basePipelineHandle_ )
{
basePipelineHandle = basePipelineHandle_;
return *this;
}
ComputePipelineCreateInfo& setBasePipelineIndex( int32_t basePipelineIndex_ )
{
basePipelineIndex = basePipelineIndex_;
return *this;
}
operator const VkComputePipelineCreateInfo&() const
{
return *reinterpret_cast<const VkComputePipelineCreateInfo*>(this);
}
bool operator==( ComputePipelineCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( stage == rhs.stage )
&& ( layout == rhs.layout )
&& ( basePipelineHandle == rhs.basePipelineHandle )
&& ( basePipelineIndex == rhs.basePipelineIndex );
}
bool operator!=( ComputePipelineCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineCreateFlags flags;
PipelineShaderStageCreateInfo stage;
PipelineLayout layout;
Pipeline basePipelineHandle;
int32_t basePipelineIndex;
};
static_assert( sizeof( ComputePipelineCreateInfo ) == sizeof( VkComputePipelineCreateInfo ), "struct and wrapper have different size!" );
enum class ColorComponentFlagBits
{
eR = VK_COLOR_COMPONENT_R_BIT,
eG = VK_COLOR_COMPONENT_G_BIT,
eB = VK_COLOR_COMPONENT_B_BIT,
eA = VK_COLOR_COMPONENT_A_BIT
};
using ColorComponentFlags = Flags<ColorComponentFlagBits, VkColorComponentFlags>;
VULKAN_HPP_INLINE ColorComponentFlags operator|( ColorComponentFlagBits bit0, ColorComponentFlagBits bit1 )
{
return ColorComponentFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ColorComponentFlags operator~( ColorComponentFlagBits bits )
{
return ~( ColorComponentFlags( bits ) );
}
template <> struct FlagTraits<ColorComponentFlagBits>
{
enum
{
allFlags = VkFlags(ColorComponentFlagBits::eR) | VkFlags(ColorComponentFlagBits::eG) | VkFlags(ColorComponentFlagBits::eB) | VkFlags(ColorComponentFlagBits::eA)
};
};
struct PipelineColorBlendAttachmentState
{
PipelineColorBlendAttachmentState( Bool32 blendEnable_ = 0, BlendFactor srcColorBlendFactor_ = BlendFactor::eZero, BlendFactor dstColorBlendFactor_ = BlendFactor::eZero, BlendOp colorBlendOp_ = BlendOp::eAdd, BlendFactor srcAlphaBlendFactor_ = BlendFactor::eZero, BlendFactor dstAlphaBlendFactor_ = BlendFactor::eZero, BlendOp alphaBlendOp_ = BlendOp::eAdd, ColorComponentFlags colorWriteMask_ = ColorComponentFlags() )
: blendEnable( blendEnable_ )
, srcColorBlendFactor( srcColorBlendFactor_ )
, dstColorBlendFactor( dstColorBlendFactor_ )
, colorBlendOp( colorBlendOp_ )
, srcAlphaBlendFactor( srcAlphaBlendFactor_ )
, dstAlphaBlendFactor( dstAlphaBlendFactor_ )
, alphaBlendOp( alphaBlendOp_ )
, colorWriteMask( colorWriteMask_ )
{
}
PipelineColorBlendAttachmentState( VkPipelineColorBlendAttachmentState const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineColorBlendAttachmentState ) );
}
PipelineColorBlendAttachmentState& operator=( VkPipelineColorBlendAttachmentState const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineColorBlendAttachmentState ) );
return *this;
}
PipelineColorBlendAttachmentState& setBlendEnable( Bool32 blendEnable_ )
{
blendEnable = blendEnable_;
return *this;
}
PipelineColorBlendAttachmentState& setSrcColorBlendFactor( BlendFactor srcColorBlendFactor_ )
{
srcColorBlendFactor = srcColorBlendFactor_;
return *this;
}
PipelineColorBlendAttachmentState& setDstColorBlendFactor( BlendFactor dstColorBlendFactor_ )
{
dstColorBlendFactor = dstColorBlendFactor_;
return *this;
}
PipelineColorBlendAttachmentState& setColorBlendOp( BlendOp colorBlendOp_ )
{
colorBlendOp = colorBlendOp_;
return *this;
}
PipelineColorBlendAttachmentState& setSrcAlphaBlendFactor( BlendFactor srcAlphaBlendFactor_ )
{
srcAlphaBlendFactor = srcAlphaBlendFactor_;
return *this;
}
PipelineColorBlendAttachmentState& setDstAlphaBlendFactor( BlendFactor dstAlphaBlendFactor_ )
{
dstAlphaBlendFactor = dstAlphaBlendFactor_;
return *this;
}
PipelineColorBlendAttachmentState& setAlphaBlendOp( BlendOp alphaBlendOp_ )
{
alphaBlendOp = alphaBlendOp_;
return *this;
}
PipelineColorBlendAttachmentState& setColorWriteMask( ColorComponentFlags colorWriteMask_ )
{
colorWriteMask = colorWriteMask_;
return *this;
}
operator const VkPipelineColorBlendAttachmentState&() const
{
return *reinterpret_cast<const VkPipelineColorBlendAttachmentState*>(this);
}
bool operator==( PipelineColorBlendAttachmentState const& rhs ) const
{
return ( blendEnable == rhs.blendEnable )
&& ( srcColorBlendFactor == rhs.srcColorBlendFactor )
&& ( dstColorBlendFactor == rhs.dstColorBlendFactor )
&& ( colorBlendOp == rhs.colorBlendOp )
&& ( srcAlphaBlendFactor == rhs.srcAlphaBlendFactor )
&& ( dstAlphaBlendFactor == rhs.dstAlphaBlendFactor )
&& ( alphaBlendOp == rhs.alphaBlendOp )
&& ( colorWriteMask == rhs.colorWriteMask );
}
bool operator!=( PipelineColorBlendAttachmentState const& rhs ) const
{
return !operator==( rhs );
}
Bool32 blendEnable;
BlendFactor srcColorBlendFactor;
BlendFactor dstColorBlendFactor;
BlendOp colorBlendOp;
BlendFactor srcAlphaBlendFactor;
BlendFactor dstAlphaBlendFactor;
BlendOp alphaBlendOp;
ColorComponentFlags colorWriteMask;
};
static_assert( sizeof( PipelineColorBlendAttachmentState ) == sizeof( VkPipelineColorBlendAttachmentState ), "struct and wrapper have different size!" );
struct PipelineColorBlendStateCreateInfo
{
PipelineColorBlendStateCreateInfo( PipelineColorBlendStateCreateFlags flags_ = PipelineColorBlendStateCreateFlags(), Bool32 logicOpEnable_ = 0, LogicOp logicOp_ = LogicOp::eClear, uint32_t attachmentCount_ = 0, const PipelineColorBlendAttachmentState* pAttachments_ = nullptr, std::array<float,4> const& blendConstants_ = { { 0, 0, 0, 0 } } )
: sType( StructureType::ePipelineColorBlendStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, logicOpEnable( logicOpEnable_ )
, logicOp( logicOp_ )
, attachmentCount( attachmentCount_ )
, pAttachments( pAttachments_ )
{
memcpy( &blendConstants, blendConstants_.data(), 4 * sizeof( float ) );
}
PipelineColorBlendStateCreateInfo( VkPipelineColorBlendStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineColorBlendStateCreateInfo ) );
}
PipelineColorBlendStateCreateInfo& operator=( VkPipelineColorBlendStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineColorBlendStateCreateInfo ) );
return *this;
}
PipelineColorBlendStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineColorBlendStateCreateInfo& setFlags( PipelineColorBlendStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineColorBlendStateCreateInfo& setLogicOpEnable( Bool32 logicOpEnable_ )
{
logicOpEnable = logicOpEnable_;
return *this;
}
PipelineColorBlendStateCreateInfo& setLogicOp( LogicOp logicOp_ )
{
logicOp = logicOp_;
return *this;
}
PipelineColorBlendStateCreateInfo& setAttachmentCount( uint32_t attachmentCount_ )
{
attachmentCount = attachmentCount_;
return *this;
}
PipelineColorBlendStateCreateInfo& setPAttachments( const PipelineColorBlendAttachmentState* pAttachments_ )
{
pAttachments = pAttachments_;
return *this;
}
PipelineColorBlendStateCreateInfo& setBlendConstants( std::array<float,4> blendConstants_ )
{
memcpy( &blendConstants, blendConstants_.data(), 4 * sizeof( float ) );
return *this;
}
operator const VkPipelineColorBlendStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineColorBlendStateCreateInfo*>(this);
}
bool operator==( PipelineColorBlendStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( logicOpEnable == rhs.logicOpEnable )
&& ( logicOp == rhs.logicOp )
&& ( attachmentCount == rhs.attachmentCount )
&& ( pAttachments == rhs.pAttachments )
&& ( memcmp( blendConstants, rhs.blendConstants, 4 * sizeof( float ) ) == 0 );
}
bool operator!=( PipelineColorBlendStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineColorBlendStateCreateFlags flags;
Bool32 logicOpEnable;
LogicOp logicOp;
uint32_t attachmentCount;
const PipelineColorBlendAttachmentState* pAttachments;
float blendConstants[4];
};
static_assert( sizeof( PipelineColorBlendStateCreateInfo ) == sizeof( VkPipelineColorBlendStateCreateInfo ), "struct and wrapper have different size!" );
enum class FenceCreateFlagBits
{
eSignaled = VK_FENCE_CREATE_SIGNALED_BIT
};
using FenceCreateFlags = Flags<FenceCreateFlagBits, VkFenceCreateFlags>;
VULKAN_HPP_INLINE FenceCreateFlags operator|( FenceCreateFlagBits bit0, FenceCreateFlagBits bit1 )
{
return FenceCreateFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE FenceCreateFlags operator~( FenceCreateFlagBits bits )
{
return ~( FenceCreateFlags( bits ) );
}
template <> struct FlagTraits<FenceCreateFlagBits>
{
enum
{
allFlags = VkFlags(FenceCreateFlagBits::eSignaled)
};
};
struct FenceCreateInfo
{
FenceCreateInfo( FenceCreateFlags flags_ = FenceCreateFlags() )
: sType( StructureType::eFenceCreateInfo )
, pNext( nullptr )
, flags( flags_ )
{
}
FenceCreateInfo( VkFenceCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( FenceCreateInfo ) );
}
FenceCreateInfo& operator=( VkFenceCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( FenceCreateInfo ) );
return *this;
}
FenceCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
FenceCreateInfo& setFlags( FenceCreateFlags flags_ )
{
flags = flags_;
return *this;
}
operator const VkFenceCreateInfo&() const
{
return *reinterpret_cast<const VkFenceCreateInfo*>(this);
}
bool operator==( FenceCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags );
}
bool operator!=( FenceCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
FenceCreateFlags flags;
};
static_assert( sizeof( FenceCreateInfo ) == sizeof( VkFenceCreateInfo ), "struct and wrapper have different size!" );
enum class FormatFeatureFlagBits
{
eSampledImage = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
eStorageImage = VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT,
eStorageImageAtomic = VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT,
eUniformTexelBuffer = VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT,
eStorageTexelBuffer = VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT,
eStorageTexelBufferAtomic = VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT,
eVertexBuffer = VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT,
eColorAttachment = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT,
eColorAttachmentBlend = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT,
eDepthStencilAttachment = VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT,
eBlitSrc = VK_FORMAT_FEATURE_BLIT_SRC_BIT,
eBlitDst = VK_FORMAT_FEATURE_BLIT_DST_BIT,
eSampledImageFilterLinear = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT,
eSampledImageFilterCubicIMG = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG,
eTransferSrcKHR = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR,
eTransferDstKHR = VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR,
eSampledImageFilterMinmaxEXT = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT,
eMidpointChromaSamplesKHR = VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT_KHR,
eSampledImageYcbcrConversionLinearFilterKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR,
eSampledImageYcbcrConversionSeparateReconstructionFilterKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KHR,
eSampledImageYcbcrConversionChromaReconstructionExplicitKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR,
eSampledImageYcbcrConversionChromaReconstructionExplicitForceableKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT_KHR,
eDisjointKHR = VK_FORMAT_FEATURE_DISJOINT_BIT_KHR,
eCositedChromaSamplesKHR = VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR
};
using FormatFeatureFlags = Flags<FormatFeatureFlagBits, VkFormatFeatureFlags>;
VULKAN_HPP_INLINE FormatFeatureFlags operator|( FormatFeatureFlagBits bit0, FormatFeatureFlagBits bit1 )
{
return FormatFeatureFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE FormatFeatureFlags operator~( FormatFeatureFlagBits bits )
{
return ~( FormatFeatureFlags( bits ) );
}
template <> struct FlagTraits<FormatFeatureFlagBits>
{
enum
{
allFlags = VkFlags(FormatFeatureFlagBits::eSampledImage) | VkFlags(FormatFeatureFlagBits::eStorageImage) | VkFlags(FormatFeatureFlagBits::eStorageImageAtomic) | VkFlags(FormatFeatureFlagBits::eUniformTexelBuffer) | VkFlags(FormatFeatureFlagBits::eStorageTexelBuffer) | VkFlags(FormatFeatureFlagBits::eStorageTexelBufferAtomic) | VkFlags(FormatFeatureFlagBits::eVertexBuffer) | VkFlags(FormatFeatureFlagBits::eColorAttachment) | VkFlags(FormatFeatureFlagBits::eColorAttachmentBlend) | VkFlags(FormatFeatureFlagBits::eDepthStencilAttachment) | VkFlags(FormatFeatureFlagBits::eBlitSrc) | VkFlags(FormatFeatureFlagBits::eBlitDst) | VkFlags(FormatFeatureFlagBits::eSampledImageFilterLinear) | VkFlags(FormatFeatureFlagBits::eSampledImageFilterCubicIMG) | VkFlags(FormatFeatureFlagBits::eTransferSrcKHR) | VkFlags(FormatFeatureFlagBits::eTransferDstKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageFilterMinmaxEXT) | VkFlags(FormatFeatureFlagBits::eMidpointChromaSamplesKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYcbcrConversionLinearFilterKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYcbcrConversionSeparateReconstructionFilterKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYcbcrConversionChromaReconstructionExplicitKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYcbcrConversionChromaReconstructionExplicitForceableKHR) | VkFlags(FormatFeatureFlagBits::eDisjointKHR) | VkFlags(FormatFeatureFlagBits::eCositedChromaSamplesKHR)
};
};
struct FormatProperties
{
operator const VkFormatProperties&() const
{
return *reinterpret_cast<const VkFormatProperties*>(this);
}
bool operator==( FormatProperties const& rhs ) const
{
return ( linearTilingFeatures == rhs.linearTilingFeatures )
&& ( optimalTilingFeatures == rhs.optimalTilingFeatures )
&& ( bufferFeatures == rhs.bufferFeatures );
}
bool operator!=( FormatProperties const& rhs ) const
{
return !operator==( rhs );
}
FormatFeatureFlags linearTilingFeatures;
FormatFeatureFlags optimalTilingFeatures;
FormatFeatureFlags bufferFeatures;
};
static_assert( sizeof( FormatProperties ) == sizeof( VkFormatProperties ), "struct and wrapper have different size!" );
struct FormatProperties2KHR
{
operator const VkFormatProperties2KHR&() const
{
return *reinterpret_cast<const VkFormatProperties2KHR*>(this);
}
bool operator==( FormatProperties2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( formatProperties == rhs.formatProperties );
}
bool operator!=( FormatProperties2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
FormatProperties formatProperties;
};
static_assert( sizeof( FormatProperties2KHR ) == sizeof( VkFormatProperties2KHR ), "struct and wrapper have different size!" );
enum class QueryControlFlagBits
{
ePrecise = VK_QUERY_CONTROL_PRECISE_BIT
};
using QueryControlFlags = Flags<QueryControlFlagBits, VkQueryControlFlags>;
VULKAN_HPP_INLINE QueryControlFlags operator|( QueryControlFlagBits bit0, QueryControlFlagBits bit1 )
{
return QueryControlFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE QueryControlFlags operator~( QueryControlFlagBits bits )
{
return ~( QueryControlFlags( bits ) );
}
template <> struct FlagTraits<QueryControlFlagBits>
{
enum
{
allFlags = VkFlags(QueryControlFlagBits::ePrecise)
};
};
enum class QueryResultFlagBits
{
e64 = VK_QUERY_RESULT_64_BIT,
eWait = VK_QUERY_RESULT_WAIT_BIT,
eWithAvailability = VK_QUERY_RESULT_WITH_AVAILABILITY_BIT,
ePartial = VK_QUERY_RESULT_PARTIAL_BIT
};
using QueryResultFlags = Flags<QueryResultFlagBits, VkQueryResultFlags>;
VULKAN_HPP_INLINE QueryResultFlags operator|( QueryResultFlagBits bit0, QueryResultFlagBits bit1 )
{
return QueryResultFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE QueryResultFlags operator~( QueryResultFlagBits bits )
{
return ~( QueryResultFlags( bits ) );
}
template <> struct FlagTraits<QueryResultFlagBits>
{
enum
{
allFlags = VkFlags(QueryResultFlagBits::e64) | VkFlags(QueryResultFlagBits::eWait) | VkFlags(QueryResultFlagBits::eWithAvailability) | VkFlags(QueryResultFlagBits::ePartial)
};
};
enum class CommandBufferUsageFlagBits
{
eOneTimeSubmit = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
eRenderPassContinue = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT,
eSimultaneousUse = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT
};
using CommandBufferUsageFlags = Flags<CommandBufferUsageFlagBits, VkCommandBufferUsageFlags>;
VULKAN_HPP_INLINE CommandBufferUsageFlags operator|( CommandBufferUsageFlagBits bit0, CommandBufferUsageFlagBits bit1 )
{
return CommandBufferUsageFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE CommandBufferUsageFlags operator~( CommandBufferUsageFlagBits bits )
{
return ~( CommandBufferUsageFlags( bits ) );
}
template <> struct FlagTraits<CommandBufferUsageFlagBits>
{
enum
{
allFlags = VkFlags(CommandBufferUsageFlagBits::eOneTimeSubmit) | VkFlags(CommandBufferUsageFlagBits::eRenderPassContinue) | VkFlags(CommandBufferUsageFlagBits::eSimultaneousUse)
};
};
enum class QueryPipelineStatisticFlagBits
{
eInputAssemblyVertices = VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
eInputAssemblyPrimitives = VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
eVertexShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
eGeometryShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
eGeometryShaderPrimitives = VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
eClippingInvocations = VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
eClippingPrimitives = VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
eFragmentShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT,
eTessellationControlShaderPatches = VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT,
eTessellationEvaluationShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT,
eComputeShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT
};
using QueryPipelineStatisticFlags = Flags<QueryPipelineStatisticFlagBits, VkQueryPipelineStatisticFlags>;
VULKAN_HPP_INLINE QueryPipelineStatisticFlags operator|( QueryPipelineStatisticFlagBits bit0, QueryPipelineStatisticFlagBits bit1 )
{
return QueryPipelineStatisticFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE QueryPipelineStatisticFlags operator~( QueryPipelineStatisticFlagBits bits )
{
return ~( QueryPipelineStatisticFlags( bits ) );
}
template <> struct FlagTraits<QueryPipelineStatisticFlagBits>
{
enum
{
allFlags = VkFlags(QueryPipelineStatisticFlagBits::eInputAssemblyVertices) | VkFlags(QueryPipelineStatisticFlagBits::eInputAssemblyPrimitives) | VkFlags(QueryPipelineStatisticFlagBits::eVertexShaderInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eGeometryShaderInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eGeometryShaderPrimitives) | VkFlags(QueryPipelineStatisticFlagBits::eClippingInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eClippingPrimitives) | VkFlags(QueryPipelineStatisticFlagBits::eFragmentShaderInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eTessellationControlShaderPatches) | VkFlags(QueryPipelineStatisticFlagBits::eTessellationEvaluationShaderInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eComputeShaderInvocations)
};
};
struct CommandBufferInheritanceInfo
{
CommandBufferInheritanceInfo( RenderPass renderPass_ = RenderPass(), uint32_t subpass_ = 0, Framebuffer framebuffer_ = Framebuffer(), Bool32 occlusionQueryEnable_ = 0, QueryControlFlags queryFlags_ = QueryControlFlags(), QueryPipelineStatisticFlags pipelineStatistics_ = QueryPipelineStatisticFlags() )
: sType( StructureType::eCommandBufferInheritanceInfo )
, pNext( nullptr )
, renderPass( renderPass_ )
, subpass( subpass_ )
, framebuffer( framebuffer_ )
, occlusionQueryEnable( occlusionQueryEnable_ )
, queryFlags( queryFlags_ )
, pipelineStatistics( pipelineStatistics_ )
{
}
CommandBufferInheritanceInfo( VkCommandBufferInheritanceInfo const & rhs )
{
memcpy( this, &rhs, sizeof( CommandBufferInheritanceInfo ) );
}
CommandBufferInheritanceInfo& operator=( VkCommandBufferInheritanceInfo const & rhs )
{
memcpy( this, &rhs, sizeof( CommandBufferInheritanceInfo ) );
return *this;
}
CommandBufferInheritanceInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
CommandBufferInheritanceInfo& setRenderPass( RenderPass renderPass_ )
{
renderPass = renderPass_;
return *this;
}
CommandBufferInheritanceInfo& setSubpass( uint32_t subpass_ )
{
subpass = subpass_;
return *this;
}
CommandBufferInheritanceInfo& setFramebuffer( Framebuffer framebuffer_ )
{
framebuffer = framebuffer_;
return *this;
}
CommandBufferInheritanceInfo& setOcclusionQueryEnable( Bool32 occlusionQueryEnable_ )
{
occlusionQueryEnable = occlusionQueryEnable_;
return *this;
}
CommandBufferInheritanceInfo& setQueryFlags( QueryControlFlags queryFlags_ )
{
queryFlags = queryFlags_;
return *this;
}
CommandBufferInheritanceInfo& setPipelineStatistics( QueryPipelineStatisticFlags pipelineStatistics_ )
{
pipelineStatistics = pipelineStatistics_;
return *this;
}
operator const VkCommandBufferInheritanceInfo&() const
{
return *reinterpret_cast<const VkCommandBufferInheritanceInfo*>(this);
}
bool operator==( CommandBufferInheritanceInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( renderPass == rhs.renderPass )
&& ( subpass == rhs.subpass )
&& ( framebuffer == rhs.framebuffer )
&& ( occlusionQueryEnable == rhs.occlusionQueryEnable )
&& ( queryFlags == rhs.queryFlags )
&& ( pipelineStatistics == rhs.pipelineStatistics );
}
bool operator!=( CommandBufferInheritanceInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
RenderPass renderPass;
uint32_t subpass;
Framebuffer framebuffer;
Bool32 occlusionQueryEnable;
QueryControlFlags queryFlags;
QueryPipelineStatisticFlags pipelineStatistics;
};
static_assert( sizeof( CommandBufferInheritanceInfo ) == sizeof( VkCommandBufferInheritanceInfo ), "struct and wrapper have different size!" );
struct CommandBufferBeginInfo
{
CommandBufferBeginInfo( CommandBufferUsageFlags flags_ = CommandBufferUsageFlags(), const CommandBufferInheritanceInfo* pInheritanceInfo_ = nullptr )
: sType( StructureType::eCommandBufferBeginInfo )
, pNext( nullptr )
, flags( flags_ )
, pInheritanceInfo( pInheritanceInfo_ )
{
}
CommandBufferBeginInfo( VkCommandBufferBeginInfo const & rhs )
{
memcpy( this, &rhs, sizeof( CommandBufferBeginInfo ) );
}
CommandBufferBeginInfo& operator=( VkCommandBufferBeginInfo const & rhs )
{
memcpy( this, &rhs, sizeof( CommandBufferBeginInfo ) );
return *this;
}
CommandBufferBeginInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
CommandBufferBeginInfo& setFlags( CommandBufferUsageFlags flags_ )
{
flags = flags_;
return *this;
}
CommandBufferBeginInfo& setPInheritanceInfo( const CommandBufferInheritanceInfo* pInheritanceInfo_ )
{
pInheritanceInfo = pInheritanceInfo_;
return *this;
}
operator const VkCommandBufferBeginInfo&() const
{
return *reinterpret_cast<const VkCommandBufferBeginInfo*>(this);
}
bool operator==( CommandBufferBeginInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( pInheritanceInfo == rhs.pInheritanceInfo );
}
bool operator!=( CommandBufferBeginInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
CommandBufferUsageFlags flags;
const CommandBufferInheritanceInfo* pInheritanceInfo;
};
static_assert( sizeof( CommandBufferBeginInfo ) == sizeof( VkCommandBufferBeginInfo ), "struct and wrapper have different size!" );
struct QueryPoolCreateInfo
{
QueryPoolCreateInfo( QueryPoolCreateFlags flags_ = QueryPoolCreateFlags(), QueryType queryType_ = QueryType::eOcclusion, uint32_t queryCount_ = 0, QueryPipelineStatisticFlags pipelineStatistics_ = QueryPipelineStatisticFlags() )
: sType( StructureType::eQueryPoolCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, queryType( queryType_ )
, queryCount( queryCount_ )
, pipelineStatistics( pipelineStatistics_ )
{
}
QueryPoolCreateInfo( VkQueryPoolCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( QueryPoolCreateInfo ) );
}
QueryPoolCreateInfo& operator=( VkQueryPoolCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( QueryPoolCreateInfo ) );
return *this;
}
QueryPoolCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
QueryPoolCreateInfo& setFlags( QueryPoolCreateFlags flags_ )
{
flags = flags_;
return *this;
}
QueryPoolCreateInfo& setQueryType( QueryType queryType_ )
{
queryType = queryType_;
return *this;
}
QueryPoolCreateInfo& setQueryCount( uint32_t queryCount_ )
{
queryCount = queryCount_;
return *this;
}
QueryPoolCreateInfo& setPipelineStatistics( QueryPipelineStatisticFlags pipelineStatistics_ )
{
pipelineStatistics = pipelineStatistics_;
return *this;
}
operator const VkQueryPoolCreateInfo&() const
{
return *reinterpret_cast<const VkQueryPoolCreateInfo*>(this);
}
bool operator==( QueryPoolCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( queryType == rhs.queryType )
&& ( queryCount == rhs.queryCount )
&& ( pipelineStatistics == rhs.pipelineStatistics );
}
bool operator!=( QueryPoolCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
QueryPoolCreateFlags flags;
QueryType queryType;
uint32_t queryCount;
QueryPipelineStatisticFlags pipelineStatistics;
};
static_assert( sizeof( QueryPoolCreateInfo ) == sizeof( VkQueryPoolCreateInfo ), "struct and wrapper have different size!" );
enum class ImageAspectFlagBits
{
eColor = VK_IMAGE_ASPECT_COLOR_BIT,
eDepth = VK_IMAGE_ASPECT_DEPTH_BIT,
eStencil = VK_IMAGE_ASPECT_STENCIL_BIT,
eMetadata = VK_IMAGE_ASPECT_METADATA_BIT,
ePlane0KHR = VK_IMAGE_ASPECT_PLANE_0_BIT_KHR,
ePlane1KHR = VK_IMAGE_ASPECT_PLANE_1_BIT_KHR,
ePlane2KHR = VK_IMAGE_ASPECT_PLANE_2_BIT_KHR
};
using ImageAspectFlags = Flags<ImageAspectFlagBits, VkImageAspectFlags>;
VULKAN_HPP_INLINE ImageAspectFlags operator|( ImageAspectFlagBits bit0, ImageAspectFlagBits bit1 )
{
return ImageAspectFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ImageAspectFlags operator~( ImageAspectFlagBits bits )
{
return ~( ImageAspectFlags( bits ) );
}
template <> struct FlagTraits<ImageAspectFlagBits>
{
enum
{
allFlags = VkFlags(ImageAspectFlagBits::eColor) | VkFlags(ImageAspectFlagBits::eDepth) | VkFlags(ImageAspectFlagBits::eStencil) | VkFlags(ImageAspectFlagBits::eMetadata) | VkFlags(ImageAspectFlagBits::ePlane0KHR) | VkFlags(ImageAspectFlagBits::ePlane1KHR) | VkFlags(ImageAspectFlagBits::ePlane2KHR)
};
};
struct ImageSubresource
{
ImageSubresource( ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t mipLevel_ = 0, uint32_t arrayLayer_ = 0 )
: aspectMask( aspectMask_ )
, mipLevel( mipLevel_ )
, arrayLayer( arrayLayer_ )
{
}
ImageSubresource( VkImageSubresource const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSubresource ) );
}
ImageSubresource& operator=( VkImageSubresource const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSubresource ) );
return *this;
}
ImageSubresource& setAspectMask( ImageAspectFlags aspectMask_ )
{
aspectMask = aspectMask_;
return *this;
}
ImageSubresource& setMipLevel( uint32_t mipLevel_ )
{
mipLevel = mipLevel_;
return *this;
}
ImageSubresource& setArrayLayer( uint32_t arrayLayer_ )
{
arrayLayer = arrayLayer_;
return *this;
}
operator const VkImageSubresource&() const
{
return *reinterpret_cast<const VkImageSubresource*>(this);
}
bool operator==( ImageSubresource const& rhs ) const
{
return ( aspectMask == rhs.aspectMask )
&& ( mipLevel == rhs.mipLevel )
&& ( arrayLayer == rhs.arrayLayer );
}
bool operator!=( ImageSubresource const& rhs ) const
{
return !operator==( rhs );
}
ImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32_t arrayLayer;
};
static_assert( sizeof( ImageSubresource ) == sizeof( VkImageSubresource ), "struct and wrapper have different size!" );
struct ImageSubresourceLayers
{
ImageSubresourceLayers( ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t mipLevel_ = 0, uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0 )
: aspectMask( aspectMask_ )
, mipLevel( mipLevel_ )
, baseArrayLayer( baseArrayLayer_ )
, layerCount( layerCount_ )
{
}
ImageSubresourceLayers( VkImageSubresourceLayers const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSubresourceLayers ) );
}
ImageSubresourceLayers& operator=( VkImageSubresourceLayers const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSubresourceLayers ) );
return *this;
}
ImageSubresourceLayers& setAspectMask( ImageAspectFlags aspectMask_ )
{
aspectMask = aspectMask_;
return *this;
}
ImageSubresourceLayers& setMipLevel( uint32_t mipLevel_ )
{
mipLevel = mipLevel_;
return *this;
}
ImageSubresourceLayers& setBaseArrayLayer( uint32_t baseArrayLayer_ )
{
baseArrayLayer = baseArrayLayer_;
return *this;
}
ImageSubresourceLayers& setLayerCount( uint32_t layerCount_ )
{
layerCount = layerCount_;
return *this;
}
operator const VkImageSubresourceLayers&() const
{
return *reinterpret_cast<const VkImageSubresourceLayers*>(this);
}
bool operator==( ImageSubresourceLayers const& rhs ) const
{
return ( aspectMask == rhs.aspectMask )
&& ( mipLevel == rhs.mipLevel )
&& ( baseArrayLayer == rhs.baseArrayLayer )
&& ( layerCount == rhs.layerCount );
}
bool operator!=( ImageSubresourceLayers const& rhs ) const
{
return !operator==( rhs );
}
ImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32_t baseArrayLayer;
uint32_t layerCount;
};
static_assert( sizeof( ImageSubresourceLayers ) == sizeof( VkImageSubresourceLayers ), "struct and wrapper have different size!" );
struct ImageSubresourceRange
{
ImageSubresourceRange( ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t baseMipLevel_ = 0, uint32_t levelCount_ = 0, uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0 )
: aspectMask( aspectMask_ )
, baseMipLevel( baseMipLevel_ )
, levelCount( levelCount_ )
, baseArrayLayer( baseArrayLayer_ )
, layerCount( layerCount_ )
{
}
ImageSubresourceRange( VkImageSubresourceRange const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSubresourceRange ) );
}
ImageSubresourceRange& operator=( VkImageSubresourceRange const & rhs )
{
memcpy( this, &rhs, sizeof( ImageSubresourceRange ) );
return *this;
}
ImageSubresourceRange& setAspectMask( ImageAspectFlags aspectMask_ )
{
aspectMask = aspectMask_;
return *this;
}
ImageSubresourceRange& setBaseMipLevel( uint32_t baseMipLevel_ )
{
baseMipLevel = baseMipLevel_;
return *this;
}
ImageSubresourceRange& setLevelCount( uint32_t levelCount_ )
{
levelCount = levelCount_;
return *this;
}
ImageSubresourceRange& setBaseArrayLayer( uint32_t baseArrayLayer_ )
{
baseArrayLayer = baseArrayLayer_;
return *this;
}
ImageSubresourceRange& setLayerCount( uint32_t layerCount_ )
{
layerCount = layerCount_;
return *this;
}
operator const VkImageSubresourceRange&() const
{
return *reinterpret_cast<const VkImageSubresourceRange*>(this);
}
bool operator==( ImageSubresourceRange const& rhs ) const
{
return ( aspectMask == rhs.aspectMask )
&& ( baseMipLevel == rhs.baseMipLevel )
&& ( levelCount == rhs.levelCount )
&& ( baseArrayLayer == rhs.baseArrayLayer )
&& ( layerCount == rhs.layerCount );
}
bool operator!=( ImageSubresourceRange const& rhs ) const
{
return !operator==( rhs );
}
ImageAspectFlags aspectMask;
uint32_t baseMipLevel;
uint32_t levelCount;
uint32_t baseArrayLayer;
uint32_t layerCount;
};
static_assert( sizeof( ImageSubresourceRange ) == sizeof( VkImageSubresourceRange ), "struct and wrapper have different size!" );
struct ImageMemoryBarrier
{
ImageMemoryBarrier( AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), ImageLayout oldLayout_ = ImageLayout::eUndefined, ImageLayout newLayout_ = ImageLayout::eUndefined, uint32_t srcQueueFamilyIndex_ = 0, uint32_t dstQueueFamilyIndex_ = 0, Image image_ = Image(), ImageSubresourceRange subresourceRange_ = ImageSubresourceRange() )
: sType( StructureType::eImageMemoryBarrier )
, pNext( nullptr )
, srcAccessMask( srcAccessMask_ )
, dstAccessMask( dstAccessMask_ )
, oldLayout( oldLayout_ )
, newLayout( newLayout_ )
, srcQueueFamilyIndex( srcQueueFamilyIndex_ )
, dstQueueFamilyIndex( dstQueueFamilyIndex_ )
, image( image_ )
, subresourceRange( subresourceRange_ )
{
}
ImageMemoryBarrier( VkImageMemoryBarrier const & rhs )
{
memcpy( this, &rhs, sizeof( ImageMemoryBarrier ) );
}
ImageMemoryBarrier& operator=( VkImageMemoryBarrier const & rhs )
{
memcpy( this, &rhs, sizeof( ImageMemoryBarrier ) );
return *this;
}
ImageMemoryBarrier& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImageMemoryBarrier& setSrcAccessMask( AccessFlags srcAccessMask_ )
{
srcAccessMask = srcAccessMask_;
return *this;
}
ImageMemoryBarrier& setDstAccessMask( AccessFlags dstAccessMask_ )
{
dstAccessMask = dstAccessMask_;
return *this;
}
ImageMemoryBarrier& setOldLayout( ImageLayout oldLayout_ )
{
oldLayout = oldLayout_;
return *this;
}
ImageMemoryBarrier& setNewLayout( ImageLayout newLayout_ )
{
newLayout = newLayout_;
return *this;
}
ImageMemoryBarrier& setSrcQueueFamilyIndex( uint32_t srcQueueFamilyIndex_ )
{
srcQueueFamilyIndex = srcQueueFamilyIndex_;
return *this;
}
ImageMemoryBarrier& setDstQueueFamilyIndex( uint32_t dstQueueFamilyIndex_ )
{
dstQueueFamilyIndex = dstQueueFamilyIndex_;
return *this;
}
ImageMemoryBarrier& setImage( Image image_ )
{
image = image_;
return *this;
}
ImageMemoryBarrier& setSubresourceRange( ImageSubresourceRange subresourceRange_ )
{
subresourceRange = subresourceRange_;
return *this;
}
operator const VkImageMemoryBarrier&() const
{
return *reinterpret_cast<const VkImageMemoryBarrier*>(this);
}
bool operator==( ImageMemoryBarrier const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( srcAccessMask == rhs.srcAccessMask )
&& ( dstAccessMask == rhs.dstAccessMask )
&& ( oldLayout == rhs.oldLayout )
&& ( newLayout == rhs.newLayout )
&& ( srcQueueFamilyIndex == rhs.srcQueueFamilyIndex )
&& ( dstQueueFamilyIndex == rhs.dstQueueFamilyIndex )
&& ( image == rhs.image )
&& ( subresourceRange == rhs.subresourceRange );
}
bool operator!=( ImageMemoryBarrier const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
AccessFlags srcAccessMask;
AccessFlags dstAccessMask;
ImageLayout oldLayout;
ImageLayout newLayout;
uint32_t srcQueueFamilyIndex;
uint32_t dstQueueFamilyIndex;
Image image;
ImageSubresourceRange subresourceRange;
};
static_assert( sizeof( ImageMemoryBarrier ) == sizeof( VkImageMemoryBarrier ), "struct and wrapper have different size!" );
struct ImageViewCreateInfo
{
ImageViewCreateInfo( ImageViewCreateFlags flags_ = ImageViewCreateFlags(), Image image_ = Image(), ImageViewType viewType_ = ImageViewType::e1D, Format format_ = Format::eUndefined, ComponentMapping components_ = ComponentMapping(), ImageSubresourceRange subresourceRange_ = ImageSubresourceRange() )
: sType( StructureType::eImageViewCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, image( image_ )
, viewType( viewType_ )
, format( format_ )
, components( components_ )
, subresourceRange( subresourceRange_ )
{
}
ImageViewCreateInfo( VkImageViewCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ImageViewCreateInfo ) );
}
ImageViewCreateInfo& operator=( VkImageViewCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ImageViewCreateInfo ) );
return *this;
}
ImageViewCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImageViewCreateInfo& setFlags( ImageViewCreateFlags flags_ )
{
flags = flags_;
return *this;
}
ImageViewCreateInfo& setImage( Image image_ )
{
image = image_;
return *this;
}
ImageViewCreateInfo& setViewType( ImageViewType viewType_ )
{
viewType = viewType_;
return *this;
}
ImageViewCreateInfo& setFormat( Format format_ )
{
format = format_;
return *this;
}
ImageViewCreateInfo& setComponents( ComponentMapping components_ )
{
components = components_;
return *this;
}
ImageViewCreateInfo& setSubresourceRange( ImageSubresourceRange subresourceRange_ )
{
subresourceRange = subresourceRange_;
return *this;
}
operator const VkImageViewCreateInfo&() const
{
return *reinterpret_cast<const VkImageViewCreateInfo*>(this);
}
bool operator==( ImageViewCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( image == rhs.image )
&& ( viewType == rhs.viewType )
&& ( format == rhs.format )
&& ( components == rhs.components )
&& ( subresourceRange == rhs.subresourceRange );
}
bool operator!=( ImageViewCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ImageViewCreateFlags flags;
Image image;
ImageViewType viewType;
Format format;
ComponentMapping components;
ImageSubresourceRange subresourceRange;
};
static_assert( sizeof( ImageViewCreateInfo ) == sizeof( VkImageViewCreateInfo ), "struct and wrapper have different size!" );
struct ImageCopy
{
ImageCopy( ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), Offset3D srcOffset_ = Offset3D(), ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), Offset3D dstOffset_ = Offset3D(), Extent3D extent_ = Extent3D() )
: srcSubresource( srcSubresource_ )
, srcOffset( srcOffset_ )
, dstSubresource( dstSubresource_ )
, dstOffset( dstOffset_ )
, extent( extent_ )
{
}
ImageCopy( VkImageCopy const & rhs )
{
memcpy( this, &rhs, sizeof( ImageCopy ) );
}
ImageCopy& operator=( VkImageCopy const & rhs )
{
memcpy( this, &rhs, sizeof( ImageCopy ) );
return *this;
}
ImageCopy& setSrcSubresource( ImageSubresourceLayers srcSubresource_ )
{
srcSubresource = srcSubresource_;
return *this;
}
ImageCopy& setSrcOffset( Offset3D srcOffset_ )
{
srcOffset = srcOffset_;
return *this;
}
ImageCopy& setDstSubresource( ImageSubresourceLayers dstSubresource_ )
{
dstSubresource = dstSubresource_;
return *this;
}
ImageCopy& setDstOffset( Offset3D dstOffset_ )
{
dstOffset = dstOffset_;
return *this;
}
ImageCopy& setExtent( Extent3D extent_ )
{
extent = extent_;
return *this;
}
operator const VkImageCopy&() const
{
return *reinterpret_cast<const VkImageCopy*>(this);
}
bool operator==( ImageCopy const& rhs ) const
{
return ( srcSubresource == rhs.srcSubresource )
&& ( srcOffset == rhs.srcOffset )
&& ( dstSubresource == rhs.dstSubresource )
&& ( dstOffset == rhs.dstOffset )
&& ( extent == rhs.extent );
}
bool operator!=( ImageCopy const& rhs ) const
{
return !operator==( rhs );
}
ImageSubresourceLayers srcSubresource;
Offset3D srcOffset;
ImageSubresourceLayers dstSubresource;
Offset3D dstOffset;
Extent3D extent;
};
static_assert( sizeof( ImageCopy ) == sizeof( VkImageCopy ), "struct and wrapper have different size!" );
struct ImageBlit
{
ImageBlit( ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), std::array<Offset3D,2> const& srcOffsets_ = { { Offset3D(), Offset3D() } }, ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), std::array<Offset3D,2> const& dstOffsets_ = { { Offset3D(), Offset3D() } } )
: srcSubresource( srcSubresource_ )
, dstSubresource( dstSubresource_ )
{
memcpy( &srcOffsets, srcOffsets_.data(), 2 * sizeof( Offset3D ) );
memcpy( &dstOffsets, dstOffsets_.data(), 2 * sizeof( Offset3D ) );
}
ImageBlit( VkImageBlit const & rhs )
{
memcpy( this, &rhs, sizeof( ImageBlit ) );
}
ImageBlit& operator=( VkImageBlit const & rhs )
{
memcpy( this, &rhs, sizeof( ImageBlit ) );
return *this;
}
ImageBlit& setSrcSubresource( ImageSubresourceLayers srcSubresource_ )
{
srcSubresource = srcSubresource_;
return *this;
}
ImageBlit& setSrcOffsets( std::array<Offset3D,2> srcOffsets_ )
{
memcpy( &srcOffsets, srcOffsets_.data(), 2 * sizeof( Offset3D ) );
return *this;
}
ImageBlit& setDstSubresource( ImageSubresourceLayers dstSubresource_ )
{
dstSubresource = dstSubresource_;
return *this;
}
ImageBlit& setDstOffsets( std::array<Offset3D,2> dstOffsets_ )
{
memcpy( &dstOffsets, dstOffsets_.data(), 2 * sizeof( Offset3D ) );
return *this;
}
operator const VkImageBlit&() const
{
return *reinterpret_cast<const VkImageBlit*>(this);
}
bool operator==( ImageBlit const& rhs ) const
{
return ( srcSubresource == rhs.srcSubresource )
&& ( memcmp( srcOffsets, rhs.srcOffsets, 2 * sizeof( Offset3D ) ) == 0 )
&& ( dstSubresource == rhs.dstSubresource )
&& ( memcmp( dstOffsets, rhs.dstOffsets, 2 * sizeof( Offset3D ) ) == 0 );
}
bool operator!=( ImageBlit const& rhs ) const
{
return !operator==( rhs );
}
ImageSubresourceLayers srcSubresource;
Offset3D srcOffsets[2];
ImageSubresourceLayers dstSubresource;
Offset3D dstOffsets[2];
};
static_assert( sizeof( ImageBlit ) == sizeof( VkImageBlit ), "struct and wrapper have different size!" );
struct BufferImageCopy
{
BufferImageCopy( DeviceSize bufferOffset_ = 0, uint32_t bufferRowLength_ = 0, uint32_t bufferImageHeight_ = 0, ImageSubresourceLayers imageSubresource_ = ImageSubresourceLayers(), Offset3D imageOffset_ = Offset3D(), Extent3D imageExtent_ = Extent3D() )
: bufferOffset( bufferOffset_ )
, bufferRowLength( bufferRowLength_ )
, bufferImageHeight( bufferImageHeight_ )
, imageSubresource( imageSubresource_ )
, imageOffset( imageOffset_ )
, imageExtent( imageExtent_ )
{
}
BufferImageCopy( VkBufferImageCopy const & rhs )
{
memcpy( this, &rhs, sizeof( BufferImageCopy ) );
}
BufferImageCopy& operator=( VkBufferImageCopy const & rhs )
{
memcpy( this, &rhs, sizeof( BufferImageCopy ) );
return *this;
}
BufferImageCopy& setBufferOffset( DeviceSize bufferOffset_ )
{
bufferOffset = bufferOffset_;
return *this;
}
BufferImageCopy& setBufferRowLength( uint32_t bufferRowLength_ )
{
bufferRowLength = bufferRowLength_;
return *this;
}
BufferImageCopy& setBufferImageHeight( uint32_t bufferImageHeight_ )
{
bufferImageHeight = bufferImageHeight_;
return *this;
}
BufferImageCopy& setImageSubresource( ImageSubresourceLayers imageSubresource_ )
{
imageSubresource = imageSubresource_;
return *this;
}
BufferImageCopy& setImageOffset( Offset3D imageOffset_ )
{
imageOffset = imageOffset_;
return *this;
}
BufferImageCopy& setImageExtent( Extent3D imageExtent_ )
{
imageExtent = imageExtent_;
return *this;
}
operator const VkBufferImageCopy&() const
{
return *reinterpret_cast<const VkBufferImageCopy*>(this);
}
bool operator==( BufferImageCopy const& rhs ) const
{
return ( bufferOffset == rhs.bufferOffset )
&& ( bufferRowLength == rhs.bufferRowLength )
&& ( bufferImageHeight == rhs.bufferImageHeight )
&& ( imageSubresource == rhs.imageSubresource )
&& ( imageOffset == rhs.imageOffset )
&& ( imageExtent == rhs.imageExtent );
}
bool operator!=( BufferImageCopy const& rhs ) const
{
return !operator==( rhs );
}
DeviceSize bufferOffset;
uint32_t bufferRowLength;
uint32_t bufferImageHeight;
ImageSubresourceLayers imageSubresource;
Offset3D imageOffset;
Extent3D imageExtent;
};
static_assert( sizeof( BufferImageCopy ) == sizeof( VkBufferImageCopy ), "struct and wrapper have different size!" );
struct ImageResolve
{
ImageResolve( ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), Offset3D srcOffset_ = Offset3D(), ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), Offset3D dstOffset_ = Offset3D(), Extent3D extent_ = Extent3D() )
: srcSubresource( srcSubresource_ )
, srcOffset( srcOffset_ )
, dstSubresource( dstSubresource_ )
, dstOffset( dstOffset_ )
, extent( extent_ )
{
}
ImageResolve( VkImageResolve const & rhs )
{
memcpy( this, &rhs, sizeof( ImageResolve ) );
}
ImageResolve& operator=( VkImageResolve const & rhs )
{
memcpy( this, &rhs, sizeof( ImageResolve ) );
return *this;
}
ImageResolve& setSrcSubresource( ImageSubresourceLayers srcSubresource_ )
{
srcSubresource = srcSubresource_;
return *this;
}
ImageResolve& setSrcOffset( Offset3D srcOffset_ )
{
srcOffset = srcOffset_;
return *this;
}
ImageResolve& setDstSubresource( ImageSubresourceLayers dstSubresource_ )
{
dstSubresource = dstSubresource_;
return *this;
}
ImageResolve& setDstOffset( Offset3D dstOffset_ )
{
dstOffset = dstOffset_;
return *this;
}
ImageResolve& setExtent( Extent3D extent_ )
{
extent = extent_;
return *this;
}
operator const VkImageResolve&() const
{
return *reinterpret_cast<const VkImageResolve*>(this);
}
bool operator==( ImageResolve const& rhs ) const
{
return ( srcSubresource == rhs.srcSubresource )
&& ( srcOffset == rhs.srcOffset )
&& ( dstSubresource == rhs.dstSubresource )
&& ( dstOffset == rhs.dstOffset )
&& ( extent == rhs.extent );
}
bool operator!=( ImageResolve const& rhs ) const
{
return !operator==( rhs );
}
ImageSubresourceLayers srcSubresource;
Offset3D srcOffset;
ImageSubresourceLayers dstSubresource;
Offset3D dstOffset;
Extent3D extent;
};
static_assert( sizeof( ImageResolve ) == sizeof( VkImageResolve ), "struct and wrapper have different size!" );
struct ClearAttachment
{
ClearAttachment( ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t colorAttachment_ = 0, ClearValue clearValue_ = ClearValue() )
: aspectMask( aspectMask_ )
, colorAttachment( colorAttachment_ )
, clearValue( clearValue_ )
{
}
ClearAttachment( VkClearAttachment const & rhs )
{
memcpy( this, &rhs, sizeof( ClearAttachment ) );
}
ClearAttachment& operator=( VkClearAttachment const & rhs )
{
memcpy( this, &rhs, sizeof( ClearAttachment ) );
return *this;
}
ClearAttachment& setAspectMask( ImageAspectFlags aspectMask_ )
{
aspectMask = aspectMask_;
return *this;
}
ClearAttachment& setColorAttachment( uint32_t colorAttachment_ )
{
colorAttachment = colorAttachment_;
return *this;
}
ClearAttachment& setClearValue( ClearValue clearValue_ )
{
clearValue = clearValue_;
return *this;
}
operator const VkClearAttachment&() const
{
return *reinterpret_cast<const VkClearAttachment*>(this);
}
ImageAspectFlags aspectMask;
uint32_t colorAttachment;
ClearValue clearValue;
};
static_assert( sizeof( ClearAttachment ) == sizeof( VkClearAttachment ), "struct and wrapper have different size!" );
struct InputAttachmentAspectReferenceKHR
{
InputAttachmentAspectReferenceKHR( uint32_t subpass_ = 0, uint32_t inputAttachmentIndex_ = 0, ImageAspectFlags aspectMask_ = ImageAspectFlags() )
: subpass( subpass_ )
, inputAttachmentIndex( inputAttachmentIndex_ )
, aspectMask( aspectMask_ )
{
}
InputAttachmentAspectReferenceKHR( VkInputAttachmentAspectReferenceKHR const & rhs )
{
memcpy( this, &rhs, sizeof( InputAttachmentAspectReferenceKHR ) );
}
InputAttachmentAspectReferenceKHR& operator=( VkInputAttachmentAspectReferenceKHR const & rhs )
{
memcpy( this, &rhs, sizeof( InputAttachmentAspectReferenceKHR ) );
return *this;
}
InputAttachmentAspectReferenceKHR& setSubpass( uint32_t subpass_ )
{
subpass = subpass_;
return *this;
}
InputAttachmentAspectReferenceKHR& setInputAttachmentIndex( uint32_t inputAttachmentIndex_ )
{
inputAttachmentIndex = inputAttachmentIndex_;
return *this;
}
InputAttachmentAspectReferenceKHR& setAspectMask( ImageAspectFlags aspectMask_ )
{
aspectMask = aspectMask_;
return *this;
}
operator const VkInputAttachmentAspectReferenceKHR&() const
{
return *reinterpret_cast<const VkInputAttachmentAspectReferenceKHR*>(this);
}
bool operator==( InputAttachmentAspectReferenceKHR const& rhs ) const
{
return ( subpass == rhs.subpass )
&& ( inputAttachmentIndex == rhs.inputAttachmentIndex )
&& ( aspectMask == rhs.aspectMask );
}
bool operator!=( InputAttachmentAspectReferenceKHR const& rhs ) const
{
return !operator==( rhs );
}
uint32_t subpass;
uint32_t inputAttachmentIndex;
ImageAspectFlags aspectMask;
};
static_assert( sizeof( InputAttachmentAspectReferenceKHR ) == sizeof( VkInputAttachmentAspectReferenceKHR ), "struct and wrapper have different size!" );
struct RenderPassInputAttachmentAspectCreateInfoKHR
{
RenderPassInputAttachmentAspectCreateInfoKHR( uint32_t aspectReferenceCount_ = 0, const InputAttachmentAspectReferenceKHR* pAspectReferences_ = nullptr )
: sType( StructureType::eRenderPassInputAttachmentAspectCreateInfoKHR )
, pNext( nullptr )
, aspectReferenceCount( aspectReferenceCount_ )
, pAspectReferences( pAspectReferences_ )
{
}
RenderPassInputAttachmentAspectCreateInfoKHR( VkRenderPassInputAttachmentAspectCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassInputAttachmentAspectCreateInfoKHR ) );
}
RenderPassInputAttachmentAspectCreateInfoKHR& operator=( VkRenderPassInputAttachmentAspectCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassInputAttachmentAspectCreateInfoKHR ) );
return *this;
}
RenderPassInputAttachmentAspectCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
RenderPassInputAttachmentAspectCreateInfoKHR& setAspectReferenceCount( uint32_t aspectReferenceCount_ )
{
aspectReferenceCount = aspectReferenceCount_;
return *this;
}
RenderPassInputAttachmentAspectCreateInfoKHR& setPAspectReferences( const InputAttachmentAspectReferenceKHR* pAspectReferences_ )
{
pAspectReferences = pAspectReferences_;
return *this;
}
operator const VkRenderPassInputAttachmentAspectCreateInfoKHR&() const
{
return *reinterpret_cast<const VkRenderPassInputAttachmentAspectCreateInfoKHR*>(this);
}
bool operator==( RenderPassInputAttachmentAspectCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( aspectReferenceCount == rhs.aspectReferenceCount )
&& ( pAspectReferences == rhs.pAspectReferences );
}
bool operator!=( RenderPassInputAttachmentAspectCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t aspectReferenceCount;
const InputAttachmentAspectReferenceKHR* pAspectReferences;
};
static_assert( sizeof( RenderPassInputAttachmentAspectCreateInfoKHR ) == sizeof( VkRenderPassInputAttachmentAspectCreateInfoKHR ), "struct and wrapper have different size!" );
struct BindImagePlaneMemoryInfoKHR
{
BindImagePlaneMemoryInfoKHR( ImageAspectFlagBits planeAspect_ = ImageAspectFlagBits::eColor )
: sType( StructureType::eBindImagePlaneMemoryInfoKHR )
, pNext( nullptr )
, planeAspect( planeAspect_ )
{
}
BindImagePlaneMemoryInfoKHR( VkBindImagePlaneMemoryInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( BindImagePlaneMemoryInfoKHR ) );
}
BindImagePlaneMemoryInfoKHR& operator=( VkBindImagePlaneMemoryInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( BindImagePlaneMemoryInfoKHR ) );
return *this;
}
BindImagePlaneMemoryInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BindImagePlaneMemoryInfoKHR& setPlaneAspect( ImageAspectFlagBits planeAspect_ )
{
planeAspect = planeAspect_;
return *this;
}
operator const VkBindImagePlaneMemoryInfoKHR&() const
{
return *reinterpret_cast<const VkBindImagePlaneMemoryInfoKHR*>(this);
}
bool operator==( BindImagePlaneMemoryInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( planeAspect == rhs.planeAspect );
}
bool operator!=( BindImagePlaneMemoryInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ImageAspectFlagBits planeAspect;
};
static_assert( sizeof( BindImagePlaneMemoryInfoKHR ) == sizeof( VkBindImagePlaneMemoryInfoKHR ), "struct and wrapper have different size!" );
struct ImagePlaneMemoryRequirementsInfoKHR
{
ImagePlaneMemoryRequirementsInfoKHR( ImageAspectFlagBits planeAspect_ = ImageAspectFlagBits::eColor )
: sType( StructureType::eImagePlaneMemoryRequirementsInfoKHR )
, pNext( nullptr )
, planeAspect( planeAspect_ )
{
}
ImagePlaneMemoryRequirementsInfoKHR( VkImagePlaneMemoryRequirementsInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImagePlaneMemoryRequirementsInfoKHR ) );
}
ImagePlaneMemoryRequirementsInfoKHR& operator=( VkImagePlaneMemoryRequirementsInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImagePlaneMemoryRequirementsInfoKHR ) );
return *this;
}
ImagePlaneMemoryRequirementsInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImagePlaneMemoryRequirementsInfoKHR& setPlaneAspect( ImageAspectFlagBits planeAspect_ )
{
planeAspect = planeAspect_;
return *this;
}
operator const VkImagePlaneMemoryRequirementsInfoKHR&() const
{
return *reinterpret_cast<const VkImagePlaneMemoryRequirementsInfoKHR*>(this);
}
bool operator==( ImagePlaneMemoryRequirementsInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( planeAspect == rhs.planeAspect );
}
bool operator!=( ImagePlaneMemoryRequirementsInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ImageAspectFlagBits planeAspect;
};
static_assert( sizeof( ImagePlaneMemoryRequirementsInfoKHR ) == sizeof( VkImagePlaneMemoryRequirementsInfoKHR ), "struct and wrapper have different size!" );
enum class SparseImageFormatFlagBits
{
eSingleMiptail = VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT,
eAlignedMipSize = VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT,
eNonstandardBlockSize = VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT
};
using SparseImageFormatFlags = Flags<SparseImageFormatFlagBits, VkSparseImageFormatFlags>;
VULKAN_HPP_INLINE SparseImageFormatFlags operator|( SparseImageFormatFlagBits bit0, SparseImageFormatFlagBits bit1 )
{
return SparseImageFormatFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE SparseImageFormatFlags operator~( SparseImageFormatFlagBits bits )
{
return ~( SparseImageFormatFlags( bits ) );
}
template <> struct FlagTraits<SparseImageFormatFlagBits>
{
enum
{
allFlags = VkFlags(SparseImageFormatFlagBits::eSingleMiptail) | VkFlags(SparseImageFormatFlagBits::eAlignedMipSize) | VkFlags(SparseImageFormatFlagBits::eNonstandardBlockSize)
};
};
struct SparseImageFormatProperties
{
operator const VkSparseImageFormatProperties&() const
{
return *reinterpret_cast<const VkSparseImageFormatProperties*>(this);
}
bool operator==( SparseImageFormatProperties const& rhs ) const
{
return ( aspectMask == rhs.aspectMask )
&& ( imageGranularity == rhs.imageGranularity )
&& ( flags == rhs.flags );
}
bool operator!=( SparseImageFormatProperties const& rhs ) const
{
return !operator==( rhs );
}
ImageAspectFlags aspectMask;
Extent3D imageGranularity;
SparseImageFormatFlags flags;
};
static_assert( sizeof( SparseImageFormatProperties ) == sizeof( VkSparseImageFormatProperties ), "struct and wrapper have different size!" );
struct SparseImageMemoryRequirements
{
operator const VkSparseImageMemoryRequirements&() const
{
return *reinterpret_cast<const VkSparseImageMemoryRequirements*>(this);
}
bool operator==( SparseImageMemoryRequirements const& rhs ) const
{
return ( formatProperties == rhs.formatProperties )
&& ( imageMipTailFirstLod == rhs.imageMipTailFirstLod )
&& ( imageMipTailSize == rhs.imageMipTailSize )
&& ( imageMipTailOffset == rhs.imageMipTailOffset )
&& ( imageMipTailStride == rhs.imageMipTailStride );
}
bool operator!=( SparseImageMemoryRequirements const& rhs ) const
{
return !operator==( rhs );
}
SparseImageFormatProperties formatProperties;
uint32_t imageMipTailFirstLod;
DeviceSize imageMipTailSize;
DeviceSize imageMipTailOffset;
DeviceSize imageMipTailStride;
};
static_assert( sizeof( SparseImageMemoryRequirements ) == sizeof( VkSparseImageMemoryRequirements ), "struct and wrapper have different size!" );
struct SparseImageFormatProperties2KHR
{
operator const VkSparseImageFormatProperties2KHR&() const
{
return *reinterpret_cast<const VkSparseImageFormatProperties2KHR*>(this);
}
bool operator==( SparseImageFormatProperties2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( properties == rhs.properties );
}
bool operator!=( SparseImageFormatProperties2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
SparseImageFormatProperties properties;
};
static_assert( sizeof( SparseImageFormatProperties2KHR ) == sizeof( VkSparseImageFormatProperties2KHR ), "struct and wrapper have different size!" );
struct SparseImageMemoryRequirements2KHR
{
operator const VkSparseImageMemoryRequirements2KHR&() const
{
return *reinterpret_cast<const VkSparseImageMemoryRequirements2KHR*>(this);
}
bool operator==( SparseImageMemoryRequirements2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memoryRequirements == rhs.memoryRequirements );
}
bool operator!=( SparseImageMemoryRequirements2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
SparseImageMemoryRequirements memoryRequirements;
};
static_assert( sizeof( SparseImageMemoryRequirements2KHR ) == sizeof( VkSparseImageMemoryRequirements2KHR ), "struct and wrapper have different size!" );
enum class SparseMemoryBindFlagBits
{
eMetadata = VK_SPARSE_MEMORY_BIND_METADATA_BIT
};
using SparseMemoryBindFlags = Flags<SparseMemoryBindFlagBits, VkSparseMemoryBindFlags>;
VULKAN_HPP_INLINE SparseMemoryBindFlags operator|( SparseMemoryBindFlagBits bit0, SparseMemoryBindFlagBits bit1 )
{
return SparseMemoryBindFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE SparseMemoryBindFlags operator~( SparseMemoryBindFlagBits bits )
{
return ~( SparseMemoryBindFlags( bits ) );
}
template <> struct FlagTraits<SparseMemoryBindFlagBits>
{
enum
{
allFlags = VkFlags(SparseMemoryBindFlagBits::eMetadata)
};
};
struct SparseMemoryBind
{
SparseMemoryBind( DeviceSize resourceOffset_ = 0, DeviceSize size_ = 0, DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0, SparseMemoryBindFlags flags_ = SparseMemoryBindFlags() )
: resourceOffset( resourceOffset_ )
, size( size_ )
, memory( memory_ )
, memoryOffset( memoryOffset_ )
, flags( flags_ )
{
}
SparseMemoryBind( VkSparseMemoryBind const & rhs )
{
memcpy( this, &rhs, sizeof( SparseMemoryBind ) );
}
SparseMemoryBind& operator=( VkSparseMemoryBind const & rhs )
{
memcpy( this, &rhs, sizeof( SparseMemoryBind ) );
return *this;
}
SparseMemoryBind& setResourceOffset( DeviceSize resourceOffset_ )
{
resourceOffset = resourceOffset_;
return *this;
}
SparseMemoryBind& setSize( DeviceSize size_ )
{
size = size_;
return *this;
}
SparseMemoryBind& setMemory( DeviceMemory memory_ )
{
memory = memory_;
return *this;
}
SparseMemoryBind& setMemoryOffset( DeviceSize memoryOffset_ )
{
memoryOffset = memoryOffset_;
return *this;
}
SparseMemoryBind& setFlags( SparseMemoryBindFlags flags_ )
{
flags = flags_;
return *this;
}
operator const VkSparseMemoryBind&() const
{
return *reinterpret_cast<const VkSparseMemoryBind*>(this);
}
bool operator==( SparseMemoryBind const& rhs ) const
{
return ( resourceOffset == rhs.resourceOffset )
&& ( size == rhs.size )
&& ( memory == rhs.memory )
&& ( memoryOffset == rhs.memoryOffset )
&& ( flags == rhs.flags );
}
bool operator!=( SparseMemoryBind const& rhs ) const
{
return !operator==( rhs );
}
DeviceSize resourceOffset;
DeviceSize size;
DeviceMemory memory;
DeviceSize memoryOffset;
SparseMemoryBindFlags flags;
};
static_assert( sizeof( SparseMemoryBind ) == sizeof( VkSparseMemoryBind ), "struct and wrapper have different size!" );
struct SparseImageMemoryBind
{
SparseImageMemoryBind( ImageSubresource subresource_ = ImageSubresource(), Offset3D offset_ = Offset3D(), Extent3D extent_ = Extent3D(), DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0, SparseMemoryBindFlags flags_ = SparseMemoryBindFlags() )
: subresource( subresource_ )
, offset( offset_ )
, extent( extent_ )
, memory( memory_ )
, memoryOffset( memoryOffset_ )
, flags( flags_ )
{
}
SparseImageMemoryBind( VkSparseImageMemoryBind const & rhs )
{
memcpy( this, &rhs, sizeof( SparseImageMemoryBind ) );
}
SparseImageMemoryBind& operator=( VkSparseImageMemoryBind const & rhs )
{
memcpy( this, &rhs, sizeof( SparseImageMemoryBind ) );
return *this;
}
SparseImageMemoryBind& setSubresource( ImageSubresource subresource_ )
{
subresource = subresource_;
return *this;
}
SparseImageMemoryBind& setOffset( Offset3D offset_ )
{
offset = offset_;
return *this;
}
SparseImageMemoryBind& setExtent( Extent3D extent_ )
{
extent = extent_;
return *this;
}
SparseImageMemoryBind& setMemory( DeviceMemory memory_ )
{
memory = memory_;
return *this;
}
SparseImageMemoryBind& setMemoryOffset( DeviceSize memoryOffset_ )
{
memoryOffset = memoryOffset_;
return *this;
}
SparseImageMemoryBind& setFlags( SparseMemoryBindFlags flags_ )
{
flags = flags_;
return *this;
}
operator const VkSparseImageMemoryBind&() const
{
return *reinterpret_cast<const VkSparseImageMemoryBind*>(this);
}
bool operator==( SparseImageMemoryBind const& rhs ) const
{
return ( subresource == rhs.subresource )
&& ( offset == rhs.offset )
&& ( extent == rhs.extent )
&& ( memory == rhs.memory )
&& ( memoryOffset == rhs.memoryOffset )
&& ( flags == rhs.flags );
}
bool operator!=( SparseImageMemoryBind const& rhs ) const
{
return !operator==( rhs );
}
ImageSubresource subresource;
Offset3D offset;
Extent3D extent;
DeviceMemory memory;
DeviceSize memoryOffset;
SparseMemoryBindFlags flags;
};
static_assert( sizeof( SparseImageMemoryBind ) == sizeof( VkSparseImageMemoryBind ), "struct and wrapper have different size!" );
struct SparseBufferMemoryBindInfo
{
SparseBufferMemoryBindInfo( Buffer buffer_ = Buffer(), uint32_t bindCount_ = 0, const SparseMemoryBind* pBinds_ = nullptr )
: buffer( buffer_ )
, bindCount( bindCount_ )
, pBinds( pBinds_ )
{
}
SparseBufferMemoryBindInfo( VkSparseBufferMemoryBindInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SparseBufferMemoryBindInfo ) );
}
SparseBufferMemoryBindInfo& operator=( VkSparseBufferMemoryBindInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SparseBufferMemoryBindInfo ) );
return *this;
}
SparseBufferMemoryBindInfo& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
SparseBufferMemoryBindInfo& setBindCount( uint32_t bindCount_ )
{
bindCount = bindCount_;
return *this;
}
SparseBufferMemoryBindInfo& setPBinds( const SparseMemoryBind* pBinds_ )
{
pBinds = pBinds_;
return *this;
}
operator const VkSparseBufferMemoryBindInfo&() const
{
return *reinterpret_cast<const VkSparseBufferMemoryBindInfo*>(this);
}
bool operator==( SparseBufferMemoryBindInfo const& rhs ) const
{
return ( buffer == rhs.buffer )
&& ( bindCount == rhs.bindCount )
&& ( pBinds == rhs.pBinds );
}
bool operator!=( SparseBufferMemoryBindInfo const& rhs ) const
{
return !operator==( rhs );
}
Buffer buffer;
uint32_t bindCount;
const SparseMemoryBind* pBinds;
};
static_assert( sizeof( SparseBufferMemoryBindInfo ) == sizeof( VkSparseBufferMemoryBindInfo ), "struct and wrapper have different size!" );
struct SparseImageOpaqueMemoryBindInfo
{
SparseImageOpaqueMemoryBindInfo( Image image_ = Image(), uint32_t bindCount_ = 0, const SparseMemoryBind* pBinds_ = nullptr )
: image( image_ )
, bindCount( bindCount_ )
, pBinds( pBinds_ )
{
}
SparseImageOpaqueMemoryBindInfo( VkSparseImageOpaqueMemoryBindInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SparseImageOpaqueMemoryBindInfo ) );
}
SparseImageOpaqueMemoryBindInfo& operator=( VkSparseImageOpaqueMemoryBindInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SparseImageOpaqueMemoryBindInfo ) );
return *this;
}
SparseImageOpaqueMemoryBindInfo& setImage( Image image_ )
{
image = image_;
return *this;
}
SparseImageOpaqueMemoryBindInfo& setBindCount( uint32_t bindCount_ )
{
bindCount = bindCount_;
return *this;
}
SparseImageOpaqueMemoryBindInfo& setPBinds( const SparseMemoryBind* pBinds_ )
{
pBinds = pBinds_;
return *this;
}
operator const VkSparseImageOpaqueMemoryBindInfo&() const
{
return *reinterpret_cast<const VkSparseImageOpaqueMemoryBindInfo*>(this);
}
bool operator==( SparseImageOpaqueMemoryBindInfo const& rhs ) const
{
return ( image == rhs.image )
&& ( bindCount == rhs.bindCount )
&& ( pBinds == rhs.pBinds );
}
bool operator!=( SparseImageOpaqueMemoryBindInfo const& rhs ) const
{
return !operator==( rhs );
}
Image image;
uint32_t bindCount;
const SparseMemoryBind* pBinds;
};
static_assert( sizeof( SparseImageOpaqueMemoryBindInfo ) == sizeof( VkSparseImageOpaqueMemoryBindInfo ), "struct and wrapper have different size!" );
struct SparseImageMemoryBindInfo
{
SparseImageMemoryBindInfo( Image image_ = Image(), uint32_t bindCount_ = 0, const SparseImageMemoryBind* pBinds_ = nullptr )
: image( image_ )
, bindCount( bindCount_ )
, pBinds( pBinds_ )
{
}
SparseImageMemoryBindInfo( VkSparseImageMemoryBindInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SparseImageMemoryBindInfo ) );
}
SparseImageMemoryBindInfo& operator=( VkSparseImageMemoryBindInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SparseImageMemoryBindInfo ) );
return *this;
}
SparseImageMemoryBindInfo& setImage( Image image_ )
{
image = image_;
return *this;
}
SparseImageMemoryBindInfo& setBindCount( uint32_t bindCount_ )
{
bindCount = bindCount_;
return *this;
}
SparseImageMemoryBindInfo& setPBinds( const SparseImageMemoryBind* pBinds_ )
{
pBinds = pBinds_;
return *this;
}
operator const VkSparseImageMemoryBindInfo&() const
{
return *reinterpret_cast<const VkSparseImageMemoryBindInfo*>(this);
}
bool operator==( SparseImageMemoryBindInfo const& rhs ) const
{
return ( image == rhs.image )
&& ( bindCount == rhs.bindCount )
&& ( pBinds == rhs.pBinds );
}
bool operator!=( SparseImageMemoryBindInfo const& rhs ) const
{
return !operator==( rhs );
}
Image image;
uint32_t bindCount;
const SparseImageMemoryBind* pBinds;
};
static_assert( sizeof( SparseImageMemoryBindInfo ) == sizeof( VkSparseImageMemoryBindInfo ), "struct and wrapper have different size!" );
struct BindSparseInfo
{
BindSparseInfo( uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, uint32_t bufferBindCount_ = 0, const SparseBufferMemoryBindInfo* pBufferBinds_ = nullptr, uint32_t imageOpaqueBindCount_ = 0, const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds_ = nullptr, uint32_t imageBindCount_ = 0, const SparseImageMemoryBindInfo* pImageBinds_ = nullptr, uint32_t signalSemaphoreCount_ = 0, const Semaphore* pSignalSemaphores_ = nullptr )
: sType( StructureType::eBindSparseInfo )
, pNext( nullptr )
, waitSemaphoreCount( waitSemaphoreCount_ )
, pWaitSemaphores( pWaitSemaphores_ )
, bufferBindCount( bufferBindCount_ )
, pBufferBinds( pBufferBinds_ )
, imageOpaqueBindCount( imageOpaqueBindCount_ )
, pImageOpaqueBinds( pImageOpaqueBinds_ )
, imageBindCount( imageBindCount_ )
, pImageBinds( pImageBinds_ )
, signalSemaphoreCount( signalSemaphoreCount_ )
, pSignalSemaphores( pSignalSemaphores_ )
{
}
BindSparseInfo( VkBindSparseInfo const & rhs )
{
memcpy( this, &rhs, sizeof( BindSparseInfo ) );
}
BindSparseInfo& operator=( VkBindSparseInfo const & rhs )
{
memcpy( this, &rhs, sizeof( BindSparseInfo ) );
return *this;
}
BindSparseInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
BindSparseInfo& setWaitSemaphoreCount( uint32_t waitSemaphoreCount_ )
{
waitSemaphoreCount = waitSemaphoreCount_;
return *this;
}
BindSparseInfo& setPWaitSemaphores( const Semaphore* pWaitSemaphores_ )
{
pWaitSemaphores = pWaitSemaphores_;
return *this;
}
BindSparseInfo& setBufferBindCount( uint32_t bufferBindCount_ )
{
bufferBindCount = bufferBindCount_;
return *this;
}
BindSparseInfo& setPBufferBinds( const SparseBufferMemoryBindInfo* pBufferBinds_ )
{
pBufferBinds = pBufferBinds_;
return *this;
}
BindSparseInfo& setImageOpaqueBindCount( uint32_t imageOpaqueBindCount_ )
{
imageOpaqueBindCount = imageOpaqueBindCount_;
return *this;
}
BindSparseInfo& setPImageOpaqueBinds( const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds_ )
{
pImageOpaqueBinds = pImageOpaqueBinds_;
return *this;
}
BindSparseInfo& setImageBindCount( uint32_t imageBindCount_ )
{
imageBindCount = imageBindCount_;
return *this;
}
BindSparseInfo& setPImageBinds( const SparseImageMemoryBindInfo* pImageBinds_ )
{
pImageBinds = pImageBinds_;
return *this;
}
BindSparseInfo& setSignalSemaphoreCount( uint32_t signalSemaphoreCount_ )
{
signalSemaphoreCount = signalSemaphoreCount_;
return *this;
}
BindSparseInfo& setPSignalSemaphores( const Semaphore* pSignalSemaphores_ )
{
pSignalSemaphores = pSignalSemaphores_;
return *this;
}
operator const VkBindSparseInfo&() const
{
return *reinterpret_cast<const VkBindSparseInfo*>(this);
}
bool operator==( BindSparseInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( waitSemaphoreCount == rhs.waitSemaphoreCount )
&& ( pWaitSemaphores == rhs.pWaitSemaphores )
&& ( bufferBindCount == rhs.bufferBindCount )
&& ( pBufferBinds == rhs.pBufferBinds )
&& ( imageOpaqueBindCount == rhs.imageOpaqueBindCount )
&& ( pImageOpaqueBinds == rhs.pImageOpaqueBinds )
&& ( imageBindCount == rhs.imageBindCount )
&& ( pImageBinds == rhs.pImageBinds )
&& ( signalSemaphoreCount == rhs.signalSemaphoreCount )
&& ( pSignalSemaphores == rhs.pSignalSemaphores );
}
bool operator!=( BindSparseInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t waitSemaphoreCount;
const Semaphore* pWaitSemaphores;
uint32_t bufferBindCount;
const SparseBufferMemoryBindInfo* pBufferBinds;
uint32_t imageOpaqueBindCount;
const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
uint32_t imageBindCount;
const SparseImageMemoryBindInfo* pImageBinds;
uint32_t signalSemaphoreCount;
const Semaphore* pSignalSemaphores;
};
static_assert( sizeof( BindSparseInfo ) == sizeof( VkBindSparseInfo ), "struct and wrapper have different size!" );
enum class PipelineStageFlagBits
{
eTopOfPipe = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
eDrawIndirect = VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
eVertexInput = VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
eVertexShader = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
eTessellationControlShader = VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT,
eTessellationEvaluationShader = VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT,
eGeometryShader = VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT,
eFragmentShader = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
eEarlyFragmentTests = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT,
eLateFragmentTests = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
eColorAttachmentOutput = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
eComputeShader = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
eTransfer = VK_PIPELINE_STAGE_TRANSFER_BIT,
eBottomOfPipe = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
eHost = VK_PIPELINE_STAGE_HOST_BIT,
eAllGraphics = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
eAllCommands = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
eCommandProcessNVX = VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX
};
using PipelineStageFlags = Flags<PipelineStageFlagBits, VkPipelineStageFlags>;
VULKAN_HPP_INLINE PipelineStageFlags operator|( PipelineStageFlagBits bit0, PipelineStageFlagBits bit1 )
{
return PipelineStageFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE PipelineStageFlags operator~( PipelineStageFlagBits bits )
{
return ~( PipelineStageFlags( bits ) );
}
template <> struct FlagTraits<PipelineStageFlagBits>
{
enum
{
allFlags = VkFlags(PipelineStageFlagBits::eTopOfPipe) | VkFlags(PipelineStageFlagBits::eDrawIndirect) | VkFlags(PipelineStageFlagBits::eVertexInput) | VkFlags(PipelineStageFlagBits::eVertexShader) | VkFlags(PipelineStageFlagBits::eTessellationControlShader) | VkFlags(PipelineStageFlagBits::eTessellationEvaluationShader) | VkFlags(PipelineStageFlagBits::eGeometryShader) | VkFlags(PipelineStageFlagBits::eFragmentShader) | VkFlags(PipelineStageFlagBits::eEarlyFragmentTests) | VkFlags(PipelineStageFlagBits::eLateFragmentTests) | VkFlags(PipelineStageFlagBits::eColorAttachmentOutput) | VkFlags(PipelineStageFlagBits::eComputeShader) | VkFlags(PipelineStageFlagBits::eTransfer) | VkFlags(PipelineStageFlagBits::eBottomOfPipe) | VkFlags(PipelineStageFlagBits::eHost) | VkFlags(PipelineStageFlagBits::eAllGraphics) | VkFlags(PipelineStageFlagBits::eAllCommands) | VkFlags(PipelineStageFlagBits::eCommandProcessNVX)
};
};
enum class CommandPoolCreateFlagBits
{
eTransient = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT,
eResetCommandBuffer = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT
};
using CommandPoolCreateFlags = Flags<CommandPoolCreateFlagBits, VkCommandPoolCreateFlags>;
VULKAN_HPP_INLINE CommandPoolCreateFlags operator|( CommandPoolCreateFlagBits bit0, CommandPoolCreateFlagBits bit1 )
{
return CommandPoolCreateFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE CommandPoolCreateFlags operator~( CommandPoolCreateFlagBits bits )
{
return ~( CommandPoolCreateFlags( bits ) );
}
template <> struct FlagTraits<CommandPoolCreateFlagBits>
{
enum
{
allFlags = VkFlags(CommandPoolCreateFlagBits::eTransient) | VkFlags(CommandPoolCreateFlagBits::eResetCommandBuffer)
};
};
struct CommandPoolCreateInfo
{
CommandPoolCreateInfo( CommandPoolCreateFlags flags_ = CommandPoolCreateFlags(), uint32_t queueFamilyIndex_ = 0 )
: sType( StructureType::eCommandPoolCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, queueFamilyIndex( queueFamilyIndex_ )
{
}
CommandPoolCreateInfo( VkCommandPoolCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( CommandPoolCreateInfo ) );
}
CommandPoolCreateInfo& operator=( VkCommandPoolCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( CommandPoolCreateInfo ) );
return *this;
}
CommandPoolCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
CommandPoolCreateInfo& setFlags( CommandPoolCreateFlags flags_ )
{
flags = flags_;
return *this;
}
CommandPoolCreateInfo& setQueueFamilyIndex( uint32_t queueFamilyIndex_ )
{
queueFamilyIndex = queueFamilyIndex_;
return *this;
}
operator const VkCommandPoolCreateInfo&() const
{
return *reinterpret_cast<const VkCommandPoolCreateInfo*>(this);
}
bool operator==( CommandPoolCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( queueFamilyIndex == rhs.queueFamilyIndex );
}
bool operator!=( CommandPoolCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
CommandPoolCreateFlags flags;
uint32_t queueFamilyIndex;
};
static_assert( sizeof( CommandPoolCreateInfo ) == sizeof( VkCommandPoolCreateInfo ), "struct and wrapper have different size!" );
enum class CommandPoolResetFlagBits
{
eReleaseResources = VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT
};
using CommandPoolResetFlags = Flags<CommandPoolResetFlagBits, VkCommandPoolResetFlags>;
VULKAN_HPP_INLINE CommandPoolResetFlags operator|( CommandPoolResetFlagBits bit0, CommandPoolResetFlagBits bit1 )
{
return CommandPoolResetFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE CommandPoolResetFlags operator~( CommandPoolResetFlagBits bits )
{
return ~( CommandPoolResetFlags( bits ) );
}
template <> struct FlagTraits<CommandPoolResetFlagBits>
{
enum
{
allFlags = VkFlags(CommandPoolResetFlagBits::eReleaseResources)
};
};
enum class CommandBufferResetFlagBits
{
eReleaseResources = VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT
};
using CommandBufferResetFlags = Flags<CommandBufferResetFlagBits, VkCommandBufferResetFlags>;
VULKAN_HPP_INLINE CommandBufferResetFlags operator|( CommandBufferResetFlagBits bit0, CommandBufferResetFlagBits bit1 )
{
return CommandBufferResetFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE CommandBufferResetFlags operator~( CommandBufferResetFlagBits bits )
{
return ~( CommandBufferResetFlags( bits ) );
}
template <> struct FlagTraits<CommandBufferResetFlagBits>
{
enum
{
allFlags = VkFlags(CommandBufferResetFlagBits::eReleaseResources)
};
};
enum class SampleCountFlagBits
{
e1 = VK_SAMPLE_COUNT_1_BIT,
e2 = VK_SAMPLE_COUNT_2_BIT,
e4 = VK_SAMPLE_COUNT_4_BIT,
e8 = VK_SAMPLE_COUNT_8_BIT,
e16 = VK_SAMPLE_COUNT_16_BIT,
e32 = VK_SAMPLE_COUNT_32_BIT,
e64 = VK_SAMPLE_COUNT_64_BIT
};
using SampleCountFlags = Flags<SampleCountFlagBits, VkSampleCountFlags>;
VULKAN_HPP_INLINE SampleCountFlags operator|( SampleCountFlagBits bit0, SampleCountFlagBits bit1 )
{
return SampleCountFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE SampleCountFlags operator~( SampleCountFlagBits bits )
{
return ~( SampleCountFlags( bits ) );
}
template <> struct FlagTraits<SampleCountFlagBits>
{
enum
{
allFlags = VkFlags(SampleCountFlagBits::e1) | VkFlags(SampleCountFlagBits::e2) | VkFlags(SampleCountFlagBits::e4) | VkFlags(SampleCountFlagBits::e8) | VkFlags(SampleCountFlagBits::e16) | VkFlags(SampleCountFlagBits::e32) | VkFlags(SampleCountFlagBits::e64)
};
};
struct ImageFormatProperties
{
operator const VkImageFormatProperties&() const
{
return *reinterpret_cast<const VkImageFormatProperties*>(this);
}
bool operator==( ImageFormatProperties const& rhs ) const
{
return ( maxExtent == rhs.maxExtent )
&& ( maxMipLevels == rhs.maxMipLevels )
&& ( maxArrayLayers == rhs.maxArrayLayers )
&& ( sampleCounts == rhs.sampleCounts )
&& ( maxResourceSize == rhs.maxResourceSize );
}
bool operator!=( ImageFormatProperties const& rhs ) const
{
return !operator==( rhs );
}
Extent3D maxExtent;
uint32_t maxMipLevels;
uint32_t maxArrayLayers;
SampleCountFlags sampleCounts;
DeviceSize maxResourceSize;
};
static_assert( sizeof( ImageFormatProperties ) == sizeof( VkImageFormatProperties ), "struct and wrapper have different size!" );
struct ImageCreateInfo
{
ImageCreateInfo( ImageCreateFlags flags_ = ImageCreateFlags(), ImageType imageType_ = ImageType::e1D, Format format_ = Format::eUndefined, Extent3D extent_ = Extent3D(), uint32_t mipLevels_ = 0, uint32_t arrayLayers_ = 0, SampleCountFlagBits samples_ = SampleCountFlagBits::e1, ImageTiling tiling_ = ImageTiling::eOptimal, ImageUsageFlags usage_ = ImageUsageFlags(), SharingMode sharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr, ImageLayout initialLayout_ = ImageLayout::eUndefined )
: sType( StructureType::eImageCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, imageType( imageType_ )
, format( format_ )
, extent( extent_ )
, mipLevels( mipLevels_ )
, arrayLayers( arrayLayers_ )
, samples( samples_ )
, tiling( tiling_ )
, usage( usage_ )
, sharingMode( sharingMode_ )
, queueFamilyIndexCount( queueFamilyIndexCount_ )
, pQueueFamilyIndices( pQueueFamilyIndices_ )
, initialLayout( initialLayout_ )
{
}
ImageCreateInfo( VkImageCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ImageCreateInfo ) );
}
ImageCreateInfo& operator=( VkImageCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( ImageCreateInfo ) );
return *this;
}
ImageCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImageCreateInfo& setFlags( ImageCreateFlags flags_ )
{
flags = flags_;
return *this;
}
ImageCreateInfo& setImageType( ImageType imageType_ )
{
imageType = imageType_;
return *this;
}
ImageCreateInfo& setFormat( Format format_ )
{
format = format_;
return *this;
}
ImageCreateInfo& setExtent( Extent3D extent_ )
{
extent = extent_;
return *this;
}
ImageCreateInfo& setMipLevels( uint32_t mipLevels_ )
{
mipLevels = mipLevels_;
return *this;
}
ImageCreateInfo& setArrayLayers( uint32_t arrayLayers_ )
{
arrayLayers = arrayLayers_;
return *this;
}
ImageCreateInfo& setSamples( SampleCountFlagBits samples_ )
{
samples = samples_;
return *this;
}
ImageCreateInfo& setTiling( ImageTiling tiling_ )
{
tiling = tiling_;
return *this;
}
ImageCreateInfo& setUsage( ImageUsageFlags usage_ )
{
usage = usage_;
return *this;
}
ImageCreateInfo& setSharingMode( SharingMode sharingMode_ )
{
sharingMode = sharingMode_;
return *this;
}
ImageCreateInfo& setQueueFamilyIndexCount( uint32_t queueFamilyIndexCount_ )
{
queueFamilyIndexCount = queueFamilyIndexCount_;
return *this;
}
ImageCreateInfo& setPQueueFamilyIndices( const uint32_t* pQueueFamilyIndices_ )
{
pQueueFamilyIndices = pQueueFamilyIndices_;
return *this;
}
ImageCreateInfo& setInitialLayout( ImageLayout initialLayout_ )
{
initialLayout = initialLayout_;
return *this;
}
operator const VkImageCreateInfo&() const
{
return *reinterpret_cast<const VkImageCreateInfo*>(this);
}
bool operator==( ImageCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( imageType == rhs.imageType )
&& ( format == rhs.format )
&& ( extent == rhs.extent )
&& ( mipLevels == rhs.mipLevels )
&& ( arrayLayers == rhs.arrayLayers )
&& ( samples == rhs.samples )
&& ( tiling == rhs.tiling )
&& ( usage == rhs.usage )
&& ( sharingMode == rhs.sharingMode )
&& ( queueFamilyIndexCount == rhs.queueFamilyIndexCount )
&& ( pQueueFamilyIndices == rhs.pQueueFamilyIndices )
&& ( initialLayout == rhs.initialLayout );
}
bool operator!=( ImageCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ImageCreateFlags flags;
ImageType imageType;
Format format;
Extent3D extent;
uint32_t mipLevels;
uint32_t arrayLayers;
SampleCountFlagBits samples;
ImageTiling tiling;
ImageUsageFlags usage;
SharingMode sharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;
ImageLayout initialLayout;
};
static_assert( sizeof( ImageCreateInfo ) == sizeof( VkImageCreateInfo ), "struct and wrapper have different size!" );
struct PipelineMultisampleStateCreateInfo
{
PipelineMultisampleStateCreateInfo( PipelineMultisampleStateCreateFlags flags_ = PipelineMultisampleStateCreateFlags(), SampleCountFlagBits rasterizationSamples_ = SampleCountFlagBits::e1, Bool32 sampleShadingEnable_ = 0, float minSampleShading_ = 0, const SampleMask* pSampleMask_ = nullptr, Bool32 alphaToCoverageEnable_ = 0, Bool32 alphaToOneEnable_ = 0 )
: sType( StructureType::ePipelineMultisampleStateCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, rasterizationSamples( rasterizationSamples_ )
, sampleShadingEnable( sampleShadingEnable_ )
, minSampleShading( minSampleShading_ )
, pSampleMask( pSampleMask_ )
, alphaToCoverageEnable( alphaToCoverageEnable_ )
, alphaToOneEnable( alphaToOneEnable_ )
{
}
PipelineMultisampleStateCreateInfo( VkPipelineMultisampleStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineMultisampleStateCreateInfo ) );
}
PipelineMultisampleStateCreateInfo& operator=( VkPipelineMultisampleStateCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineMultisampleStateCreateInfo ) );
return *this;
}
PipelineMultisampleStateCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineMultisampleStateCreateInfo& setFlags( PipelineMultisampleStateCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PipelineMultisampleStateCreateInfo& setRasterizationSamples( SampleCountFlagBits rasterizationSamples_ )
{
rasterizationSamples = rasterizationSamples_;
return *this;
}
PipelineMultisampleStateCreateInfo& setSampleShadingEnable( Bool32 sampleShadingEnable_ )
{
sampleShadingEnable = sampleShadingEnable_;
return *this;
}
PipelineMultisampleStateCreateInfo& setMinSampleShading( float minSampleShading_ )
{
minSampleShading = minSampleShading_;
return *this;
}
PipelineMultisampleStateCreateInfo& setPSampleMask( const SampleMask* pSampleMask_ )
{
pSampleMask = pSampleMask_;
return *this;
}
PipelineMultisampleStateCreateInfo& setAlphaToCoverageEnable( Bool32 alphaToCoverageEnable_ )
{
alphaToCoverageEnable = alphaToCoverageEnable_;
return *this;
}
PipelineMultisampleStateCreateInfo& setAlphaToOneEnable( Bool32 alphaToOneEnable_ )
{
alphaToOneEnable = alphaToOneEnable_;
return *this;
}
operator const VkPipelineMultisampleStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineMultisampleStateCreateInfo*>(this);
}
bool operator==( PipelineMultisampleStateCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( rasterizationSamples == rhs.rasterizationSamples )
&& ( sampleShadingEnable == rhs.sampleShadingEnable )
&& ( minSampleShading == rhs.minSampleShading )
&& ( pSampleMask == rhs.pSampleMask )
&& ( alphaToCoverageEnable == rhs.alphaToCoverageEnable )
&& ( alphaToOneEnable == rhs.alphaToOneEnable );
}
bool operator!=( PipelineMultisampleStateCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineMultisampleStateCreateFlags flags;
SampleCountFlagBits rasterizationSamples;
Bool32 sampleShadingEnable;
float minSampleShading;
const SampleMask* pSampleMask;
Bool32 alphaToCoverageEnable;
Bool32 alphaToOneEnable;
};
static_assert( sizeof( PipelineMultisampleStateCreateInfo ) == sizeof( VkPipelineMultisampleStateCreateInfo ), "struct and wrapper have different size!" );
struct GraphicsPipelineCreateInfo
{
GraphicsPipelineCreateInfo( PipelineCreateFlags flags_ = PipelineCreateFlags(), uint32_t stageCount_ = 0, const PipelineShaderStageCreateInfo* pStages_ = nullptr, const PipelineVertexInputStateCreateInfo* pVertexInputState_ = nullptr, const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState_ = nullptr, const PipelineTessellationStateCreateInfo* pTessellationState_ = nullptr, const PipelineViewportStateCreateInfo* pViewportState_ = nullptr, const PipelineRasterizationStateCreateInfo* pRasterizationState_ = nullptr, const PipelineMultisampleStateCreateInfo* pMultisampleState_ = nullptr, const PipelineDepthStencilStateCreateInfo* pDepthStencilState_ = nullptr, const PipelineColorBlendStateCreateInfo* pColorBlendState_ = nullptr, const PipelineDynamicStateCreateInfo* pDynamicState_ = nullptr, PipelineLayout layout_ = PipelineLayout(), RenderPass renderPass_ = RenderPass(), uint32_t subpass_ = 0, Pipeline basePipelineHandle_ = Pipeline(), int32_t basePipelineIndex_ = 0 )
: sType( StructureType::eGraphicsPipelineCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, stageCount( stageCount_ )
, pStages( pStages_ )
, pVertexInputState( pVertexInputState_ )
, pInputAssemblyState( pInputAssemblyState_ )
, pTessellationState( pTessellationState_ )
, pViewportState( pViewportState_ )
, pRasterizationState( pRasterizationState_ )
, pMultisampleState( pMultisampleState_ )
, pDepthStencilState( pDepthStencilState_ )
, pColorBlendState( pColorBlendState_ )
, pDynamicState( pDynamicState_ )
, layout( layout_ )
, renderPass( renderPass_ )
, subpass( subpass_ )
, basePipelineHandle( basePipelineHandle_ )
, basePipelineIndex( basePipelineIndex_ )
{
}
GraphicsPipelineCreateInfo( VkGraphicsPipelineCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( GraphicsPipelineCreateInfo ) );
}
GraphicsPipelineCreateInfo& operator=( VkGraphicsPipelineCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( GraphicsPipelineCreateInfo ) );
return *this;
}
GraphicsPipelineCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
GraphicsPipelineCreateInfo& setFlags( PipelineCreateFlags flags_ )
{
flags = flags_;
return *this;
}
GraphicsPipelineCreateInfo& setStageCount( uint32_t stageCount_ )
{
stageCount = stageCount_;
return *this;
}
GraphicsPipelineCreateInfo& setPStages( const PipelineShaderStageCreateInfo* pStages_ )
{
pStages = pStages_;
return *this;
}
GraphicsPipelineCreateInfo& setPVertexInputState( const PipelineVertexInputStateCreateInfo* pVertexInputState_ )
{
pVertexInputState = pVertexInputState_;
return *this;
}
GraphicsPipelineCreateInfo& setPInputAssemblyState( const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState_ )
{
pInputAssemblyState = pInputAssemblyState_;
return *this;
}
GraphicsPipelineCreateInfo& setPTessellationState( const PipelineTessellationStateCreateInfo* pTessellationState_ )
{
pTessellationState = pTessellationState_;
return *this;
}
GraphicsPipelineCreateInfo& setPViewportState( const PipelineViewportStateCreateInfo* pViewportState_ )
{
pViewportState = pViewportState_;
return *this;
}
GraphicsPipelineCreateInfo& setPRasterizationState( const PipelineRasterizationStateCreateInfo* pRasterizationState_ )
{
pRasterizationState = pRasterizationState_;
return *this;
}
GraphicsPipelineCreateInfo& setPMultisampleState( const PipelineMultisampleStateCreateInfo* pMultisampleState_ )
{
pMultisampleState = pMultisampleState_;
return *this;
}
GraphicsPipelineCreateInfo& setPDepthStencilState( const PipelineDepthStencilStateCreateInfo* pDepthStencilState_ )
{
pDepthStencilState = pDepthStencilState_;
return *this;
}
GraphicsPipelineCreateInfo& setPColorBlendState( const PipelineColorBlendStateCreateInfo* pColorBlendState_ )
{
pColorBlendState = pColorBlendState_;
return *this;
}
GraphicsPipelineCreateInfo& setPDynamicState( const PipelineDynamicStateCreateInfo* pDynamicState_ )
{
pDynamicState = pDynamicState_;
return *this;
}
GraphicsPipelineCreateInfo& setLayout( PipelineLayout layout_ )
{
layout = layout_;
return *this;
}
GraphicsPipelineCreateInfo& setRenderPass( RenderPass renderPass_ )
{
renderPass = renderPass_;
return *this;
}
GraphicsPipelineCreateInfo& setSubpass( uint32_t subpass_ )
{
subpass = subpass_;
return *this;
}
GraphicsPipelineCreateInfo& setBasePipelineHandle( Pipeline basePipelineHandle_ )
{
basePipelineHandle = basePipelineHandle_;
return *this;
}
GraphicsPipelineCreateInfo& setBasePipelineIndex( int32_t basePipelineIndex_ )
{
basePipelineIndex = basePipelineIndex_;
return *this;
}
operator const VkGraphicsPipelineCreateInfo&() const
{
return *reinterpret_cast<const VkGraphicsPipelineCreateInfo*>(this);
}
bool operator==( GraphicsPipelineCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( stageCount == rhs.stageCount )
&& ( pStages == rhs.pStages )
&& ( pVertexInputState == rhs.pVertexInputState )
&& ( pInputAssemblyState == rhs.pInputAssemblyState )
&& ( pTessellationState == rhs.pTessellationState )
&& ( pViewportState == rhs.pViewportState )
&& ( pRasterizationState == rhs.pRasterizationState )
&& ( pMultisampleState == rhs.pMultisampleState )
&& ( pDepthStencilState == rhs.pDepthStencilState )
&& ( pColorBlendState == rhs.pColorBlendState )
&& ( pDynamicState == rhs.pDynamicState )
&& ( layout == rhs.layout )
&& ( renderPass == rhs.renderPass )
&& ( subpass == rhs.subpass )
&& ( basePipelineHandle == rhs.basePipelineHandle )
&& ( basePipelineIndex == rhs.basePipelineIndex );
}
bool operator!=( GraphicsPipelineCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineCreateFlags flags;
uint32_t stageCount;
const PipelineShaderStageCreateInfo* pStages;
const PipelineVertexInputStateCreateInfo* pVertexInputState;
const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
const PipelineTessellationStateCreateInfo* pTessellationState;
const PipelineViewportStateCreateInfo* pViewportState;
const PipelineRasterizationStateCreateInfo* pRasterizationState;
const PipelineMultisampleStateCreateInfo* pMultisampleState;
const PipelineDepthStencilStateCreateInfo* pDepthStencilState;
const PipelineColorBlendStateCreateInfo* pColorBlendState;
const PipelineDynamicStateCreateInfo* pDynamicState;
PipelineLayout layout;
RenderPass renderPass;
uint32_t subpass;
Pipeline basePipelineHandle;
int32_t basePipelineIndex;
};
static_assert( sizeof( GraphicsPipelineCreateInfo ) == sizeof( VkGraphicsPipelineCreateInfo ), "struct and wrapper have different size!" );
struct PhysicalDeviceLimits
{
operator const VkPhysicalDeviceLimits&() const
{
return *reinterpret_cast<const VkPhysicalDeviceLimits*>(this);
}
bool operator==( PhysicalDeviceLimits const& rhs ) const
{
return ( maxImageDimension1D == rhs.maxImageDimension1D )
&& ( maxImageDimension2D == rhs.maxImageDimension2D )
&& ( maxImageDimension3D == rhs.maxImageDimension3D )
&& ( maxImageDimensionCube == rhs.maxImageDimensionCube )
&& ( maxImageArrayLayers == rhs.maxImageArrayLayers )
&& ( maxTexelBufferElements == rhs.maxTexelBufferElements )
&& ( maxUniformBufferRange == rhs.maxUniformBufferRange )
&& ( maxStorageBufferRange == rhs.maxStorageBufferRange )
&& ( maxPushConstantsSize == rhs.maxPushConstantsSize )
&& ( maxMemoryAllocationCount == rhs.maxMemoryAllocationCount )
&& ( maxSamplerAllocationCount == rhs.maxSamplerAllocationCount )
&& ( bufferImageGranularity == rhs.bufferImageGranularity )
&& ( sparseAddressSpaceSize == rhs.sparseAddressSpaceSize )
&& ( maxBoundDescriptorSets == rhs.maxBoundDescriptorSets )
&& ( maxPerStageDescriptorSamplers == rhs.maxPerStageDescriptorSamplers )
&& ( maxPerStageDescriptorUniformBuffers == rhs.maxPerStageDescriptorUniformBuffers )
&& ( maxPerStageDescriptorStorageBuffers == rhs.maxPerStageDescriptorStorageBuffers )
&& ( maxPerStageDescriptorSampledImages == rhs.maxPerStageDescriptorSampledImages )
&& ( maxPerStageDescriptorStorageImages == rhs.maxPerStageDescriptorStorageImages )
&& ( maxPerStageDescriptorInputAttachments == rhs.maxPerStageDescriptorInputAttachments )
&& ( maxPerStageResources == rhs.maxPerStageResources )
&& ( maxDescriptorSetSamplers == rhs.maxDescriptorSetSamplers )
&& ( maxDescriptorSetUniformBuffers == rhs.maxDescriptorSetUniformBuffers )
&& ( maxDescriptorSetUniformBuffersDynamic == rhs.maxDescriptorSetUniformBuffersDynamic )
&& ( maxDescriptorSetStorageBuffers == rhs.maxDescriptorSetStorageBuffers )
&& ( maxDescriptorSetStorageBuffersDynamic == rhs.maxDescriptorSetStorageBuffersDynamic )
&& ( maxDescriptorSetSampledImages == rhs.maxDescriptorSetSampledImages )
&& ( maxDescriptorSetStorageImages == rhs.maxDescriptorSetStorageImages )
&& ( maxDescriptorSetInputAttachments == rhs.maxDescriptorSetInputAttachments )
&& ( maxVertexInputAttributes == rhs.maxVertexInputAttributes )
&& ( maxVertexInputBindings == rhs.maxVertexInputBindings )
&& ( maxVertexInputAttributeOffset == rhs.maxVertexInputAttributeOffset )
&& ( maxVertexInputBindingStride == rhs.maxVertexInputBindingStride )
&& ( maxVertexOutputComponents == rhs.maxVertexOutputComponents )
&& ( maxTessellationGenerationLevel == rhs.maxTessellationGenerationLevel )
&& ( maxTessellationPatchSize == rhs.maxTessellationPatchSize )
&& ( maxTessellationControlPerVertexInputComponents == rhs.maxTessellationControlPerVertexInputComponents )
&& ( maxTessellationControlPerVertexOutputComponents == rhs.maxTessellationControlPerVertexOutputComponents )
&& ( maxTessellationControlPerPatchOutputComponents == rhs.maxTessellationControlPerPatchOutputComponents )
&& ( maxTessellationControlTotalOutputComponents == rhs.maxTessellationControlTotalOutputComponents )
&& ( maxTessellationEvaluationInputComponents == rhs.maxTessellationEvaluationInputComponents )
&& ( maxTessellationEvaluationOutputComponents == rhs.maxTessellationEvaluationOutputComponents )
&& ( maxGeometryShaderInvocations == rhs.maxGeometryShaderInvocations )
&& ( maxGeometryInputComponents == rhs.maxGeometryInputComponents )
&& ( maxGeometryOutputComponents == rhs.maxGeometryOutputComponents )
&& ( maxGeometryOutputVertices == rhs.maxGeometryOutputVertices )
&& ( maxGeometryTotalOutputComponents == rhs.maxGeometryTotalOutputComponents )
&& ( maxFragmentInputComponents == rhs.maxFragmentInputComponents )
&& ( maxFragmentOutputAttachments == rhs.maxFragmentOutputAttachments )
&& ( maxFragmentDualSrcAttachments == rhs.maxFragmentDualSrcAttachments )
&& ( maxFragmentCombinedOutputResources == rhs.maxFragmentCombinedOutputResources )
&& ( maxComputeSharedMemorySize == rhs.maxComputeSharedMemorySize )
&& ( memcmp( maxComputeWorkGroupCount, rhs.maxComputeWorkGroupCount, 3 * sizeof( uint32_t ) ) == 0 )
&& ( maxComputeWorkGroupInvocations == rhs.maxComputeWorkGroupInvocations )
&& ( memcmp( maxComputeWorkGroupSize, rhs.maxComputeWorkGroupSize, 3 * sizeof( uint32_t ) ) == 0 )
&& ( subPixelPrecisionBits == rhs.subPixelPrecisionBits )
&& ( subTexelPrecisionBits == rhs.subTexelPrecisionBits )
&& ( mipmapPrecisionBits == rhs.mipmapPrecisionBits )
&& ( maxDrawIndexedIndexValue == rhs.maxDrawIndexedIndexValue )
&& ( maxDrawIndirectCount == rhs.maxDrawIndirectCount )
&& ( maxSamplerLodBias == rhs.maxSamplerLodBias )
&& ( maxSamplerAnisotropy == rhs.maxSamplerAnisotropy )
&& ( maxViewports == rhs.maxViewports )
&& ( memcmp( maxViewportDimensions, rhs.maxViewportDimensions, 2 * sizeof( uint32_t ) ) == 0 )
&& ( memcmp( viewportBoundsRange, rhs.viewportBoundsRange, 2 * sizeof( float ) ) == 0 )
&& ( viewportSubPixelBits == rhs.viewportSubPixelBits )
&& ( minMemoryMapAlignment == rhs.minMemoryMapAlignment )
&& ( minTexelBufferOffsetAlignment == rhs.minTexelBufferOffsetAlignment )
&& ( minUniformBufferOffsetAlignment == rhs.minUniformBufferOffsetAlignment )
&& ( minStorageBufferOffsetAlignment == rhs.minStorageBufferOffsetAlignment )
&& ( minTexelOffset == rhs.minTexelOffset )
&& ( maxTexelOffset == rhs.maxTexelOffset )
&& ( minTexelGatherOffset == rhs.minTexelGatherOffset )
&& ( maxTexelGatherOffset == rhs.maxTexelGatherOffset )
&& ( minInterpolationOffset == rhs.minInterpolationOffset )
&& ( maxInterpolationOffset == rhs.maxInterpolationOffset )
&& ( subPixelInterpolationOffsetBits == rhs.subPixelInterpolationOffsetBits )
&& ( maxFramebufferWidth == rhs.maxFramebufferWidth )
&& ( maxFramebufferHeight == rhs.maxFramebufferHeight )
&& ( maxFramebufferLayers == rhs.maxFramebufferLayers )
&& ( framebufferColorSampleCounts == rhs.framebufferColorSampleCounts )
&& ( framebufferDepthSampleCounts == rhs.framebufferDepthSampleCounts )
&& ( framebufferStencilSampleCounts == rhs.framebufferStencilSampleCounts )
&& ( framebufferNoAttachmentsSampleCounts == rhs.framebufferNoAttachmentsSampleCounts )
&& ( maxColorAttachments == rhs.maxColorAttachments )
&& ( sampledImageColorSampleCounts == rhs.sampledImageColorSampleCounts )
&& ( sampledImageIntegerSampleCounts == rhs.sampledImageIntegerSampleCounts )
&& ( sampledImageDepthSampleCounts == rhs.sampledImageDepthSampleCounts )
&& ( sampledImageStencilSampleCounts == rhs.sampledImageStencilSampleCounts )
&& ( storageImageSampleCounts == rhs.storageImageSampleCounts )
&& ( maxSampleMaskWords == rhs.maxSampleMaskWords )
&& ( timestampComputeAndGraphics == rhs.timestampComputeAndGraphics )
&& ( timestampPeriod == rhs.timestampPeriod )
&& ( maxClipDistances == rhs.maxClipDistances )
&& ( maxCullDistances == rhs.maxCullDistances )
&& ( maxCombinedClipAndCullDistances == rhs.maxCombinedClipAndCullDistances )
&& ( discreteQueuePriorities == rhs.discreteQueuePriorities )
&& ( memcmp( pointSizeRange, rhs.pointSizeRange, 2 * sizeof( float ) ) == 0 )
&& ( memcmp( lineWidthRange, rhs.lineWidthRange, 2 * sizeof( float ) ) == 0 )
&& ( pointSizeGranularity == rhs.pointSizeGranularity )
&& ( lineWidthGranularity == rhs.lineWidthGranularity )
&& ( strictLines == rhs.strictLines )
&& ( standardSampleLocations == rhs.standardSampleLocations )
&& ( optimalBufferCopyOffsetAlignment == rhs.optimalBufferCopyOffsetAlignment )
&& ( optimalBufferCopyRowPitchAlignment == rhs.optimalBufferCopyRowPitchAlignment )
&& ( nonCoherentAtomSize == rhs.nonCoherentAtomSize );
}
bool operator!=( PhysicalDeviceLimits const& rhs ) const
{
return !operator==( rhs );
}
uint32_t maxImageDimension1D;
uint32_t maxImageDimension2D;
uint32_t maxImageDimension3D;
uint32_t maxImageDimensionCube;
uint32_t maxImageArrayLayers;
uint32_t maxTexelBufferElements;
uint32_t maxUniformBufferRange;
uint32_t maxStorageBufferRange;
uint32_t maxPushConstantsSize;
uint32_t maxMemoryAllocationCount;
uint32_t maxSamplerAllocationCount;
DeviceSize bufferImageGranularity;
DeviceSize sparseAddressSpaceSize;
uint32_t maxBoundDescriptorSets;
uint32_t maxPerStageDescriptorSamplers;
uint32_t maxPerStageDescriptorUniformBuffers;
uint32_t maxPerStageDescriptorStorageBuffers;
uint32_t maxPerStageDescriptorSampledImages;
uint32_t maxPerStageDescriptorStorageImages;
uint32_t maxPerStageDescriptorInputAttachments;
uint32_t maxPerStageResources;
uint32_t maxDescriptorSetSamplers;
uint32_t maxDescriptorSetUniformBuffers;
uint32_t maxDescriptorSetUniformBuffersDynamic;
uint32_t maxDescriptorSetStorageBuffers;
uint32_t maxDescriptorSetStorageBuffersDynamic;
uint32_t maxDescriptorSetSampledImages;
uint32_t maxDescriptorSetStorageImages;
uint32_t maxDescriptorSetInputAttachments;
uint32_t maxVertexInputAttributes;
uint32_t maxVertexInputBindings;
uint32_t maxVertexInputAttributeOffset;
uint32_t maxVertexInputBindingStride;
uint32_t maxVertexOutputComponents;
uint32_t maxTessellationGenerationLevel;
uint32_t maxTessellationPatchSize;
uint32_t maxTessellationControlPerVertexInputComponents;
uint32_t maxTessellationControlPerVertexOutputComponents;
uint32_t maxTessellationControlPerPatchOutputComponents;
uint32_t maxTessellationControlTotalOutputComponents;
uint32_t maxTessellationEvaluationInputComponents;
uint32_t maxTessellationEvaluationOutputComponents;
uint32_t maxGeometryShaderInvocations;
uint32_t maxGeometryInputComponents;
uint32_t maxGeometryOutputComponents;
uint32_t maxGeometryOutputVertices;
uint32_t maxGeometryTotalOutputComponents;
uint32_t maxFragmentInputComponents;
uint32_t maxFragmentOutputAttachments;
uint32_t maxFragmentDualSrcAttachments;
uint32_t maxFragmentCombinedOutputResources;
uint32_t maxComputeSharedMemorySize;
uint32_t maxComputeWorkGroupCount[3];
uint32_t maxComputeWorkGroupInvocations;
uint32_t maxComputeWorkGroupSize[3];
uint32_t subPixelPrecisionBits;
uint32_t subTexelPrecisionBits;
uint32_t mipmapPrecisionBits;
uint32_t maxDrawIndexedIndexValue;
uint32_t maxDrawIndirectCount;
float maxSamplerLodBias;
float maxSamplerAnisotropy;
uint32_t maxViewports;
uint32_t maxViewportDimensions[2];
float viewportBoundsRange[2];
uint32_t viewportSubPixelBits;
size_t minMemoryMapAlignment;
DeviceSize minTexelBufferOffsetAlignment;
DeviceSize minUniformBufferOffsetAlignment;
DeviceSize minStorageBufferOffsetAlignment;
int32_t minTexelOffset;
uint32_t maxTexelOffset;
int32_t minTexelGatherOffset;
uint32_t maxTexelGatherOffset;
float minInterpolationOffset;
float maxInterpolationOffset;
uint32_t subPixelInterpolationOffsetBits;
uint32_t maxFramebufferWidth;
uint32_t maxFramebufferHeight;
uint32_t maxFramebufferLayers;
SampleCountFlags framebufferColorSampleCounts;
SampleCountFlags framebufferDepthSampleCounts;
SampleCountFlags framebufferStencilSampleCounts;
SampleCountFlags framebufferNoAttachmentsSampleCounts;
uint32_t maxColorAttachments;
SampleCountFlags sampledImageColorSampleCounts;
SampleCountFlags sampledImageIntegerSampleCounts;
SampleCountFlags sampledImageDepthSampleCounts;
SampleCountFlags sampledImageStencilSampleCounts;
SampleCountFlags storageImageSampleCounts;
uint32_t maxSampleMaskWords;
Bool32 timestampComputeAndGraphics;
float timestampPeriod;
uint32_t maxClipDistances;
uint32_t maxCullDistances;
uint32_t maxCombinedClipAndCullDistances;
uint32_t discreteQueuePriorities;
float pointSizeRange[2];
float lineWidthRange[2];
float pointSizeGranularity;
float lineWidthGranularity;
Bool32 strictLines;
Bool32 standardSampleLocations;
DeviceSize optimalBufferCopyOffsetAlignment;
DeviceSize optimalBufferCopyRowPitchAlignment;
DeviceSize nonCoherentAtomSize;
};
static_assert( sizeof( PhysicalDeviceLimits ) == sizeof( VkPhysicalDeviceLimits ), "struct and wrapper have different size!" );
struct PhysicalDeviceProperties
{
operator const VkPhysicalDeviceProperties&() const
{
return *reinterpret_cast<const VkPhysicalDeviceProperties*>(this);
}
bool operator==( PhysicalDeviceProperties const& rhs ) const
{
return ( apiVersion == rhs.apiVersion )
&& ( driverVersion == rhs.driverVersion )
&& ( vendorID == rhs.vendorID )
&& ( deviceID == rhs.deviceID )
&& ( deviceType == rhs.deviceType )
&& ( memcmp( deviceName, rhs.deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE * sizeof( char ) ) == 0 )
&& ( memcmp( pipelineCacheUUID, rhs.pipelineCacheUUID, VK_UUID_SIZE * sizeof( uint8_t ) ) == 0 )
&& ( limits == rhs.limits )
&& ( sparseProperties == rhs.sparseProperties );
}
bool operator!=( PhysicalDeviceProperties const& rhs ) const
{
return !operator==( rhs );
}
uint32_t apiVersion;
uint32_t driverVersion;
uint32_t vendorID;
uint32_t deviceID;
PhysicalDeviceType deviceType;
char deviceName[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
uint8_t pipelineCacheUUID[VK_UUID_SIZE];
PhysicalDeviceLimits limits;
PhysicalDeviceSparseProperties sparseProperties;
};
static_assert( sizeof( PhysicalDeviceProperties ) == sizeof( VkPhysicalDeviceProperties ), "struct and wrapper have different size!" );
struct PhysicalDeviceProperties2KHR
{
operator const VkPhysicalDeviceProperties2KHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceProperties2KHR*>(this);
}
bool operator==( PhysicalDeviceProperties2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( properties == rhs.properties );
}
bool operator!=( PhysicalDeviceProperties2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
PhysicalDeviceProperties properties;
};
static_assert( sizeof( PhysicalDeviceProperties2KHR ) == sizeof( VkPhysicalDeviceProperties2KHR ), "struct and wrapper have different size!" );
struct ImageFormatProperties2KHR
{
operator const VkImageFormatProperties2KHR&() const
{
return *reinterpret_cast<const VkImageFormatProperties2KHR*>(this);
}
bool operator==( ImageFormatProperties2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( imageFormatProperties == rhs.imageFormatProperties );
}
bool operator!=( ImageFormatProperties2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
ImageFormatProperties imageFormatProperties;
};
static_assert( sizeof( ImageFormatProperties2KHR ) == sizeof( VkImageFormatProperties2KHR ), "struct and wrapper have different size!" );
struct PhysicalDeviceSparseImageFormatInfo2KHR
{
PhysicalDeviceSparseImageFormatInfo2KHR( Format format_ = Format::eUndefined, ImageType type_ = ImageType::e1D, SampleCountFlagBits samples_ = SampleCountFlagBits::e1, ImageUsageFlags usage_ = ImageUsageFlags(), ImageTiling tiling_ = ImageTiling::eOptimal )
: sType( StructureType::ePhysicalDeviceSparseImageFormatInfo2KHR )
, pNext( nullptr )
, format( format_ )
, type( type_ )
, samples( samples_ )
, usage( usage_ )
, tiling( tiling_ )
{
}
PhysicalDeviceSparseImageFormatInfo2KHR( VkPhysicalDeviceSparseImageFormatInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceSparseImageFormatInfo2KHR ) );
}
PhysicalDeviceSparseImageFormatInfo2KHR& operator=( VkPhysicalDeviceSparseImageFormatInfo2KHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceSparseImageFormatInfo2KHR ) );
return *this;
}
PhysicalDeviceSparseImageFormatInfo2KHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceSparseImageFormatInfo2KHR& setFormat( Format format_ )
{
format = format_;
return *this;
}
PhysicalDeviceSparseImageFormatInfo2KHR& setType( ImageType type_ )
{
type = type_;
return *this;
}
PhysicalDeviceSparseImageFormatInfo2KHR& setSamples( SampleCountFlagBits samples_ )
{
samples = samples_;
return *this;
}
PhysicalDeviceSparseImageFormatInfo2KHR& setUsage( ImageUsageFlags usage_ )
{
usage = usage_;
return *this;
}
PhysicalDeviceSparseImageFormatInfo2KHR& setTiling( ImageTiling tiling_ )
{
tiling = tiling_;
return *this;
}
operator const VkPhysicalDeviceSparseImageFormatInfo2KHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceSparseImageFormatInfo2KHR*>(this);
}
bool operator==( PhysicalDeviceSparseImageFormatInfo2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( format == rhs.format )
&& ( type == rhs.type )
&& ( samples == rhs.samples )
&& ( usage == rhs.usage )
&& ( tiling == rhs.tiling );
}
bool operator!=( PhysicalDeviceSparseImageFormatInfo2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Format format;
ImageType type;
SampleCountFlagBits samples;
ImageUsageFlags usage;
ImageTiling tiling;
};
static_assert( sizeof( PhysicalDeviceSparseImageFormatInfo2KHR ) == sizeof( VkPhysicalDeviceSparseImageFormatInfo2KHR ), "struct and wrapper have different size!" );
struct SampleLocationsInfoEXT
{
SampleLocationsInfoEXT( SampleCountFlagBits sampleLocationsPerPixel_ = SampleCountFlagBits::e1, Extent2D sampleLocationGridSize_ = Extent2D(), uint32_t sampleLocationsCount_ = 0, const SampleLocationEXT* pSampleLocations_ = nullptr )
: sType( StructureType::eSampleLocationsInfoEXT )
, pNext( nullptr )
, sampleLocationsPerPixel( sampleLocationsPerPixel_ )
, sampleLocationGridSize( sampleLocationGridSize_ )
, sampleLocationsCount( sampleLocationsCount_ )
, pSampleLocations( pSampleLocations_ )
{
}
SampleLocationsInfoEXT( VkSampleLocationsInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SampleLocationsInfoEXT ) );
}
SampleLocationsInfoEXT& operator=( VkSampleLocationsInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SampleLocationsInfoEXT ) );
return *this;
}
SampleLocationsInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SampleLocationsInfoEXT& setSampleLocationsPerPixel( SampleCountFlagBits sampleLocationsPerPixel_ )
{
sampleLocationsPerPixel = sampleLocationsPerPixel_;
return *this;
}
SampleLocationsInfoEXT& setSampleLocationGridSize( Extent2D sampleLocationGridSize_ )
{
sampleLocationGridSize = sampleLocationGridSize_;
return *this;
}
SampleLocationsInfoEXT& setSampleLocationsCount( uint32_t sampleLocationsCount_ )
{
sampleLocationsCount = sampleLocationsCount_;
return *this;
}
SampleLocationsInfoEXT& setPSampleLocations( const SampleLocationEXT* pSampleLocations_ )
{
pSampleLocations = pSampleLocations_;
return *this;
}
operator const VkSampleLocationsInfoEXT&() const
{
return *reinterpret_cast<const VkSampleLocationsInfoEXT*>(this);
}
bool operator==( SampleLocationsInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( sampleLocationsPerPixel == rhs.sampleLocationsPerPixel )
&& ( sampleLocationGridSize == rhs.sampleLocationGridSize )
&& ( sampleLocationsCount == rhs.sampleLocationsCount )
&& ( pSampleLocations == rhs.pSampleLocations );
}
bool operator!=( SampleLocationsInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SampleCountFlagBits sampleLocationsPerPixel;
Extent2D sampleLocationGridSize;
uint32_t sampleLocationsCount;
const SampleLocationEXT* pSampleLocations;
};
static_assert( sizeof( SampleLocationsInfoEXT ) == sizeof( VkSampleLocationsInfoEXT ), "struct and wrapper have different size!" );
struct AttachmentSampleLocationsEXT
{
AttachmentSampleLocationsEXT( uint32_t attachmentIndex_ = 0, SampleLocationsInfoEXT sampleLocationsInfo_ = SampleLocationsInfoEXT() )
: attachmentIndex( attachmentIndex_ )
, sampleLocationsInfo( sampleLocationsInfo_ )
{
}
AttachmentSampleLocationsEXT( VkAttachmentSampleLocationsEXT const & rhs )
{
memcpy( this, &rhs, sizeof( AttachmentSampleLocationsEXT ) );
}
AttachmentSampleLocationsEXT& operator=( VkAttachmentSampleLocationsEXT const & rhs )
{
memcpy( this, &rhs, sizeof( AttachmentSampleLocationsEXT ) );
return *this;
}
AttachmentSampleLocationsEXT& setAttachmentIndex( uint32_t attachmentIndex_ )
{
attachmentIndex = attachmentIndex_;
return *this;
}
AttachmentSampleLocationsEXT& setSampleLocationsInfo( SampleLocationsInfoEXT sampleLocationsInfo_ )
{
sampleLocationsInfo = sampleLocationsInfo_;
return *this;
}
operator const VkAttachmentSampleLocationsEXT&() const
{
return *reinterpret_cast<const VkAttachmentSampleLocationsEXT*>(this);
}
bool operator==( AttachmentSampleLocationsEXT const& rhs ) const
{
return ( attachmentIndex == rhs.attachmentIndex )
&& ( sampleLocationsInfo == rhs.sampleLocationsInfo );
}
bool operator!=( AttachmentSampleLocationsEXT const& rhs ) const
{
return !operator==( rhs );
}
uint32_t attachmentIndex;
SampleLocationsInfoEXT sampleLocationsInfo;
};
static_assert( sizeof( AttachmentSampleLocationsEXT ) == sizeof( VkAttachmentSampleLocationsEXT ), "struct and wrapper have different size!" );
struct SubpassSampleLocationsEXT
{
SubpassSampleLocationsEXT( uint32_t subpassIndex_ = 0, SampleLocationsInfoEXT sampleLocationsInfo_ = SampleLocationsInfoEXT() )
: subpassIndex( subpassIndex_ )
, sampleLocationsInfo( sampleLocationsInfo_ )
{
}
SubpassSampleLocationsEXT( VkSubpassSampleLocationsEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SubpassSampleLocationsEXT ) );
}
SubpassSampleLocationsEXT& operator=( VkSubpassSampleLocationsEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SubpassSampleLocationsEXT ) );
return *this;
}
SubpassSampleLocationsEXT& setSubpassIndex( uint32_t subpassIndex_ )
{
subpassIndex = subpassIndex_;
return *this;
}
SubpassSampleLocationsEXT& setSampleLocationsInfo( SampleLocationsInfoEXT sampleLocationsInfo_ )
{
sampleLocationsInfo = sampleLocationsInfo_;
return *this;
}
operator const VkSubpassSampleLocationsEXT&() const
{
return *reinterpret_cast<const VkSubpassSampleLocationsEXT*>(this);
}
bool operator==( SubpassSampleLocationsEXT const& rhs ) const
{
return ( subpassIndex == rhs.subpassIndex )
&& ( sampleLocationsInfo == rhs.sampleLocationsInfo );
}
bool operator!=( SubpassSampleLocationsEXT const& rhs ) const
{
return !operator==( rhs );
}
uint32_t subpassIndex;
SampleLocationsInfoEXT sampleLocationsInfo;
};
static_assert( sizeof( SubpassSampleLocationsEXT ) == sizeof( VkSubpassSampleLocationsEXT ), "struct and wrapper have different size!" );
struct RenderPassSampleLocationsBeginInfoEXT
{
RenderPassSampleLocationsBeginInfoEXT( uint32_t attachmentInitialSampleLocationsCount_ = 0, const AttachmentSampleLocationsEXT* pAttachmentInitialSampleLocations_ = nullptr, uint32_t postSubpassSampleLocationsCount_ = 0, const SubpassSampleLocationsEXT* pPostSubpassSampleLocations_ = nullptr )
: sType( StructureType::eRenderPassSampleLocationsBeginInfoEXT )
, pNext( nullptr )
, attachmentInitialSampleLocationsCount( attachmentInitialSampleLocationsCount_ )
, pAttachmentInitialSampleLocations( pAttachmentInitialSampleLocations_ )
, postSubpassSampleLocationsCount( postSubpassSampleLocationsCount_ )
, pPostSubpassSampleLocations( pPostSubpassSampleLocations_ )
{
}
RenderPassSampleLocationsBeginInfoEXT( VkRenderPassSampleLocationsBeginInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassSampleLocationsBeginInfoEXT ) );
}
RenderPassSampleLocationsBeginInfoEXT& operator=( VkRenderPassSampleLocationsBeginInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassSampleLocationsBeginInfoEXT ) );
return *this;
}
RenderPassSampleLocationsBeginInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
RenderPassSampleLocationsBeginInfoEXT& setAttachmentInitialSampleLocationsCount( uint32_t attachmentInitialSampleLocationsCount_ )
{
attachmentInitialSampleLocationsCount = attachmentInitialSampleLocationsCount_;
return *this;
}
RenderPassSampleLocationsBeginInfoEXT& setPAttachmentInitialSampleLocations( const AttachmentSampleLocationsEXT* pAttachmentInitialSampleLocations_ )
{
pAttachmentInitialSampleLocations = pAttachmentInitialSampleLocations_;
return *this;
}
RenderPassSampleLocationsBeginInfoEXT& setPostSubpassSampleLocationsCount( uint32_t postSubpassSampleLocationsCount_ )
{
postSubpassSampleLocationsCount = postSubpassSampleLocationsCount_;
return *this;
}
RenderPassSampleLocationsBeginInfoEXT& setPPostSubpassSampleLocations( const SubpassSampleLocationsEXT* pPostSubpassSampleLocations_ )
{
pPostSubpassSampleLocations = pPostSubpassSampleLocations_;
return *this;
}
operator const VkRenderPassSampleLocationsBeginInfoEXT&() const
{
return *reinterpret_cast<const VkRenderPassSampleLocationsBeginInfoEXT*>(this);
}
bool operator==( RenderPassSampleLocationsBeginInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( attachmentInitialSampleLocationsCount == rhs.attachmentInitialSampleLocationsCount )
&& ( pAttachmentInitialSampleLocations == rhs.pAttachmentInitialSampleLocations )
&& ( postSubpassSampleLocationsCount == rhs.postSubpassSampleLocationsCount )
&& ( pPostSubpassSampleLocations == rhs.pPostSubpassSampleLocations );
}
bool operator!=( RenderPassSampleLocationsBeginInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t attachmentInitialSampleLocationsCount;
const AttachmentSampleLocationsEXT* pAttachmentInitialSampleLocations;
uint32_t postSubpassSampleLocationsCount;
const SubpassSampleLocationsEXT* pPostSubpassSampleLocations;
};
static_assert( sizeof( RenderPassSampleLocationsBeginInfoEXT ) == sizeof( VkRenderPassSampleLocationsBeginInfoEXT ), "struct and wrapper have different size!" );
struct PipelineSampleLocationsStateCreateInfoEXT
{
PipelineSampleLocationsStateCreateInfoEXT( Bool32 sampleLocationsEnable_ = 0, SampleLocationsInfoEXT sampleLocationsInfo_ = SampleLocationsInfoEXT() )
: sType( StructureType::ePipelineSampleLocationsStateCreateInfoEXT )
, pNext( nullptr )
, sampleLocationsEnable( sampleLocationsEnable_ )
, sampleLocationsInfo( sampleLocationsInfo_ )
{
}
PipelineSampleLocationsStateCreateInfoEXT( VkPipelineSampleLocationsStateCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineSampleLocationsStateCreateInfoEXT ) );
}
PipelineSampleLocationsStateCreateInfoEXT& operator=( VkPipelineSampleLocationsStateCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineSampleLocationsStateCreateInfoEXT ) );
return *this;
}
PipelineSampleLocationsStateCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineSampleLocationsStateCreateInfoEXT& setSampleLocationsEnable( Bool32 sampleLocationsEnable_ )
{
sampleLocationsEnable = sampleLocationsEnable_;
return *this;
}
PipelineSampleLocationsStateCreateInfoEXT& setSampleLocationsInfo( SampleLocationsInfoEXT sampleLocationsInfo_ )
{
sampleLocationsInfo = sampleLocationsInfo_;
return *this;
}
operator const VkPipelineSampleLocationsStateCreateInfoEXT&() const
{
return *reinterpret_cast<const VkPipelineSampleLocationsStateCreateInfoEXT*>(this);
}
bool operator==( PipelineSampleLocationsStateCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( sampleLocationsEnable == rhs.sampleLocationsEnable )
&& ( sampleLocationsInfo == rhs.sampleLocationsInfo );
}
bool operator!=( PipelineSampleLocationsStateCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Bool32 sampleLocationsEnable;
SampleLocationsInfoEXT sampleLocationsInfo;
};
static_assert( sizeof( PipelineSampleLocationsStateCreateInfoEXT ) == sizeof( VkPipelineSampleLocationsStateCreateInfoEXT ), "struct and wrapper have different size!" );
struct PhysicalDeviceSampleLocationsPropertiesEXT
{
operator const VkPhysicalDeviceSampleLocationsPropertiesEXT&() const
{
return *reinterpret_cast<const VkPhysicalDeviceSampleLocationsPropertiesEXT*>(this);
}
bool operator==( PhysicalDeviceSampleLocationsPropertiesEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( sampleLocationSampleCounts == rhs.sampleLocationSampleCounts )
&& ( maxSampleLocationGridSize == rhs.maxSampleLocationGridSize )
&& ( memcmp( sampleLocationCoordinateRange, rhs.sampleLocationCoordinateRange, 2 * sizeof( float ) ) == 0 )
&& ( sampleLocationSubPixelBits == rhs.sampleLocationSubPixelBits )
&& ( variableSampleLocations == rhs.variableSampleLocations );
}
bool operator!=( PhysicalDeviceSampleLocationsPropertiesEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
SampleCountFlags sampleLocationSampleCounts;
Extent2D maxSampleLocationGridSize;
float sampleLocationCoordinateRange[2];
uint32_t sampleLocationSubPixelBits;
Bool32 variableSampleLocations;
};
static_assert( sizeof( PhysicalDeviceSampleLocationsPropertiesEXT ) == sizeof( VkPhysicalDeviceSampleLocationsPropertiesEXT ), "struct and wrapper have different size!" );
enum class AttachmentDescriptionFlagBits
{
eMayAlias = VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT
};
using AttachmentDescriptionFlags = Flags<AttachmentDescriptionFlagBits, VkAttachmentDescriptionFlags>;
VULKAN_HPP_INLINE AttachmentDescriptionFlags operator|( AttachmentDescriptionFlagBits bit0, AttachmentDescriptionFlagBits bit1 )
{
return AttachmentDescriptionFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE AttachmentDescriptionFlags operator~( AttachmentDescriptionFlagBits bits )
{
return ~( AttachmentDescriptionFlags( bits ) );
}
template <> struct FlagTraits<AttachmentDescriptionFlagBits>
{
enum
{
allFlags = VkFlags(AttachmentDescriptionFlagBits::eMayAlias)
};
};
struct AttachmentDescription
{
AttachmentDescription( AttachmentDescriptionFlags flags_ = AttachmentDescriptionFlags(), Format format_ = Format::eUndefined, SampleCountFlagBits samples_ = SampleCountFlagBits::e1, AttachmentLoadOp loadOp_ = AttachmentLoadOp::eLoad, AttachmentStoreOp storeOp_ = AttachmentStoreOp::eStore, AttachmentLoadOp stencilLoadOp_ = AttachmentLoadOp::eLoad, AttachmentStoreOp stencilStoreOp_ = AttachmentStoreOp::eStore, ImageLayout initialLayout_ = ImageLayout::eUndefined, ImageLayout finalLayout_ = ImageLayout::eUndefined )
: flags( flags_ )
, format( format_ )
, samples( samples_ )
, loadOp( loadOp_ )
, storeOp( storeOp_ )
, stencilLoadOp( stencilLoadOp_ )
, stencilStoreOp( stencilStoreOp_ )
, initialLayout( initialLayout_ )
, finalLayout( finalLayout_ )
{
}
AttachmentDescription( VkAttachmentDescription const & rhs )
{
memcpy( this, &rhs, sizeof( AttachmentDescription ) );
}
AttachmentDescription& operator=( VkAttachmentDescription const & rhs )
{
memcpy( this, &rhs, sizeof( AttachmentDescription ) );
return *this;
}
AttachmentDescription& setFlags( AttachmentDescriptionFlags flags_ )
{
flags = flags_;
return *this;
}
AttachmentDescription& setFormat( Format format_ )
{
format = format_;
return *this;
}
AttachmentDescription& setSamples( SampleCountFlagBits samples_ )
{
samples = samples_;
return *this;
}
AttachmentDescription& setLoadOp( AttachmentLoadOp loadOp_ )
{
loadOp = loadOp_;
return *this;
}
AttachmentDescription& setStoreOp( AttachmentStoreOp storeOp_ )
{
storeOp = storeOp_;
return *this;
}
AttachmentDescription& setStencilLoadOp( AttachmentLoadOp stencilLoadOp_ )
{
stencilLoadOp = stencilLoadOp_;
return *this;
}
AttachmentDescription& setStencilStoreOp( AttachmentStoreOp stencilStoreOp_ )
{
stencilStoreOp = stencilStoreOp_;
return *this;
}
AttachmentDescription& setInitialLayout( ImageLayout initialLayout_ )
{
initialLayout = initialLayout_;
return *this;
}
AttachmentDescription& setFinalLayout( ImageLayout finalLayout_ )
{
finalLayout = finalLayout_;
return *this;
}
operator const VkAttachmentDescription&() const
{
return *reinterpret_cast<const VkAttachmentDescription*>(this);
}
bool operator==( AttachmentDescription const& rhs ) const
{
return ( flags == rhs.flags )
&& ( format == rhs.format )
&& ( samples == rhs.samples )
&& ( loadOp == rhs.loadOp )
&& ( storeOp == rhs.storeOp )
&& ( stencilLoadOp == rhs.stencilLoadOp )
&& ( stencilStoreOp == rhs.stencilStoreOp )
&& ( initialLayout == rhs.initialLayout )
&& ( finalLayout == rhs.finalLayout );
}
bool operator!=( AttachmentDescription const& rhs ) const
{
return !operator==( rhs );
}
AttachmentDescriptionFlags flags;
Format format;
SampleCountFlagBits samples;
AttachmentLoadOp loadOp;
AttachmentStoreOp storeOp;
AttachmentLoadOp stencilLoadOp;
AttachmentStoreOp stencilStoreOp;
ImageLayout initialLayout;
ImageLayout finalLayout;
};
static_assert( sizeof( AttachmentDescription ) == sizeof( VkAttachmentDescription ), "struct and wrapper have different size!" );
enum class StencilFaceFlagBits
{
eFront = VK_STENCIL_FACE_FRONT_BIT,
eBack = VK_STENCIL_FACE_BACK_BIT,
eVkStencilFrontAndBack = VK_STENCIL_FRONT_AND_BACK
};
using StencilFaceFlags = Flags<StencilFaceFlagBits, VkStencilFaceFlags>;
VULKAN_HPP_INLINE StencilFaceFlags operator|( StencilFaceFlagBits bit0, StencilFaceFlagBits bit1 )
{
return StencilFaceFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE StencilFaceFlags operator~( StencilFaceFlagBits bits )
{
return ~( StencilFaceFlags( bits ) );
}
template <> struct FlagTraits<StencilFaceFlagBits>
{
enum
{
allFlags = VkFlags(StencilFaceFlagBits::eFront) | VkFlags(StencilFaceFlagBits::eBack) | VkFlags(StencilFaceFlagBits::eVkStencilFrontAndBack)
};
};
enum class DescriptorPoolCreateFlagBits
{
eFreeDescriptorSet = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT
};
using DescriptorPoolCreateFlags = Flags<DescriptorPoolCreateFlagBits, VkDescriptorPoolCreateFlags>;
VULKAN_HPP_INLINE DescriptorPoolCreateFlags operator|( DescriptorPoolCreateFlagBits bit0, DescriptorPoolCreateFlagBits bit1 )
{
return DescriptorPoolCreateFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE DescriptorPoolCreateFlags operator~( DescriptorPoolCreateFlagBits bits )
{
return ~( DescriptorPoolCreateFlags( bits ) );
}
template <> struct FlagTraits<DescriptorPoolCreateFlagBits>
{
enum
{
allFlags = VkFlags(DescriptorPoolCreateFlagBits::eFreeDescriptorSet)
};
};
struct DescriptorPoolCreateInfo
{
DescriptorPoolCreateInfo( DescriptorPoolCreateFlags flags_ = DescriptorPoolCreateFlags(), uint32_t maxSets_ = 0, uint32_t poolSizeCount_ = 0, const DescriptorPoolSize* pPoolSizes_ = nullptr )
: sType( StructureType::eDescriptorPoolCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, maxSets( maxSets_ )
, poolSizeCount( poolSizeCount_ )
, pPoolSizes( pPoolSizes_ )
{
}
DescriptorPoolCreateInfo( VkDescriptorPoolCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorPoolCreateInfo ) );
}
DescriptorPoolCreateInfo& operator=( VkDescriptorPoolCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorPoolCreateInfo ) );
return *this;
}
DescriptorPoolCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DescriptorPoolCreateInfo& setFlags( DescriptorPoolCreateFlags flags_ )
{
flags = flags_;
return *this;
}
DescriptorPoolCreateInfo& setMaxSets( uint32_t maxSets_ )
{
maxSets = maxSets_;
return *this;
}
DescriptorPoolCreateInfo& setPoolSizeCount( uint32_t poolSizeCount_ )
{
poolSizeCount = poolSizeCount_;
return *this;
}
DescriptorPoolCreateInfo& setPPoolSizes( const DescriptorPoolSize* pPoolSizes_ )
{
pPoolSizes = pPoolSizes_;
return *this;
}
operator const VkDescriptorPoolCreateInfo&() const
{
return *reinterpret_cast<const VkDescriptorPoolCreateInfo*>(this);
}
bool operator==( DescriptorPoolCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( maxSets == rhs.maxSets )
&& ( poolSizeCount == rhs.poolSizeCount )
&& ( pPoolSizes == rhs.pPoolSizes );
}
bool operator!=( DescriptorPoolCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorPoolCreateFlags flags;
uint32_t maxSets;
uint32_t poolSizeCount;
const DescriptorPoolSize* pPoolSizes;
};
static_assert( sizeof( DescriptorPoolCreateInfo ) == sizeof( VkDescriptorPoolCreateInfo ), "struct and wrapper have different size!" );
enum class DependencyFlagBits
{
eByRegion = VK_DEPENDENCY_BY_REGION_BIT,
eViewLocalKHX = VK_DEPENDENCY_VIEW_LOCAL_BIT_KHX,
eDeviceGroupKHX = VK_DEPENDENCY_DEVICE_GROUP_BIT_KHX
};
using DependencyFlags = Flags<DependencyFlagBits, VkDependencyFlags>;
VULKAN_HPP_INLINE DependencyFlags operator|( DependencyFlagBits bit0, DependencyFlagBits bit1 )
{
return DependencyFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE DependencyFlags operator~( DependencyFlagBits bits )
{
return ~( DependencyFlags( bits ) );
}
template <> struct FlagTraits<DependencyFlagBits>
{
enum
{
allFlags = VkFlags(DependencyFlagBits::eByRegion) | VkFlags(DependencyFlagBits::eViewLocalKHX) | VkFlags(DependencyFlagBits::eDeviceGroupKHX)
};
};
struct SubpassDependency
{
SubpassDependency( uint32_t srcSubpass_ = 0, uint32_t dstSubpass_ = 0, PipelineStageFlags srcStageMask_ = PipelineStageFlags(), PipelineStageFlags dstStageMask_ = PipelineStageFlags(), AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), DependencyFlags dependencyFlags_ = DependencyFlags() )
: srcSubpass( srcSubpass_ )
, dstSubpass( dstSubpass_ )
, srcStageMask( srcStageMask_ )
, dstStageMask( dstStageMask_ )
, srcAccessMask( srcAccessMask_ )
, dstAccessMask( dstAccessMask_ )
, dependencyFlags( dependencyFlags_ )
{
}
SubpassDependency( VkSubpassDependency const & rhs )
{
memcpy( this, &rhs, sizeof( SubpassDependency ) );
}
SubpassDependency& operator=( VkSubpassDependency const & rhs )
{
memcpy( this, &rhs, sizeof( SubpassDependency ) );
return *this;
}
SubpassDependency& setSrcSubpass( uint32_t srcSubpass_ )
{
srcSubpass = srcSubpass_;
return *this;
}
SubpassDependency& setDstSubpass( uint32_t dstSubpass_ )
{
dstSubpass = dstSubpass_;
return *this;
}
SubpassDependency& setSrcStageMask( PipelineStageFlags srcStageMask_ )
{
srcStageMask = srcStageMask_;
return *this;
}
SubpassDependency& setDstStageMask( PipelineStageFlags dstStageMask_ )
{
dstStageMask = dstStageMask_;
return *this;
}
SubpassDependency& setSrcAccessMask( AccessFlags srcAccessMask_ )
{
srcAccessMask = srcAccessMask_;
return *this;
}
SubpassDependency& setDstAccessMask( AccessFlags dstAccessMask_ )
{
dstAccessMask = dstAccessMask_;
return *this;
}
SubpassDependency& setDependencyFlags( DependencyFlags dependencyFlags_ )
{
dependencyFlags = dependencyFlags_;
return *this;
}
operator const VkSubpassDependency&() const
{
return *reinterpret_cast<const VkSubpassDependency*>(this);
}
bool operator==( SubpassDependency const& rhs ) const
{
return ( srcSubpass == rhs.srcSubpass )
&& ( dstSubpass == rhs.dstSubpass )
&& ( srcStageMask == rhs.srcStageMask )
&& ( dstStageMask == rhs.dstStageMask )
&& ( srcAccessMask == rhs.srcAccessMask )
&& ( dstAccessMask == rhs.dstAccessMask )
&& ( dependencyFlags == rhs.dependencyFlags );
}
bool operator!=( SubpassDependency const& rhs ) const
{
return !operator==( rhs );
}
uint32_t srcSubpass;
uint32_t dstSubpass;
PipelineStageFlags srcStageMask;
PipelineStageFlags dstStageMask;
AccessFlags srcAccessMask;
AccessFlags dstAccessMask;
DependencyFlags dependencyFlags;
};
static_assert( sizeof( SubpassDependency ) == sizeof( VkSubpassDependency ), "struct and wrapper have different size!" );
enum class PresentModeKHR
{
eImmediate = VK_PRESENT_MODE_IMMEDIATE_KHR,
eMailbox = VK_PRESENT_MODE_MAILBOX_KHR,
eFifo = VK_PRESENT_MODE_FIFO_KHR,
eFifoRelaxed = VK_PRESENT_MODE_FIFO_RELAXED_KHR,
eSharedDemandRefresh = VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR,
eSharedContinuousRefresh = VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR
};
enum class ColorSpaceKHR
{
eSrgbNonlinear = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR,
eDisplayP3NonlinearEXT = VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT,
eExtendedSrgbLinearEXT = VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT,
eDciP3LinearEXT = VK_COLOR_SPACE_DCI_P3_LINEAR_EXT,
eDciP3NonlinearEXT = VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT,
eBt709LinearEXT = VK_COLOR_SPACE_BT709_LINEAR_EXT,
eBt709NonlinearEXT = VK_COLOR_SPACE_BT709_NONLINEAR_EXT,
eBt2020LinearEXT = VK_COLOR_SPACE_BT2020_LINEAR_EXT,
eHdr10St2084EXT = VK_COLOR_SPACE_HDR10_ST2084_EXT,
eDolbyvisionEXT = VK_COLOR_SPACE_DOLBYVISION_EXT,
eHdr10HlgEXT = VK_COLOR_SPACE_HDR10_HLG_EXT,
eAdobergbLinearEXT = VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT,
eAdobergbNonlinearEXT = VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT,
ePassThroughEXT = VK_COLOR_SPACE_PASS_THROUGH_EXT,
eExtendedSrgbNonlinearEXT = VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT
};
struct SurfaceFormatKHR
{
operator const VkSurfaceFormatKHR&() const
{
return *reinterpret_cast<const VkSurfaceFormatKHR*>(this);
}
bool operator==( SurfaceFormatKHR const& rhs ) const
{
return ( format == rhs.format )
&& ( colorSpace == rhs.colorSpace );
}
bool operator!=( SurfaceFormatKHR const& rhs ) const
{
return !operator==( rhs );
}
Format format;
ColorSpaceKHR colorSpace;
};
static_assert( sizeof( SurfaceFormatKHR ) == sizeof( VkSurfaceFormatKHR ), "struct and wrapper have different size!" );
struct SurfaceFormat2KHR
{
operator const VkSurfaceFormat2KHR&() const
{
return *reinterpret_cast<const VkSurfaceFormat2KHR*>(this);
}
bool operator==( SurfaceFormat2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( surfaceFormat == rhs.surfaceFormat );
}
bool operator!=( SurfaceFormat2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
SurfaceFormatKHR surfaceFormat;
};
static_assert( sizeof( SurfaceFormat2KHR ) == sizeof( VkSurfaceFormat2KHR ), "struct and wrapper have different size!" );
enum class DisplayPlaneAlphaFlagBitsKHR
{
eOpaque = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR,
eGlobal = VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR,
ePerPixel = VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR,
ePerPixelPremultiplied = VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR
};
using DisplayPlaneAlphaFlagsKHR = Flags<DisplayPlaneAlphaFlagBitsKHR, VkDisplayPlaneAlphaFlagsKHR>;
VULKAN_HPP_INLINE DisplayPlaneAlphaFlagsKHR operator|( DisplayPlaneAlphaFlagBitsKHR bit0, DisplayPlaneAlphaFlagBitsKHR bit1 )
{
return DisplayPlaneAlphaFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE DisplayPlaneAlphaFlagsKHR operator~( DisplayPlaneAlphaFlagBitsKHR bits )
{
return ~( DisplayPlaneAlphaFlagsKHR( bits ) );
}
template <> struct FlagTraits<DisplayPlaneAlphaFlagBitsKHR>
{
enum
{
allFlags = VkFlags(DisplayPlaneAlphaFlagBitsKHR::eOpaque) | VkFlags(DisplayPlaneAlphaFlagBitsKHR::eGlobal) | VkFlags(DisplayPlaneAlphaFlagBitsKHR::ePerPixel) | VkFlags(DisplayPlaneAlphaFlagBitsKHR::ePerPixelPremultiplied)
};
};
struct DisplayPlaneCapabilitiesKHR
{
operator const VkDisplayPlaneCapabilitiesKHR&() const
{
return *reinterpret_cast<const VkDisplayPlaneCapabilitiesKHR*>(this);
}
bool operator==( DisplayPlaneCapabilitiesKHR const& rhs ) const
{
return ( supportedAlpha == rhs.supportedAlpha )
&& ( minSrcPosition == rhs.minSrcPosition )
&& ( maxSrcPosition == rhs.maxSrcPosition )
&& ( minSrcExtent == rhs.minSrcExtent )
&& ( maxSrcExtent == rhs.maxSrcExtent )
&& ( minDstPosition == rhs.minDstPosition )
&& ( maxDstPosition == rhs.maxDstPosition )
&& ( minDstExtent == rhs.minDstExtent )
&& ( maxDstExtent == rhs.maxDstExtent );
}
bool operator!=( DisplayPlaneCapabilitiesKHR const& rhs ) const
{
return !operator==( rhs );
}
DisplayPlaneAlphaFlagsKHR supportedAlpha;
Offset2D minSrcPosition;
Offset2D maxSrcPosition;
Extent2D minSrcExtent;
Extent2D maxSrcExtent;
Offset2D minDstPosition;
Offset2D maxDstPosition;
Extent2D minDstExtent;
Extent2D maxDstExtent;
};
static_assert( sizeof( DisplayPlaneCapabilitiesKHR ) == sizeof( VkDisplayPlaneCapabilitiesKHR ), "struct and wrapper have different size!" );
enum class CompositeAlphaFlagBitsKHR
{
eOpaque = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
ePreMultiplied = VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,
ePostMultiplied = VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
eInherit = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR
};
using CompositeAlphaFlagsKHR = Flags<CompositeAlphaFlagBitsKHR, VkCompositeAlphaFlagsKHR>;
VULKAN_HPP_INLINE CompositeAlphaFlagsKHR operator|( CompositeAlphaFlagBitsKHR bit0, CompositeAlphaFlagBitsKHR bit1 )
{
return CompositeAlphaFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE CompositeAlphaFlagsKHR operator~( CompositeAlphaFlagBitsKHR bits )
{
return ~( CompositeAlphaFlagsKHR( bits ) );
}
template <> struct FlagTraits<CompositeAlphaFlagBitsKHR>
{
enum
{
allFlags = VkFlags(CompositeAlphaFlagBitsKHR::eOpaque) | VkFlags(CompositeAlphaFlagBitsKHR::ePreMultiplied) | VkFlags(CompositeAlphaFlagBitsKHR::ePostMultiplied) | VkFlags(CompositeAlphaFlagBitsKHR::eInherit)
};
};
enum class SurfaceTransformFlagBitsKHR
{
eIdentity = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
eRotate90 = VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR,
eRotate180 = VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR,
eRotate270 = VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR,
eHorizontalMirror = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR,
eHorizontalMirrorRotate90 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR,
eHorizontalMirrorRotate180 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR,
eHorizontalMirrorRotate270 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR,
eInherit = VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR
};
using SurfaceTransformFlagsKHR = Flags<SurfaceTransformFlagBitsKHR, VkSurfaceTransformFlagsKHR>;
VULKAN_HPP_INLINE SurfaceTransformFlagsKHR operator|( SurfaceTransformFlagBitsKHR bit0, SurfaceTransformFlagBitsKHR bit1 )
{
return SurfaceTransformFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE SurfaceTransformFlagsKHR operator~( SurfaceTransformFlagBitsKHR bits )
{
return ~( SurfaceTransformFlagsKHR( bits ) );
}
template <> struct FlagTraits<SurfaceTransformFlagBitsKHR>
{
enum
{
allFlags = VkFlags(SurfaceTransformFlagBitsKHR::eIdentity) | VkFlags(SurfaceTransformFlagBitsKHR::eRotate90) | VkFlags(SurfaceTransformFlagBitsKHR::eRotate180) | VkFlags(SurfaceTransformFlagBitsKHR::eRotate270) | VkFlags(SurfaceTransformFlagBitsKHR::eHorizontalMirror) | VkFlags(SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate90) | VkFlags(SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate180) | VkFlags(SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate270) | VkFlags(SurfaceTransformFlagBitsKHR::eInherit)
};
};
struct DisplayPropertiesKHR
{
operator const VkDisplayPropertiesKHR&() const
{
return *reinterpret_cast<const VkDisplayPropertiesKHR*>(this);
}
bool operator==( DisplayPropertiesKHR const& rhs ) const
{
return ( display == rhs.display )
&& ( displayName == rhs.displayName )
&& ( physicalDimensions == rhs.physicalDimensions )
&& ( physicalResolution == rhs.physicalResolution )
&& ( supportedTransforms == rhs.supportedTransforms )
&& ( planeReorderPossible == rhs.planeReorderPossible )
&& ( persistentContent == rhs.persistentContent );
}
bool operator!=( DisplayPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
DisplayKHR display;
const char* displayName;
Extent2D physicalDimensions;
Extent2D physicalResolution;
SurfaceTransformFlagsKHR supportedTransforms;
Bool32 planeReorderPossible;
Bool32 persistentContent;
};
static_assert( sizeof( DisplayPropertiesKHR ) == sizeof( VkDisplayPropertiesKHR ), "struct and wrapper have different size!" );
struct DisplaySurfaceCreateInfoKHR
{
DisplaySurfaceCreateInfoKHR( DisplaySurfaceCreateFlagsKHR flags_ = DisplaySurfaceCreateFlagsKHR(), DisplayModeKHR displayMode_ = DisplayModeKHR(), uint32_t planeIndex_ = 0, uint32_t planeStackIndex_ = 0, SurfaceTransformFlagBitsKHR transform_ = SurfaceTransformFlagBitsKHR::eIdentity, float globalAlpha_ = 0, DisplayPlaneAlphaFlagBitsKHR alphaMode_ = DisplayPlaneAlphaFlagBitsKHR::eOpaque, Extent2D imageExtent_ = Extent2D() )
: sType( StructureType::eDisplaySurfaceCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, displayMode( displayMode_ )
, planeIndex( planeIndex_ )
, planeStackIndex( planeStackIndex_ )
, transform( transform_ )
, globalAlpha( globalAlpha_ )
, alphaMode( alphaMode_ )
, imageExtent( imageExtent_ )
{
}
DisplaySurfaceCreateInfoKHR( VkDisplaySurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DisplaySurfaceCreateInfoKHR ) );
}
DisplaySurfaceCreateInfoKHR& operator=( VkDisplaySurfaceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( DisplaySurfaceCreateInfoKHR ) );
return *this;
}
DisplaySurfaceCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setFlags( DisplaySurfaceCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setDisplayMode( DisplayModeKHR displayMode_ )
{
displayMode = displayMode_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setPlaneIndex( uint32_t planeIndex_ )
{
planeIndex = planeIndex_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setPlaneStackIndex( uint32_t planeStackIndex_ )
{
planeStackIndex = planeStackIndex_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setTransform( SurfaceTransformFlagBitsKHR transform_ )
{
transform = transform_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setGlobalAlpha( float globalAlpha_ )
{
globalAlpha = globalAlpha_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setAlphaMode( DisplayPlaneAlphaFlagBitsKHR alphaMode_ )
{
alphaMode = alphaMode_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setImageExtent( Extent2D imageExtent_ )
{
imageExtent = imageExtent_;
return *this;
}
operator const VkDisplaySurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkDisplaySurfaceCreateInfoKHR*>(this);
}
bool operator==( DisplaySurfaceCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( displayMode == rhs.displayMode )
&& ( planeIndex == rhs.planeIndex )
&& ( planeStackIndex == rhs.planeStackIndex )
&& ( transform == rhs.transform )
&& ( globalAlpha == rhs.globalAlpha )
&& ( alphaMode == rhs.alphaMode )
&& ( imageExtent == rhs.imageExtent );
}
bool operator!=( DisplaySurfaceCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DisplaySurfaceCreateFlagsKHR flags;
DisplayModeKHR displayMode;
uint32_t planeIndex;
uint32_t planeStackIndex;
SurfaceTransformFlagBitsKHR transform;
float globalAlpha;
DisplayPlaneAlphaFlagBitsKHR alphaMode;
Extent2D imageExtent;
};
static_assert( sizeof( DisplaySurfaceCreateInfoKHR ) == sizeof( VkDisplaySurfaceCreateInfoKHR ), "struct and wrapper have different size!" );
struct SurfaceCapabilitiesKHR
{
operator const VkSurfaceCapabilitiesKHR&() const
{
return *reinterpret_cast<const VkSurfaceCapabilitiesKHR*>(this);
}
bool operator==( SurfaceCapabilitiesKHR const& rhs ) const
{
return ( minImageCount == rhs.minImageCount )
&& ( maxImageCount == rhs.maxImageCount )
&& ( currentExtent == rhs.currentExtent )
&& ( minImageExtent == rhs.minImageExtent )
&& ( maxImageExtent == rhs.maxImageExtent )
&& ( maxImageArrayLayers == rhs.maxImageArrayLayers )
&& ( supportedTransforms == rhs.supportedTransforms )
&& ( currentTransform == rhs.currentTransform )
&& ( supportedCompositeAlpha == rhs.supportedCompositeAlpha )
&& ( supportedUsageFlags == rhs.supportedUsageFlags );
}
bool operator!=( SurfaceCapabilitiesKHR const& rhs ) const
{
return !operator==( rhs );
}
uint32_t minImageCount;
uint32_t maxImageCount;
Extent2D currentExtent;
Extent2D minImageExtent;
Extent2D maxImageExtent;
uint32_t maxImageArrayLayers;
SurfaceTransformFlagsKHR supportedTransforms;
SurfaceTransformFlagBitsKHR currentTransform;
CompositeAlphaFlagsKHR supportedCompositeAlpha;
ImageUsageFlags supportedUsageFlags;
};
static_assert( sizeof( SurfaceCapabilitiesKHR ) == sizeof( VkSurfaceCapabilitiesKHR ), "struct and wrapper have different size!" );
struct SurfaceCapabilities2KHR
{
operator const VkSurfaceCapabilities2KHR&() const
{
return *reinterpret_cast<const VkSurfaceCapabilities2KHR*>(this);
}
bool operator==( SurfaceCapabilities2KHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( surfaceCapabilities == rhs.surfaceCapabilities );
}
bool operator!=( SurfaceCapabilities2KHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
SurfaceCapabilitiesKHR surfaceCapabilities;
};
static_assert( sizeof( SurfaceCapabilities2KHR ) == sizeof( VkSurfaceCapabilities2KHR ), "struct and wrapper have different size!" );
enum class DebugReportFlagBitsEXT
{
eInformation = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
eWarning = VK_DEBUG_REPORT_WARNING_BIT_EXT,
ePerformanceWarning = VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
eError = VK_DEBUG_REPORT_ERROR_BIT_EXT,
eDebug = VK_DEBUG_REPORT_DEBUG_BIT_EXT
};
using DebugReportFlagsEXT = Flags<DebugReportFlagBitsEXT, VkDebugReportFlagsEXT>;
VULKAN_HPP_INLINE DebugReportFlagsEXT operator|( DebugReportFlagBitsEXT bit0, DebugReportFlagBitsEXT bit1 )
{
return DebugReportFlagsEXT( bit0 ) | bit1;
}
VULKAN_HPP_INLINE DebugReportFlagsEXT operator~( DebugReportFlagBitsEXT bits )
{
return ~( DebugReportFlagsEXT( bits ) );
}
template <> struct FlagTraits<DebugReportFlagBitsEXT>
{
enum
{
allFlags = VkFlags(DebugReportFlagBitsEXT::eInformation) | VkFlags(DebugReportFlagBitsEXT::eWarning) | VkFlags(DebugReportFlagBitsEXT::ePerformanceWarning) | VkFlags(DebugReportFlagBitsEXT::eError) | VkFlags(DebugReportFlagBitsEXT::eDebug)
};
};
struct DebugReportCallbackCreateInfoEXT
{
DebugReportCallbackCreateInfoEXT( DebugReportFlagsEXT flags_ = DebugReportFlagsEXT(), PFN_vkDebugReportCallbackEXT pfnCallback_ = nullptr, void* pUserData_ = nullptr )
: sType( StructureType::eDebugReportCallbackCreateInfoEXT )
, pNext( nullptr )
, flags( flags_ )
, pfnCallback( pfnCallback_ )
, pUserData( pUserData_ )
{
}
DebugReportCallbackCreateInfoEXT( VkDebugReportCallbackCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DebugReportCallbackCreateInfoEXT ) );
}
DebugReportCallbackCreateInfoEXT& operator=( VkDebugReportCallbackCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DebugReportCallbackCreateInfoEXT ) );
return *this;
}
DebugReportCallbackCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DebugReportCallbackCreateInfoEXT& setFlags( DebugReportFlagsEXT flags_ )
{
flags = flags_;
return *this;
}
DebugReportCallbackCreateInfoEXT& setPfnCallback( PFN_vkDebugReportCallbackEXT pfnCallback_ )
{
pfnCallback = pfnCallback_;
return *this;
}
DebugReportCallbackCreateInfoEXT& setPUserData( void* pUserData_ )
{
pUserData = pUserData_;
return *this;
}
operator const VkDebugReportCallbackCreateInfoEXT&() const
{
return *reinterpret_cast<const VkDebugReportCallbackCreateInfoEXT*>(this);
}
bool operator==( DebugReportCallbackCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( pfnCallback == rhs.pfnCallback )
&& ( pUserData == rhs.pUserData );
}
bool operator!=( DebugReportCallbackCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DebugReportFlagsEXT flags;
PFN_vkDebugReportCallbackEXT pfnCallback;
void* pUserData;
};
static_assert( sizeof( DebugReportCallbackCreateInfoEXT ) == sizeof( VkDebugReportCallbackCreateInfoEXT ), "struct and wrapper have different size!" );
enum class DebugReportObjectTypeEXT
{
eUnknown = VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
eInstance = VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
ePhysicalDevice = VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT,
eDevice = VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
eQueue = VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT,
eSemaphore = VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT,
eCommandBuffer = VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
eFence = VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT,
eDeviceMemory = VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
eBuffer = VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
eImage = VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
eEvent = VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT,
eQueryPool = VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT,
eBufferView = VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT,
eImageView = VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT,
eShaderModule = VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
ePipelineCache = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
ePipelineLayout = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT,
eRenderPass = VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT,
ePipeline = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
eDescriptorSetLayout = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT,
eSampler = VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT,
eDescriptorPool = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT,
eDescriptorSet = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
eFramebuffer = VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT,
eCommandPool = VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT,
eSurfaceKhr = VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT,
eSwapchainKhr = VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT,
eDebugReportCallbackExt = VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT,
eDisplayKhr = VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_KHR_EXT,
eDisplayModeKhr = VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_MODE_KHR_EXT,
eObjectTableNvx = VK_DEBUG_REPORT_OBJECT_TYPE_OBJECT_TABLE_NVX_EXT,
eIndirectCommandsLayoutNvx = VK_DEBUG_REPORT_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX_EXT,
eValidationCache = VK_DEBUG_REPORT_OBJECT_TYPE_VALIDATION_CACHE_EXT,
eDescriptorUpdateTemplateKHR = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR_EXT,
eSamplerYcbcrConversionKHR = VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR_EXT
};
struct DebugMarkerObjectNameInfoEXT
{
DebugMarkerObjectNameInfoEXT( DebugReportObjectTypeEXT objectType_ = DebugReportObjectTypeEXT::eUnknown, uint64_t object_ = 0, const char* pObjectName_ = nullptr )
: sType( StructureType::eDebugMarkerObjectNameInfoEXT )
, pNext( nullptr )
, objectType( objectType_ )
, object( object_ )
, pObjectName( pObjectName_ )
{
}
DebugMarkerObjectNameInfoEXT( VkDebugMarkerObjectNameInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DebugMarkerObjectNameInfoEXT ) );
}
DebugMarkerObjectNameInfoEXT& operator=( VkDebugMarkerObjectNameInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DebugMarkerObjectNameInfoEXT ) );
return *this;
}
DebugMarkerObjectNameInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DebugMarkerObjectNameInfoEXT& setObjectType( DebugReportObjectTypeEXT objectType_ )
{
objectType = objectType_;
return *this;
}
DebugMarkerObjectNameInfoEXT& setObject( uint64_t object_ )
{
object = object_;
return *this;
}
DebugMarkerObjectNameInfoEXT& setPObjectName( const char* pObjectName_ )
{
pObjectName = pObjectName_;
return *this;
}
operator const VkDebugMarkerObjectNameInfoEXT&() const
{
return *reinterpret_cast<const VkDebugMarkerObjectNameInfoEXT*>(this);
}
bool operator==( DebugMarkerObjectNameInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( objectType == rhs.objectType )
&& ( object == rhs.object )
&& ( pObjectName == rhs.pObjectName );
}
bool operator!=( DebugMarkerObjectNameInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DebugReportObjectTypeEXT objectType;
uint64_t object;
const char* pObjectName;
};
static_assert( sizeof( DebugMarkerObjectNameInfoEXT ) == sizeof( VkDebugMarkerObjectNameInfoEXT ), "struct and wrapper have different size!" );
struct DebugMarkerObjectTagInfoEXT
{
DebugMarkerObjectTagInfoEXT( DebugReportObjectTypeEXT objectType_ = DebugReportObjectTypeEXT::eUnknown, uint64_t object_ = 0, uint64_t tagName_ = 0, size_t tagSize_ = 0, const void* pTag_ = nullptr )
: sType( StructureType::eDebugMarkerObjectTagInfoEXT )
, pNext( nullptr )
, objectType( objectType_ )
, object( object_ )
, tagName( tagName_ )
, tagSize( tagSize_ )
, pTag( pTag_ )
{
}
DebugMarkerObjectTagInfoEXT( VkDebugMarkerObjectTagInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DebugMarkerObjectTagInfoEXT ) );
}
DebugMarkerObjectTagInfoEXT& operator=( VkDebugMarkerObjectTagInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DebugMarkerObjectTagInfoEXT ) );
return *this;
}
DebugMarkerObjectTagInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setObjectType( DebugReportObjectTypeEXT objectType_ )
{
objectType = objectType_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setObject( uint64_t object_ )
{
object = object_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setTagName( uint64_t tagName_ )
{
tagName = tagName_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setTagSize( size_t tagSize_ )
{
tagSize = tagSize_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setPTag( const void* pTag_ )
{
pTag = pTag_;
return *this;
}
operator const VkDebugMarkerObjectTagInfoEXT&() const
{
return *reinterpret_cast<const VkDebugMarkerObjectTagInfoEXT*>(this);
}
bool operator==( DebugMarkerObjectTagInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( objectType == rhs.objectType )
&& ( object == rhs.object )
&& ( tagName == rhs.tagName )
&& ( tagSize == rhs.tagSize )
&& ( pTag == rhs.pTag );
}
bool operator!=( DebugMarkerObjectTagInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DebugReportObjectTypeEXT objectType;
uint64_t object;
uint64_t tagName;
size_t tagSize;
const void* pTag;
};
static_assert( sizeof( DebugMarkerObjectTagInfoEXT ) == sizeof( VkDebugMarkerObjectTagInfoEXT ), "struct and wrapper have different size!" );
enum class RasterizationOrderAMD
{
eStrict = VK_RASTERIZATION_ORDER_STRICT_AMD,
eRelaxed = VK_RASTERIZATION_ORDER_RELAXED_AMD
};
struct PipelineRasterizationStateRasterizationOrderAMD
{
PipelineRasterizationStateRasterizationOrderAMD( RasterizationOrderAMD rasterizationOrder_ = RasterizationOrderAMD::eStrict )
: sType( StructureType::ePipelineRasterizationStateRasterizationOrderAMD )
, pNext( nullptr )
, rasterizationOrder( rasterizationOrder_ )
{
}
PipelineRasterizationStateRasterizationOrderAMD( VkPipelineRasterizationStateRasterizationOrderAMD const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineRasterizationStateRasterizationOrderAMD ) );
}
PipelineRasterizationStateRasterizationOrderAMD& operator=( VkPipelineRasterizationStateRasterizationOrderAMD const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineRasterizationStateRasterizationOrderAMD ) );
return *this;
}
PipelineRasterizationStateRasterizationOrderAMD& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineRasterizationStateRasterizationOrderAMD& setRasterizationOrder( RasterizationOrderAMD rasterizationOrder_ )
{
rasterizationOrder = rasterizationOrder_;
return *this;
}
operator const VkPipelineRasterizationStateRasterizationOrderAMD&() const
{
return *reinterpret_cast<const VkPipelineRasterizationStateRasterizationOrderAMD*>(this);
}
bool operator==( PipelineRasterizationStateRasterizationOrderAMD const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( rasterizationOrder == rhs.rasterizationOrder );
}
bool operator!=( PipelineRasterizationStateRasterizationOrderAMD const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
RasterizationOrderAMD rasterizationOrder;
};
static_assert( sizeof( PipelineRasterizationStateRasterizationOrderAMD ) == sizeof( VkPipelineRasterizationStateRasterizationOrderAMD ), "struct and wrapper have different size!" );
enum class ExternalMemoryHandleTypeFlagBitsNV
{
eOpaqueWin32 = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV,
eOpaqueWin32Kmt = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV,
eD3D11Image = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV,
eD3D11ImageKmt = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_KMT_BIT_NV
};
using ExternalMemoryHandleTypeFlagsNV = Flags<ExternalMemoryHandleTypeFlagBitsNV, VkExternalMemoryHandleTypeFlagsNV>;
VULKAN_HPP_INLINE ExternalMemoryHandleTypeFlagsNV operator|( ExternalMemoryHandleTypeFlagBitsNV bit0, ExternalMemoryHandleTypeFlagBitsNV bit1 )
{
return ExternalMemoryHandleTypeFlagsNV( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ExternalMemoryHandleTypeFlagsNV operator~( ExternalMemoryHandleTypeFlagBitsNV bits )
{
return ~( ExternalMemoryHandleTypeFlagsNV( bits ) );
}
template <> struct FlagTraits<ExternalMemoryHandleTypeFlagBitsNV>
{
enum
{
allFlags = VkFlags(ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32) | VkFlags(ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32Kmt) | VkFlags(ExternalMemoryHandleTypeFlagBitsNV::eD3D11Image) | VkFlags(ExternalMemoryHandleTypeFlagBitsNV::eD3D11ImageKmt)
};
};
struct ExternalMemoryImageCreateInfoNV
{
ExternalMemoryImageCreateInfoNV( ExternalMemoryHandleTypeFlagsNV handleTypes_ = ExternalMemoryHandleTypeFlagsNV() )
: sType( StructureType::eExternalMemoryImageCreateInfoNV )
, pNext( nullptr )
, handleTypes( handleTypes_ )
{
}
ExternalMemoryImageCreateInfoNV( VkExternalMemoryImageCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( ExternalMemoryImageCreateInfoNV ) );
}
ExternalMemoryImageCreateInfoNV& operator=( VkExternalMemoryImageCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( ExternalMemoryImageCreateInfoNV ) );
return *this;
}
ExternalMemoryImageCreateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExternalMemoryImageCreateInfoNV& setHandleTypes( ExternalMemoryHandleTypeFlagsNV handleTypes_ )
{
handleTypes = handleTypes_;
return *this;
}
operator const VkExternalMemoryImageCreateInfoNV&() const
{
return *reinterpret_cast<const VkExternalMemoryImageCreateInfoNV*>(this);
}
bool operator==( ExternalMemoryImageCreateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleTypes == rhs.handleTypes );
}
bool operator!=( ExternalMemoryImageCreateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagsNV handleTypes;
};
static_assert( sizeof( ExternalMemoryImageCreateInfoNV ) == sizeof( VkExternalMemoryImageCreateInfoNV ), "struct and wrapper have different size!" );
struct ExportMemoryAllocateInfoNV
{
ExportMemoryAllocateInfoNV( ExternalMemoryHandleTypeFlagsNV handleTypes_ = ExternalMemoryHandleTypeFlagsNV() )
: sType( StructureType::eExportMemoryAllocateInfoNV )
, pNext( nullptr )
, handleTypes( handleTypes_ )
{
}
ExportMemoryAllocateInfoNV( VkExportMemoryAllocateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( ExportMemoryAllocateInfoNV ) );
}
ExportMemoryAllocateInfoNV& operator=( VkExportMemoryAllocateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( ExportMemoryAllocateInfoNV ) );
return *this;
}
ExportMemoryAllocateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExportMemoryAllocateInfoNV& setHandleTypes( ExternalMemoryHandleTypeFlagsNV handleTypes_ )
{
handleTypes = handleTypes_;
return *this;
}
operator const VkExportMemoryAllocateInfoNV&() const
{
return *reinterpret_cast<const VkExportMemoryAllocateInfoNV*>(this);
}
bool operator==( ExportMemoryAllocateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleTypes == rhs.handleTypes );
}
bool operator!=( ExportMemoryAllocateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagsNV handleTypes;
};
static_assert( sizeof( ExportMemoryAllocateInfoNV ) == sizeof( VkExportMemoryAllocateInfoNV ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct ImportMemoryWin32HandleInfoNV
{
ImportMemoryWin32HandleInfoNV( ExternalMemoryHandleTypeFlagsNV handleType_ = ExternalMemoryHandleTypeFlagsNV(), HANDLE handle_ = 0 )
: sType( StructureType::eImportMemoryWin32HandleInfoNV )
, pNext( nullptr )
, handleType( handleType_ )
, handle( handle_ )
{
}
ImportMemoryWin32HandleInfoNV( VkImportMemoryWin32HandleInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( ImportMemoryWin32HandleInfoNV ) );
}
ImportMemoryWin32HandleInfoNV& operator=( VkImportMemoryWin32HandleInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( ImportMemoryWin32HandleInfoNV ) );
return *this;
}
ImportMemoryWin32HandleInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImportMemoryWin32HandleInfoNV& setHandleType( ExternalMemoryHandleTypeFlagsNV handleType_ )
{
handleType = handleType_;
return *this;
}
ImportMemoryWin32HandleInfoNV& setHandle( HANDLE handle_ )
{
handle = handle_;
return *this;
}
operator const VkImportMemoryWin32HandleInfoNV&() const
{
return *reinterpret_cast<const VkImportMemoryWin32HandleInfoNV*>(this);
}
bool operator==( ImportMemoryWin32HandleInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleType == rhs.handleType )
&& ( handle == rhs.handle );
}
bool operator!=( ImportMemoryWin32HandleInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagsNV handleType;
HANDLE handle;
};
static_assert( sizeof( ImportMemoryWin32HandleInfoNV ) == sizeof( VkImportMemoryWin32HandleInfoNV ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
enum class ExternalMemoryFeatureFlagBitsNV
{
eDedicatedOnly = VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV,
eExportable = VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV,
eImportable = VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV
};
using ExternalMemoryFeatureFlagsNV = Flags<ExternalMemoryFeatureFlagBitsNV, VkExternalMemoryFeatureFlagsNV>;
VULKAN_HPP_INLINE ExternalMemoryFeatureFlagsNV operator|( ExternalMemoryFeatureFlagBitsNV bit0, ExternalMemoryFeatureFlagBitsNV bit1 )
{
return ExternalMemoryFeatureFlagsNV( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ExternalMemoryFeatureFlagsNV operator~( ExternalMemoryFeatureFlagBitsNV bits )
{
return ~( ExternalMemoryFeatureFlagsNV( bits ) );
}
template <> struct FlagTraits<ExternalMemoryFeatureFlagBitsNV>
{
enum
{
allFlags = VkFlags(ExternalMemoryFeatureFlagBitsNV::eDedicatedOnly) | VkFlags(ExternalMemoryFeatureFlagBitsNV::eExportable) | VkFlags(ExternalMemoryFeatureFlagBitsNV::eImportable)
};
};
struct ExternalImageFormatPropertiesNV
{
operator const VkExternalImageFormatPropertiesNV&() const
{
return *reinterpret_cast<const VkExternalImageFormatPropertiesNV*>(this);
}
bool operator==( ExternalImageFormatPropertiesNV const& rhs ) const
{
return ( imageFormatProperties == rhs.imageFormatProperties )
&& ( externalMemoryFeatures == rhs.externalMemoryFeatures )
&& ( exportFromImportedHandleTypes == rhs.exportFromImportedHandleTypes )
&& ( compatibleHandleTypes == rhs.compatibleHandleTypes );
}
bool operator!=( ExternalImageFormatPropertiesNV const& rhs ) const
{
return !operator==( rhs );
}
ImageFormatProperties imageFormatProperties;
ExternalMemoryFeatureFlagsNV externalMemoryFeatures;
ExternalMemoryHandleTypeFlagsNV exportFromImportedHandleTypes;
ExternalMemoryHandleTypeFlagsNV compatibleHandleTypes;
};
static_assert( sizeof( ExternalImageFormatPropertiesNV ) == sizeof( VkExternalImageFormatPropertiesNV ), "struct and wrapper have different size!" );
enum class ValidationCheckEXT
{
eAll = VK_VALIDATION_CHECK_ALL_EXT,
eShaders = VK_VALIDATION_CHECK_SHADERS_EXT
};
struct ValidationFlagsEXT
{
ValidationFlagsEXT( uint32_t disabledValidationCheckCount_ = 0, ValidationCheckEXT* pDisabledValidationChecks_ = nullptr )
: sType( StructureType::eValidationFlagsEXT )
, pNext( nullptr )
, disabledValidationCheckCount( disabledValidationCheckCount_ )
, pDisabledValidationChecks( pDisabledValidationChecks_ )
{
}
ValidationFlagsEXT( VkValidationFlagsEXT const & rhs )
{
memcpy( this, &rhs, sizeof( ValidationFlagsEXT ) );
}
ValidationFlagsEXT& operator=( VkValidationFlagsEXT const & rhs )
{
memcpy( this, &rhs, sizeof( ValidationFlagsEXT ) );
return *this;
}
ValidationFlagsEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ValidationFlagsEXT& setDisabledValidationCheckCount( uint32_t disabledValidationCheckCount_ )
{
disabledValidationCheckCount = disabledValidationCheckCount_;
return *this;
}
ValidationFlagsEXT& setPDisabledValidationChecks( ValidationCheckEXT* pDisabledValidationChecks_ )
{
pDisabledValidationChecks = pDisabledValidationChecks_;
return *this;
}
operator const VkValidationFlagsEXT&() const
{
return *reinterpret_cast<const VkValidationFlagsEXT*>(this);
}
bool operator==( ValidationFlagsEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( disabledValidationCheckCount == rhs.disabledValidationCheckCount )
&& ( pDisabledValidationChecks == rhs.pDisabledValidationChecks );
}
bool operator!=( ValidationFlagsEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t disabledValidationCheckCount;
ValidationCheckEXT* pDisabledValidationChecks;
};
static_assert( sizeof( ValidationFlagsEXT ) == sizeof( VkValidationFlagsEXT ), "struct and wrapper have different size!" );
enum class IndirectCommandsLayoutUsageFlagBitsNVX
{
eUnorderedSequences = VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NVX,
eSparseSequences = VK_INDIRECT_COMMANDS_LAYOUT_USAGE_SPARSE_SEQUENCES_BIT_NVX,
eEmptyExecutions = VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EMPTY_EXECUTIONS_BIT_NVX,
eIndexedSequences = VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NVX
};
using IndirectCommandsLayoutUsageFlagsNVX = Flags<IndirectCommandsLayoutUsageFlagBitsNVX, VkIndirectCommandsLayoutUsageFlagsNVX>;
VULKAN_HPP_INLINE IndirectCommandsLayoutUsageFlagsNVX operator|( IndirectCommandsLayoutUsageFlagBitsNVX bit0, IndirectCommandsLayoutUsageFlagBitsNVX bit1 )
{
return IndirectCommandsLayoutUsageFlagsNVX( bit0 ) | bit1;
}
VULKAN_HPP_INLINE IndirectCommandsLayoutUsageFlagsNVX operator~( IndirectCommandsLayoutUsageFlagBitsNVX bits )
{
return ~( IndirectCommandsLayoutUsageFlagsNVX( bits ) );
}
template <> struct FlagTraits<IndirectCommandsLayoutUsageFlagBitsNVX>
{
enum
{
allFlags = VkFlags(IndirectCommandsLayoutUsageFlagBitsNVX::eUnorderedSequences) | VkFlags(IndirectCommandsLayoutUsageFlagBitsNVX::eSparseSequences) | VkFlags(IndirectCommandsLayoutUsageFlagBitsNVX::eEmptyExecutions) | VkFlags(IndirectCommandsLayoutUsageFlagBitsNVX::eIndexedSequences)
};
};
enum class ObjectEntryUsageFlagBitsNVX
{
eGraphics = VK_OBJECT_ENTRY_USAGE_GRAPHICS_BIT_NVX,
eCompute = VK_OBJECT_ENTRY_USAGE_COMPUTE_BIT_NVX
};
using ObjectEntryUsageFlagsNVX = Flags<ObjectEntryUsageFlagBitsNVX, VkObjectEntryUsageFlagsNVX>;
VULKAN_HPP_INLINE ObjectEntryUsageFlagsNVX operator|( ObjectEntryUsageFlagBitsNVX bit0, ObjectEntryUsageFlagBitsNVX bit1 )
{
return ObjectEntryUsageFlagsNVX( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ObjectEntryUsageFlagsNVX operator~( ObjectEntryUsageFlagBitsNVX bits )
{
return ~( ObjectEntryUsageFlagsNVX( bits ) );
}
template <> struct FlagTraits<ObjectEntryUsageFlagBitsNVX>
{
enum
{
allFlags = VkFlags(ObjectEntryUsageFlagBitsNVX::eGraphics) | VkFlags(ObjectEntryUsageFlagBitsNVX::eCompute)
};
};
enum class IndirectCommandsTokenTypeNVX
{
ePipeline = VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NVX,
eDescriptorSet = VK_INDIRECT_COMMANDS_TOKEN_TYPE_DESCRIPTOR_SET_NVX,
eIndexBuffer = VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NVX,
eVertexBuffer = VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NVX,
ePushConstant = VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NVX,
eDrawIndexed = VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NVX,
eDraw = VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NVX,
eDispatch = VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NVX
};
struct IndirectCommandsTokenNVX
{
IndirectCommandsTokenNVX( IndirectCommandsTokenTypeNVX tokenType_ = IndirectCommandsTokenTypeNVX::ePipeline, Buffer buffer_ = Buffer(), DeviceSize offset_ = 0 )
: tokenType( tokenType_ )
, buffer( buffer_ )
, offset( offset_ )
{
}
IndirectCommandsTokenNVX( VkIndirectCommandsTokenNVX const & rhs )
{
memcpy( this, &rhs, sizeof( IndirectCommandsTokenNVX ) );
}
IndirectCommandsTokenNVX& operator=( VkIndirectCommandsTokenNVX const & rhs )
{
memcpy( this, &rhs, sizeof( IndirectCommandsTokenNVX ) );
return *this;
}
IndirectCommandsTokenNVX& setTokenType( IndirectCommandsTokenTypeNVX tokenType_ )
{
tokenType = tokenType_;
return *this;
}
IndirectCommandsTokenNVX& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
IndirectCommandsTokenNVX& setOffset( DeviceSize offset_ )
{
offset = offset_;
return *this;
}
operator const VkIndirectCommandsTokenNVX&() const
{
return *reinterpret_cast<const VkIndirectCommandsTokenNVX*>(this);
}
bool operator==( IndirectCommandsTokenNVX const& rhs ) const
{
return ( tokenType == rhs.tokenType )
&& ( buffer == rhs.buffer )
&& ( offset == rhs.offset );
}
bool operator!=( IndirectCommandsTokenNVX const& rhs ) const
{
return !operator==( rhs );
}
IndirectCommandsTokenTypeNVX tokenType;
Buffer buffer;
DeviceSize offset;
};
static_assert( sizeof( IndirectCommandsTokenNVX ) == sizeof( VkIndirectCommandsTokenNVX ), "struct and wrapper have different size!" );
struct IndirectCommandsLayoutTokenNVX
{
IndirectCommandsLayoutTokenNVX( IndirectCommandsTokenTypeNVX tokenType_ = IndirectCommandsTokenTypeNVX::ePipeline, uint32_t bindingUnit_ = 0, uint32_t dynamicCount_ = 0, uint32_t divisor_ = 0 )
: tokenType( tokenType_ )
, bindingUnit( bindingUnit_ )
, dynamicCount( dynamicCount_ )
, divisor( divisor_ )
{
}
IndirectCommandsLayoutTokenNVX( VkIndirectCommandsLayoutTokenNVX const & rhs )
{
memcpy( this, &rhs, sizeof( IndirectCommandsLayoutTokenNVX ) );
}
IndirectCommandsLayoutTokenNVX& operator=( VkIndirectCommandsLayoutTokenNVX const & rhs )
{
memcpy( this, &rhs, sizeof( IndirectCommandsLayoutTokenNVX ) );
return *this;
}
IndirectCommandsLayoutTokenNVX& setTokenType( IndirectCommandsTokenTypeNVX tokenType_ )
{
tokenType = tokenType_;
return *this;
}
IndirectCommandsLayoutTokenNVX& setBindingUnit( uint32_t bindingUnit_ )
{
bindingUnit = bindingUnit_;
return *this;
}
IndirectCommandsLayoutTokenNVX& setDynamicCount( uint32_t dynamicCount_ )
{
dynamicCount = dynamicCount_;
return *this;
}
IndirectCommandsLayoutTokenNVX& setDivisor( uint32_t divisor_ )
{
divisor = divisor_;
return *this;
}
operator const VkIndirectCommandsLayoutTokenNVX&() const
{
return *reinterpret_cast<const VkIndirectCommandsLayoutTokenNVX*>(this);
}
bool operator==( IndirectCommandsLayoutTokenNVX const& rhs ) const
{
return ( tokenType == rhs.tokenType )
&& ( bindingUnit == rhs.bindingUnit )
&& ( dynamicCount == rhs.dynamicCount )
&& ( divisor == rhs.divisor );
}
bool operator!=( IndirectCommandsLayoutTokenNVX const& rhs ) const
{
return !operator==( rhs );
}
IndirectCommandsTokenTypeNVX tokenType;
uint32_t bindingUnit;
uint32_t dynamicCount;
uint32_t divisor;
};
static_assert( sizeof( IndirectCommandsLayoutTokenNVX ) == sizeof( VkIndirectCommandsLayoutTokenNVX ), "struct and wrapper have different size!" );
struct IndirectCommandsLayoutCreateInfoNVX
{
IndirectCommandsLayoutCreateInfoNVX( PipelineBindPoint pipelineBindPoint_ = PipelineBindPoint::eGraphics, IndirectCommandsLayoutUsageFlagsNVX flags_ = IndirectCommandsLayoutUsageFlagsNVX(), uint32_t tokenCount_ = 0, const IndirectCommandsLayoutTokenNVX* pTokens_ = nullptr )
: sType( StructureType::eIndirectCommandsLayoutCreateInfoNVX )
, pNext( nullptr )
, pipelineBindPoint( pipelineBindPoint_ )
, flags( flags_ )
, tokenCount( tokenCount_ )
, pTokens( pTokens_ )
{
}
IndirectCommandsLayoutCreateInfoNVX( VkIndirectCommandsLayoutCreateInfoNVX const & rhs )
{
memcpy( this, &rhs, sizeof( IndirectCommandsLayoutCreateInfoNVX ) );
}
IndirectCommandsLayoutCreateInfoNVX& operator=( VkIndirectCommandsLayoutCreateInfoNVX const & rhs )
{
memcpy( this, &rhs, sizeof( IndirectCommandsLayoutCreateInfoNVX ) );
return *this;
}
IndirectCommandsLayoutCreateInfoNVX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
IndirectCommandsLayoutCreateInfoNVX& setPipelineBindPoint( PipelineBindPoint pipelineBindPoint_ )
{
pipelineBindPoint = pipelineBindPoint_;
return *this;
}
IndirectCommandsLayoutCreateInfoNVX& setFlags( IndirectCommandsLayoutUsageFlagsNVX flags_ )
{
flags = flags_;
return *this;
}
IndirectCommandsLayoutCreateInfoNVX& setTokenCount( uint32_t tokenCount_ )
{
tokenCount = tokenCount_;
return *this;
}
IndirectCommandsLayoutCreateInfoNVX& setPTokens( const IndirectCommandsLayoutTokenNVX* pTokens_ )
{
pTokens = pTokens_;
return *this;
}
operator const VkIndirectCommandsLayoutCreateInfoNVX&() const
{
return *reinterpret_cast<const VkIndirectCommandsLayoutCreateInfoNVX*>(this);
}
bool operator==( IndirectCommandsLayoutCreateInfoNVX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( pipelineBindPoint == rhs.pipelineBindPoint )
&& ( flags == rhs.flags )
&& ( tokenCount == rhs.tokenCount )
&& ( pTokens == rhs.pTokens );
}
bool operator!=( IndirectCommandsLayoutCreateInfoNVX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineBindPoint pipelineBindPoint;
IndirectCommandsLayoutUsageFlagsNVX flags;
uint32_t tokenCount;
const IndirectCommandsLayoutTokenNVX* pTokens;
};
static_assert( sizeof( IndirectCommandsLayoutCreateInfoNVX ) == sizeof( VkIndirectCommandsLayoutCreateInfoNVX ), "struct and wrapper have different size!" );
enum class ObjectEntryTypeNVX
{
eDescriptorSet = VK_OBJECT_ENTRY_TYPE_DESCRIPTOR_SET_NVX,
ePipeline = VK_OBJECT_ENTRY_TYPE_PIPELINE_NVX,
eIndexBuffer = VK_OBJECT_ENTRY_TYPE_INDEX_BUFFER_NVX,
eVertexBuffer = VK_OBJECT_ENTRY_TYPE_VERTEX_BUFFER_NVX,
ePushConstant = VK_OBJECT_ENTRY_TYPE_PUSH_CONSTANT_NVX
};
struct ObjectTableCreateInfoNVX
{
ObjectTableCreateInfoNVX( uint32_t objectCount_ = 0, const ObjectEntryTypeNVX* pObjectEntryTypes_ = nullptr, const uint32_t* pObjectEntryCounts_ = nullptr, const ObjectEntryUsageFlagsNVX* pObjectEntryUsageFlags_ = nullptr, uint32_t maxUniformBuffersPerDescriptor_ = 0, uint32_t maxStorageBuffersPerDescriptor_ = 0, uint32_t maxStorageImagesPerDescriptor_ = 0, uint32_t maxSampledImagesPerDescriptor_ = 0, uint32_t maxPipelineLayouts_ = 0 )
: sType( StructureType::eObjectTableCreateInfoNVX )
, pNext( nullptr )
, objectCount( objectCount_ )
, pObjectEntryTypes( pObjectEntryTypes_ )
, pObjectEntryCounts( pObjectEntryCounts_ )
, pObjectEntryUsageFlags( pObjectEntryUsageFlags_ )
, maxUniformBuffersPerDescriptor( maxUniformBuffersPerDescriptor_ )
, maxStorageBuffersPerDescriptor( maxStorageBuffersPerDescriptor_ )
, maxStorageImagesPerDescriptor( maxStorageImagesPerDescriptor_ )
, maxSampledImagesPerDescriptor( maxSampledImagesPerDescriptor_ )
, maxPipelineLayouts( maxPipelineLayouts_ )
{
}
ObjectTableCreateInfoNVX( VkObjectTableCreateInfoNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableCreateInfoNVX ) );
}
ObjectTableCreateInfoNVX& operator=( VkObjectTableCreateInfoNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableCreateInfoNVX ) );
return *this;
}
ObjectTableCreateInfoNVX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ObjectTableCreateInfoNVX& setObjectCount( uint32_t objectCount_ )
{
objectCount = objectCount_;
return *this;
}
ObjectTableCreateInfoNVX& setPObjectEntryTypes( const ObjectEntryTypeNVX* pObjectEntryTypes_ )
{
pObjectEntryTypes = pObjectEntryTypes_;
return *this;
}
ObjectTableCreateInfoNVX& setPObjectEntryCounts( const uint32_t* pObjectEntryCounts_ )
{
pObjectEntryCounts = pObjectEntryCounts_;
return *this;
}
ObjectTableCreateInfoNVX& setPObjectEntryUsageFlags( const ObjectEntryUsageFlagsNVX* pObjectEntryUsageFlags_ )
{
pObjectEntryUsageFlags = pObjectEntryUsageFlags_;
return *this;
}
ObjectTableCreateInfoNVX& setMaxUniformBuffersPerDescriptor( uint32_t maxUniformBuffersPerDescriptor_ )
{
maxUniformBuffersPerDescriptor = maxUniformBuffersPerDescriptor_;
return *this;
}
ObjectTableCreateInfoNVX& setMaxStorageBuffersPerDescriptor( uint32_t maxStorageBuffersPerDescriptor_ )
{
maxStorageBuffersPerDescriptor = maxStorageBuffersPerDescriptor_;
return *this;
}
ObjectTableCreateInfoNVX& setMaxStorageImagesPerDescriptor( uint32_t maxStorageImagesPerDescriptor_ )
{
maxStorageImagesPerDescriptor = maxStorageImagesPerDescriptor_;
return *this;
}
ObjectTableCreateInfoNVX& setMaxSampledImagesPerDescriptor( uint32_t maxSampledImagesPerDescriptor_ )
{
maxSampledImagesPerDescriptor = maxSampledImagesPerDescriptor_;
return *this;
}
ObjectTableCreateInfoNVX& setMaxPipelineLayouts( uint32_t maxPipelineLayouts_ )
{
maxPipelineLayouts = maxPipelineLayouts_;
return *this;
}
operator const VkObjectTableCreateInfoNVX&() const
{
return *reinterpret_cast<const VkObjectTableCreateInfoNVX*>(this);
}
bool operator==( ObjectTableCreateInfoNVX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( objectCount == rhs.objectCount )
&& ( pObjectEntryTypes == rhs.pObjectEntryTypes )
&& ( pObjectEntryCounts == rhs.pObjectEntryCounts )
&& ( pObjectEntryUsageFlags == rhs.pObjectEntryUsageFlags )
&& ( maxUniformBuffersPerDescriptor == rhs.maxUniformBuffersPerDescriptor )
&& ( maxStorageBuffersPerDescriptor == rhs.maxStorageBuffersPerDescriptor )
&& ( maxStorageImagesPerDescriptor == rhs.maxStorageImagesPerDescriptor )
&& ( maxSampledImagesPerDescriptor == rhs.maxSampledImagesPerDescriptor )
&& ( maxPipelineLayouts == rhs.maxPipelineLayouts );
}
bool operator!=( ObjectTableCreateInfoNVX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t objectCount;
const ObjectEntryTypeNVX* pObjectEntryTypes;
const uint32_t* pObjectEntryCounts;
const ObjectEntryUsageFlagsNVX* pObjectEntryUsageFlags;
uint32_t maxUniformBuffersPerDescriptor;
uint32_t maxStorageBuffersPerDescriptor;
uint32_t maxStorageImagesPerDescriptor;
uint32_t maxSampledImagesPerDescriptor;
uint32_t maxPipelineLayouts;
};
static_assert( sizeof( ObjectTableCreateInfoNVX ) == sizeof( VkObjectTableCreateInfoNVX ), "struct and wrapper have different size!" );
struct ObjectTableEntryNVX
{
ObjectTableEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX() )
: type( type_ )
, flags( flags_ )
{
}
ObjectTableEntryNVX( VkObjectTableEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableEntryNVX ) );
}
ObjectTableEntryNVX& operator=( VkObjectTableEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableEntryNVX ) );
return *this;
}
ObjectTableEntryNVX& setType( ObjectEntryTypeNVX type_ )
{
type = type_;
return *this;
}
ObjectTableEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ )
{
flags = flags_;
return *this;
}
operator const VkObjectTableEntryNVX&() const
{
return *reinterpret_cast<const VkObjectTableEntryNVX*>(this);
}
bool operator==( ObjectTableEntryNVX const& rhs ) const
{
return ( type == rhs.type )
&& ( flags == rhs.flags );
}
bool operator!=( ObjectTableEntryNVX const& rhs ) const
{
return !operator==( rhs );
}
ObjectEntryTypeNVX type;
ObjectEntryUsageFlagsNVX flags;
};
static_assert( sizeof( ObjectTableEntryNVX ) == sizeof( VkObjectTableEntryNVX ), "struct and wrapper have different size!" );
struct ObjectTablePipelineEntryNVX
{
ObjectTablePipelineEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), Pipeline pipeline_ = Pipeline() )
: type( type_ )
, flags( flags_ )
, pipeline( pipeline_ )
{
}
ObjectTablePipelineEntryNVX( VkObjectTablePipelineEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTablePipelineEntryNVX ) );
}
ObjectTablePipelineEntryNVX& operator=( VkObjectTablePipelineEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTablePipelineEntryNVX ) );
return *this;
}
ObjectTablePipelineEntryNVX& setType( ObjectEntryTypeNVX type_ )
{
type = type_;
return *this;
}
ObjectTablePipelineEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ )
{
flags = flags_;
return *this;
}
ObjectTablePipelineEntryNVX& setPipeline( Pipeline pipeline_ )
{
pipeline = pipeline_;
return *this;
}
operator const VkObjectTablePipelineEntryNVX&() const
{
return *reinterpret_cast<const VkObjectTablePipelineEntryNVX*>(this);
}
bool operator==( ObjectTablePipelineEntryNVX const& rhs ) const
{
return ( type == rhs.type )
&& ( flags == rhs.flags )
&& ( pipeline == rhs.pipeline );
}
bool operator!=( ObjectTablePipelineEntryNVX const& rhs ) const
{
return !operator==( rhs );
}
ObjectEntryTypeNVX type;
ObjectEntryUsageFlagsNVX flags;
Pipeline pipeline;
};
static_assert( sizeof( ObjectTablePipelineEntryNVX ) == sizeof( VkObjectTablePipelineEntryNVX ), "struct and wrapper have different size!" );
struct ObjectTableDescriptorSetEntryNVX
{
ObjectTableDescriptorSetEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), PipelineLayout pipelineLayout_ = PipelineLayout(), DescriptorSet descriptorSet_ = DescriptorSet() )
: type( type_ )
, flags( flags_ )
, pipelineLayout( pipelineLayout_ )
, descriptorSet( descriptorSet_ )
{
}
ObjectTableDescriptorSetEntryNVX( VkObjectTableDescriptorSetEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableDescriptorSetEntryNVX ) );
}
ObjectTableDescriptorSetEntryNVX& operator=( VkObjectTableDescriptorSetEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableDescriptorSetEntryNVX ) );
return *this;
}
ObjectTableDescriptorSetEntryNVX& setType( ObjectEntryTypeNVX type_ )
{
type = type_;
return *this;
}
ObjectTableDescriptorSetEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ )
{
flags = flags_;
return *this;
}
ObjectTableDescriptorSetEntryNVX& setPipelineLayout( PipelineLayout pipelineLayout_ )
{
pipelineLayout = pipelineLayout_;
return *this;
}
ObjectTableDescriptorSetEntryNVX& setDescriptorSet( DescriptorSet descriptorSet_ )
{
descriptorSet = descriptorSet_;
return *this;
}
operator const VkObjectTableDescriptorSetEntryNVX&() const
{
return *reinterpret_cast<const VkObjectTableDescriptorSetEntryNVX*>(this);
}
bool operator==( ObjectTableDescriptorSetEntryNVX const& rhs ) const
{
return ( type == rhs.type )
&& ( flags == rhs.flags )
&& ( pipelineLayout == rhs.pipelineLayout )
&& ( descriptorSet == rhs.descriptorSet );
}
bool operator!=( ObjectTableDescriptorSetEntryNVX const& rhs ) const
{
return !operator==( rhs );
}
ObjectEntryTypeNVX type;
ObjectEntryUsageFlagsNVX flags;
PipelineLayout pipelineLayout;
DescriptorSet descriptorSet;
};
static_assert( sizeof( ObjectTableDescriptorSetEntryNVX ) == sizeof( VkObjectTableDescriptorSetEntryNVX ), "struct and wrapper have different size!" );
struct ObjectTableVertexBufferEntryNVX
{
ObjectTableVertexBufferEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), Buffer buffer_ = Buffer() )
: type( type_ )
, flags( flags_ )
, buffer( buffer_ )
{
}
ObjectTableVertexBufferEntryNVX( VkObjectTableVertexBufferEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableVertexBufferEntryNVX ) );
}
ObjectTableVertexBufferEntryNVX& operator=( VkObjectTableVertexBufferEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableVertexBufferEntryNVX ) );
return *this;
}
ObjectTableVertexBufferEntryNVX& setType( ObjectEntryTypeNVX type_ )
{
type = type_;
return *this;
}
ObjectTableVertexBufferEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ )
{
flags = flags_;
return *this;
}
ObjectTableVertexBufferEntryNVX& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
operator const VkObjectTableVertexBufferEntryNVX&() const
{
return *reinterpret_cast<const VkObjectTableVertexBufferEntryNVX*>(this);
}
bool operator==( ObjectTableVertexBufferEntryNVX const& rhs ) const
{
return ( type == rhs.type )
&& ( flags == rhs.flags )
&& ( buffer == rhs.buffer );
}
bool operator!=( ObjectTableVertexBufferEntryNVX const& rhs ) const
{
return !operator==( rhs );
}
ObjectEntryTypeNVX type;
ObjectEntryUsageFlagsNVX flags;
Buffer buffer;
};
static_assert( sizeof( ObjectTableVertexBufferEntryNVX ) == sizeof( VkObjectTableVertexBufferEntryNVX ), "struct and wrapper have different size!" );
struct ObjectTableIndexBufferEntryNVX
{
ObjectTableIndexBufferEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), Buffer buffer_ = Buffer(), IndexType indexType_ = IndexType::eUint16 )
: type( type_ )
, flags( flags_ )
, buffer( buffer_ )
, indexType( indexType_ )
{
}
ObjectTableIndexBufferEntryNVX( VkObjectTableIndexBufferEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableIndexBufferEntryNVX ) );
}
ObjectTableIndexBufferEntryNVX& operator=( VkObjectTableIndexBufferEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTableIndexBufferEntryNVX ) );
return *this;
}
ObjectTableIndexBufferEntryNVX& setType( ObjectEntryTypeNVX type_ )
{
type = type_;
return *this;
}
ObjectTableIndexBufferEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ )
{
flags = flags_;
return *this;
}
ObjectTableIndexBufferEntryNVX& setBuffer( Buffer buffer_ )
{
buffer = buffer_;
return *this;
}
ObjectTableIndexBufferEntryNVX& setIndexType( IndexType indexType_ )
{
indexType = indexType_;
return *this;
}
operator const VkObjectTableIndexBufferEntryNVX&() const
{
return *reinterpret_cast<const VkObjectTableIndexBufferEntryNVX*>(this);
}
bool operator==( ObjectTableIndexBufferEntryNVX const& rhs ) const
{
return ( type == rhs.type )
&& ( flags == rhs.flags )
&& ( buffer == rhs.buffer )
&& ( indexType == rhs.indexType );
}
bool operator!=( ObjectTableIndexBufferEntryNVX const& rhs ) const
{
return !operator==( rhs );
}
ObjectEntryTypeNVX type;
ObjectEntryUsageFlagsNVX flags;
Buffer buffer;
IndexType indexType;
};
static_assert( sizeof( ObjectTableIndexBufferEntryNVX ) == sizeof( VkObjectTableIndexBufferEntryNVX ), "struct and wrapper have different size!" );
struct ObjectTablePushConstantEntryNVX
{
ObjectTablePushConstantEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), PipelineLayout pipelineLayout_ = PipelineLayout(), ShaderStageFlags stageFlags_ = ShaderStageFlags() )
: type( type_ )
, flags( flags_ )
, pipelineLayout( pipelineLayout_ )
, stageFlags( stageFlags_ )
{
}
ObjectTablePushConstantEntryNVX( VkObjectTablePushConstantEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTablePushConstantEntryNVX ) );
}
ObjectTablePushConstantEntryNVX& operator=( VkObjectTablePushConstantEntryNVX const & rhs )
{
memcpy( this, &rhs, sizeof( ObjectTablePushConstantEntryNVX ) );
return *this;
}
ObjectTablePushConstantEntryNVX& setType( ObjectEntryTypeNVX type_ )
{
type = type_;
return *this;
}
ObjectTablePushConstantEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ )
{
flags = flags_;
return *this;
}
ObjectTablePushConstantEntryNVX& setPipelineLayout( PipelineLayout pipelineLayout_ )
{
pipelineLayout = pipelineLayout_;
return *this;
}
ObjectTablePushConstantEntryNVX& setStageFlags( ShaderStageFlags stageFlags_ )
{
stageFlags = stageFlags_;
return *this;
}
operator const VkObjectTablePushConstantEntryNVX&() const
{
return *reinterpret_cast<const VkObjectTablePushConstantEntryNVX*>(this);
}
bool operator==( ObjectTablePushConstantEntryNVX const& rhs ) const
{
return ( type == rhs.type )
&& ( flags == rhs.flags )
&& ( pipelineLayout == rhs.pipelineLayout )
&& ( stageFlags == rhs.stageFlags );
}
bool operator!=( ObjectTablePushConstantEntryNVX const& rhs ) const
{
return !operator==( rhs );
}
ObjectEntryTypeNVX type;
ObjectEntryUsageFlagsNVX flags;
PipelineLayout pipelineLayout;
ShaderStageFlags stageFlags;
};
static_assert( sizeof( ObjectTablePushConstantEntryNVX ) == sizeof( VkObjectTablePushConstantEntryNVX ), "struct and wrapper have different size!" );
enum class DescriptorSetLayoutCreateFlagBits
{
ePushDescriptorKHR = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR
};
using DescriptorSetLayoutCreateFlags = Flags<DescriptorSetLayoutCreateFlagBits, VkDescriptorSetLayoutCreateFlags>;
VULKAN_HPP_INLINE DescriptorSetLayoutCreateFlags operator|( DescriptorSetLayoutCreateFlagBits bit0, DescriptorSetLayoutCreateFlagBits bit1 )
{
return DescriptorSetLayoutCreateFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE DescriptorSetLayoutCreateFlags operator~( DescriptorSetLayoutCreateFlagBits bits )
{
return ~( DescriptorSetLayoutCreateFlags( bits ) );
}
template <> struct FlagTraits<DescriptorSetLayoutCreateFlagBits>
{
enum
{
allFlags = VkFlags(DescriptorSetLayoutCreateFlagBits::ePushDescriptorKHR)
};
};
struct DescriptorSetLayoutCreateInfo
{
DescriptorSetLayoutCreateInfo( DescriptorSetLayoutCreateFlags flags_ = DescriptorSetLayoutCreateFlags(), uint32_t bindingCount_ = 0, const DescriptorSetLayoutBinding* pBindings_ = nullptr )
: sType( StructureType::eDescriptorSetLayoutCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, bindingCount( bindingCount_ )
, pBindings( pBindings_ )
{
}
DescriptorSetLayoutCreateInfo( VkDescriptorSetLayoutCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorSetLayoutCreateInfo ) );
}
DescriptorSetLayoutCreateInfo& operator=( VkDescriptorSetLayoutCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( DescriptorSetLayoutCreateInfo ) );
return *this;
}
DescriptorSetLayoutCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DescriptorSetLayoutCreateInfo& setFlags( DescriptorSetLayoutCreateFlags flags_ )
{
flags = flags_;
return *this;
}
DescriptorSetLayoutCreateInfo& setBindingCount( uint32_t bindingCount_ )
{
bindingCount = bindingCount_;
return *this;
}
DescriptorSetLayoutCreateInfo& setPBindings( const DescriptorSetLayoutBinding* pBindings_ )
{
pBindings = pBindings_;
return *this;
}
operator const VkDescriptorSetLayoutCreateInfo&() const
{
return *reinterpret_cast<const VkDescriptorSetLayoutCreateInfo*>(this);
}
bool operator==( DescriptorSetLayoutCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( bindingCount == rhs.bindingCount )
&& ( pBindings == rhs.pBindings );
}
bool operator!=( DescriptorSetLayoutCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorSetLayoutCreateFlags flags;
uint32_t bindingCount;
const DescriptorSetLayoutBinding* pBindings;
};
static_assert( sizeof( DescriptorSetLayoutCreateInfo ) == sizeof( VkDescriptorSetLayoutCreateInfo ), "struct and wrapper have different size!" );
enum class ExternalMemoryHandleTypeFlagBitsKHR
{
eOpaqueFd = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR,
eOpaqueWin32 = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR,
eOpaqueWin32Kmt = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR,
eD3D11Texture = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT_KHR,
eD3D11TextureKmt = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT_KHR,
eD3D12Heap = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT_KHR,
eD3D12Resource = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT_KHR
};
using ExternalMemoryHandleTypeFlagsKHR = Flags<ExternalMemoryHandleTypeFlagBitsKHR, VkExternalMemoryHandleTypeFlagsKHR>;
VULKAN_HPP_INLINE ExternalMemoryHandleTypeFlagsKHR operator|( ExternalMemoryHandleTypeFlagBitsKHR bit0, ExternalMemoryHandleTypeFlagBitsKHR bit1 )
{
return ExternalMemoryHandleTypeFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ExternalMemoryHandleTypeFlagsKHR operator~( ExternalMemoryHandleTypeFlagBitsKHR bits )
{
return ~( ExternalMemoryHandleTypeFlagsKHR( bits ) );
}
template <> struct FlagTraits<ExternalMemoryHandleTypeFlagBitsKHR>
{
enum
{
allFlags = VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eD3D11Texture) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eD3D11TextureKmt) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Heap) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Resource)
};
};
struct PhysicalDeviceExternalImageFormatInfoKHR
{
PhysicalDeviceExternalImageFormatInfoKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::ePhysicalDeviceExternalImageFormatInfoKHR )
, pNext( nullptr )
, handleType( handleType_ )
{
}
PhysicalDeviceExternalImageFormatInfoKHR( VkPhysicalDeviceExternalImageFormatInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceExternalImageFormatInfoKHR ) );
}
PhysicalDeviceExternalImageFormatInfoKHR& operator=( VkPhysicalDeviceExternalImageFormatInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceExternalImageFormatInfoKHR ) );
return *this;
}
PhysicalDeviceExternalImageFormatInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceExternalImageFormatInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkPhysicalDeviceExternalImageFormatInfoKHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceExternalImageFormatInfoKHR*>(this);
}
bool operator==( PhysicalDeviceExternalImageFormatInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleType == rhs.handleType );
}
bool operator!=( PhysicalDeviceExternalImageFormatInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( PhysicalDeviceExternalImageFormatInfoKHR ) == sizeof( VkPhysicalDeviceExternalImageFormatInfoKHR ), "struct and wrapper have different size!" );
struct PhysicalDeviceExternalBufferInfoKHR
{
PhysicalDeviceExternalBufferInfoKHR( BufferCreateFlags flags_ = BufferCreateFlags(), BufferUsageFlags usage_ = BufferUsageFlags(), ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::ePhysicalDeviceExternalBufferInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, usage( usage_ )
, handleType( handleType_ )
{
}
PhysicalDeviceExternalBufferInfoKHR( VkPhysicalDeviceExternalBufferInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceExternalBufferInfoKHR ) );
}
PhysicalDeviceExternalBufferInfoKHR& operator=( VkPhysicalDeviceExternalBufferInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceExternalBufferInfoKHR ) );
return *this;
}
PhysicalDeviceExternalBufferInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceExternalBufferInfoKHR& setFlags( BufferCreateFlags flags_ )
{
flags = flags_;
return *this;
}
PhysicalDeviceExternalBufferInfoKHR& setUsage( BufferUsageFlags usage_ )
{
usage = usage_;
return *this;
}
PhysicalDeviceExternalBufferInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkPhysicalDeviceExternalBufferInfoKHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceExternalBufferInfoKHR*>(this);
}
bool operator==( PhysicalDeviceExternalBufferInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( usage == rhs.usage )
&& ( handleType == rhs.handleType );
}
bool operator!=( PhysicalDeviceExternalBufferInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
BufferCreateFlags flags;
BufferUsageFlags usage;
ExternalMemoryHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( PhysicalDeviceExternalBufferInfoKHR ) == sizeof( VkPhysicalDeviceExternalBufferInfoKHR ), "struct and wrapper have different size!" );
struct ExternalMemoryImageCreateInfoKHR
{
ExternalMemoryImageCreateInfoKHR( ExternalMemoryHandleTypeFlagsKHR handleTypes_ = ExternalMemoryHandleTypeFlagsKHR() )
: sType( StructureType::eExternalMemoryImageCreateInfoKHR )
, pNext( nullptr )
, handleTypes( handleTypes_ )
{
}
ExternalMemoryImageCreateInfoKHR( VkExternalMemoryImageCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExternalMemoryImageCreateInfoKHR ) );
}
ExternalMemoryImageCreateInfoKHR& operator=( VkExternalMemoryImageCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExternalMemoryImageCreateInfoKHR ) );
return *this;
}
ExternalMemoryImageCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExternalMemoryImageCreateInfoKHR& setHandleTypes( ExternalMemoryHandleTypeFlagsKHR handleTypes_ )
{
handleTypes = handleTypes_;
return *this;
}
operator const VkExternalMemoryImageCreateInfoKHR&() const
{
return *reinterpret_cast<const VkExternalMemoryImageCreateInfoKHR*>(this);
}
bool operator==( ExternalMemoryImageCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleTypes == rhs.handleTypes );
}
bool operator!=( ExternalMemoryImageCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagsKHR handleTypes;
};
static_assert( sizeof( ExternalMemoryImageCreateInfoKHR ) == sizeof( VkExternalMemoryImageCreateInfoKHR ), "struct and wrapper have different size!" );
struct ExternalMemoryBufferCreateInfoKHR
{
ExternalMemoryBufferCreateInfoKHR( ExternalMemoryHandleTypeFlagsKHR handleTypes_ = ExternalMemoryHandleTypeFlagsKHR() )
: sType( StructureType::eExternalMemoryBufferCreateInfoKHR )
, pNext( nullptr )
, handleTypes( handleTypes_ )
{
}
ExternalMemoryBufferCreateInfoKHR( VkExternalMemoryBufferCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExternalMemoryBufferCreateInfoKHR ) );
}
ExternalMemoryBufferCreateInfoKHR& operator=( VkExternalMemoryBufferCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExternalMemoryBufferCreateInfoKHR ) );
return *this;
}
ExternalMemoryBufferCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExternalMemoryBufferCreateInfoKHR& setHandleTypes( ExternalMemoryHandleTypeFlagsKHR handleTypes_ )
{
handleTypes = handleTypes_;
return *this;
}
operator const VkExternalMemoryBufferCreateInfoKHR&() const
{
return *reinterpret_cast<const VkExternalMemoryBufferCreateInfoKHR*>(this);
}
bool operator==( ExternalMemoryBufferCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleTypes == rhs.handleTypes );
}
bool operator!=( ExternalMemoryBufferCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagsKHR handleTypes;
};
static_assert( sizeof( ExternalMemoryBufferCreateInfoKHR ) == sizeof( VkExternalMemoryBufferCreateInfoKHR ), "struct and wrapper have different size!" );
struct ExportMemoryAllocateInfoKHR
{
ExportMemoryAllocateInfoKHR( ExternalMemoryHandleTypeFlagsKHR handleTypes_ = ExternalMemoryHandleTypeFlagsKHR() )
: sType( StructureType::eExportMemoryAllocateInfoKHR )
, pNext( nullptr )
, handleTypes( handleTypes_ )
{
}
ExportMemoryAllocateInfoKHR( VkExportMemoryAllocateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportMemoryAllocateInfoKHR ) );
}
ExportMemoryAllocateInfoKHR& operator=( VkExportMemoryAllocateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportMemoryAllocateInfoKHR ) );
return *this;
}
ExportMemoryAllocateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExportMemoryAllocateInfoKHR& setHandleTypes( ExternalMemoryHandleTypeFlagsKHR handleTypes_ )
{
handleTypes = handleTypes_;
return *this;
}
operator const VkExportMemoryAllocateInfoKHR&() const
{
return *reinterpret_cast<const VkExportMemoryAllocateInfoKHR*>(this);
}
bool operator==( ExportMemoryAllocateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleTypes == rhs.handleTypes );
}
bool operator!=( ExportMemoryAllocateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagsKHR handleTypes;
};
static_assert( sizeof( ExportMemoryAllocateInfoKHR ) == sizeof( VkExportMemoryAllocateInfoKHR ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct ImportMemoryWin32HandleInfoKHR
{
ImportMemoryWin32HandleInfoKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd, HANDLE handle_ = 0, LPCWSTR name_ = 0 )
: sType( StructureType::eImportMemoryWin32HandleInfoKHR )
, pNext( nullptr )
, handleType( handleType_ )
, handle( handle_ )
, name( name_ )
{
}
ImportMemoryWin32HandleInfoKHR( VkImportMemoryWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportMemoryWin32HandleInfoKHR ) );
}
ImportMemoryWin32HandleInfoKHR& operator=( VkImportMemoryWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportMemoryWin32HandleInfoKHR ) );
return *this;
}
ImportMemoryWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImportMemoryWin32HandleInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
ImportMemoryWin32HandleInfoKHR& setHandle( HANDLE handle_ )
{
handle = handle_;
return *this;
}
ImportMemoryWin32HandleInfoKHR& setName( LPCWSTR name_ )
{
name = name_;
return *this;
}
operator const VkImportMemoryWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkImportMemoryWin32HandleInfoKHR*>(this);
}
bool operator==( ImportMemoryWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleType == rhs.handleType )
&& ( handle == rhs.handle )
&& ( name == rhs.name );
}
bool operator!=( ImportMemoryWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagBitsKHR handleType;
HANDLE handle;
LPCWSTR name;
};
static_assert( sizeof( ImportMemoryWin32HandleInfoKHR ) == sizeof( VkImportMemoryWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct MemoryGetWin32HandleInfoKHR
{
MemoryGetWin32HandleInfoKHR( DeviceMemory memory_ = DeviceMemory(), ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::eMemoryGetWin32HandleInfoKHR )
, pNext( nullptr )
, memory( memory_ )
, handleType( handleType_ )
{
}
MemoryGetWin32HandleInfoKHR( VkMemoryGetWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryGetWin32HandleInfoKHR ) );
}
MemoryGetWin32HandleInfoKHR& operator=( VkMemoryGetWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryGetWin32HandleInfoKHR ) );
return *this;
}
MemoryGetWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MemoryGetWin32HandleInfoKHR& setMemory( DeviceMemory memory_ )
{
memory = memory_;
return *this;
}
MemoryGetWin32HandleInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkMemoryGetWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkMemoryGetWin32HandleInfoKHR*>(this);
}
bool operator==( MemoryGetWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memory == rhs.memory )
&& ( handleType == rhs.handleType );
}
bool operator!=( MemoryGetWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DeviceMemory memory;
ExternalMemoryHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( MemoryGetWin32HandleInfoKHR ) == sizeof( VkMemoryGetWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
struct ImportMemoryFdInfoKHR
{
ImportMemoryFdInfoKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd, int fd_ = 0 )
: sType( StructureType::eImportMemoryFdInfoKHR )
, pNext( nullptr )
, handleType( handleType_ )
, fd( fd_ )
{
}
ImportMemoryFdInfoKHR( VkImportMemoryFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportMemoryFdInfoKHR ) );
}
ImportMemoryFdInfoKHR& operator=( VkImportMemoryFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportMemoryFdInfoKHR ) );
return *this;
}
ImportMemoryFdInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImportMemoryFdInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
ImportMemoryFdInfoKHR& setFd( int fd_ )
{
fd = fd_;
return *this;
}
operator const VkImportMemoryFdInfoKHR&() const
{
return *reinterpret_cast<const VkImportMemoryFdInfoKHR*>(this);
}
bool operator==( ImportMemoryFdInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleType == rhs.handleType )
&& ( fd == rhs.fd );
}
bool operator!=( ImportMemoryFdInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalMemoryHandleTypeFlagBitsKHR handleType;
int fd;
};
static_assert( sizeof( ImportMemoryFdInfoKHR ) == sizeof( VkImportMemoryFdInfoKHR ), "struct and wrapper have different size!" );
struct MemoryGetFdInfoKHR
{
MemoryGetFdInfoKHR( DeviceMemory memory_ = DeviceMemory(), ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::eMemoryGetFdInfoKHR )
, pNext( nullptr )
, memory( memory_ )
, handleType( handleType_ )
{
}
MemoryGetFdInfoKHR( VkMemoryGetFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryGetFdInfoKHR ) );
}
MemoryGetFdInfoKHR& operator=( VkMemoryGetFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryGetFdInfoKHR ) );
return *this;
}
MemoryGetFdInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MemoryGetFdInfoKHR& setMemory( DeviceMemory memory_ )
{
memory = memory_;
return *this;
}
MemoryGetFdInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkMemoryGetFdInfoKHR&() const
{
return *reinterpret_cast<const VkMemoryGetFdInfoKHR*>(this);
}
bool operator==( MemoryGetFdInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memory == rhs.memory )
&& ( handleType == rhs.handleType );
}
bool operator!=( MemoryGetFdInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DeviceMemory memory;
ExternalMemoryHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( MemoryGetFdInfoKHR ) == sizeof( VkMemoryGetFdInfoKHR ), "struct and wrapper have different size!" );
enum class ExternalMemoryFeatureFlagBitsKHR
{
eDedicatedOnly = VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_KHR,
eExportable = VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_KHR,
eImportable = VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_KHR
};
using ExternalMemoryFeatureFlagsKHR = Flags<ExternalMemoryFeatureFlagBitsKHR, VkExternalMemoryFeatureFlagsKHR>;
VULKAN_HPP_INLINE ExternalMemoryFeatureFlagsKHR operator|( ExternalMemoryFeatureFlagBitsKHR bit0, ExternalMemoryFeatureFlagBitsKHR bit1 )
{
return ExternalMemoryFeatureFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ExternalMemoryFeatureFlagsKHR operator~( ExternalMemoryFeatureFlagBitsKHR bits )
{
return ~( ExternalMemoryFeatureFlagsKHR( bits ) );
}
template <> struct FlagTraits<ExternalMemoryFeatureFlagBitsKHR>
{
enum
{
allFlags = VkFlags(ExternalMemoryFeatureFlagBitsKHR::eDedicatedOnly) | VkFlags(ExternalMemoryFeatureFlagBitsKHR::eExportable) | VkFlags(ExternalMemoryFeatureFlagBitsKHR::eImportable)
};
};
struct ExternalMemoryPropertiesKHR
{
operator const VkExternalMemoryPropertiesKHR&() const
{
return *reinterpret_cast<const VkExternalMemoryPropertiesKHR*>(this);
}
bool operator==( ExternalMemoryPropertiesKHR const& rhs ) const
{
return ( externalMemoryFeatures == rhs.externalMemoryFeatures )
&& ( exportFromImportedHandleTypes == rhs.exportFromImportedHandleTypes )
&& ( compatibleHandleTypes == rhs.compatibleHandleTypes );
}
bool operator!=( ExternalMemoryPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
ExternalMemoryFeatureFlagsKHR externalMemoryFeatures;
ExternalMemoryHandleTypeFlagsKHR exportFromImportedHandleTypes;
ExternalMemoryHandleTypeFlagsKHR compatibleHandleTypes;
};
static_assert( sizeof( ExternalMemoryPropertiesKHR ) == sizeof( VkExternalMemoryPropertiesKHR ), "struct and wrapper have different size!" );
struct ExternalImageFormatPropertiesKHR
{
operator const VkExternalImageFormatPropertiesKHR&() const
{
return *reinterpret_cast<const VkExternalImageFormatPropertiesKHR*>(this);
}
bool operator==( ExternalImageFormatPropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( externalMemoryProperties == rhs.externalMemoryProperties );
}
bool operator!=( ExternalImageFormatPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
ExternalMemoryPropertiesKHR externalMemoryProperties;
};
static_assert( sizeof( ExternalImageFormatPropertiesKHR ) == sizeof( VkExternalImageFormatPropertiesKHR ), "struct and wrapper have different size!" );
struct ExternalBufferPropertiesKHR
{
operator const VkExternalBufferPropertiesKHR&() const
{
return *reinterpret_cast<const VkExternalBufferPropertiesKHR*>(this);
}
bool operator==( ExternalBufferPropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( externalMemoryProperties == rhs.externalMemoryProperties );
}
bool operator!=( ExternalBufferPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
ExternalMemoryPropertiesKHR externalMemoryProperties;
};
static_assert( sizeof( ExternalBufferPropertiesKHR ) == sizeof( VkExternalBufferPropertiesKHR ), "struct and wrapper have different size!" );
enum class ExternalSemaphoreHandleTypeFlagBitsKHR
{
eOpaqueFd = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR,
eOpaqueWin32 = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR,
eOpaqueWin32Kmt = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR,
eD3D12Fence = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT_KHR,
eSyncFd = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR
};
using ExternalSemaphoreHandleTypeFlagsKHR = Flags<ExternalSemaphoreHandleTypeFlagBitsKHR, VkExternalSemaphoreHandleTypeFlagsKHR>;
VULKAN_HPP_INLINE ExternalSemaphoreHandleTypeFlagsKHR operator|( ExternalSemaphoreHandleTypeFlagBitsKHR bit0, ExternalSemaphoreHandleTypeFlagBitsKHR bit1 )
{
return ExternalSemaphoreHandleTypeFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ExternalSemaphoreHandleTypeFlagsKHR operator~( ExternalSemaphoreHandleTypeFlagBitsKHR bits )
{
return ~( ExternalSemaphoreHandleTypeFlagsKHR( bits ) );
}
template <> struct FlagTraits<ExternalSemaphoreHandleTypeFlagBitsKHR>
{
enum
{
allFlags = VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd) | VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32) | VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) | VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eD3D12Fence) | VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eSyncFd)
};
};
struct PhysicalDeviceExternalSemaphoreInfoKHR
{
PhysicalDeviceExternalSemaphoreInfoKHR( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::ePhysicalDeviceExternalSemaphoreInfoKHR )
, pNext( nullptr )
, handleType( handleType_ )
{
}
PhysicalDeviceExternalSemaphoreInfoKHR( VkPhysicalDeviceExternalSemaphoreInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceExternalSemaphoreInfoKHR ) );
}
PhysicalDeviceExternalSemaphoreInfoKHR& operator=( VkPhysicalDeviceExternalSemaphoreInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceExternalSemaphoreInfoKHR ) );
return *this;
}
PhysicalDeviceExternalSemaphoreInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceExternalSemaphoreInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkPhysicalDeviceExternalSemaphoreInfoKHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceExternalSemaphoreInfoKHR*>(this);
}
bool operator==( PhysicalDeviceExternalSemaphoreInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleType == rhs.handleType );
}
bool operator!=( PhysicalDeviceExternalSemaphoreInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalSemaphoreHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( PhysicalDeviceExternalSemaphoreInfoKHR ) == sizeof( VkPhysicalDeviceExternalSemaphoreInfoKHR ), "struct and wrapper have different size!" );
struct ExportSemaphoreCreateInfoKHR
{
ExportSemaphoreCreateInfoKHR( ExternalSemaphoreHandleTypeFlagsKHR handleTypes_ = ExternalSemaphoreHandleTypeFlagsKHR() )
: sType( StructureType::eExportSemaphoreCreateInfoKHR )
, pNext( nullptr )
, handleTypes( handleTypes_ )
{
}
ExportSemaphoreCreateInfoKHR( VkExportSemaphoreCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportSemaphoreCreateInfoKHR ) );
}
ExportSemaphoreCreateInfoKHR& operator=( VkExportSemaphoreCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportSemaphoreCreateInfoKHR ) );
return *this;
}
ExportSemaphoreCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExportSemaphoreCreateInfoKHR& setHandleTypes( ExternalSemaphoreHandleTypeFlagsKHR handleTypes_ )
{
handleTypes = handleTypes_;
return *this;
}
operator const VkExportSemaphoreCreateInfoKHR&() const
{
return *reinterpret_cast<const VkExportSemaphoreCreateInfoKHR*>(this);
}
bool operator==( ExportSemaphoreCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleTypes == rhs.handleTypes );
}
bool operator!=( ExportSemaphoreCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalSemaphoreHandleTypeFlagsKHR handleTypes;
};
static_assert( sizeof( ExportSemaphoreCreateInfoKHR ) == sizeof( VkExportSemaphoreCreateInfoKHR ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct SemaphoreGetWin32HandleInfoKHR
{
SemaphoreGetWin32HandleInfoKHR( Semaphore semaphore_ = Semaphore(), ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::eSemaphoreGetWin32HandleInfoKHR )
, pNext( nullptr )
, semaphore( semaphore_ )
, handleType( handleType_ )
{
}
SemaphoreGetWin32HandleInfoKHR( VkSemaphoreGetWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SemaphoreGetWin32HandleInfoKHR ) );
}
SemaphoreGetWin32HandleInfoKHR& operator=( VkSemaphoreGetWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SemaphoreGetWin32HandleInfoKHR ) );
return *this;
}
SemaphoreGetWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SemaphoreGetWin32HandleInfoKHR& setSemaphore( Semaphore semaphore_ )
{
semaphore = semaphore_;
return *this;
}
SemaphoreGetWin32HandleInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkSemaphoreGetWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkSemaphoreGetWin32HandleInfoKHR*>(this);
}
bool operator==( SemaphoreGetWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( semaphore == rhs.semaphore )
&& ( handleType == rhs.handleType );
}
bool operator!=( SemaphoreGetWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Semaphore semaphore;
ExternalSemaphoreHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( SemaphoreGetWin32HandleInfoKHR ) == sizeof( VkSemaphoreGetWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
struct SemaphoreGetFdInfoKHR
{
SemaphoreGetFdInfoKHR( Semaphore semaphore_ = Semaphore(), ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::eSemaphoreGetFdInfoKHR )
, pNext( nullptr )
, semaphore( semaphore_ )
, handleType( handleType_ )
{
}
SemaphoreGetFdInfoKHR( VkSemaphoreGetFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SemaphoreGetFdInfoKHR ) );
}
SemaphoreGetFdInfoKHR& operator=( VkSemaphoreGetFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SemaphoreGetFdInfoKHR ) );
return *this;
}
SemaphoreGetFdInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SemaphoreGetFdInfoKHR& setSemaphore( Semaphore semaphore_ )
{
semaphore = semaphore_;
return *this;
}
SemaphoreGetFdInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkSemaphoreGetFdInfoKHR&() const
{
return *reinterpret_cast<const VkSemaphoreGetFdInfoKHR*>(this);
}
bool operator==( SemaphoreGetFdInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( semaphore == rhs.semaphore )
&& ( handleType == rhs.handleType );
}
bool operator!=( SemaphoreGetFdInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Semaphore semaphore;
ExternalSemaphoreHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( SemaphoreGetFdInfoKHR ) == sizeof( VkSemaphoreGetFdInfoKHR ), "struct and wrapper have different size!" );
enum class ExternalSemaphoreFeatureFlagBitsKHR
{
eExportable = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR,
eImportable = VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR
};
using ExternalSemaphoreFeatureFlagsKHR = Flags<ExternalSemaphoreFeatureFlagBitsKHR, VkExternalSemaphoreFeatureFlagsKHR>;
VULKAN_HPP_INLINE ExternalSemaphoreFeatureFlagsKHR operator|( ExternalSemaphoreFeatureFlagBitsKHR bit0, ExternalSemaphoreFeatureFlagBitsKHR bit1 )
{
return ExternalSemaphoreFeatureFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ExternalSemaphoreFeatureFlagsKHR operator~( ExternalSemaphoreFeatureFlagBitsKHR bits )
{
return ~( ExternalSemaphoreFeatureFlagsKHR( bits ) );
}
template <> struct FlagTraits<ExternalSemaphoreFeatureFlagBitsKHR>
{
enum
{
allFlags = VkFlags(ExternalSemaphoreFeatureFlagBitsKHR::eExportable) | VkFlags(ExternalSemaphoreFeatureFlagBitsKHR::eImportable)
};
};
struct ExternalSemaphorePropertiesKHR
{
operator const VkExternalSemaphorePropertiesKHR&() const
{
return *reinterpret_cast<const VkExternalSemaphorePropertiesKHR*>(this);
}
bool operator==( ExternalSemaphorePropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( exportFromImportedHandleTypes == rhs.exportFromImportedHandleTypes )
&& ( compatibleHandleTypes == rhs.compatibleHandleTypes )
&& ( externalSemaphoreFeatures == rhs.externalSemaphoreFeatures );
}
bool operator!=( ExternalSemaphorePropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
ExternalSemaphoreHandleTypeFlagsKHR exportFromImportedHandleTypes;
ExternalSemaphoreHandleTypeFlagsKHR compatibleHandleTypes;
ExternalSemaphoreFeatureFlagsKHR externalSemaphoreFeatures;
};
static_assert( sizeof( ExternalSemaphorePropertiesKHR ) == sizeof( VkExternalSemaphorePropertiesKHR ), "struct and wrapper have different size!" );
enum class SemaphoreImportFlagBitsKHR
{
eTemporary = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR
};
using SemaphoreImportFlagsKHR = Flags<SemaphoreImportFlagBitsKHR, VkSemaphoreImportFlagsKHR>;
VULKAN_HPP_INLINE SemaphoreImportFlagsKHR operator|( SemaphoreImportFlagBitsKHR bit0, SemaphoreImportFlagBitsKHR bit1 )
{
return SemaphoreImportFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE SemaphoreImportFlagsKHR operator~( SemaphoreImportFlagBitsKHR bits )
{
return ~( SemaphoreImportFlagsKHR( bits ) );
}
template <> struct FlagTraits<SemaphoreImportFlagBitsKHR>
{
enum
{
allFlags = VkFlags(SemaphoreImportFlagBitsKHR::eTemporary)
};
};
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct ImportSemaphoreWin32HandleInfoKHR
{
ImportSemaphoreWin32HandleInfoKHR( Semaphore semaphore_ = Semaphore(), SemaphoreImportFlagsKHR flags_ = SemaphoreImportFlagsKHR(), ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd, HANDLE handle_ = 0, LPCWSTR name_ = 0 )
: sType( StructureType::eImportSemaphoreWin32HandleInfoKHR )
, pNext( nullptr )
, semaphore( semaphore_ )
, flags( flags_ )
, handleType( handleType_ )
, handle( handle_ )
, name( name_ )
{
}
ImportSemaphoreWin32HandleInfoKHR( VkImportSemaphoreWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportSemaphoreWin32HandleInfoKHR ) );
}
ImportSemaphoreWin32HandleInfoKHR& operator=( VkImportSemaphoreWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportSemaphoreWin32HandleInfoKHR ) );
return *this;
}
ImportSemaphoreWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImportSemaphoreWin32HandleInfoKHR& setSemaphore( Semaphore semaphore_ )
{
semaphore = semaphore_;
return *this;
}
ImportSemaphoreWin32HandleInfoKHR& setFlags( SemaphoreImportFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
ImportSemaphoreWin32HandleInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
ImportSemaphoreWin32HandleInfoKHR& setHandle( HANDLE handle_ )
{
handle = handle_;
return *this;
}
ImportSemaphoreWin32HandleInfoKHR& setName( LPCWSTR name_ )
{
name = name_;
return *this;
}
operator const VkImportSemaphoreWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkImportSemaphoreWin32HandleInfoKHR*>(this);
}
bool operator==( ImportSemaphoreWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( semaphore == rhs.semaphore )
&& ( flags == rhs.flags )
&& ( handleType == rhs.handleType )
&& ( handle == rhs.handle )
&& ( name == rhs.name );
}
bool operator!=( ImportSemaphoreWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Semaphore semaphore;
SemaphoreImportFlagsKHR flags;
ExternalSemaphoreHandleTypeFlagBitsKHR handleType;
HANDLE handle;
LPCWSTR name;
};
static_assert( sizeof( ImportSemaphoreWin32HandleInfoKHR ) == sizeof( VkImportSemaphoreWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
struct ImportSemaphoreFdInfoKHR
{
ImportSemaphoreFdInfoKHR( Semaphore semaphore_ = Semaphore(), SemaphoreImportFlagsKHR flags_ = SemaphoreImportFlagsKHR(), ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd, int fd_ = 0 )
: sType( StructureType::eImportSemaphoreFdInfoKHR )
, pNext( nullptr )
, semaphore( semaphore_ )
, flags( flags_ )
, handleType( handleType_ )
, fd( fd_ )
{
}
ImportSemaphoreFdInfoKHR( VkImportSemaphoreFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportSemaphoreFdInfoKHR ) );
}
ImportSemaphoreFdInfoKHR& operator=( VkImportSemaphoreFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportSemaphoreFdInfoKHR ) );
return *this;
}
ImportSemaphoreFdInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImportSemaphoreFdInfoKHR& setSemaphore( Semaphore semaphore_ )
{
semaphore = semaphore_;
return *this;
}
ImportSemaphoreFdInfoKHR& setFlags( SemaphoreImportFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
ImportSemaphoreFdInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
ImportSemaphoreFdInfoKHR& setFd( int fd_ )
{
fd = fd_;
return *this;
}
operator const VkImportSemaphoreFdInfoKHR&() const
{
return *reinterpret_cast<const VkImportSemaphoreFdInfoKHR*>(this);
}
bool operator==( ImportSemaphoreFdInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( semaphore == rhs.semaphore )
&& ( flags == rhs.flags )
&& ( handleType == rhs.handleType )
&& ( fd == rhs.fd );
}
bool operator!=( ImportSemaphoreFdInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Semaphore semaphore;
SemaphoreImportFlagsKHR flags;
ExternalSemaphoreHandleTypeFlagBitsKHR handleType;
int fd;
};
static_assert( sizeof( ImportSemaphoreFdInfoKHR ) == sizeof( VkImportSemaphoreFdInfoKHR ), "struct and wrapper have different size!" );
enum class ExternalFenceHandleTypeFlagBitsKHR
{
eOpaqueFd = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR,
eOpaqueWin32 = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR,
eOpaqueWin32Kmt = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR,
eSyncFd = VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR
};
using ExternalFenceHandleTypeFlagsKHR = Flags<ExternalFenceHandleTypeFlagBitsKHR, VkExternalFenceHandleTypeFlagsKHR>;
VULKAN_HPP_INLINE ExternalFenceHandleTypeFlagsKHR operator|( ExternalFenceHandleTypeFlagBitsKHR bit0, ExternalFenceHandleTypeFlagBitsKHR bit1 )
{
return ExternalFenceHandleTypeFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ExternalFenceHandleTypeFlagsKHR operator~( ExternalFenceHandleTypeFlagBitsKHR bits )
{
return ~( ExternalFenceHandleTypeFlagsKHR( bits ) );
}
template <> struct FlagTraits<ExternalFenceHandleTypeFlagBitsKHR>
{
enum
{
allFlags = VkFlags(ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd) | VkFlags(ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32) | VkFlags(ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) | VkFlags(ExternalFenceHandleTypeFlagBitsKHR::eSyncFd)
};
};
struct PhysicalDeviceExternalFenceInfoKHR
{
PhysicalDeviceExternalFenceInfoKHR( ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::ePhysicalDeviceExternalFenceInfoKHR )
, pNext( nullptr )
, handleType( handleType_ )
{
}
PhysicalDeviceExternalFenceInfoKHR( VkPhysicalDeviceExternalFenceInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceExternalFenceInfoKHR ) );
}
PhysicalDeviceExternalFenceInfoKHR& operator=( VkPhysicalDeviceExternalFenceInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PhysicalDeviceExternalFenceInfoKHR ) );
return *this;
}
PhysicalDeviceExternalFenceInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PhysicalDeviceExternalFenceInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkPhysicalDeviceExternalFenceInfoKHR&() const
{
return *reinterpret_cast<const VkPhysicalDeviceExternalFenceInfoKHR*>(this);
}
bool operator==( PhysicalDeviceExternalFenceInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleType == rhs.handleType );
}
bool operator!=( PhysicalDeviceExternalFenceInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalFenceHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( PhysicalDeviceExternalFenceInfoKHR ) == sizeof( VkPhysicalDeviceExternalFenceInfoKHR ), "struct and wrapper have different size!" );
struct ExportFenceCreateInfoKHR
{
ExportFenceCreateInfoKHR( ExternalFenceHandleTypeFlagsKHR handleTypes_ = ExternalFenceHandleTypeFlagsKHR() )
: sType( StructureType::eExportFenceCreateInfoKHR )
, pNext( nullptr )
, handleTypes( handleTypes_ )
{
}
ExportFenceCreateInfoKHR( VkExportFenceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportFenceCreateInfoKHR ) );
}
ExportFenceCreateInfoKHR& operator=( VkExportFenceCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ExportFenceCreateInfoKHR ) );
return *this;
}
ExportFenceCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ExportFenceCreateInfoKHR& setHandleTypes( ExternalFenceHandleTypeFlagsKHR handleTypes_ )
{
handleTypes = handleTypes_;
return *this;
}
operator const VkExportFenceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkExportFenceCreateInfoKHR*>(this);
}
bool operator==( ExportFenceCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( handleTypes == rhs.handleTypes );
}
bool operator!=( ExportFenceCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ExternalFenceHandleTypeFlagsKHR handleTypes;
};
static_assert( sizeof( ExportFenceCreateInfoKHR ) == sizeof( VkExportFenceCreateInfoKHR ), "struct and wrapper have different size!" );
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct FenceGetWin32HandleInfoKHR
{
FenceGetWin32HandleInfoKHR( Fence fence_ = Fence(), ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::eFenceGetWin32HandleInfoKHR )
, pNext( nullptr )
, fence( fence_ )
, handleType( handleType_ )
{
}
FenceGetWin32HandleInfoKHR( VkFenceGetWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( FenceGetWin32HandleInfoKHR ) );
}
FenceGetWin32HandleInfoKHR& operator=( VkFenceGetWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( FenceGetWin32HandleInfoKHR ) );
return *this;
}
FenceGetWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
FenceGetWin32HandleInfoKHR& setFence( Fence fence_ )
{
fence = fence_;
return *this;
}
FenceGetWin32HandleInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkFenceGetWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkFenceGetWin32HandleInfoKHR*>(this);
}
bool operator==( FenceGetWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( fence == rhs.fence )
&& ( handleType == rhs.handleType );
}
bool operator!=( FenceGetWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Fence fence;
ExternalFenceHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( FenceGetWin32HandleInfoKHR ) == sizeof( VkFenceGetWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
struct FenceGetFdInfoKHR
{
FenceGetFdInfoKHR( Fence fence_ = Fence(), ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd )
: sType( StructureType::eFenceGetFdInfoKHR )
, pNext( nullptr )
, fence( fence_ )
, handleType( handleType_ )
{
}
FenceGetFdInfoKHR( VkFenceGetFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( FenceGetFdInfoKHR ) );
}
FenceGetFdInfoKHR& operator=( VkFenceGetFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( FenceGetFdInfoKHR ) );
return *this;
}
FenceGetFdInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
FenceGetFdInfoKHR& setFence( Fence fence_ )
{
fence = fence_;
return *this;
}
FenceGetFdInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
operator const VkFenceGetFdInfoKHR&() const
{
return *reinterpret_cast<const VkFenceGetFdInfoKHR*>(this);
}
bool operator==( FenceGetFdInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( fence == rhs.fence )
&& ( handleType == rhs.handleType );
}
bool operator!=( FenceGetFdInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Fence fence;
ExternalFenceHandleTypeFlagBitsKHR handleType;
};
static_assert( sizeof( FenceGetFdInfoKHR ) == sizeof( VkFenceGetFdInfoKHR ), "struct and wrapper have different size!" );
enum class ExternalFenceFeatureFlagBitsKHR
{
eExportable = VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT_KHR,
eImportable = VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT_KHR
};
using ExternalFenceFeatureFlagsKHR = Flags<ExternalFenceFeatureFlagBitsKHR, VkExternalFenceFeatureFlagsKHR>;
VULKAN_HPP_INLINE ExternalFenceFeatureFlagsKHR operator|( ExternalFenceFeatureFlagBitsKHR bit0, ExternalFenceFeatureFlagBitsKHR bit1 )
{
return ExternalFenceFeatureFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ExternalFenceFeatureFlagsKHR operator~( ExternalFenceFeatureFlagBitsKHR bits )
{
return ~( ExternalFenceFeatureFlagsKHR( bits ) );
}
template <> struct FlagTraits<ExternalFenceFeatureFlagBitsKHR>
{
enum
{
allFlags = VkFlags(ExternalFenceFeatureFlagBitsKHR::eExportable) | VkFlags(ExternalFenceFeatureFlagBitsKHR::eImportable)
};
};
struct ExternalFencePropertiesKHR
{
operator const VkExternalFencePropertiesKHR&() const
{
return *reinterpret_cast<const VkExternalFencePropertiesKHR*>(this);
}
bool operator==( ExternalFencePropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( exportFromImportedHandleTypes == rhs.exportFromImportedHandleTypes )
&& ( compatibleHandleTypes == rhs.compatibleHandleTypes )
&& ( externalFenceFeatures == rhs.externalFenceFeatures );
}
bool operator!=( ExternalFencePropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
ExternalFenceHandleTypeFlagsKHR exportFromImportedHandleTypes;
ExternalFenceHandleTypeFlagsKHR compatibleHandleTypes;
ExternalFenceFeatureFlagsKHR externalFenceFeatures;
};
static_assert( sizeof( ExternalFencePropertiesKHR ) == sizeof( VkExternalFencePropertiesKHR ), "struct and wrapper have different size!" );
enum class FenceImportFlagBitsKHR
{
eTemporary = VK_FENCE_IMPORT_TEMPORARY_BIT_KHR
};
using FenceImportFlagsKHR = Flags<FenceImportFlagBitsKHR, VkFenceImportFlagsKHR>;
VULKAN_HPP_INLINE FenceImportFlagsKHR operator|( FenceImportFlagBitsKHR bit0, FenceImportFlagBitsKHR bit1 )
{
return FenceImportFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE FenceImportFlagsKHR operator~( FenceImportFlagBitsKHR bits )
{
return ~( FenceImportFlagsKHR( bits ) );
}
template <> struct FlagTraits<FenceImportFlagBitsKHR>
{
enum
{
allFlags = VkFlags(FenceImportFlagBitsKHR::eTemporary)
};
};
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct ImportFenceWin32HandleInfoKHR
{
ImportFenceWin32HandleInfoKHR( Fence fence_ = Fence(), FenceImportFlagsKHR flags_ = FenceImportFlagsKHR(), ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd, HANDLE handle_ = 0, LPCWSTR name_ = 0 )
: sType( StructureType::eImportFenceWin32HandleInfoKHR )
, pNext( nullptr )
, fence( fence_ )
, flags( flags_ )
, handleType( handleType_ )
, handle( handle_ )
, name( name_ )
{
}
ImportFenceWin32HandleInfoKHR( VkImportFenceWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportFenceWin32HandleInfoKHR ) );
}
ImportFenceWin32HandleInfoKHR& operator=( VkImportFenceWin32HandleInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportFenceWin32HandleInfoKHR ) );
return *this;
}
ImportFenceWin32HandleInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImportFenceWin32HandleInfoKHR& setFence( Fence fence_ )
{
fence = fence_;
return *this;
}
ImportFenceWin32HandleInfoKHR& setFlags( FenceImportFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
ImportFenceWin32HandleInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
ImportFenceWin32HandleInfoKHR& setHandle( HANDLE handle_ )
{
handle = handle_;
return *this;
}
ImportFenceWin32HandleInfoKHR& setName( LPCWSTR name_ )
{
name = name_;
return *this;
}
operator const VkImportFenceWin32HandleInfoKHR&() const
{
return *reinterpret_cast<const VkImportFenceWin32HandleInfoKHR*>(this);
}
bool operator==( ImportFenceWin32HandleInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( fence == rhs.fence )
&& ( flags == rhs.flags )
&& ( handleType == rhs.handleType )
&& ( handle == rhs.handle )
&& ( name == rhs.name );
}
bool operator!=( ImportFenceWin32HandleInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Fence fence;
FenceImportFlagsKHR flags;
ExternalFenceHandleTypeFlagBitsKHR handleType;
HANDLE handle;
LPCWSTR name;
};
static_assert( sizeof( ImportFenceWin32HandleInfoKHR ) == sizeof( VkImportFenceWin32HandleInfoKHR ), "struct and wrapper have different size!" );
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
struct ImportFenceFdInfoKHR
{
ImportFenceFdInfoKHR( Fence fence_ = Fence(), FenceImportFlagsKHR flags_ = FenceImportFlagsKHR(), ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd, int fd_ = 0 )
: sType( StructureType::eImportFenceFdInfoKHR )
, pNext( nullptr )
, fence( fence_ )
, flags( flags_ )
, handleType( handleType_ )
, fd( fd_ )
{
}
ImportFenceFdInfoKHR( VkImportFenceFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportFenceFdInfoKHR ) );
}
ImportFenceFdInfoKHR& operator=( VkImportFenceFdInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( ImportFenceFdInfoKHR ) );
return *this;
}
ImportFenceFdInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
ImportFenceFdInfoKHR& setFence( Fence fence_ )
{
fence = fence_;
return *this;
}
ImportFenceFdInfoKHR& setFlags( FenceImportFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
ImportFenceFdInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ )
{
handleType = handleType_;
return *this;
}
ImportFenceFdInfoKHR& setFd( int fd_ )
{
fd = fd_;
return *this;
}
operator const VkImportFenceFdInfoKHR&() const
{
return *reinterpret_cast<const VkImportFenceFdInfoKHR*>(this);
}
bool operator==( ImportFenceFdInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( fence == rhs.fence )
&& ( flags == rhs.flags )
&& ( handleType == rhs.handleType )
&& ( fd == rhs.fd );
}
bool operator!=( ImportFenceFdInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Fence fence;
FenceImportFlagsKHR flags;
ExternalFenceHandleTypeFlagBitsKHR handleType;
int fd;
};
static_assert( sizeof( ImportFenceFdInfoKHR ) == sizeof( VkImportFenceFdInfoKHR ), "struct and wrapper have different size!" );
enum class SurfaceCounterFlagBitsEXT
{
eVblank = VK_SURFACE_COUNTER_VBLANK_EXT
};
using SurfaceCounterFlagsEXT = Flags<SurfaceCounterFlagBitsEXT, VkSurfaceCounterFlagsEXT>;
VULKAN_HPP_INLINE SurfaceCounterFlagsEXT operator|( SurfaceCounterFlagBitsEXT bit0, SurfaceCounterFlagBitsEXT bit1 )
{
return SurfaceCounterFlagsEXT( bit0 ) | bit1;
}
VULKAN_HPP_INLINE SurfaceCounterFlagsEXT operator~( SurfaceCounterFlagBitsEXT bits )
{
return ~( SurfaceCounterFlagsEXT( bits ) );
}
template <> struct FlagTraits<SurfaceCounterFlagBitsEXT>
{
enum
{
allFlags = VkFlags(SurfaceCounterFlagBitsEXT::eVblank)
};
};
struct SurfaceCapabilities2EXT
{
operator const VkSurfaceCapabilities2EXT&() const
{
return *reinterpret_cast<const VkSurfaceCapabilities2EXT*>(this);
}
bool operator==( SurfaceCapabilities2EXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( minImageCount == rhs.minImageCount )
&& ( maxImageCount == rhs.maxImageCount )
&& ( currentExtent == rhs.currentExtent )
&& ( minImageExtent == rhs.minImageExtent )
&& ( maxImageExtent == rhs.maxImageExtent )
&& ( maxImageArrayLayers == rhs.maxImageArrayLayers )
&& ( supportedTransforms == rhs.supportedTransforms )
&& ( currentTransform == rhs.currentTransform )
&& ( supportedCompositeAlpha == rhs.supportedCompositeAlpha )
&& ( supportedUsageFlags == rhs.supportedUsageFlags )
&& ( supportedSurfaceCounters == rhs.supportedSurfaceCounters );
}
bool operator!=( SurfaceCapabilities2EXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t minImageCount;
uint32_t maxImageCount;
Extent2D currentExtent;
Extent2D minImageExtent;
Extent2D maxImageExtent;
uint32_t maxImageArrayLayers;
SurfaceTransformFlagsKHR supportedTransforms;
SurfaceTransformFlagBitsKHR currentTransform;
CompositeAlphaFlagsKHR supportedCompositeAlpha;
ImageUsageFlags supportedUsageFlags;
SurfaceCounterFlagsEXT supportedSurfaceCounters;
};
static_assert( sizeof( SurfaceCapabilities2EXT ) == sizeof( VkSurfaceCapabilities2EXT ), "struct and wrapper have different size!" );
struct SwapchainCounterCreateInfoEXT
{
SwapchainCounterCreateInfoEXT( SurfaceCounterFlagsEXT surfaceCounters_ = SurfaceCounterFlagsEXT() )
: sType( StructureType::eSwapchainCounterCreateInfoEXT )
, pNext( nullptr )
, surfaceCounters( surfaceCounters_ )
{
}
SwapchainCounterCreateInfoEXT( VkSwapchainCounterCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SwapchainCounterCreateInfoEXT ) );
}
SwapchainCounterCreateInfoEXT& operator=( VkSwapchainCounterCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SwapchainCounterCreateInfoEXT ) );
return *this;
}
SwapchainCounterCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SwapchainCounterCreateInfoEXT& setSurfaceCounters( SurfaceCounterFlagsEXT surfaceCounters_ )
{
surfaceCounters = surfaceCounters_;
return *this;
}
operator const VkSwapchainCounterCreateInfoEXT&() const
{
return *reinterpret_cast<const VkSwapchainCounterCreateInfoEXT*>(this);
}
bool operator==( SwapchainCounterCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( surfaceCounters == rhs.surfaceCounters );
}
bool operator!=( SwapchainCounterCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SurfaceCounterFlagsEXT surfaceCounters;
};
static_assert( sizeof( SwapchainCounterCreateInfoEXT ) == sizeof( VkSwapchainCounterCreateInfoEXT ), "struct and wrapper have different size!" );
enum class DisplayPowerStateEXT
{
eOff = VK_DISPLAY_POWER_STATE_OFF_EXT,
eSuspend = VK_DISPLAY_POWER_STATE_SUSPEND_EXT,
eOn = VK_DISPLAY_POWER_STATE_ON_EXT
};
struct DisplayPowerInfoEXT
{
DisplayPowerInfoEXT( DisplayPowerStateEXT powerState_ = DisplayPowerStateEXT::eOff )
: sType( StructureType::eDisplayPowerInfoEXT )
, pNext( nullptr )
, powerState( powerState_ )
{
}
DisplayPowerInfoEXT( VkDisplayPowerInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayPowerInfoEXT ) );
}
DisplayPowerInfoEXT& operator=( VkDisplayPowerInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayPowerInfoEXT ) );
return *this;
}
DisplayPowerInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DisplayPowerInfoEXT& setPowerState( DisplayPowerStateEXT powerState_ )
{
powerState = powerState_;
return *this;
}
operator const VkDisplayPowerInfoEXT&() const
{
return *reinterpret_cast<const VkDisplayPowerInfoEXT*>(this);
}
bool operator==( DisplayPowerInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( powerState == rhs.powerState );
}
bool operator!=( DisplayPowerInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DisplayPowerStateEXT powerState;
};
static_assert( sizeof( DisplayPowerInfoEXT ) == sizeof( VkDisplayPowerInfoEXT ), "struct and wrapper have different size!" );
enum class DeviceEventTypeEXT
{
eDisplayHotplug = VK_DEVICE_EVENT_TYPE_DISPLAY_HOTPLUG_EXT
};
struct DeviceEventInfoEXT
{
DeviceEventInfoEXT( DeviceEventTypeEXT deviceEvent_ = DeviceEventTypeEXT::eDisplayHotplug )
: sType( StructureType::eDeviceEventInfoEXT )
, pNext( nullptr )
, deviceEvent( deviceEvent_ )
{
}
DeviceEventInfoEXT( VkDeviceEventInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceEventInfoEXT ) );
}
DeviceEventInfoEXT& operator=( VkDeviceEventInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceEventInfoEXT ) );
return *this;
}
DeviceEventInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceEventInfoEXT& setDeviceEvent( DeviceEventTypeEXT deviceEvent_ )
{
deviceEvent = deviceEvent_;
return *this;
}
operator const VkDeviceEventInfoEXT&() const
{
return *reinterpret_cast<const VkDeviceEventInfoEXT*>(this);
}
bool operator==( DeviceEventInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( deviceEvent == rhs.deviceEvent );
}
bool operator!=( DeviceEventInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DeviceEventTypeEXT deviceEvent;
};
static_assert( sizeof( DeviceEventInfoEXT ) == sizeof( VkDeviceEventInfoEXT ), "struct and wrapper have different size!" );
enum class DisplayEventTypeEXT
{
eFirstPixelOut = VK_DISPLAY_EVENT_TYPE_FIRST_PIXEL_OUT_EXT
};
struct DisplayEventInfoEXT
{
DisplayEventInfoEXT( DisplayEventTypeEXT displayEvent_ = DisplayEventTypeEXT::eFirstPixelOut )
: sType( StructureType::eDisplayEventInfoEXT )
, pNext( nullptr )
, displayEvent( displayEvent_ )
{
}
DisplayEventInfoEXT( VkDisplayEventInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayEventInfoEXT ) );
}
DisplayEventInfoEXT& operator=( VkDisplayEventInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DisplayEventInfoEXT ) );
return *this;
}
DisplayEventInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DisplayEventInfoEXT& setDisplayEvent( DisplayEventTypeEXT displayEvent_ )
{
displayEvent = displayEvent_;
return *this;
}
operator const VkDisplayEventInfoEXT&() const
{
return *reinterpret_cast<const VkDisplayEventInfoEXT*>(this);
}
bool operator==( DisplayEventInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( displayEvent == rhs.displayEvent );
}
bool operator!=( DisplayEventInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DisplayEventTypeEXT displayEvent;
};
static_assert( sizeof( DisplayEventInfoEXT ) == sizeof( VkDisplayEventInfoEXT ), "struct and wrapper have different size!" );
enum class PeerMemoryFeatureFlagBitsKHX
{
eCopySrc = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT_KHX,
eCopyDst = VK_PEER_MEMORY_FEATURE_COPY_DST_BIT_KHX,
eGenericSrc = VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT_KHX,
eGenericDst = VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT_KHX
};
using PeerMemoryFeatureFlagsKHX = Flags<PeerMemoryFeatureFlagBitsKHX, VkPeerMemoryFeatureFlagsKHX>;
VULKAN_HPP_INLINE PeerMemoryFeatureFlagsKHX operator|( PeerMemoryFeatureFlagBitsKHX bit0, PeerMemoryFeatureFlagBitsKHX bit1 )
{
return PeerMemoryFeatureFlagsKHX( bit0 ) | bit1;
}
VULKAN_HPP_INLINE PeerMemoryFeatureFlagsKHX operator~( PeerMemoryFeatureFlagBitsKHX bits )
{
return ~( PeerMemoryFeatureFlagsKHX( bits ) );
}
template <> struct FlagTraits<PeerMemoryFeatureFlagBitsKHX>
{
enum
{
allFlags = VkFlags(PeerMemoryFeatureFlagBitsKHX::eCopySrc) | VkFlags(PeerMemoryFeatureFlagBitsKHX::eCopyDst) | VkFlags(PeerMemoryFeatureFlagBitsKHX::eGenericSrc) | VkFlags(PeerMemoryFeatureFlagBitsKHX::eGenericDst)
};
};
enum class MemoryAllocateFlagBitsKHX
{
eDeviceMask = VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT_KHX
};
using MemoryAllocateFlagsKHX = Flags<MemoryAllocateFlagBitsKHX, VkMemoryAllocateFlagsKHX>;
VULKAN_HPP_INLINE MemoryAllocateFlagsKHX operator|( MemoryAllocateFlagBitsKHX bit0, MemoryAllocateFlagBitsKHX bit1 )
{
return MemoryAllocateFlagsKHX( bit0 ) | bit1;
}
VULKAN_HPP_INLINE MemoryAllocateFlagsKHX operator~( MemoryAllocateFlagBitsKHX bits )
{
return ~( MemoryAllocateFlagsKHX( bits ) );
}
template <> struct FlagTraits<MemoryAllocateFlagBitsKHX>
{
enum
{
allFlags = VkFlags(MemoryAllocateFlagBitsKHX::eDeviceMask)
};
};
struct MemoryAllocateFlagsInfoKHX
{
MemoryAllocateFlagsInfoKHX( MemoryAllocateFlagsKHX flags_ = MemoryAllocateFlagsKHX(), uint32_t deviceMask_ = 0 )
: sType( StructureType::eMemoryAllocateFlagsInfoKHX )
, pNext( nullptr )
, flags( flags_ )
, deviceMask( deviceMask_ )
{
}
MemoryAllocateFlagsInfoKHX( VkMemoryAllocateFlagsInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryAllocateFlagsInfoKHX ) );
}
MemoryAllocateFlagsInfoKHX& operator=( VkMemoryAllocateFlagsInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( MemoryAllocateFlagsInfoKHX ) );
return *this;
}
MemoryAllocateFlagsInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
MemoryAllocateFlagsInfoKHX& setFlags( MemoryAllocateFlagsKHX flags_ )
{
flags = flags_;
return *this;
}
MemoryAllocateFlagsInfoKHX& setDeviceMask( uint32_t deviceMask_ )
{
deviceMask = deviceMask_;
return *this;
}
operator const VkMemoryAllocateFlagsInfoKHX&() const
{
return *reinterpret_cast<const VkMemoryAllocateFlagsInfoKHX*>(this);
}
bool operator==( MemoryAllocateFlagsInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( deviceMask == rhs.deviceMask );
}
bool operator!=( MemoryAllocateFlagsInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
MemoryAllocateFlagsKHX flags;
uint32_t deviceMask;
};
static_assert( sizeof( MemoryAllocateFlagsInfoKHX ) == sizeof( VkMemoryAllocateFlagsInfoKHX ), "struct and wrapper have different size!" );
enum class DeviceGroupPresentModeFlagBitsKHX
{
eLocal = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHX,
eRemote = VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHX,
eSum = VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHX,
eLocalMultiDevice = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHX
};
using DeviceGroupPresentModeFlagsKHX = Flags<DeviceGroupPresentModeFlagBitsKHX, VkDeviceGroupPresentModeFlagsKHX>;
VULKAN_HPP_INLINE DeviceGroupPresentModeFlagsKHX operator|( DeviceGroupPresentModeFlagBitsKHX bit0, DeviceGroupPresentModeFlagBitsKHX bit1 )
{
return DeviceGroupPresentModeFlagsKHX( bit0 ) | bit1;
}
VULKAN_HPP_INLINE DeviceGroupPresentModeFlagsKHX operator~( DeviceGroupPresentModeFlagBitsKHX bits )
{
return ~( DeviceGroupPresentModeFlagsKHX( bits ) );
}
template <> struct FlagTraits<DeviceGroupPresentModeFlagBitsKHX>
{
enum
{
allFlags = VkFlags(DeviceGroupPresentModeFlagBitsKHX::eLocal) | VkFlags(DeviceGroupPresentModeFlagBitsKHX::eRemote) | VkFlags(DeviceGroupPresentModeFlagBitsKHX::eSum) | VkFlags(DeviceGroupPresentModeFlagBitsKHX::eLocalMultiDevice)
};
};
struct DeviceGroupPresentCapabilitiesKHX
{
operator const VkDeviceGroupPresentCapabilitiesKHX&() const
{
return *reinterpret_cast<const VkDeviceGroupPresentCapabilitiesKHX*>(this);
}
bool operator==( DeviceGroupPresentCapabilitiesKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( memcmp( presentMask, rhs.presentMask, VK_MAX_DEVICE_GROUP_SIZE_KHX * sizeof( uint32_t ) ) == 0 )
&& ( modes == rhs.modes );
}
bool operator!=( DeviceGroupPresentCapabilitiesKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t presentMask[VK_MAX_DEVICE_GROUP_SIZE_KHX];
DeviceGroupPresentModeFlagsKHX modes;
};
static_assert( sizeof( DeviceGroupPresentCapabilitiesKHX ) == sizeof( VkDeviceGroupPresentCapabilitiesKHX ), "struct and wrapper have different size!" );
struct DeviceGroupPresentInfoKHX
{
DeviceGroupPresentInfoKHX( uint32_t swapchainCount_ = 0, const uint32_t* pDeviceMasks_ = nullptr, DeviceGroupPresentModeFlagBitsKHX mode_ = DeviceGroupPresentModeFlagBitsKHX::eLocal )
: sType( StructureType::eDeviceGroupPresentInfoKHX )
, pNext( nullptr )
, swapchainCount( swapchainCount_ )
, pDeviceMasks( pDeviceMasks_ )
, mode( mode_ )
{
}
DeviceGroupPresentInfoKHX( VkDeviceGroupPresentInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupPresentInfoKHX ) );
}
DeviceGroupPresentInfoKHX& operator=( VkDeviceGroupPresentInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupPresentInfoKHX ) );
return *this;
}
DeviceGroupPresentInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGroupPresentInfoKHX& setSwapchainCount( uint32_t swapchainCount_ )
{
swapchainCount = swapchainCount_;
return *this;
}
DeviceGroupPresentInfoKHX& setPDeviceMasks( const uint32_t* pDeviceMasks_ )
{
pDeviceMasks = pDeviceMasks_;
return *this;
}
DeviceGroupPresentInfoKHX& setMode( DeviceGroupPresentModeFlagBitsKHX mode_ )
{
mode = mode_;
return *this;
}
operator const VkDeviceGroupPresentInfoKHX&() const
{
return *reinterpret_cast<const VkDeviceGroupPresentInfoKHX*>(this);
}
bool operator==( DeviceGroupPresentInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( swapchainCount == rhs.swapchainCount )
&& ( pDeviceMasks == rhs.pDeviceMasks )
&& ( mode == rhs.mode );
}
bool operator!=( DeviceGroupPresentInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t swapchainCount;
const uint32_t* pDeviceMasks;
DeviceGroupPresentModeFlagBitsKHX mode;
};
static_assert( sizeof( DeviceGroupPresentInfoKHX ) == sizeof( VkDeviceGroupPresentInfoKHX ), "struct and wrapper have different size!" );
struct DeviceGroupSwapchainCreateInfoKHX
{
DeviceGroupSwapchainCreateInfoKHX( DeviceGroupPresentModeFlagsKHX modes_ = DeviceGroupPresentModeFlagsKHX() )
: sType( StructureType::eDeviceGroupSwapchainCreateInfoKHX )
, pNext( nullptr )
, modes( modes_ )
{
}
DeviceGroupSwapchainCreateInfoKHX( VkDeviceGroupSwapchainCreateInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupSwapchainCreateInfoKHX ) );
}
DeviceGroupSwapchainCreateInfoKHX& operator=( VkDeviceGroupSwapchainCreateInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupSwapchainCreateInfoKHX ) );
return *this;
}
DeviceGroupSwapchainCreateInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGroupSwapchainCreateInfoKHX& setModes( DeviceGroupPresentModeFlagsKHX modes_ )
{
modes = modes_;
return *this;
}
operator const VkDeviceGroupSwapchainCreateInfoKHX&() const
{
return *reinterpret_cast<const VkDeviceGroupSwapchainCreateInfoKHX*>(this);
}
bool operator==( DeviceGroupSwapchainCreateInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( modes == rhs.modes );
}
bool operator!=( DeviceGroupSwapchainCreateInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
DeviceGroupPresentModeFlagsKHX modes;
};
static_assert( sizeof( DeviceGroupSwapchainCreateInfoKHX ) == sizeof( VkDeviceGroupSwapchainCreateInfoKHX ), "struct and wrapper have different size!" );
enum class SwapchainCreateFlagBitsKHR
{
eBindSfrKHX = VK_SWAPCHAIN_CREATE_BIND_SFR_BIT_KHX
};
using SwapchainCreateFlagsKHR = Flags<SwapchainCreateFlagBitsKHR, VkSwapchainCreateFlagsKHR>;
VULKAN_HPP_INLINE SwapchainCreateFlagsKHR operator|( SwapchainCreateFlagBitsKHR bit0, SwapchainCreateFlagBitsKHR bit1 )
{
return SwapchainCreateFlagsKHR( bit0 ) | bit1;
}
VULKAN_HPP_INLINE SwapchainCreateFlagsKHR operator~( SwapchainCreateFlagBitsKHR bits )
{
return ~( SwapchainCreateFlagsKHR( bits ) );
}
template <> struct FlagTraits<SwapchainCreateFlagBitsKHR>
{
enum
{
allFlags = VkFlags(SwapchainCreateFlagBitsKHR::eBindSfrKHX)
};
};
struct SwapchainCreateInfoKHR
{
SwapchainCreateInfoKHR( SwapchainCreateFlagsKHR flags_ = SwapchainCreateFlagsKHR(), SurfaceKHR surface_ = SurfaceKHR(), uint32_t minImageCount_ = 0, Format imageFormat_ = Format::eUndefined, ColorSpaceKHR imageColorSpace_ = ColorSpaceKHR::eSrgbNonlinear, Extent2D imageExtent_ = Extent2D(), uint32_t imageArrayLayers_ = 0, ImageUsageFlags imageUsage_ = ImageUsageFlags(), SharingMode imageSharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr, SurfaceTransformFlagBitsKHR preTransform_ = SurfaceTransformFlagBitsKHR::eIdentity, CompositeAlphaFlagBitsKHR compositeAlpha_ = CompositeAlphaFlagBitsKHR::eOpaque, PresentModeKHR presentMode_ = PresentModeKHR::eImmediate, Bool32 clipped_ = 0, SwapchainKHR oldSwapchain_ = SwapchainKHR() )
: sType( StructureType::eSwapchainCreateInfoKHR )
, pNext( nullptr )
, flags( flags_ )
, surface( surface_ )
, minImageCount( minImageCount_ )
, imageFormat( imageFormat_ )
, imageColorSpace( imageColorSpace_ )
, imageExtent( imageExtent_ )
, imageArrayLayers( imageArrayLayers_ )
, imageUsage( imageUsage_ )
, imageSharingMode( imageSharingMode_ )
, queueFamilyIndexCount( queueFamilyIndexCount_ )
, pQueueFamilyIndices( pQueueFamilyIndices_ )
, preTransform( preTransform_ )
, compositeAlpha( compositeAlpha_ )
, presentMode( presentMode_ )
, clipped( clipped_ )
, oldSwapchain( oldSwapchain_ )
{
}
SwapchainCreateInfoKHR( VkSwapchainCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SwapchainCreateInfoKHR ) );
}
SwapchainCreateInfoKHR& operator=( VkSwapchainCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SwapchainCreateInfoKHR ) );
return *this;
}
SwapchainCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SwapchainCreateInfoKHR& setFlags( SwapchainCreateFlagsKHR flags_ )
{
flags = flags_;
return *this;
}
SwapchainCreateInfoKHR& setSurface( SurfaceKHR surface_ )
{
surface = surface_;
return *this;
}
SwapchainCreateInfoKHR& setMinImageCount( uint32_t minImageCount_ )
{
minImageCount = minImageCount_;
return *this;
}
SwapchainCreateInfoKHR& setImageFormat( Format imageFormat_ )
{
imageFormat = imageFormat_;
return *this;
}
SwapchainCreateInfoKHR& setImageColorSpace( ColorSpaceKHR imageColorSpace_ )
{
imageColorSpace = imageColorSpace_;
return *this;
}
SwapchainCreateInfoKHR& setImageExtent( Extent2D imageExtent_ )
{
imageExtent = imageExtent_;
return *this;
}
SwapchainCreateInfoKHR& setImageArrayLayers( uint32_t imageArrayLayers_ )
{
imageArrayLayers = imageArrayLayers_;
return *this;
}
SwapchainCreateInfoKHR& setImageUsage( ImageUsageFlags imageUsage_ )
{
imageUsage = imageUsage_;
return *this;
}
SwapchainCreateInfoKHR& setImageSharingMode( SharingMode imageSharingMode_ )
{
imageSharingMode = imageSharingMode_;
return *this;
}
SwapchainCreateInfoKHR& setQueueFamilyIndexCount( uint32_t queueFamilyIndexCount_ )
{
queueFamilyIndexCount = queueFamilyIndexCount_;
return *this;
}
SwapchainCreateInfoKHR& setPQueueFamilyIndices( const uint32_t* pQueueFamilyIndices_ )
{
pQueueFamilyIndices = pQueueFamilyIndices_;
return *this;
}
SwapchainCreateInfoKHR& setPreTransform( SurfaceTransformFlagBitsKHR preTransform_ )
{
preTransform = preTransform_;
return *this;
}
SwapchainCreateInfoKHR& setCompositeAlpha( CompositeAlphaFlagBitsKHR compositeAlpha_ )
{
compositeAlpha = compositeAlpha_;
return *this;
}
SwapchainCreateInfoKHR& setPresentMode( PresentModeKHR presentMode_ )
{
presentMode = presentMode_;
return *this;
}
SwapchainCreateInfoKHR& setClipped( Bool32 clipped_ )
{
clipped = clipped_;
return *this;
}
SwapchainCreateInfoKHR& setOldSwapchain( SwapchainKHR oldSwapchain_ )
{
oldSwapchain = oldSwapchain_;
return *this;
}
operator const VkSwapchainCreateInfoKHR&() const
{
return *reinterpret_cast<const VkSwapchainCreateInfoKHR*>(this);
}
bool operator==( SwapchainCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( surface == rhs.surface )
&& ( minImageCount == rhs.minImageCount )
&& ( imageFormat == rhs.imageFormat )
&& ( imageColorSpace == rhs.imageColorSpace )
&& ( imageExtent == rhs.imageExtent )
&& ( imageArrayLayers == rhs.imageArrayLayers )
&& ( imageUsage == rhs.imageUsage )
&& ( imageSharingMode == rhs.imageSharingMode )
&& ( queueFamilyIndexCount == rhs.queueFamilyIndexCount )
&& ( pQueueFamilyIndices == rhs.pQueueFamilyIndices )
&& ( preTransform == rhs.preTransform )
&& ( compositeAlpha == rhs.compositeAlpha )
&& ( presentMode == rhs.presentMode )
&& ( clipped == rhs.clipped )
&& ( oldSwapchain == rhs.oldSwapchain );
}
bool operator!=( SwapchainCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SwapchainCreateFlagsKHR flags;
SurfaceKHR surface;
uint32_t minImageCount;
Format imageFormat;
ColorSpaceKHR imageColorSpace;
Extent2D imageExtent;
uint32_t imageArrayLayers;
ImageUsageFlags imageUsage;
SharingMode imageSharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;
SurfaceTransformFlagBitsKHR preTransform;
CompositeAlphaFlagBitsKHR compositeAlpha;
PresentModeKHR presentMode;
Bool32 clipped;
SwapchainKHR oldSwapchain;
};
static_assert( sizeof( SwapchainCreateInfoKHR ) == sizeof( VkSwapchainCreateInfoKHR ), "struct and wrapper have different size!" );
enum class ViewportCoordinateSwizzleNV
{
ePositiveX = VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV,
eNegativeX = VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV,
ePositiveY = VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV,
eNegativeY = VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV,
ePositiveZ = VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV,
eNegativeZ = VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV,
ePositiveW = VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV,
eNegativeW = VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV
};
struct ViewportSwizzleNV
{
ViewportSwizzleNV( ViewportCoordinateSwizzleNV x_ = ViewportCoordinateSwizzleNV::ePositiveX, ViewportCoordinateSwizzleNV y_ = ViewportCoordinateSwizzleNV::ePositiveX, ViewportCoordinateSwizzleNV z_ = ViewportCoordinateSwizzleNV::ePositiveX, ViewportCoordinateSwizzleNV w_ = ViewportCoordinateSwizzleNV::ePositiveX )
: x( x_ )
, y( y_ )
, z( z_ )
, w( w_ )
{
}
ViewportSwizzleNV( VkViewportSwizzleNV const & rhs )
{
memcpy( this, &rhs, sizeof( ViewportSwizzleNV ) );
}
ViewportSwizzleNV& operator=( VkViewportSwizzleNV const & rhs )
{
memcpy( this, &rhs, sizeof( ViewportSwizzleNV ) );
return *this;
}
ViewportSwizzleNV& setX( ViewportCoordinateSwizzleNV x_ )
{
x = x_;
return *this;
}
ViewportSwizzleNV& setY( ViewportCoordinateSwizzleNV y_ )
{
y = y_;
return *this;
}
ViewportSwizzleNV& setZ( ViewportCoordinateSwizzleNV z_ )
{
z = z_;
return *this;
}
ViewportSwizzleNV& setW( ViewportCoordinateSwizzleNV w_ )
{
w = w_;
return *this;
}
operator const VkViewportSwizzleNV&() const
{
return *reinterpret_cast<const VkViewportSwizzleNV*>(this);
}
bool operator==( ViewportSwizzleNV const& rhs ) const
{
return ( x == rhs.x )
&& ( y == rhs.y )
&& ( z == rhs.z )
&& ( w == rhs.w );
}
bool operator!=( ViewportSwizzleNV const& rhs ) const
{
return !operator==( rhs );
}
ViewportCoordinateSwizzleNV x;
ViewportCoordinateSwizzleNV y;
ViewportCoordinateSwizzleNV z;
ViewportCoordinateSwizzleNV w;
};
static_assert( sizeof( ViewportSwizzleNV ) == sizeof( VkViewportSwizzleNV ), "struct and wrapper have different size!" );
struct PipelineViewportSwizzleStateCreateInfoNV
{
PipelineViewportSwizzleStateCreateInfoNV( PipelineViewportSwizzleStateCreateFlagsNV flags_ = PipelineViewportSwizzleStateCreateFlagsNV(), uint32_t viewportCount_ = 0, const ViewportSwizzleNV* pViewportSwizzles_ = nullptr )
: sType( StructureType::ePipelineViewportSwizzleStateCreateInfoNV )
, pNext( nullptr )
, flags( flags_ )
, viewportCount( viewportCount_ )
, pViewportSwizzles( pViewportSwizzles_ )
{
}
PipelineViewportSwizzleStateCreateInfoNV( VkPipelineViewportSwizzleStateCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineViewportSwizzleStateCreateInfoNV ) );
}
PipelineViewportSwizzleStateCreateInfoNV& operator=( VkPipelineViewportSwizzleStateCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineViewportSwizzleStateCreateInfoNV ) );
return *this;
}
PipelineViewportSwizzleStateCreateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineViewportSwizzleStateCreateInfoNV& setFlags( PipelineViewportSwizzleStateCreateFlagsNV flags_ )
{
flags = flags_;
return *this;
}
PipelineViewportSwizzleStateCreateInfoNV& setViewportCount( uint32_t viewportCount_ )
{
viewportCount = viewportCount_;
return *this;
}
PipelineViewportSwizzleStateCreateInfoNV& setPViewportSwizzles( const ViewportSwizzleNV* pViewportSwizzles_ )
{
pViewportSwizzles = pViewportSwizzles_;
return *this;
}
operator const VkPipelineViewportSwizzleStateCreateInfoNV&() const
{
return *reinterpret_cast<const VkPipelineViewportSwizzleStateCreateInfoNV*>(this);
}
bool operator==( PipelineViewportSwizzleStateCreateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( viewportCount == rhs.viewportCount )
&& ( pViewportSwizzles == rhs.pViewportSwizzles );
}
bool operator!=( PipelineViewportSwizzleStateCreateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineViewportSwizzleStateCreateFlagsNV flags;
uint32_t viewportCount;
const ViewportSwizzleNV* pViewportSwizzles;
};
static_assert( sizeof( PipelineViewportSwizzleStateCreateInfoNV ) == sizeof( VkPipelineViewportSwizzleStateCreateInfoNV ), "struct and wrapper have different size!" );
enum class DiscardRectangleModeEXT
{
eInclusive = VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT,
eExclusive = VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT
};
struct PipelineDiscardRectangleStateCreateInfoEXT
{
PipelineDiscardRectangleStateCreateInfoEXT( PipelineDiscardRectangleStateCreateFlagsEXT flags_ = PipelineDiscardRectangleStateCreateFlagsEXT(), DiscardRectangleModeEXT discardRectangleMode_ = DiscardRectangleModeEXT::eInclusive, uint32_t discardRectangleCount_ = 0, const Rect2D* pDiscardRectangles_ = nullptr )
: sType( StructureType::ePipelineDiscardRectangleStateCreateInfoEXT )
, pNext( nullptr )
, flags( flags_ )
, discardRectangleMode( discardRectangleMode_ )
, discardRectangleCount( discardRectangleCount_ )
, pDiscardRectangles( pDiscardRectangles_ )
{
}
PipelineDiscardRectangleStateCreateInfoEXT( VkPipelineDiscardRectangleStateCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineDiscardRectangleStateCreateInfoEXT ) );
}
PipelineDiscardRectangleStateCreateInfoEXT& operator=( VkPipelineDiscardRectangleStateCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineDiscardRectangleStateCreateInfoEXT ) );
return *this;
}
PipelineDiscardRectangleStateCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineDiscardRectangleStateCreateInfoEXT& setFlags( PipelineDiscardRectangleStateCreateFlagsEXT flags_ )
{
flags = flags_;
return *this;
}
PipelineDiscardRectangleStateCreateInfoEXT& setDiscardRectangleMode( DiscardRectangleModeEXT discardRectangleMode_ )
{
discardRectangleMode = discardRectangleMode_;
return *this;
}
PipelineDiscardRectangleStateCreateInfoEXT& setDiscardRectangleCount( uint32_t discardRectangleCount_ )
{
discardRectangleCount = discardRectangleCount_;
return *this;
}
PipelineDiscardRectangleStateCreateInfoEXT& setPDiscardRectangles( const Rect2D* pDiscardRectangles_ )
{
pDiscardRectangles = pDiscardRectangles_;
return *this;
}
operator const VkPipelineDiscardRectangleStateCreateInfoEXT&() const
{
return *reinterpret_cast<const VkPipelineDiscardRectangleStateCreateInfoEXT*>(this);
}
bool operator==( PipelineDiscardRectangleStateCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( discardRectangleMode == rhs.discardRectangleMode )
&& ( discardRectangleCount == rhs.discardRectangleCount )
&& ( pDiscardRectangles == rhs.pDiscardRectangles );
}
bool operator!=( PipelineDiscardRectangleStateCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineDiscardRectangleStateCreateFlagsEXT flags;
DiscardRectangleModeEXT discardRectangleMode;
uint32_t discardRectangleCount;
const Rect2D* pDiscardRectangles;
};
static_assert( sizeof( PipelineDiscardRectangleStateCreateInfoEXT ) == sizeof( VkPipelineDiscardRectangleStateCreateInfoEXT ), "struct and wrapper have different size!" );
enum class SubpassDescriptionFlagBits
{
ePerViewAttributesNVX = VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX,
ePerViewPositionXOnlyNVX = VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX
};
using SubpassDescriptionFlags = Flags<SubpassDescriptionFlagBits, VkSubpassDescriptionFlags>;
VULKAN_HPP_INLINE SubpassDescriptionFlags operator|( SubpassDescriptionFlagBits bit0, SubpassDescriptionFlagBits bit1 )
{
return SubpassDescriptionFlags( bit0 ) | bit1;
}
VULKAN_HPP_INLINE SubpassDescriptionFlags operator~( SubpassDescriptionFlagBits bits )
{
return ~( SubpassDescriptionFlags( bits ) );
}
template <> struct FlagTraits<SubpassDescriptionFlagBits>
{
enum
{
allFlags = VkFlags(SubpassDescriptionFlagBits::ePerViewAttributesNVX) | VkFlags(SubpassDescriptionFlagBits::ePerViewPositionXOnlyNVX)
};
};
struct SubpassDescription
{
SubpassDescription( SubpassDescriptionFlags flags_ = SubpassDescriptionFlags(), PipelineBindPoint pipelineBindPoint_ = PipelineBindPoint::eGraphics, uint32_t inputAttachmentCount_ = 0, const AttachmentReference* pInputAttachments_ = nullptr, uint32_t colorAttachmentCount_ = 0, const AttachmentReference* pColorAttachments_ = nullptr, const AttachmentReference* pResolveAttachments_ = nullptr, const AttachmentReference* pDepthStencilAttachment_ = nullptr, uint32_t preserveAttachmentCount_ = 0, const uint32_t* pPreserveAttachments_ = nullptr )
: flags( flags_ )
, pipelineBindPoint( pipelineBindPoint_ )
, inputAttachmentCount( inputAttachmentCount_ )
, pInputAttachments( pInputAttachments_ )
, colorAttachmentCount( colorAttachmentCount_ )
, pColorAttachments( pColorAttachments_ )
, pResolveAttachments( pResolveAttachments_ )
, pDepthStencilAttachment( pDepthStencilAttachment_ )
, preserveAttachmentCount( preserveAttachmentCount_ )
, pPreserveAttachments( pPreserveAttachments_ )
{
}
SubpassDescription( VkSubpassDescription const & rhs )
{
memcpy( this, &rhs, sizeof( SubpassDescription ) );
}
SubpassDescription& operator=( VkSubpassDescription const & rhs )
{
memcpy( this, &rhs, sizeof( SubpassDescription ) );
return *this;
}
SubpassDescription& setFlags( SubpassDescriptionFlags flags_ )
{
flags = flags_;
return *this;
}
SubpassDescription& setPipelineBindPoint( PipelineBindPoint pipelineBindPoint_ )
{
pipelineBindPoint = pipelineBindPoint_;
return *this;
}
SubpassDescription& setInputAttachmentCount( uint32_t inputAttachmentCount_ )
{
inputAttachmentCount = inputAttachmentCount_;
return *this;
}
SubpassDescription& setPInputAttachments( const AttachmentReference* pInputAttachments_ )
{
pInputAttachments = pInputAttachments_;
return *this;
}
SubpassDescription& setColorAttachmentCount( uint32_t colorAttachmentCount_ )
{
colorAttachmentCount = colorAttachmentCount_;
return *this;
}
SubpassDescription& setPColorAttachments( const AttachmentReference* pColorAttachments_ )
{
pColorAttachments = pColorAttachments_;
return *this;
}
SubpassDescription& setPResolveAttachments( const AttachmentReference* pResolveAttachments_ )
{
pResolveAttachments = pResolveAttachments_;
return *this;
}
SubpassDescription& setPDepthStencilAttachment( const AttachmentReference* pDepthStencilAttachment_ )
{
pDepthStencilAttachment = pDepthStencilAttachment_;
return *this;
}
SubpassDescription& setPreserveAttachmentCount( uint32_t preserveAttachmentCount_ )
{
preserveAttachmentCount = preserveAttachmentCount_;
return *this;
}
SubpassDescription& setPPreserveAttachments( const uint32_t* pPreserveAttachments_ )
{
pPreserveAttachments = pPreserveAttachments_;
return *this;
}
operator const VkSubpassDescription&() const
{
return *reinterpret_cast<const VkSubpassDescription*>(this);
}
bool operator==( SubpassDescription const& rhs ) const
{
return ( flags == rhs.flags )
&& ( pipelineBindPoint == rhs.pipelineBindPoint )
&& ( inputAttachmentCount == rhs.inputAttachmentCount )
&& ( pInputAttachments == rhs.pInputAttachments )
&& ( colorAttachmentCount == rhs.colorAttachmentCount )
&& ( pColorAttachments == rhs.pColorAttachments )
&& ( pResolveAttachments == rhs.pResolveAttachments )
&& ( pDepthStencilAttachment == rhs.pDepthStencilAttachment )
&& ( preserveAttachmentCount == rhs.preserveAttachmentCount )
&& ( pPreserveAttachments == rhs.pPreserveAttachments );
}
bool operator!=( SubpassDescription const& rhs ) const
{
return !operator==( rhs );
}
SubpassDescriptionFlags flags;
PipelineBindPoint pipelineBindPoint;
uint32_t inputAttachmentCount;
const AttachmentReference* pInputAttachments;
uint32_t colorAttachmentCount;
const AttachmentReference* pColorAttachments;
const AttachmentReference* pResolveAttachments;
const AttachmentReference* pDepthStencilAttachment;
uint32_t preserveAttachmentCount;
const uint32_t* pPreserveAttachments;
};
static_assert( sizeof( SubpassDescription ) == sizeof( VkSubpassDescription ), "struct and wrapper have different size!" );
struct RenderPassCreateInfo
{
RenderPassCreateInfo( RenderPassCreateFlags flags_ = RenderPassCreateFlags(), uint32_t attachmentCount_ = 0, const AttachmentDescription* pAttachments_ = nullptr, uint32_t subpassCount_ = 0, const SubpassDescription* pSubpasses_ = nullptr, uint32_t dependencyCount_ = 0, const SubpassDependency* pDependencies_ = nullptr )
: sType( StructureType::eRenderPassCreateInfo )
, pNext( nullptr )
, flags( flags_ )
, attachmentCount( attachmentCount_ )
, pAttachments( pAttachments_ )
, subpassCount( subpassCount_ )
, pSubpasses( pSubpasses_ )
, dependencyCount( dependencyCount_ )
, pDependencies( pDependencies_ )
{
}
RenderPassCreateInfo( VkRenderPassCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassCreateInfo ) );
}
RenderPassCreateInfo& operator=( VkRenderPassCreateInfo const & rhs )
{
memcpy( this, &rhs, sizeof( RenderPassCreateInfo ) );
return *this;
}
RenderPassCreateInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
RenderPassCreateInfo& setFlags( RenderPassCreateFlags flags_ )
{
flags = flags_;
return *this;
}
RenderPassCreateInfo& setAttachmentCount( uint32_t attachmentCount_ )
{
attachmentCount = attachmentCount_;
return *this;
}
RenderPassCreateInfo& setPAttachments( const AttachmentDescription* pAttachments_ )
{
pAttachments = pAttachments_;
return *this;
}
RenderPassCreateInfo& setSubpassCount( uint32_t subpassCount_ )
{
subpassCount = subpassCount_;
return *this;
}
RenderPassCreateInfo& setPSubpasses( const SubpassDescription* pSubpasses_ )
{
pSubpasses = pSubpasses_;
return *this;
}
RenderPassCreateInfo& setDependencyCount( uint32_t dependencyCount_ )
{
dependencyCount = dependencyCount_;
return *this;
}
RenderPassCreateInfo& setPDependencies( const SubpassDependency* pDependencies_ )
{
pDependencies = pDependencies_;
return *this;
}
operator const VkRenderPassCreateInfo&() const
{
return *reinterpret_cast<const VkRenderPassCreateInfo*>(this);
}
bool operator==( RenderPassCreateInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( attachmentCount == rhs.attachmentCount )
&& ( pAttachments == rhs.pAttachments )
&& ( subpassCount == rhs.subpassCount )
&& ( pSubpasses == rhs.pSubpasses )
&& ( dependencyCount == rhs.dependencyCount )
&& ( pDependencies == rhs.pDependencies );
}
bool operator!=( RenderPassCreateInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
RenderPassCreateFlags flags;
uint32_t attachmentCount;
const AttachmentDescription* pAttachments;
uint32_t subpassCount;
const SubpassDescription* pSubpasses;
uint32_t dependencyCount;
const SubpassDependency* pDependencies;
};
static_assert( sizeof( RenderPassCreateInfo ) == sizeof( VkRenderPassCreateInfo ), "struct and wrapper have different size!" );
enum class PointClippingBehaviorKHR
{
eAllClipPlanes = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR,
eUserClipPlanesOnly = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY_KHR
};
struct PhysicalDevicePointClippingPropertiesKHR
{
operator const VkPhysicalDevicePointClippingPropertiesKHR&() const
{
return *reinterpret_cast<const VkPhysicalDevicePointClippingPropertiesKHR*>(this);
}
bool operator==( PhysicalDevicePointClippingPropertiesKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( pointClippingBehavior == rhs.pointClippingBehavior );
}
bool operator!=( PhysicalDevicePointClippingPropertiesKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
PointClippingBehaviorKHR pointClippingBehavior;
};
static_assert( sizeof( PhysicalDevicePointClippingPropertiesKHR ) == sizeof( VkPhysicalDevicePointClippingPropertiesKHR ), "struct and wrapper have different size!" );
enum class SamplerReductionModeEXT
{
eWeightedAverage = VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT,
eMin = VK_SAMPLER_REDUCTION_MODE_MIN_EXT,
eMax = VK_SAMPLER_REDUCTION_MODE_MAX_EXT
};
struct SamplerReductionModeCreateInfoEXT
{
SamplerReductionModeCreateInfoEXT( SamplerReductionModeEXT reductionMode_ = SamplerReductionModeEXT::eWeightedAverage )
: sType( StructureType::eSamplerReductionModeCreateInfoEXT )
, pNext( nullptr )
, reductionMode( reductionMode_ )
{
}
SamplerReductionModeCreateInfoEXT( VkSamplerReductionModeCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SamplerReductionModeCreateInfoEXT ) );
}
SamplerReductionModeCreateInfoEXT& operator=( VkSamplerReductionModeCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( SamplerReductionModeCreateInfoEXT ) );
return *this;
}
SamplerReductionModeCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SamplerReductionModeCreateInfoEXT& setReductionMode( SamplerReductionModeEXT reductionMode_ )
{
reductionMode = reductionMode_;
return *this;
}
operator const VkSamplerReductionModeCreateInfoEXT&() const
{
return *reinterpret_cast<const VkSamplerReductionModeCreateInfoEXT*>(this);
}
bool operator==( SamplerReductionModeCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( reductionMode == rhs.reductionMode );
}
bool operator!=( SamplerReductionModeCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
SamplerReductionModeEXT reductionMode;
};
static_assert( sizeof( SamplerReductionModeCreateInfoEXT ) == sizeof( VkSamplerReductionModeCreateInfoEXT ), "struct and wrapper have different size!" );
enum class TessellationDomainOriginKHR
{
eUpperLeft = VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR,
eLowerLeft = VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR
};
struct PipelineTessellationDomainOriginStateCreateInfoKHR
{
PipelineTessellationDomainOriginStateCreateInfoKHR( TessellationDomainOriginKHR domainOrigin_ = TessellationDomainOriginKHR::eUpperLeft )
: sType( StructureType::ePipelineTessellationDomainOriginStateCreateInfoKHR )
, pNext( nullptr )
, domainOrigin( domainOrigin_ )
{
}
PipelineTessellationDomainOriginStateCreateInfoKHR( VkPipelineTessellationDomainOriginStateCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineTessellationDomainOriginStateCreateInfoKHR ) );
}
PipelineTessellationDomainOriginStateCreateInfoKHR& operator=( VkPipelineTessellationDomainOriginStateCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineTessellationDomainOriginStateCreateInfoKHR ) );
return *this;
}
PipelineTessellationDomainOriginStateCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineTessellationDomainOriginStateCreateInfoKHR& setDomainOrigin( TessellationDomainOriginKHR domainOrigin_ )
{
domainOrigin = domainOrigin_;
return *this;
}
operator const VkPipelineTessellationDomainOriginStateCreateInfoKHR&() const
{
return *reinterpret_cast<const VkPipelineTessellationDomainOriginStateCreateInfoKHR*>(this);
}
bool operator==( PipelineTessellationDomainOriginStateCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( domainOrigin == rhs.domainOrigin );
}
bool operator!=( PipelineTessellationDomainOriginStateCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
TessellationDomainOriginKHR domainOrigin;
};
static_assert( sizeof( PipelineTessellationDomainOriginStateCreateInfoKHR ) == sizeof( VkPipelineTessellationDomainOriginStateCreateInfoKHR ), "struct and wrapper have different size!" );
enum class SamplerYcbcrModelConversionKHR
{
eRgbIdentity = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY_KHR,
eYcbcrIdentity = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY_KHR,
eYcbcr709 = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709_KHR,
eYcbcr601 = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601_KHR,
eYcbcr2020 = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020_KHR
};
enum class SamplerYcbcrRangeKHR
{
eItuFull = VK_SAMPLER_YCBCR_RANGE_ITU_FULL_KHR,
eItuNarrow = VK_SAMPLER_YCBCR_RANGE_ITU_NARROW_KHR
};
enum class ChromaLocationKHR
{
eCositedEven = VK_CHROMA_LOCATION_COSITED_EVEN_KHR,
eMidpoint = VK_CHROMA_LOCATION_MIDPOINT_KHR
};
struct SamplerYcbcrConversionCreateInfoKHR
{
SamplerYcbcrConversionCreateInfoKHR( Format format_ = Format::eUndefined, SamplerYcbcrModelConversionKHR ycbcrModel_ = SamplerYcbcrModelConversionKHR::eRgbIdentity, SamplerYcbcrRangeKHR ycbcrRange_ = SamplerYcbcrRangeKHR::eItuFull, ComponentMapping components_ = ComponentMapping(), ChromaLocationKHR xChromaOffset_ = ChromaLocationKHR::eCositedEven, ChromaLocationKHR yChromaOffset_ = ChromaLocationKHR::eCositedEven, Filter chromaFilter_ = Filter::eNearest, Bool32 forceExplicitReconstruction_ = 0 )
: sType( StructureType::eSamplerYcbcrConversionCreateInfoKHR )
, pNext( nullptr )
, format( format_ )
, ycbcrModel( ycbcrModel_ )
, ycbcrRange( ycbcrRange_ )
, components( components_ )
, xChromaOffset( xChromaOffset_ )
, yChromaOffset( yChromaOffset_ )
, chromaFilter( chromaFilter_ )
, forceExplicitReconstruction( forceExplicitReconstruction_ )
{
}
SamplerYcbcrConversionCreateInfoKHR( VkSamplerYcbcrConversionCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SamplerYcbcrConversionCreateInfoKHR ) );
}
SamplerYcbcrConversionCreateInfoKHR& operator=( VkSamplerYcbcrConversionCreateInfoKHR const & rhs )
{
memcpy( this, &rhs, sizeof( SamplerYcbcrConversionCreateInfoKHR ) );
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setFormat( Format format_ )
{
format = format_;
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setYcbcrModel( SamplerYcbcrModelConversionKHR ycbcrModel_ )
{
ycbcrModel = ycbcrModel_;
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setYcbcrRange( SamplerYcbcrRangeKHR ycbcrRange_ )
{
ycbcrRange = ycbcrRange_;
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setComponents( ComponentMapping components_ )
{
components = components_;
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setXChromaOffset( ChromaLocationKHR xChromaOffset_ )
{
xChromaOffset = xChromaOffset_;
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setYChromaOffset( ChromaLocationKHR yChromaOffset_ )
{
yChromaOffset = yChromaOffset_;
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setChromaFilter( Filter chromaFilter_ )
{
chromaFilter = chromaFilter_;
return *this;
}
SamplerYcbcrConversionCreateInfoKHR& setForceExplicitReconstruction( Bool32 forceExplicitReconstruction_ )
{
forceExplicitReconstruction = forceExplicitReconstruction_;
return *this;
}
operator const VkSamplerYcbcrConversionCreateInfoKHR&() const
{
return *reinterpret_cast<const VkSamplerYcbcrConversionCreateInfoKHR*>(this);
}
bool operator==( SamplerYcbcrConversionCreateInfoKHR const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( format == rhs.format )
&& ( ycbcrModel == rhs.ycbcrModel )
&& ( ycbcrRange == rhs.ycbcrRange )
&& ( components == rhs.components )
&& ( xChromaOffset == rhs.xChromaOffset )
&& ( yChromaOffset == rhs.yChromaOffset )
&& ( chromaFilter == rhs.chromaFilter )
&& ( forceExplicitReconstruction == rhs.forceExplicitReconstruction );
}
bool operator!=( SamplerYcbcrConversionCreateInfoKHR const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Format format;
SamplerYcbcrModelConversionKHR ycbcrModel;
SamplerYcbcrRangeKHR ycbcrRange;
ComponentMapping components;
ChromaLocationKHR xChromaOffset;
ChromaLocationKHR yChromaOffset;
Filter chromaFilter;
Bool32 forceExplicitReconstruction;
};
static_assert( sizeof( SamplerYcbcrConversionCreateInfoKHR ) == sizeof( VkSamplerYcbcrConversionCreateInfoKHR ), "struct and wrapper have different size!" );
enum class BlendOverlapEXT
{
eUncorrelated = VK_BLEND_OVERLAP_UNCORRELATED_EXT,
eDisjoint = VK_BLEND_OVERLAP_DISJOINT_EXT,
eConjoint = VK_BLEND_OVERLAP_CONJOINT_EXT
};
struct PipelineColorBlendAdvancedStateCreateInfoEXT
{
PipelineColorBlendAdvancedStateCreateInfoEXT( Bool32 srcPremultiplied_ = 0, Bool32 dstPremultiplied_ = 0, BlendOverlapEXT blendOverlap_ = BlendOverlapEXT::eUncorrelated )
: sType( StructureType::ePipelineColorBlendAdvancedStateCreateInfoEXT )
, pNext( nullptr )
, srcPremultiplied( srcPremultiplied_ )
, dstPremultiplied( dstPremultiplied_ )
, blendOverlap( blendOverlap_ )
{
}
PipelineColorBlendAdvancedStateCreateInfoEXT( VkPipelineColorBlendAdvancedStateCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineColorBlendAdvancedStateCreateInfoEXT ) );
}
PipelineColorBlendAdvancedStateCreateInfoEXT& operator=( VkPipelineColorBlendAdvancedStateCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineColorBlendAdvancedStateCreateInfoEXT ) );
return *this;
}
PipelineColorBlendAdvancedStateCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineColorBlendAdvancedStateCreateInfoEXT& setSrcPremultiplied( Bool32 srcPremultiplied_ )
{
srcPremultiplied = srcPremultiplied_;
return *this;
}
PipelineColorBlendAdvancedStateCreateInfoEXT& setDstPremultiplied( Bool32 dstPremultiplied_ )
{
dstPremultiplied = dstPremultiplied_;
return *this;
}
PipelineColorBlendAdvancedStateCreateInfoEXT& setBlendOverlap( BlendOverlapEXT blendOverlap_ )
{
blendOverlap = blendOverlap_;
return *this;
}
operator const VkPipelineColorBlendAdvancedStateCreateInfoEXT&() const
{
return *reinterpret_cast<const VkPipelineColorBlendAdvancedStateCreateInfoEXT*>(this);
}
bool operator==( PipelineColorBlendAdvancedStateCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( srcPremultiplied == rhs.srcPremultiplied )
&& ( dstPremultiplied == rhs.dstPremultiplied )
&& ( blendOverlap == rhs.blendOverlap );
}
bool operator!=( PipelineColorBlendAdvancedStateCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
Bool32 srcPremultiplied;
Bool32 dstPremultiplied;
BlendOverlapEXT blendOverlap;
};
static_assert( sizeof( PipelineColorBlendAdvancedStateCreateInfoEXT ) == sizeof( VkPipelineColorBlendAdvancedStateCreateInfoEXT ), "struct and wrapper have different size!" );
enum class CoverageModulationModeNV
{
eNone = VK_COVERAGE_MODULATION_MODE_NONE_NV,
eRgb = VK_COVERAGE_MODULATION_MODE_RGB_NV,
eAlpha = VK_COVERAGE_MODULATION_MODE_ALPHA_NV,
eRgba = VK_COVERAGE_MODULATION_MODE_RGBA_NV
};
struct PipelineCoverageModulationStateCreateInfoNV
{
PipelineCoverageModulationStateCreateInfoNV( PipelineCoverageModulationStateCreateFlagsNV flags_ = PipelineCoverageModulationStateCreateFlagsNV(), CoverageModulationModeNV coverageModulationMode_ = CoverageModulationModeNV::eNone, Bool32 coverageModulationTableEnable_ = 0, uint32_t coverageModulationTableCount_ = 0, const float* pCoverageModulationTable_ = nullptr )
: sType( StructureType::ePipelineCoverageModulationStateCreateInfoNV )
, pNext( nullptr )
, flags( flags_ )
, coverageModulationMode( coverageModulationMode_ )
, coverageModulationTableEnable( coverageModulationTableEnable_ )
, coverageModulationTableCount( coverageModulationTableCount_ )
, pCoverageModulationTable( pCoverageModulationTable_ )
{
}
PipelineCoverageModulationStateCreateInfoNV( VkPipelineCoverageModulationStateCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineCoverageModulationStateCreateInfoNV ) );
}
PipelineCoverageModulationStateCreateInfoNV& operator=( VkPipelineCoverageModulationStateCreateInfoNV const & rhs )
{
memcpy( this, &rhs, sizeof( PipelineCoverageModulationStateCreateInfoNV ) );
return *this;
}
PipelineCoverageModulationStateCreateInfoNV& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
PipelineCoverageModulationStateCreateInfoNV& setFlags( PipelineCoverageModulationStateCreateFlagsNV flags_ )
{
flags = flags_;
return *this;
}
PipelineCoverageModulationStateCreateInfoNV& setCoverageModulationMode( CoverageModulationModeNV coverageModulationMode_ )
{
coverageModulationMode = coverageModulationMode_;
return *this;
}
PipelineCoverageModulationStateCreateInfoNV& setCoverageModulationTableEnable( Bool32 coverageModulationTableEnable_ )
{
coverageModulationTableEnable = coverageModulationTableEnable_;
return *this;
}
PipelineCoverageModulationStateCreateInfoNV& setCoverageModulationTableCount( uint32_t coverageModulationTableCount_ )
{
coverageModulationTableCount = coverageModulationTableCount_;
return *this;
}
PipelineCoverageModulationStateCreateInfoNV& setPCoverageModulationTable( const float* pCoverageModulationTable_ )
{
pCoverageModulationTable = pCoverageModulationTable_;
return *this;
}
operator const VkPipelineCoverageModulationStateCreateInfoNV&() const
{
return *reinterpret_cast<const VkPipelineCoverageModulationStateCreateInfoNV*>(this);
}
bool operator==( PipelineCoverageModulationStateCreateInfoNV const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( flags == rhs.flags )
&& ( coverageModulationMode == rhs.coverageModulationMode )
&& ( coverageModulationTableEnable == rhs.coverageModulationTableEnable )
&& ( coverageModulationTableCount == rhs.coverageModulationTableCount )
&& ( pCoverageModulationTable == rhs.pCoverageModulationTable );
}
bool operator!=( PipelineCoverageModulationStateCreateInfoNV const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
PipelineCoverageModulationStateCreateFlagsNV flags;
CoverageModulationModeNV coverageModulationMode;
Bool32 coverageModulationTableEnable;
uint32_t coverageModulationTableCount;
const float* pCoverageModulationTable;
};
static_assert( sizeof( PipelineCoverageModulationStateCreateInfoNV ) == sizeof( VkPipelineCoverageModulationStateCreateInfoNV ), "struct and wrapper have different size!" );
enum class ValidationCacheHeaderVersionEXT
{
eOne = VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT
};
enum class ShaderInfoTypeAMD
{
eStatistics = VK_SHADER_INFO_TYPE_STATISTICS_AMD,
eBinary = VK_SHADER_INFO_TYPE_BINARY_AMD,
eDisassembly = VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD
};
enum class QueueGlobalPriorityEXT
{
eLow = VK_QUEUE_GLOBAL_PRIORITY_LOW,
eMedium = VK_QUEUE_GLOBAL_PRIORITY_MEDIUM,
eHigh = VK_QUEUE_GLOBAL_PRIORITY_HIGH,
eRealtime = VK_QUEUE_GLOBAL_PRIORITY_REALTIME
};
struct DeviceQueueGlobalPriorityCreateInfoEXT
{
DeviceQueueGlobalPriorityCreateInfoEXT( QueueGlobalPriorityEXT globalPriority_ = QueueGlobalPriorityEXT::eLow )
: sType( StructureType::eDeviceQueueGlobalPriorityCreateInfoEXT )
, pNext( nullptr )
, globalPriority( globalPriority_ )
{
}
DeviceQueueGlobalPriorityCreateInfoEXT( VkDeviceQueueGlobalPriorityCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceQueueGlobalPriorityCreateInfoEXT ) );
}
DeviceQueueGlobalPriorityCreateInfoEXT& operator=( VkDeviceQueueGlobalPriorityCreateInfoEXT const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceQueueGlobalPriorityCreateInfoEXT ) );
return *this;
}
DeviceQueueGlobalPriorityCreateInfoEXT& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceQueueGlobalPriorityCreateInfoEXT& setGlobalPriority( QueueGlobalPriorityEXT globalPriority_ )
{
globalPriority = globalPriority_;
return *this;
}
operator const VkDeviceQueueGlobalPriorityCreateInfoEXT&() const
{
return *reinterpret_cast<const VkDeviceQueueGlobalPriorityCreateInfoEXT*>(this);
}
bool operator==( DeviceQueueGlobalPriorityCreateInfoEXT const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( globalPriority == rhs.globalPriority );
}
bool operator!=( DeviceQueueGlobalPriorityCreateInfoEXT const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
QueueGlobalPriorityEXT globalPriority;
};
static_assert( sizeof( DeviceQueueGlobalPriorityCreateInfoEXT ) == sizeof( VkDeviceQueueGlobalPriorityCreateInfoEXT ), "struct and wrapper have different size!" );
Result enumerateInstanceLayerProperties( uint32_t* pPropertyCount, LayerProperties* pProperties );
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<LayerProperties>>
typename ResultValueType<std::vector<LayerProperties,Allocator>>::type enumerateInstanceLayerProperties();
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result enumerateInstanceLayerProperties( uint32_t* pPropertyCount, LayerProperties* pProperties )
{
return static_cast<Result>( vkEnumerateInstanceLayerProperties( pPropertyCount, reinterpret_cast<VkLayerProperties*>( pProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<LayerProperties,Allocator>>::type enumerateInstanceLayerProperties()
{
std::vector<LayerProperties,Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>( vkEnumerateInstanceLayerProperties( &propertyCount, nullptr ) );
if ( ( result == Result::eSuccess ) && propertyCount )
{
properties.resize( propertyCount );
result = static_cast<Result>( vkEnumerateInstanceLayerProperties( &propertyCount, reinterpret_cast<VkLayerProperties*>( properties.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( propertyCount <= properties.size() );
properties.resize( propertyCount );
return createResultValue( result, properties, "VULKAN_HPP_NAMESPACE::enumerateInstanceLayerProperties" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result enumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties );
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<ExtensionProperties>>
typename ResultValueType<std::vector<ExtensionProperties,Allocator>>::type enumerateInstanceExtensionProperties( Optional<const std::string> layerName = nullptr );
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result enumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties )
{
return static_cast<Result>( vkEnumerateInstanceExtensionProperties( pLayerName, pPropertyCount, reinterpret_cast<VkExtensionProperties*>( pProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<ExtensionProperties,Allocator>>::type enumerateInstanceExtensionProperties( Optional<const std::string> layerName )
{
std::vector<ExtensionProperties,Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>( vkEnumerateInstanceExtensionProperties( layerName ? layerName->c_str() : nullptr, &propertyCount, nullptr ) );
if ( ( result == Result::eSuccess ) && propertyCount )
{
properties.resize( propertyCount );
result = static_cast<Result>( vkEnumerateInstanceExtensionProperties( layerName ? layerName->c_str() : nullptr, &propertyCount, reinterpret_cast<VkExtensionProperties*>( properties.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( propertyCount <= properties.size() );
properties.resize( propertyCount );
return createResultValue( result, properties, "VULKAN_HPP_NAMESPACE::enumerateInstanceExtensionProperties" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
// forward declarations
struct CmdProcessCommandsInfoNVX;
class CommandBuffer
{
public:
CommandBuffer()
: m_commandBuffer(VK_NULL_HANDLE)
{}
CommandBuffer( std::nullptr_t )
: m_commandBuffer(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT CommandBuffer( VkCommandBuffer commandBuffer )
: m_commandBuffer( commandBuffer )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
CommandBuffer & operator=(VkCommandBuffer commandBuffer)
{
m_commandBuffer = commandBuffer;
return *this;
}
#endif
CommandBuffer & operator=( std::nullptr_t )
{
m_commandBuffer = VK_NULL_HANDLE;
return *this;
}
bool operator==( CommandBuffer const & rhs ) const
{
return m_commandBuffer == rhs.m_commandBuffer;
}
bool operator!=(CommandBuffer const & rhs ) const
{
return m_commandBuffer != rhs.m_commandBuffer;
}
bool operator<(CommandBuffer const & rhs ) const
{
return m_commandBuffer < rhs.m_commandBuffer;
}
Result begin( const CommandBufferBeginInfo* pBeginInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type begin( const CommandBufferBeginInfo & beginInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result end() const;
#else
ResultValueType<void>::type end() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result reset( CommandBufferResetFlags flags ) const;
#else
ResultValueType<void>::type reset( CommandBufferResetFlags flags ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void bindPipeline( PipelineBindPoint pipelineBindPoint, Pipeline pipeline ) const;
void setViewport( uint32_t firstViewport, uint32_t viewportCount, const Viewport* pViewports ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setViewport( uint32_t firstViewport, ArrayProxy<const Viewport> viewports ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void setScissor( uint32_t firstScissor, uint32_t scissorCount, const Rect2D* pScissors ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setScissor( uint32_t firstScissor, ArrayProxy<const Rect2D> scissors ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void setLineWidth( float lineWidth ) const;
void setDepthBias( float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor ) const;
void setBlendConstants( const float blendConstants[4] ) const;
void setDepthBounds( float minDepthBounds, float maxDepthBounds ) const;
void setStencilCompareMask( StencilFaceFlags faceMask, uint32_t compareMask ) const;
void setStencilWriteMask( StencilFaceFlags faceMask, uint32_t writeMask ) const;
void setStencilReference( StencilFaceFlags faceMask, uint32_t reference ) const;
void bindDescriptorSets( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void bindDescriptorSets( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, ArrayProxy<const DescriptorSet> descriptorSets, ArrayProxy<const uint32_t> dynamicOffsets ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void bindIndexBuffer( Buffer buffer, DeviceSize offset, IndexType indexType ) const;
void bindVertexBuffers( uint32_t firstBinding, uint32_t bindingCount, const Buffer* pBuffers, const DeviceSize* pOffsets ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void bindVertexBuffers( uint32_t firstBinding, ArrayProxy<const Buffer> buffers, ArrayProxy<const DeviceSize> offsets ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void draw( uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance ) const;
void drawIndexed( uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance ) const;
void drawIndirect( Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride ) const;
void drawIndexedIndirect( Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride ) const;
void dispatch( uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ ) const;
void dispatchIndirect( Buffer buffer, DeviceSize offset ) const;
void copyBuffer( Buffer srcBuffer, Buffer dstBuffer, uint32_t regionCount, const BufferCopy* pRegions ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyBuffer( Buffer srcBuffer, Buffer dstBuffer, ArrayProxy<const BufferCopy> regions ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void copyImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageCopy* pRegions ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageCopy> regions ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void blitImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageBlit* pRegions, Filter filter ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void blitImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageBlit> regions, Filter filter ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void copyBufferToImage( Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const BufferImageCopy* pRegions ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyBufferToImage( Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const BufferImageCopy> regions ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void copyImageToBuffer( Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, uint32_t regionCount, const BufferImageCopy* pRegions ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyImageToBuffer( Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, ArrayProxy<const BufferImageCopy> regions ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void updateBuffer( Buffer dstBuffer, DeviceSize dstOffset, DeviceSize dataSize, const void* pData ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
void updateBuffer( Buffer dstBuffer, DeviceSize dstOffset, ArrayProxy<const T> data ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void fillBuffer( Buffer dstBuffer, DeviceSize dstOffset, DeviceSize size, uint32_t data ) const;
void clearColorImage( Image image, ImageLayout imageLayout, const ClearColorValue* pColor, uint32_t rangeCount, const ImageSubresourceRange* pRanges ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void clearColorImage( Image image, ImageLayout imageLayout, const ClearColorValue & color, ArrayProxy<const ImageSubresourceRange> ranges ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void clearDepthStencilImage( Image image, ImageLayout imageLayout, const ClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const ImageSubresourceRange* pRanges ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void clearDepthStencilImage( Image image, ImageLayout imageLayout, const ClearDepthStencilValue & depthStencil, ArrayProxy<const ImageSubresourceRange> ranges ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void clearAttachments( uint32_t attachmentCount, const ClearAttachment* pAttachments, uint32_t rectCount, const ClearRect* pRects ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void clearAttachments( ArrayProxy<const ClearAttachment> attachments, ArrayProxy<const ClearRect> rects ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void resolveImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageResolve* pRegions ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void resolveImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageResolve> regions ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void setEvent( Event event, PipelineStageFlags stageMask ) const;
void resetEvent( Event event, PipelineStageFlags stageMask ) const;
void waitEvents( uint32_t eventCount, const Event* pEvents, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void waitEvents( ArrayProxy<const Event> events, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, ArrayProxy<const MemoryBarrier> memoryBarriers, ArrayProxy<const BufferMemoryBarrier> bufferMemoryBarriers, ArrayProxy<const ImageMemoryBarrier> imageMemoryBarriers ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void pipelineBarrier( PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void pipelineBarrier( PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, ArrayProxy<const MemoryBarrier> memoryBarriers, ArrayProxy<const BufferMemoryBarrier> bufferMemoryBarriers, ArrayProxy<const ImageMemoryBarrier> imageMemoryBarriers ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void beginQuery( QueryPool queryPool, uint32_t query, QueryControlFlags flags ) const;
void endQuery( QueryPool queryPool, uint32_t query ) const;
void resetQueryPool( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount ) const;
void writeTimestamp( PipelineStageFlagBits pipelineStage, QueryPool queryPool, uint32_t query ) const;
void copyQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, Buffer dstBuffer, DeviceSize dstOffset, DeviceSize stride, QueryResultFlags flags ) const;
void pushConstants( PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
void pushConstants( PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, ArrayProxy<const T> values ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void beginRenderPass( const RenderPassBeginInfo* pRenderPassBegin, SubpassContents contents ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void beginRenderPass( const RenderPassBeginInfo & renderPassBegin, SubpassContents contents ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void nextSubpass( SubpassContents contents ) const;
void endRenderPass() const;
void executeCommands( uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void executeCommands( ArrayProxy<const CommandBuffer> commandBuffers ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void debugMarkerBeginEXT( const DebugMarkerMarkerInfoEXT* pMarkerInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void debugMarkerBeginEXT( const DebugMarkerMarkerInfoEXT & markerInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void debugMarkerEndEXT() const;
void debugMarkerInsertEXT( const DebugMarkerMarkerInfoEXT* pMarkerInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void debugMarkerInsertEXT( const DebugMarkerMarkerInfoEXT & markerInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void drawIndirectCountAMD( Buffer buffer, DeviceSize offset, Buffer countBuffer, DeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride ) const;
void drawIndexedIndirectCountAMD( Buffer buffer, DeviceSize offset, Buffer countBuffer, DeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride ) const;
void processCommandsNVX( const CmdProcessCommandsInfoNVX* pProcessCommandsInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void processCommandsNVX( const CmdProcessCommandsInfoNVX & processCommandsInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void reserveSpaceForCommandsNVX( const CmdReserveSpaceForCommandsInfoNVX* pReserveSpaceInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void reserveSpaceForCommandsNVX( const CmdReserveSpaceForCommandsInfoNVX & reserveSpaceInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void pushDescriptorSetKHR( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t set, uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void pushDescriptorSetKHR( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t set, ArrayProxy<const WriteDescriptorSet> descriptorWrites ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void setDeviceMaskKHX( uint32_t deviceMask ) const;
void dispatchBaseKHX( uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ ) const;
void pushDescriptorSetWithTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, PipelineLayout layout, uint32_t set, const void* pData ) const;
void setViewportWScalingNV( uint32_t firstViewport, uint32_t viewportCount, const ViewportWScalingNV* pViewportWScalings ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setViewportWScalingNV( uint32_t firstViewport, ArrayProxy<const ViewportWScalingNV> viewportWScalings ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void setDiscardRectangleEXT( uint32_t firstDiscardRectangle, uint32_t discardRectangleCount, const Rect2D* pDiscardRectangles ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setDiscardRectangleEXT( uint32_t firstDiscardRectangle, ArrayProxy<const Rect2D> discardRectangles ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void setSampleLocationsEXT( const SampleLocationsInfoEXT* pSampleLocationsInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setSampleLocationsEXT( const SampleLocationsInfoEXT & sampleLocationsInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkCommandBuffer() const
{
return m_commandBuffer;
}
explicit operator bool() const
{
return m_commandBuffer != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_commandBuffer == VK_NULL_HANDLE;
}
private:
VkCommandBuffer m_commandBuffer;
};
static_assert( sizeof( CommandBuffer ) == sizeof( VkCommandBuffer ), "handle and wrapper have different size!" );
VULKAN_HPP_INLINE Result CommandBuffer::begin( const CommandBufferBeginInfo* pBeginInfo ) const
{
return static_cast<Result>( vkBeginCommandBuffer( m_commandBuffer, reinterpret_cast<const VkCommandBufferBeginInfo*>( pBeginInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type CommandBuffer::begin( const CommandBufferBeginInfo & beginInfo ) const
{
Result result = static_cast<Result>( vkBeginCommandBuffer( m_commandBuffer, reinterpret_cast<const VkCommandBufferBeginInfo*>( &beginInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::CommandBuffer::begin" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result CommandBuffer::end() const
{
return static_cast<Result>( vkEndCommandBuffer( m_commandBuffer ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type CommandBuffer::end() const
{
Result result = static_cast<Result>( vkEndCommandBuffer( m_commandBuffer ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::CommandBuffer::end" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result CommandBuffer::reset( CommandBufferResetFlags flags ) const
{
return static_cast<Result>( vkResetCommandBuffer( m_commandBuffer, static_cast<VkCommandBufferResetFlags>( flags ) ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type CommandBuffer::reset( CommandBufferResetFlags flags ) const
{
Result result = static_cast<Result>( vkResetCommandBuffer( m_commandBuffer, static_cast<VkCommandBufferResetFlags>( flags ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::CommandBuffer::reset" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::bindPipeline( PipelineBindPoint pipelineBindPoint, Pipeline pipeline ) const
{
vkCmdBindPipeline( m_commandBuffer, static_cast<VkPipelineBindPoint>( pipelineBindPoint ), static_cast<VkPipeline>( pipeline ) );
}
VULKAN_HPP_INLINE void CommandBuffer::setViewport( uint32_t firstViewport, uint32_t viewportCount, const Viewport* pViewports ) const
{
vkCmdSetViewport( m_commandBuffer, firstViewport, viewportCount, reinterpret_cast<const VkViewport*>( pViewports ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::setViewport( uint32_t firstViewport, ArrayProxy<const Viewport> viewports ) const
{
vkCmdSetViewport( m_commandBuffer, firstViewport, viewports.size() , reinterpret_cast<const VkViewport*>( viewports.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::setScissor( uint32_t firstScissor, uint32_t scissorCount, const Rect2D* pScissors ) const
{
vkCmdSetScissor( m_commandBuffer, firstScissor, scissorCount, reinterpret_cast<const VkRect2D*>( pScissors ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::setScissor( uint32_t firstScissor, ArrayProxy<const Rect2D> scissors ) const
{
vkCmdSetScissor( m_commandBuffer, firstScissor, scissors.size() , reinterpret_cast<const VkRect2D*>( scissors.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::setLineWidth( float lineWidth ) const
{
vkCmdSetLineWidth( m_commandBuffer, lineWidth );
}
VULKAN_HPP_INLINE void CommandBuffer::setDepthBias( float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor ) const
{
vkCmdSetDepthBias( m_commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor );
}
VULKAN_HPP_INLINE void CommandBuffer::setBlendConstants( const float blendConstants[4] ) const
{
vkCmdSetBlendConstants( m_commandBuffer, blendConstants );
}
VULKAN_HPP_INLINE void CommandBuffer::setDepthBounds( float minDepthBounds, float maxDepthBounds ) const
{
vkCmdSetDepthBounds( m_commandBuffer, minDepthBounds, maxDepthBounds );
}
VULKAN_HPP_INLINE void CommandBuffer::setStencilCompareMask( StencilFaceFlags faceMask, uint32_t compareMask ) const
{
vkCmdSetStencilCompareMask( m_commandBuffer, static_cast<VkStencilFaceFlags>( faceMask ), compareMask );
}
VULKAN_HPP_INLINE void CommandBuffer::setStencilWriteMask( StencilFaceFlags faceMask, uint32_t writeMask ) const
{
vkCmdSetStencilWriteMask( m_commandBuffer, static_cast<VkStencilFaceFlags>( faceMask ), writeMask );
}
VULKAN_HPP_INLINE void CommandBuffer::setStencilReference( StencilFaceFlags faceMask, uint32_t reference ) const
{
vkCmdSetStencilReference( m_commandBuffer, static_cast<VkStencilFaceFlags>( faceMask ), reference );
}
VULKAN_HPP_INLINE void CommandBuffer::bindDescriptorSets( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets ) const
{
vkCmdBindDescriptorSets( m_commandBuffer, static_cast<VkPipelineBindPoint>( pipelineBindPoint ), static_cast<VkPipelineLayout>( layout ), firstSet, descriptorSetCount, reinterpret_cast<const VkDescriptorSet*>( pDescriptorSets ), dynamicOffsetCount, pDynamicOffsets );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::bindDescriptorSets( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, ArrayProxy<const DescriptorSet> descriptorSets, ArrayProxy<const uint32_t> dynamicOffsets ) const
{
vkCmdBindDescriptorSets( m_commandBuffer, static_cast<VkPipelineBindPoint>( pipelineBindPoint ), static_cast<VkPipelineLayout>( layout ), firstSet, descriptorSets.size() , reinterpret_cast<const VkDescriptorSet*>( descriptorSets.data() ), dynamicOffsets.size() , dynamicOffsets.data() );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::bindIndexBuffer( Buffer buffer, DeviceSize offset, IndexType indexType ) const
{
vkCmdBindIndexBuffer( m_commandBuffer, static_cast<VkBuffer>( buffer ), offset, static_cast<VkIndexType>( indexType ) );
}
VULKAN_HPP_INLINE void CommandBuffer::bindVertexBuffers( uint32_t firstBinding, uint32_t bindingCount, const Buffer* pBuffers, const DeviceSize* pOffsets ) const
{
vkCmdBindVertexBuffers( m_commandBuffer, firstBinding, bindingCount, reinterpret_cast<const VkBuffer*>( pBuffers ), pOffsets );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::bindVertexBuffers( uint32_t firstBinding, ArrayProxy<const Buffer> buffers, ArrayProxy<const DeviceSize> offsets ) const
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( buffers.size() == offsets.size() );
#else
if ( buffers.size() != offsets.size() )
{
throw LogicError( "VULKAN_HPP_NAMESPACE::CommandBuffer::bindVertexBuffers: buffers.size() != offsets.size()" );
}
#endif // VULKAN_HPP_NO_EXCEPTIONS
vkCmdBindVertexBuffers( m_commandBuffer, firstBinding, buffers.size() , reinterpret_cast<const VkBuffer*>( buffers.data() ), offsets.data() );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::draw( uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance ) const
{
vkCmdDraw( m_commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance );
}
VULKAN_HPP_INLINE void CommandBuffer::drawIndexed( uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance ) const
{
vkCmdDrawIndexed( m_commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance );
}
VULKAN_HPP_INLINE void CommandBuffer::drawIndirect( Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride ) const
{
vkCmdDrawIndirect( m_commandBuffer, static_cast<VkBuffer>( buffer ), offset, drawCount, stride );
}
VULKAN_HPP_INLINE void CommandBuffer::drawIndexedIndirect( Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride ) const
{
vkCmdDrawIndexedIndirect( m_commandBuffer, static_cast<VkBuffer>( buffer ), offset, drawCount, stride );
}
VULKAN_HPP_INLINE void CommandBuffer::dispatch( uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ ) const
{
vkCmdDispatch( m_commandBuffer, groupCountX, groupCountY, groupCountZ );
}
VULKAN_HPP_INLINE void CommandBuffer::dispatchIndirect( Buffer buffer, DeviceSize offset ) const
{
vkCmdDispatchIndirect( m_commandBuffer, static_cast<VkBuffer>( buffer ), offset );
}
VULKAN_HPP_INLINE void CommandBuffer::copyBuffer( Buffer srcBuffer, Buffer dstBuffer, uint32_t regionCount, const BufferCopy* pRegions ) const
{
vkCmdCopyBuffer( m_commandBuffer, static_cast<VkBuffer>( srcBuffer ), static_cast<VkBuffer>( dstBuffer ), regionCount, reinterpret_cast<const VkBufferCopy*>( pRegions ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::copyBuffer( Buffer srcBuffer, Buffer dstBuffer, ArrayProxy<const BufferCopy> regions ) const
{
vkCmdCopyBuffer( m_commandBuffer, static_cast<VkBuffer>( srcBuffer ), static_cast<VkBuffer>( dstBuffer ), regions.size() , reinterpret_cast<const VkBufferCopy*>( regions.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::copyImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageCopy* pRegions ) const
{
vkCmdCopyImage( m_commandBuffer, static_cast<VkImage>( srcImage ), static_cast<VkImageLayout>( srcImageLayout ), static_cast<VkImage>( dstImage ), static_cast<VkImageLayout>( dstImageLayout ), regionCount, reinterpret_cast<const VkImageCopy*>( pRegions ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::copyImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageCopy> regions ) const
{
vkCmdCopyImage( m_commandBuffer, static_cast<VkImage>( srcImage ), static_cast<VkImageLayout>( srcImageLayout ), static_cast<VkImage>( dstImage ), static_cast<VkImageLayout>( dstImageLayout ), regions.size() , reinterpret_cast<const VkImageCopy*>( regions.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::blitImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageBlit* pRegions, Filter filter ) const
{
vkCmdBlitImage( m_commandBuffer, static_cast<VkImage>( srcImage ), static_cast<VkImageLayout>( srcImageLayout ), static_cast<VkImage>( dstImage ), static_cast<VkImageLayout>( dstImageLayout ), regionCount, reinterpret_cast<const VkImageBlit*>( pRegions ), static_cast<VkFilter>( filter ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::blitImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageBlit> regions, Filter filter ) const
{
vkCmdBlitImage( m_commandBuffer, static_cast<VkImage>( srcImage ), static_cast<VkImageLayout>( srcImageLayout ), static_cast<VkImage>( dstImage ), static_cast<VkImageLayout>( dstImageLayout ), regions.size() , reinterpret_cast<const VkImageBlit*>( regions.data() ), static_cast<VkFilter>( filter ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::copyBufferToImage( Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const BufferImageCopy* pRegions ) const
{
vkCmdCopyBufferToImage( m_commandBuffer, static_cast<VkBuffer>( srcBuffer ), static_cast<VkImage>( dstImage ), static_cast<VkImageLayout>( dstImageLayout ), regionCount, reinterpret_cast<const VkBufferImageCopy*>( pRegions ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::copyBufferToImage( Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const BufferImageCopy> regions ) const
{
vkCmdCopyBufferToImage( m_commandBuffer, static_cast<VkBuffer>( srcBuffer ), static_cast<VkImage>( dstImage ), static_cast<VkImageLayout>( dstImageLayout ), regions.size() , reinterpret_cast<const VkBufferImageCopy*>( regions.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::copyImageToBuffer( Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, uint32_t regionCount, const BufferImageCopy* pRegions ) const
{
vkCmdCopyImageToBuffer( m_commandBuffer, static_cast<VkImage>( srcImage ), static_cast<VkImageLayout>( srcImageLayout ), static_cast<VkBuffer>( dstBuffer ), regionCount, reinterpret_cast<const VkBufferImageCopy*>( pRegions ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::copyImageToBuffer( Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, ArrayProxy<const BufferImageCopy> regions ) const
{
vkCmdCopyImageToBuffer( m_commandBuffer, static_cast<VkImage>( srcImage ), static_cast<VkImageLayout>( srcImageLayout ), static_cast<VkBuffer>( dstBuffer ), regions.size() , reinterpret_cast<const VkBufferImageCopy*>( regions.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::updateBuffer( Buffer dstBuffer, DeviceSize dstOffset, DeviceSize dataSize, const void* pData ) const
{
vkCmdUpdateBuffer( m_commandBuffer, static_cast<VkBuffer>( dstBuffer ), dstOffset, dataSize, pData );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
VULKAN_HPP_INLINE void CommandBuffer::updateBuffer( Buffer dstBuffer, DeviceSize dstOffset, ArrayProxy<const T> data ) const
{
vkCmdUpdateBuffer( m_commandBuffer, static_cast<VkBuffer>( dstBuffer ), dstOffset, data.size() * sizeof( T ) , reinterpret_cast<const void*>( data.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::fillBuffer( Buffer dstBuffer, DeviceSize dstOffset, DeviceSize size, uint32_t data ) const
{
vkCmdFillBuffer( m_commandBuffer, static_cast<VkBuffer>( dstBuffer ), dstOffset, size, data );
}
VULKAN_HPP_INLINE void CommandBuffer::clearColorImage( Image image, ImageLayout imageLayout, const ClearColorValue* pColor, uint32_t rangeCount, const ImageSubresourceRange* pRanges ) const
{
vkCmdClearColorImage( m_commandBuffer, static_cast<VkImage>( image ), static_cast<VkImageLayout>( imageLayout ), reinterpret_cast<const VkClearColorValue*>( pColor ), rangeCount, reinterpret_cast<const VkImageSubresourceRange*>( pRanges ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::clearColorImage( Image image, ImageLayout imageLayout, const ClearColorValue & color, ArrayProxy<const ImageSubresourceRange> ranges ) const
{
vkCmdClearColorImage( m_commandBuffer, static_cast<VkImage>( image ), static_cast<VkImageLayout>( imageLayout ), reinterpret_cast<const VkClearColorValue*>( &color ), ranges.size() , reinterpret_cast<const VkImageSubresourceRange*>( ranges.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::clearDepthStencilImage( Image image, ImageLayout imageLayout, const ClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const ImageSubresourceRange* pRanges ) const
{
vkCmdClearDepthStencilImage( m_commandBuffer, static_cast<VkImage>( image ), static_cast<VkImageLayout>( imageLayout ), reinterpret_cast<const VkClearDepthStencilValue*>( pDepthStencil ), rangeCount, reinterpret_cast<const VkImageSubresourceRange*>( pRanges ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::clearDepthStencilImage( Image image, ImageLayout imageLayout, const ClearDepthStencilValue & depthStencil, ArrayProxy<const ImageSubresourceRange> ranges ) const
{
vkCmdClearDepthStencilImage( m_commandBuffer, static_cast<VkImage>( image ), static_cast<VkImageLayout>( imageLayout ), reinterpret_cast<const VkClearDepthStencilValue*>( &depthStencil ), ranges.size() , reinterpret_cast<const VkImageSubresourceRange*>( ranges.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::clearAttachments( uint32_t attachmentCount, const ClearAttachment* pAttachments, uint32_t rectCount, const ClearRect* pRects ) const
{
vkCmdClearAttachments( m_commandBuffer, attachmentCount, reinterpret_cast<const VkClearAttachment*>( pAttachments ), rectCount, reinterpret_cast<const VkClearRect*>( pRects ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::clearAttachments( ArrayProxy<const ClearAttachment> attachments, ArrayProxy<const ClearRect> rects ) const
{
vkCmdClearAttachments( m_commandBuffer, attachments.size() , reinterpret_cast<const VkClearAttachment*>( attachments.data() ), rects.size() , reinterpret_cast<const VkClearRect*>( rects.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::resolveImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageResolve* pRegions ) const
{
vkCmdResolveImage( m_commandBuffer, static_cast<VkImage>( srcImage ), static_cast<VkImageLayout>( srcImageLayout ), static_cast<VkImage>( dstImage ), static_cast<VkImageLayout>( dstImageLayout ), regionCount, reinterpret_cast<const VkImageResolve*>( pRegions ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::resolveImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageResolve> regions ) const
{
vkCmdResolveImage( m_commandBuffer, static_cast<VkImage>( srcImage ), static_cast<VkImageLayout>( srcImageLayout ), static_cast<VkImage>( dstImage ), static_cast<VkImageLayout>( dstImageLayout ), regions.size() , reinterpret_cast<const VkImageResolve*>( regions.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::setEvent( Event event, PipelineStageFlags stageMask ) const
{
vkCmdSetEvent( m_commandBuffer, static_cast<VkEvent>( event ), static_cast<VkPipelineStageFlags>( stageMask ) );
}
VULKAN_HPP_INLINE void CommandBuffer::resetEvent( Event event, PipelineStageFlags stageMask ) const
{
vkCmdResetEvent( m_commandBuffer, static_cast<VkEvent>( event ), static_cast<VkPipelineStageFlags>( stageMask ) );
}
VULKAN_HPP_INLINE void CommandBuffer::waitEvents( uint32_t eventCount, const Event* pEvents, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers ) const
{
vkCmdWaitEvents( m_commandBuffer, eventCount, reinterpret_cast<const VkEvent*>( pEvents ), static_cast<VkPipelineStageFlags>( srcStageMask ), static_cast<VkPipelineStageFlags>( dstStageMask ), memoryBarrierCount, reinterpret_cast<const VkMemoryBarrier*>( pMemoryBarriers ), bufferMemoryBarrierCount, reinterpret_cast<const VkBufferMemoryBarrier*>( pBufferMemoryBarriers ), imageMemoryBarrierCount, reinterpret_cast<const VkImageMemoryBarrier*>( pImageMemoryBarriers ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::waitEvents( ArrayProxy<const Event> events, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, ArrayProxy<const MemoryBarrier> memoryBarriers, ArrayProxy<const BufferMemoryBarrier> bufferMemoryBarriers, ArrayProxy<const ImageMemoryBarrier> imageMemoryBarriers ) const
{
vkCmdWaitEvents( m_commandBuffer, events.size() , reinterpret_cast<const VkEvent*>( events.data() ), static_cast<VkPipelineStageFlags>( srcStageMask ), static_cast<VkPipelineStageFlags>( dstStageMask ), memoryBarriers.size() , reinterpret_cast<const VkMemoryBarrier*>( memoryBarriers.data() ), bufferMemoryBarriers.size() , reinterpret_cast<const VkBufferMemoryBarrier*>( bufferMemoryBarriers.data() ), imageMemoryBarriers.size() , reinterpret_cast<const VkImageMemoryBarrier*>( imageMemoryBarriers.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::pipelineBarrier( PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers ) const
{
vkCmdPipelineBarrier( m_commandBuffer, static_cast<VkPipelineStageFlags>( srcStageMask ), static_cast<VkPipelineStageFlags>( dstStageMask ), static_cast<VkDependencyFlags>( dependencyFlags ), memoryBarrierCount, reinterpret_cast<const VkMemoryBarrier*>( pMemoryBarriers ), bufferMemoryBarrierCount, reinterpret_cast<const VkBufferMemoryBarrier*>( pBufferMemoryBarriers ), imageMemoryBarrierCount, reinterpret_cast<const VkImageMemoryBarrier*>( pImageMemoryBarriers ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::pipelineBarrier( PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, ArrayProxy<const MemoryBarrier> memoryBarriers, ArrayProxy<const BufferMemoryBarrier> bufferMemoryBarriers, ArrayProxy<const ImageMemoryBarrier> imageMemoryBarriers ) const
{
vkCmdPipelineBarrier( m_commandBuffer, static_cast<VkPipelineStageFlags>( srcStageMask ), static_cast<VkPipelineStageFlags>( dstStageMask ), static_cast<VkDependencyFlags>( dependencyFlags ), memoryBarriers.size() , reinterpret_cast<const VkMemoryBarrier*>( memoryBarriers.data() ), bufferMemoryBarriers.size() , reinterpret_cast<const VkBufferMemoryBarrier*>( bufferMemoryBarriers.data() ), imageMemoryBarriers.size() , reinterpret_cast<const VkImageMemoryBarrier*>( imageMemoryBarriers.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::beginQuery( QueryPool queryPool, uint32_t query, QueryControlFlags flags ) const
{
vkCmdBeginQuery( m_commandBuffer, static_cast<VkQueryPool>( queryPool ), query, static_cast<VkQueryControlFlags>( flags ) );
}
VULKAN_HPP_INLINE void CommandBuffer::endQuery( QueryPool queryPool, uint32_t query ) const
{
vkCmdEndQuery( m_commandBuffer, static_cast<VkQueryPool>( queryPool ), query );
}
VULKAN_HPP_INLINE void CommandBuffer::resetQueryPool( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount ) const
{
vkCmdResetQueryPool( m_commandBuffer, static_cast<VkQueryPool>( queryPool ), firstQuery, queryCount );
}
VULKAN_HPP_INLINE void CommandBuffer::writeTimestamp( PipelineStageFlagBits pipelineStage, QueryPool queryPool, uint32_t query ) const
{
vkCmdWriteTimestamp( m_commandBuffer, static_cast<VkPipelineStageFlagBits>( pipelineStage ), static_cast<VkQueryPool>( queryPool ), query );
}
VULKAN_HPP_INLINE void CommandBuffer::copyQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, Buffer dstBuffer, DeviceSize dstOffset, DeviceSize stride, QueryResultFlags flags ) const
{
vkCmdCopyQueryPoolResults( m_commandBuffer, static_cast<VkQueryPool>( queryPool ), firstQuery, queryCount, static_cast<VkBuffer>( dstBuffer ), dstOffset, stride, static_cast<VkQueryResultFlags>( flags ) );
}
VULKAN_HPP_INLINE void CommandBuffer::pushConstants( PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues ) const
{
vkCmdPushConstants( m_commandBuffer, static_cast<VkPipelineLayout>( layout ), static_cast<VkShaderStageFlags>( stageFlags ), offset, size, pValues );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
VULKAN_HPP_INLINE void CommandBuffer::pushConstants( PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, ArrayProxy<const T> values ) const
{
vkCmdPushConstants( m_commandBuffer, static_cast<VkPipelineLayout>( layout ), static_cast<VkShaderStageFlags>( stageFlags ), offset, values.size() * sizeof( T ) , reinterpret_cast<const void*>( values.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::beginRenderPass( const RenderPassBeginInfo* pRenderPassBegin, SubpassContents contents ) const
{
vkCmdBeginRenderPass( m_commandBuffer, reinterpret_cast<const VkRenderPassBeginInfo*>( pRenderPassBegin ), static_cast<VkSubpassContents>( contents ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::beginRenderPass( const RenderPassBeginInfo & renderPassBegin, SubpassContents contents ) const
{
vkCmdBeginRenderPass( m_commandBuffer, reinterpret_cast<const VkRenderPassBeginInfo*>( &renderPassBegin ), static_cast<VkSubpassContents>( contents ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::nextSubpass( SubpassContents contents ) const
{
vkCmdNextSubpass( m_commandBuffer, static_cast<VkSubpassContents>( contents ) );
}
VULKAN_HPP_INLINE void CommandBuffer::endRenderPass() const
{
vkCmdEndRenderPass( m_commandBuffer );
}
VULKAN_HPP_INLINE void CommandBuffer::executeCommands( uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers ) const
{
vkCmdExecuteCommands( m_commandBuffer, commandBufferCount, reinterpret_cast<const VkCommandBuffer*>( pCommandBuffers ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::executeCommands( ArrayProxy<const CommandBuffer> commandBuffers ) const
{
vkCmdExecuteCommands( m_commandBuffer, commandBuffers.size() , reinterpret_cast<const VkCommandBuffer*>( commandBuffers.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::debugMarkerBeginEXT( const DebugMarkerMarkerInfoEXT* pMarkerInfo ) const
{
vkCmdDebugMarkerBeginEXT( m_commandBuffer, reinterpret_cast<const VkDebugMarkerMarkerInfoEXT*>( pMarkerInfo ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::debugMarkerBeginEXT( const DebugMarkerMarkerInfoEXT & markerInfo ) const
{
vkCmdDebugMarkerBeginEXT( m_commandBuffer, reinterpret_cast<const VkDebugMarkerMarkerInfoEXT*>( &markerInfo ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::debugMarkerEndEXT() const
{
vkCmdDebugMarkerEndEXT( m_commandBuffer );
}
VULKAN_HPP_INLINE void CommandBuffer::debugMarkerInsertEXT( const DebugMarkerMarkerInfoEXT* pMarkerInfo ) const
{
vkCmdDebugMarkerInsertEXT( m_commandBuffer, reinterpret_cast<const VkDebugMarkerMarkerInfoEXT*>( pMarkerInfo ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::debugMarkerInsertEXT( const DebugMarkerMarkerInfoEXT & markerInfo ) const
{
vkCmdDebugMarkerInsertEXT( m_commandBuffer, reinterpret_cast<const VkDebugMarkerMarkerInfoEXT*>( &markerInfo ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::drawIndirectCountAMD( Buffer buffer, DeviceSize offset, Buffer countBuffer, DeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride ) const
{
vkCmdDrawIndirectCountAMD( m_commandBuffer, static_cast<VkBuffer>( buffer ), offset, static_cast<VkBuffer>( countBuffer ), countBufferOffset, maxDrawCount, stride );
}
VULKAN_HPP_INLINE void CommandBuffer::drawIndexedIndirectCountAMD( Buffer buffer, DeviceSize offset, Buffer countBuffer, DeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride ) const
{
vkCmdDrawIndexedIndirectCountAMD( m_commandBuffer, static_cast<VkBuffer>( buffer ), offset, static_cast<VkBuffer>( countBuffer ), countBufferOffset, maxDrawCount, stride );
}
VULKAN_HPP_INLINE void CommandBuffer::processCommandsNVX( const CmdProcessCommandsInfoNVX* pProcessCommandsInfo ) const
{
vkCmdProcessCommandsNVX( m_commandBuffer, reinterpret_cast<const VkCmdProcessCommandsInfoNVX*>( pProcessCommandsInfo ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::processCommandsNVX( const CmdProcessCommandsInfoNVX & processCommandsInfo ) const
{
vkCmdProcessCommandsNVX( m_commandBuffer, reinterpret_cast<const VkCmdProcessCommandsInfoNVX*>( &processCommandsInfo ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::reserveSpaceForCommandsNVX( const CmdReserveSpaceForCommandsInfoNVX* pReserveSpaceInfo ) const
{
vkCmdReserveSpaceForCommandsNVX( m_commandBuffer, reinterpret_cast<const VkCmdReserveSpaceForCommandsInfoNVX*>( pReserveSpaceInfo ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::reserveSpaceForCommandsNVX( const CmdReserveSpaceForCommandsInfoNVX & reserveSpaceInfo ) const
{
vkCmdReserveSpaceForCommandsNVX( m_commandBuffer, reinterpret_cast<const VkCmdReserveSpaceForCommandsInfoNVX*>( &reserveSpaceInfo ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::pushDescriptorSetKHR( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t set, uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites ) const
{
vkCmdPushDescriptorSetKHR( m_commandBuffer, static_cast<VkPipelineBindPoint>( pipelineBindPoint ), static_cast<VkPipelineLayout>( layout ), set, descriptorWriteCount, reinterpret_cast<const VkWriteDescriptorSet*>( pDescriptorWrites ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::pushDescriptorSetKHR( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t set, ArrayProxy<const WriteDescriptorSet> descriptorWrites ) const
{
vkCmdPushDescriptorSetKHR( m_commandBuffer, static_cast<VkPipelineBindPoint>( pipelineBindPoint ), static_cast<VkPipelineLayout>( layout ), set, descriptorWrites.size() , reinterpret_cast<const VkWriteDescriptorSet*>( descriptorWrites.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::setDeviceMaskKHX( uint32_t deviceMask ) const
{
vkCmdSetDeviceMaskKHX( m_commandBuffer, deviceMask );
}
VULKAN_HPP_INLINE void CommandBuffer::dispatchBaseKHX( uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ ) const
{
vkCmdDispatchBaseKHX( m_commandBuffer, baseGroupX, baseGroupY, baseGroupZ, groupCountX, groupCountY, groupCountZ );
}
VULKAN_HPP_INLINE void CommandBuffer::pushDescriptorSetWithTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, PipelineLayout layout, uint32_t set, const void* pData ) const
{
vkCmdPushDescriptorSetWithTemplateKHR( m_commandBuffer, static_cast<VkDescriptorUpdateTemplateKHR>( descriptorUpdateTemplate ), static_cast<VkPipelineLayout>( layout ), set, pData );
}
VULKAN_HPP_INLINE void CommandBuffer::setViewportWScalingNV( uint32_t firstViewport, uint32_t viewportCount, const ViewportWScalingNV* pViewportWScalings ) const
{
vkCmdSetViewportWScalingNV( m_commandBuffer, firstViewport, viewportCount, reinterpret_cast<const VkViewportWScalingNV*>( pViewportWScalings ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::setViewportWScalingNV( uint32_t firstViewport, ArrayProxy<const ViewportWScalingNV> viewportWScalings ) const
{
vkCmdSetViewportWScalingNV( m_commandBuffer, firstViewport, viewportWScalings.size() , reinterpret_cast<const VkViewportWScalingNV*>( viewportWScalings.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::setDiscardRectangleEXT( uint32_t firstDiscardRectangle, uint32_t discardRectangleCount, const Rect2D* pDiscardRectangles ) const
{
vkCmdSetDiscardRectangleEXT( m_commandBuffer, firstDiscardRectangle, discardRectangleCount, reinterpret_cast<const VkRect2D*>( pDiscardRectangles ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::setDiscardRectangleEXT( uint32_t firstDiscardRectangle, ArrayProxy<const Rect2D> discardRectangles ) const
{
vkCmdSetDiscardRectangleEXT( m_commandBuffer, firstDiscardRectangle, discardRectangles.size() , reinterpret_cast<const VkRect2D*>( discardRectangles.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void CommandBuffer::setSampleLocationsEXT( const SampleLocationsInfoEXT* pSampleLocationsInfo ) const
{
vkCmdSetSampleLocationsEXT( m_commandBuffer, reinterpret_cast<const VkSampleLocationsInfoEXT*>( pSampleLocationsInfo ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void CommandBuffer::setSampleLocationsEXT( const SampleLocationsInfoEXT & sampleLocationsInfo ) const
{
vkCmdSetSampleLocationsEXT( m_commandBuffer, reinterpret_cast<const VkSampleLocationsInfoEXT*>( &sampleLocationsInfo ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
struct SubmitInfo
{
SubmitInfo( uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, const PipelineStageFlags* pWaitDstStageMask_ = nullptr, uint32_t commandBufferCount_ = 0, const CommandBuffer* pCommandBuffers_ = nullptr, uint32_t signalSemaphoreCount_ = 0, const Semaphore* pSignalSemaphores_ = nullptr )
: sType( StructureType::eSubmitInfo )
, pNext( nullptr )
, waitSemaphoreCount( waitSemaphoreCount_ )
, pWaitSemaphores( pWaitSemaphores_ )
, pWaitDstStageMask( pWaitDstStageMask_ )
, commandBufferCount( commandBufferCount_ )
, pCommandBuffers( pCommandBuffers_ )
, signalSemaphoreCount( signalSemaphoreCount_ )
, pSignalSemaphores( pSignalSemaphores_ )
{
}
SubmitInfo( VkSubmitInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SubmitInfo ) );
}
SubmitInfo& operator=( VkSubmitInfo const & rhs )
{
memcpy( this, &rhs, sizeof( SubmitInfo ) );
return *this;
}
SubmitInfo& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
SubmitInfo& setWaitSemaphoreCount( uint32_t waitSemaphoreCount_ )
{
waitSemaphoreCount = waitSemaphoreCount_;
return *this;
}
SubmitInfo& setPWaitSemaphores( const Semaphore* pWaitSemaphores_ )
{
pWaitSemaphores = pWaitSemaphores_;
return *this;
}
SubmitInfo& setPWaitDstStageMask( const PipelineStageFlags* pWaitDstStageMask_ )
{
pWaitDstStageMask = pWaitDstStageMask_;
return *this;
}
SubmitInfo& setCommandBufferCount( uint32_t commandBufferCount_ )
{
commandBufferCount = commandBufferCount_;
return *this;
}
SubmitInfo& setPCommandBuffers( const CommandBuffer* pCommandBuffers_ )
{
pCommandBuffers = pCommandBuffers_;
return *this;
}
SubmitInfo& setSignalSemaphoreCount( uint32_t signalSemaphoreCount_ )
{
signalSemaphoreCount = signalSemaphoreCount_;
return *this;
}
SubmitInfo& setPSignalSemaphores( const Semaphore* pSignalSemaphores_ )
{
pSignalSemaphores = pSignalSemaphores_;
return *this;
}
operator const VkSubmitInfo&() const
{
return *reinterpret_cast<const VkSubmitInfo*>(this);
}
bool operator==( SubmitInfo const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( waitSemaphoreCount == rhs.waitSemaphoreCount )
&& ( pWaitSemaphores == rhs.pWaitSemaphores )
&& ( pWaitDstStageMask == rhs.pWaitDstStageMask )
&& ( commandBufferCount == rhs.commandBufferCount )
&& ( pCommandBuffers == rhs.pCommandBuffers )
&& ( signalSemaphoreCount == rhs.signalSemaphoreCount )
&& ( pSignalSemaphores == rhs.pSignalSemaphores );
}
bool operator!=( SubmitInfo const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t waitSemaphoreCount;
const Semaphore* pWaitSemaphores;
const PipelineStageFlags* pWaitDstStageMask;
uint32_t commandBufferCount;
const CommandBuffer* pCommandBuffers;
uint32_t signalSemaphoreCount;
const Semaphore* pSignalSemaphores;
};
static_assert( sizeof( SubmitInfo ) == sizeof( VkSubmitInfo ), "struct and wrapper have different size!" );
class Queue
{
public:
Queue()
: m_queue(VK_NULL_HANDLE)
{}
Queue( std::nullptr_t )
: m_queue(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Queue( VkQueue queue )
: m_queue( queue )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Queue & operator=(VkQueue queue)
{
m_queue = queue;
return *this;
}
#endif
Queue & operator=( std::nullptr_t )
{
m_queue = VK_NULL_HANDLE;
return *this;
}
bool operator==( Queue const & rhs ) const
{
return m_queue == rhs.m_queue;
}
bool operator!=(Queue const & rhs ) const
{
return m_queue != rhs.m_queue;
}
bool operator<(Queue const & rhs ) const
{
return m_queue < rhs.m_queue;
}
Result submit( uint32_t submitCount, const SubmitInfo* pSubmits, Fence fence ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type submit( ArrayProxy<const SubmitInfo> submits, Fence fence ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result waitIdle() const;
#else
ResultValueType<void>::type waitIdle() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result bindSparse( uint32_t bindInfoCount, const BindSparseInfo* pBindInfo, Fence fence ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type bindSparse( ArrayProxy<const BindSparseInfo> bindInfo, Fence fence ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result presentKHR( const PresentInfoKHR* pPresentInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result presentKHR( const PresentInfoKHR & presentInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkQueue() const
{
return m_queue;
}
explicit operator bool() const
{
return m_queue != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_queue == VK_NULL_HANDLE;
}
private:
VkQueue m_queue;
};
static_assert( sizeof( Queue ) == sizeof( VkQueue ), "handle and wrapper have different size!" );
VULKAN_HPP_INLINE Result Queue::submit( uint32_t submitCount, const SubmitInfo* pSubmits, Fence fence ) const
{
return static_cast<Result>( vkQueueSubmit( m_queue, submitCount, reinterpret_cast<const VkSubmitInfo*>( pSubmits ), static_cast<VkFence>( fence ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Queue::submit( ArrayProxy<const SubmitInfo> submits, Fence fence ) const
{
Result result = static_cast<Result>( vkQueueSubmit( m_queue, submits.size() , reinterpret_cast<const VkSubmitInfo*>( submits.data() ), static_cast<VkFence>( fence ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Queue::submit" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Queue::waitIdle() const
{
return static_cast<Result>( vkQueueWaitIdle( m_queue ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type Queue::waitIdle() const
{
Result result = static_cast<Result>( vkQueueWaitIdle( m_queue ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Queue::waitIdle" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Queue::bindSparse( uint32_t bindInfoCount, const BindSparseInfo* pBindInfo, Fence fence ) const
{
return static_cast<Result>( vkQueueBindSparse( m_queue, bindInfoCount, reinterpret_cast<const VkBindSparseInfo*>( pBindInfo ), static_cast<VkFence>( fence ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Queue::bindSparse( ArrayProxy<const BindSparseInfo> bindInfo, Fence fence ) const
{
Result result = static_cast<Result>( vkQueueBindSparse( m_queue, bindInfo.size() , reinterpret_cast<const VkBindSparseInfo*>( bindInfo.data() ), static_cast<VkFence>( fence ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Queue::bindSparse" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Queue::presentKHR( const PresentInfoKHR* pPresentInfo ) const
{
return static_cast<Result>( vkQueuePresentKHR( m_queue, reinterpret_cast<const VkPresentInfoKHR*>( pPresentInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Queue::presentKHR( const PresentInfoKHR & presentInfo ) const
{
Result result = static_cast<Result>( vkQueuePresentKHR( m_queue, reinterpret_cast<const VkPresentInfoKHR*>( &presentInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Queue::presentKHR", { Result::eSuccess, Result::eSuboptimalKHR } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_NO_SMART_HANDLE
class BufferDeleter;
using UniqueBuffer = UniqueHandle<Buffer, BufferDeleter>;
class BufferViewDeleter;
using UniqueBufferView = UniqueHandle<BufferView, BufferViewDeleter>;
class CommandBufferDeleter;
using UniqueCommandBuffer = UniqueHandle<CommandBuffer, CommandBufferDeleter>;
class CommandPoolDeleter;
using UniqueCommandPool = UniqueHandle<CommandPool, CommandPoolDeleter>;
class DescriptorPoolDeleter;
using UniqueDescriptorPool = UniqueHandle<DescriptorPool, DescriptorPoolDeleter>;
class DescriptorSetDeleter;
using UniqueDescriptorSet = UniqueHandle<DescriptorSet, DescriptorSetDeleter>;
class DescriptorSetLayoutDeleter;
using UniqueDescriptorSetLayout = UniqueHandle<DescriptorSetLayout, DescriptorSetLayoutDeleter>;
class DescriptorUpdateTemplateKHRDeleter;
using UniqueDescriptorUpdateTemplateKHR = UniqueHandle<DescriptorUpdateTemplateKHR, DescriptorUpdateTemplateKHRDeleter>;
class DeviceMemoryDeleter;
using UniqueDeviceMemory = UniqueHandle<DeviceMemory, DeviceMemoryDeleter>;
class EventDeleter;
using UniqueEvent = UniqueHandle<Event, EventDeleter>;
class FenceDeleter;
using UniqueFence = UniqueHandle<Fence, FenceDeleter>;
class FramebufferDeleter;
using UniqueFramebuffer = UniqueHandle<Framebuffer, FramebufferDeleter>;
class ImageDeleter;
using UniqueImage = UniqueHandle<Image, ImageDeleter>;
class ImageViewDeleter;
using UniqueImageView = UniqueHandle<ImageView, ImageViewDeleter>;
class IndirectCommandsLayoutNVXDeleter;
using UniqueIndirectCommandsLayoutNVX = UniqueHandle<IndirectCommandsLayoutNVX, IndirectCommandsLayoutNVXDeleter>;
class ObjectTableNVXDeleter;
using UniqueObjectTableNVX = UniqueHandle<ObjectTableNVX, ObjectTableNVXDeleter>;
class PipelineDeleter;
using UniquePipeline = UniqueHandle<Pipeline, PipelineDeleter>;
class PipelineCacheDeleter;
using UniquePipelineCache = UniqueHandle<PipelineCache, PipelineCacheDeleter>;
class PipelineLayoutDeleter;
using UniquePipelineLayout = UniqueHandle<PipelineLayout, PipelineLayoutDeleter>;
class QueryPoolDeleter;
using UniqueQueryPool = UniqueHandle<QueryPool, QueryPoolDeleter>;
class RenderPassDeleter;
using UniqueRenderPass = UniqueHandle<RenderPass, RenderPassDeleter>;
class SamplerDeleter;
using UniqueSampler = UniqueHandle<Sampler, SamplerDeleter>;
class SamplerYcbcrConversionKHRDeleter;
using UniqueSamplerYcbcrConversionKHR = UniqueHandle<SamplerYcbcrConversionKHR, SamplerYcbcrConversionKHRDeleter>;
class SemaphoreDeleter;
using UniqueSemaphore = UniqueHandle<Semaphore, SemaphoreDeleter>;
class ShaderModuleDeleter;
using UniqueShaderModule = UniqueHandle<ShaderModule, ShaderModuleDeleter>;
class SwapchainKHRDeleter;
using UniqueSwapchainKHR = UniqueHandle<SwapchainKHR, SwapchainKHRDeleter>;
class ValidationCacheEXTDeleter;
using UniqueValidationCacheEXT = UniqueHandle<ValidationCacheEXT, ValidationCacheEXTDeleter>;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
class Device
{
public:
Device()
: m_device(VK_NULL_HANDLE)
{}
Device( std::nullptr_t )
: m_device(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Device( VkDevice device )
: m_device( device )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Device & operator=(VkDevice device)
{
m_device = device;
return *this;
}
#endif
Device & operator=( std::nullptr_t )
{
m_device = VK_NULL_HANDLE;
return *this;
}
bool operator==( Device const & rhs ) const
{
return m_device == rhs.m_device;
}
bool operator!=(Device const & rhs ) const
{
return m_device != rhs.m_device;
}
bool operator<(Device const & rhs ) const
{
return m_device < rhs.m_device;
}
PFN_vkVoidFunction getProcAddr( const char* pName ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PFN_vkVoidFunction getProcAddr( const std::string & name ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroy( const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroy( Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getQueue( uint32_t queueFamilyIndex, uint32_t queueIndex, Queue* pQueue ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Queue getQueue( uint32_t queueFamilyIndex, uint32_t queueIndex ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result waitIdle() const;
#else
ResultValueType<void>::type waitIdle() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result allocateMemory( const MemoryAllocateInfo* pAllocateInfo, const AllocationCallbacks* pAllocator, DeviceMemory* pMemory ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DeviceMemory>::type allocateMemory( const MemoryAllocateInfo & allocateInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueDeviceMemory allocateMemoryUnique( const MemoryAllocateInfo & allocateInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void freeMemory( DeviceMemory memory, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void freeMemory( DeviceMemory memory, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result mapMemory( DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags, void** ppData ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void*>::type mapMemory( DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags = MemoryMapFlags() ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void unmapMemory( DeviceMemory memory ) const;
Result flushMappedMemoryRanges( uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type flushMappedMemoryRanges( ArrayProxy<const MappedMemoryRange> memoryRanges ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result invalidateMappedMemoryRanges( uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type invalidateMappedMemoryRanges( ArrayProxy<const MappedMemoryRange> memoryRanges ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getMemoryCommitment( DeviceMemory memory, DeviceSize* pCommittedMemoryInBytes ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
DeviceSize getMemoryCommitment( DeviceMemory memory ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getBufferMemoryRequirements( Buffer buffer, MemoryRequirements* pMemoryRequirements ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
MemoryRequirements getBufferMemoryRequirements( Buffer buffer ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result bindBufferMemory( Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset ) const;
#else
ResultValueType<void>::type bindBufferMemory( Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getImageMemoryRequirements( Image image, MemoryRequirements* pMemoryRequirements ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
MemoryRequirements getImageMemoryRequirements( Image image ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result bindImageMemory( Image image, DeviceMemory memory, DeviceSize memoryOffset ) const;
#else
ResultValueType<void>::type bindImageMemory( Image image, DeviceMemory memory, DeviceSize memoryOffset ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getImageSparseMemoryRequirements( Image image, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements* pSparseMemoryRequirements ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SparseImageMemoryRequirements>>
std::vector<SparseImageMemoryRequirements,Allocator> getImageSparseMemoryRequirements( Image image ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createFence( const FenceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Fence>::type createFence( const FenceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueFence createFenceUnique( const FenceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyFence( Fence fence, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyFence( Fence fence, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result resetFences( uint32_t fenceCount, const Fence* pFences ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type resetFences( ArrayProxy<const Fence> fences ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getFenceStatus( Fence fence ) const;
Result waitForFences( uint32_t fenceCount, const Fence* pFences, Bool32 waitAll, uint64_t timeout ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result waitForFences( ArrayProxy<const Fence> fences, Bool32 waitAll, uint64_t timeout ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createSemaphore( const SemaphoreCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Semaphore* pSemaphore ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Semaphore>::type createSemaphore( const SemaphoreCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSemaphore createSemaphoreUnique( const SemaphoreCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroySemaphore( Semaphore semaphore, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySemaphore( Semaphore semaphore, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createEvent( const EventCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Event* pEvent ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Event>::type createEvent( const EventCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueEvent createEventUnique( const EventCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyEvent( Event event, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyEvent( Event event, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getEventStatus( Event event ) const;
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result setEvent( Event event ) const;
#else
ResultValueType<void>::type setEvent( Event event ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result resetEvent( Event event ) const;
#else
ResultValueType<void>::type resetEvent( Event event ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createQueryPool( const QueryPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, QueryPool* pQueryPool ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<QueryPool>::type createQueryPool( const QueryPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueQueryPool createQueryPoolUnique( const QueryPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyQueryPool( QueryPool queryPool, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyQueryPool( QueryPool queryPool, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, DeviceSize stride, QueryResultFlags flags ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
Result getQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, ArrayProxy<T> data, DeviceSize stride, QueryResultFlags flags ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createBuffer( const BufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Buffer* pBuffer ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Buffer>::type createBuffer( const BufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueBuffer createBufferUnique( const BufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyBuffer( Buffer buffer, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyBuffer( Buffer buffer, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createBufferView( const BufferViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, BufferView* pView ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<BufferView>::type createBufferView( const BufferViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueBufferView createBufferViewUnique( const BufferViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyBufferView( BufferView bufferView, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyBufferView( BufferView bufferView, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createImage( const ImageCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Image* pImage ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Image>::type createImage( const ImageCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueImage createImageUnique( const ImageCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyImage( Image image, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyImage( Image image, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getImageSubresourceLayout( Image image, const ImageSubresource* pSubresource, SubresourceLayout* pLayout ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
SubresourceLayout getImageSubresourceLayout( Image image, const ImageSubresource & subresource ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createImageView( const ImageViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ImageView* pView ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ImageView>::type createImageView( const ImageViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueImageView createImageViewUnique( const ImageViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyImageView( ImageView imageView, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyImageView( ImageView imageView, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createShaderModule( const ShaderModuleCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ShaderModule* pShaderModule ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ShaderModule>::type createShaderModule( const ShaderModuleCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueShaderModule createShaderModuleUnique( const ShaderModuleCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyShaderModule( ShaderModule shaderModule, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyShaderModule( ShaderModule shaderModule, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createPipelineCache( const PipelineCacheCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineCache* pPipelineCache ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<PipelineCache>::type createPipelineCache( const PipelineCacheCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniquePipelineCache createPipelineCacheUnique( const PipelineCacheCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyPipelineCache( PipelineCache pipelineCache, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyPipelineCache( PipelineCache pipelineCache, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getPipelineCacheData( PipelineCache pipelineCache, size_t* pDataSize, void* pData ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<uint8_t>>
typename ResultValueType<std::vector<uint8_t,Allocator>>::type getPipelineCacheData( PipelineCache pipelineCache ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result mergePipelineCaches( PipelineCache dstCache, uint32_t srcCacheCount, const PipelineCache* pSrcCaches ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type mergePipelineCaches( PipelineCache dstCache, ArrayProxy<const PipelineCache> srcCaches ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createGraphicsPipelines( PipelineCache pipelineCache, uint32_t createInfoCount, const GraphicsPipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<Pipeline>>
typename ResultValueType<std::vector<Pipeline,Allocator>>::type createGraphicsPipelines( PipelineCache pipelineCache, ArrayProxy<const GraphicsPipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator = nullptr ) const;
ResultValueType<Pipeline>::type createGraphicsPipeline( PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator = std::allocator<Pipeline>>
std::vector<UniquePipeline> createGraphicsPipelinesUnique( PipelineCache pipelineCache, ArrayProxy<const GraphicsPipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator = nullptr ) const;
UniquePipeline createGraphicsPipelineUnique( PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createComputePipelines( PipelineCache pipelineCache, uint32_t createInfoCount, const ComputePipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<Pipeline>>
typename ResultValueType<std::vector<Pipeline,Allocator>>::type createComputePipelines( PipelineCache pipelineCache, ArrayProxy<const ComputePipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator = nullptr ) const;
ResultValueType<Pipeline>::type createComputePipeline( PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator = std::allocator<Pipeline>>
std::vector<UniquePipeline> createComputePipelinesUnique( PipelineCache pipelineCache, ArrayProxy<const ComputePipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator = nullptr ) const;
UniquePipeline createComputePipelineUnique( PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyPipeline( Pipeline pipeline, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyPipeline( Pipeline pipeline, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createPipelineLayout( const PipelineLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineLayout* pPipelineLayout ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<PipelineLayout>::type createPipelineLayout( const PipelineLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniquePipelineLayout createPipelineLayoutUnique( const PipelineLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyPipelineLayout( PipelineLayout pipelineLayout, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyPipelineLayout( PipelineLayout pipelineLayout, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createSampler( const SamplerCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Sampler* pSampler ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Sampler>::type createSampler( const SamplerCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSampler createSamplerUnique( const SamplerCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroySampler( Sampler sampler, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySampler( Sampler sampler, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDescriptorSetLayout( const DescriptorSetLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorSetLayout* pSetLayout ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DescriptorSetLayout>::type createDescriptorSetLayout( const DescriptorSetLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueDescriptorSetLayout createDescriptorSetLayoutUnique( const DescriptorSetLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDescriptorPool( const DescriptorPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorPool* pDescriptorPool ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DescriptorPool>::type createDescriptorPool( const DescriptorPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueDescriptorPool createDescriptorPoolUnique( const DescriptorPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyDescriptorPool( DescriptorPool descriptorPool, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyDescriptorPool( DescriptorPool descriptorPool, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result resetDescriptorPool( DescriptorPool descriptorPool, DescriptorPoolResetFlags flags ) const;
#else
ResultValueType<void>::type resetDescriptorPool( DescriptorPool descriptorPool, DescriptorPoolResetFlags flags = DescriptorPoolResetFlags() ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result allocateDescriptorSets( const DescriptorSetAllocateInfo* pAllocateInfo, DescriptorSet* pDescriptorSets ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DescriptorSet>>
typename ResultValueType<std::vector<DescriptorSet,Allocator>>::type allocateDescriptorSets( const DescriptorSetAllocateInfo & allocateInfo ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator = std::allocator<DescriptorSet>>
std::vector<UniqueDescriptorSet> allocateDescriptorSetsUnique( const DescriptorSetAllocateInfo & allocateInfo ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result freeDescriptorSets( DescriptorPool descriptorPool, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type freeDescriptorSets( DescriptorPool descriptorPool, ArrayProxy<const DescriptorSet> descriptorSets ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void updateDescriptorSets( uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const CopyDescriptorSet* pDescriptorCopies ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void updateDescriptorSets( ArrayProxy<const WriteDescriptorSet> descriptorWrites, ArrayProxy<const CopyDescriptorSet> descriptorCopies ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createFramebuffer( const FramebufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Framebuffer* pFramebuffer ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Framebuffer>::type createFramebuffer( const FramebufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueFramebuffer createFramebufferUnique( const FramebufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyFramebuffer( Framebuffer framebuffer, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyFramebuffer( Framebuffer framebuffer, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createRenderPass( const RenderPassCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, RenderPass* pRenderPass ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<RenderPass>::type createRenderPass( const RenderPassCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueRenderPass createRenderPassUnique( const RenderPassCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyRenderPass( RenderPass renderPass, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyRenderPass( RenderPass renderPass, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getRenderAreaGranularity( RenderPass renderPass, Extent2D* pGranularity ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Extent2D getRenderAreaGranularity( RenderPass renderPass ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createCommandPool( const CommandPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, CommandPool* pCommandPool ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<CommandPool>::type createCommandPool( const CommandPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueCommandPool createCommandPoolUnique( const CommandPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyCommandPool( CommandPool commandPool, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyCommandPool( CommandPool commandPool, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result resetCommandPool( CommandPool commandPool, CommandPoolResetFlags flags ) const;
#else
ResultValueType<void>::type resetCommandPool( CommandPool commandPool, CommandPoolResetFlags flags ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result allocateCommandBuffers( const CommandBufferAllocateInfo* pAllocateInfo, CommandBuffer* pCommandBuffers ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<CommandBuffer>>
typename ResultValueType<std::vector<CommandBuffer,Allocator>>::type allocateCommandBuffers( const CommandBufferAllocateInfo & allocateInfo ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator = std::allocator<CommandBuffer>>
std::vector<UniqueCommandBuffer> allocateCommandBuffersUnique( const CommandBufferAllocateInfo & allocateInfo ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void freeCommandBuffers( CommandPool commandPool, uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void freeCommandBuffers( CommandPool commandPool, ArrayProxy<const CommandBuffer> commandBuffers ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createSharedSwapchainsKHR( uint32_t swapchainCount, const SwapchainCreateInfoKHR* pCreateInfos, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchains ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SwapchainKHR>>
typename ResultValueType<std::vector<SwapchainKHR,Allocator>>::type createSharedSwapchainsKHR( ArrayProxy<const SwapchainCreateInfoKHR> createInfos, Optional<const AllocationCallbacks> allocator = nullptr ) const;
ResultValueType<SwapchainKHR>::type createSharedSwapchainKHR( const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator = std::allocator<SwapchainKHR>>
std::vector<UniqueSwapchainKHR> createSharedSwapchainsKHRUnique( ArrayProxy<const SwapchainCreateInfoKHR> createInfos, Optional<const AllocationCallbacks> allocator = nullptr ) const;
UniqueSwapchainKHR createSharedSwapchainKHRUnique( const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createSwapchainKHR( const SwapchainCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchain ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SwapchainKHR>::type createSwapchainKHR( const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSwapchainKHR createSwapchainKHRUnique( const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroySwapchainKHR( SwapchainKHR swapchain, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySwapchainKHR( SwapchainKHR swapchain, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSwapchainImagesKHR( SwapchainKHR swapchain, uint32_t* pSwapchainImageCount, Image* pSwapchainImages ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<Image>>
typename ResultValueType<std::vector<Image,Allocator>>::type getSwapchainImagesKHR( SwapchainKHR swapchain ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result acquireNextImageKHR( SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence, uint32_t* pImageIndex ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValue<uint32_t> acquireNextImageKHR( SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result debugMarkerSetObjectNameEXT( const DebugMarkerObjectNameInfoEXT* pNameInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type debugMarkerSetObjectNameEXT( const DebugMarkerObjectNameInfoEXT & nameInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result debugMarkerSetObjectTagEXT( const DebugMarkerObjectTagInfoEXT* pTagInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type debugMarkerSetObjectTagEXT( const DebugMarkerObjectTagInfoEXT & tagInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result getMemoryWin32HandleNV( DeviceMemory memory, ExternalMemoryHandleTypeFlagsNV handleType, HANDLE* pHandle ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<HANDLE>::type getMemoryWin32HandleNV( DeviceMemory memory, ExternalMemoryHandleTypeFlagsNV handleType ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
Result createIndirectCommandsLayoutNVX( const IndirectCommandsLayoutCreateInfoNVX* pCreateInfo, const AllocationCallbacks* pAllocator, IndirectCommandsLayoutNVX* pIndirectCommandsLayout ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<IndirectCommandsLayoutNVX>::type createIndirectCommandsLayoutNVX( const IndirectCommandsLayoutCreateInfoNVX & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueIndirectCommandsLayoutNVX createIndirectCommandsLayoutNVXUnique( const IndirectCommandsLayoutCreateInfoNVX & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyIndirectCommandsLayoutNVX( IndirectCommandsLayoutNVX indirectCommandsLayout, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyIndirectCommandsLayoutNVX( IndirectCommandsLayoutNVX indirectCommandsLayout, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createObjectTableNVX( const ObjectTableCreateInfoNVX* pCreateInfo, const AllocationCallbacks* pAllocator, ObjectTableNVX* pObjectTable ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ObjectTableNVX>::type createObjectTableNVX( const ObjectTableCreateInfoNVX & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueObjectTableNVX createObjectTableNVXUnique( const ObjectTableCreateInfoNVX & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyObjectTableNVX( ObjectTableNVX objectTable, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyObjectTableNVX( ObjectTableNVX objectTable, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result registerObjectsNVX( ObjectTableNVX objectTable, uint32_t objectCount, const ObjectTableEntryNVX* const* ppObjectTableEntries, const uint32_t* pObjectIndices ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type registerObjectsNVX( ObjectTableNVX objectTable, ArrayProxy<const ObjectTableEntryNVX* const> pObjectTableEntries, ArrayProxy<const uint32_t> objectIndices ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result unregisterObjectsNVX( ObjectTableNVX objectTable, uint32_t objectCount, const ObjectEntryTypeNVX* pObjectEntryTypes, const uint32_t* pObjectIndices ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type unregisterObjectsNVX( ObjectTableNVX objectTable, ArrayProxy<const ObjectEntryTypeNVX> objectEntryTypes, ArrayProxy<const uint32_t> objectIndices ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void trimCommandPoolKHR( CommandPool commandPool, CommandPoolTrimFlagsKHR flags ) const;
#else
void trimCommandPoolKHR( CommandPool commandPool, CommandPoolTrimFlagsKHR flags = CommandPoolTrimFlagsKHR() ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result getMemoryWin32HandleKHR( const MemoryGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<HANDLE>::type getMemoryWin32HandleKHR( const MemoryGetWin32HandleInfoKHR & getWin32HandleInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result getMemoryWin32HandlePropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, HANDLE handle, MemoryWin32HandlePropertiesKHR* pMemoryWin32HandleProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<MemoryWin32HandlePropertiesKHR>::type getMemoryWin32HandlePropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, HANDLE handle ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
Result getMemoryFdKHR( const MemoryGetFdInfoKHR* pGetFdInfo, int* pFd ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<int>::type getMemoryFdKHR( const MemoryGetFdInfoKHR & getFdInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getMemoryFdPropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, int fd, MemoryFdPropertiesKHR* pMemoryFdProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<MemoryFdPropertiesKHR>::type getMemoryFdPropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, int fd ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result getSemaphoreWin32HandleKHR( const SemaphoreGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<HANDLE>::type getSemaphoreWin32HandleKHR( const SemaphoreGetWin32HandleInfoKHR & getWin32HandleInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result importSemaphoreWin32HandleKHR( const ImportSemaphoreWin32HandleInfoKHR* pImportSemaphoreWin32HandleInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type importSemaphoreWin32HandleKHR( const ImportSemaphoreWin32HandleInfoKHR & importSemaphoreWin32HandleInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
Result getSemaphoreFdKHR( const SemaphoreGetFdInfoKHR* pGetFdInfo, int* pFd ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<int>::type getSemaphoreFdKHR( const SemaphoreGetFdInfoKHR & getFdInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result importSemaphoreFdKHR( const ImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type importSemaphoreFdKHR( const ImportSemaphoreFdInfoKHR & importSemaphoreFdInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result getFenceWin32HandleKHR( const FenceGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<HANDLE>::type getFenceWin32HandleKHR( const FenceGetWin32HandleInfoKHR & getWin32HandleInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result importFenceWin32HandleKHR( const ImportFenceWin32HandleInfoKHR* pImportFenceWin32HandleInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type importFenceWin32HandleKHR( const ImportFenceWin32HandleInfoKHR & importFenceWin32HandleInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
Result getFenceFdKHR( const FenceGetFdInfoKHR* pGetFdInfo, int* pFd ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<int>::type getFenceFdKHR( const FenceGetFdInfoKHR & getFdInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result importFenceFdKHR( const ImportFenceFdInfoKHR* pImportFenceFdInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type importFenceFdKHR( const ImportFenceFdInfoKHR & importFenceFdInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result displayPowerControlEXT( DisplayKHR display, const DisplayPowerInfoEXT* pDisplayPowerInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type displayPowerControlEXT( DisplayKHR display, const DisplayPowerInfoEXT & displayPowerInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result registerEventEXT( const DeviceEventInfoEXT* pDeviceEventInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Fence>::type registerEventEXT( const DeviceEventInfoEXT & deviceEventInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result registerDisplayEventEXT( DisplayKHR display, const DisplayEventInfoEXT* pDisplayEventInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Fence>::type registerDisplayEventEXT( DisplayKHR display, const DisplayEventInfoEXT & displayEventInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSwapchainCounterEXT( SwapchainKHR swapchain, SurfaceCounterFlagBitsEXT counter, uint64_t* pCounterValue ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValue<uint64_t> getSwapchainCounterEXT( SwapchainKHR swapchain, SurfaceCounterFlagBitsEXT counter ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getGroupPeerMemoryFeaturesKHX( uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, PeerMemoryFeatureFlagsKHX* pPeerMemoryFeatures ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PeerMemoryFeatureFlagsKHX getGroupPeerMemoryFeaturesKHX( uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result bindBufferMemory2KHR( uint32_t bindInfoCount, const BindBufferMemoryInfoKHR* pBindInfos ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type bindBufferMemory2KHR( ArrayProxy<const BindBufferMemoryInfoKHR> bindInfos ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result bindImageMemory2KHR( uint32_t bindInfoCount, const BindImageMemoryInfoKHR* pBindInfos ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type bindImageMemory2KHR( ArrayProxy<const BindImageMemoryInfoKHR> bindInfos ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getGroupPresentCapabilitiesKHX( DeviceGroupPresentCapabilitiesKHX* pDeviceGroupPresentCapabilities ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DeviceGroupPresentCapabilitiesKHX>::type getGroupPresentCapabilitiesKHX() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getGroupSurfacePresentModesKHX( SurfaceKHR surface, DeviceGroupPresentModeFlagsKHX* pModes ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DeviceGroupPresentModeFlagsKHX>::type getGroupSurfacePresentModesKHX( SurfaceKHR surface ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result acquireNextImage2KHX( const AcquireNextImageInfoKHX* pAcquireInfo, uint32_t* pImageIndex ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValue<uint32_t> acquireNextImage2KHX( const AcquireNextImageInfoKHX & acquireInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDescriptorUpdateTemplateKHR( const DescriptorUpdateTemplateCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorUpdateTemplateKHR* pDescriptorUpdateTemplate ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DescriptorUpdateTemplateKHR>::type createDescriptorUpdateTemplateKHR( const DescriptorUpdateTemplateCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueDescriptorUpdateTemplateKHR createDescriptorUpdateTemplateKHRUnique( const DescriptorUpdateTemplateCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyDescriptorUpdateTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyDescriptorUpdateTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void updateDescriptorSetWithTemplateKHR( DescriptorSet descriptorSet, DescriptorUpdateTemplateKHR descriptorUpdateTemplate, const void* pData ) const;
void setHdrMetadataEXT( uint32_t swapchainCount, const SwapchainKHR* pSwapchains, const HdrMetadataEXT* pMetadata ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setHdrMetadataEXT( ArrayProxy<const SwapchainKHR> swapchains, ArrayProxy<const HdrMetadataEXT> metadata ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSwapchainStatusKHR( SwapchainKHR swapchain ) const;
Result getRefreshCycleDurationGOOGLE( SwapchainKHR swapchain, RefreshCycleDurationGOOGLE* pDisplayTimingProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<RefreshCycleDurationGOOGLE>::type getRefreshCycleDurationGOOGLE( SwapchainKHR swapchain ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getPastPresentationTimingGOOGLE( SwapchainKHR swapchain, uint32_t* pPresentationTimingCount, PastPresentationTimingGOOGLE* pPresentationTimings ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<PastPresentationTimingGOOGLE>>
typename ResultValueType<std::vector<PastPresentationTimingGOOGLE,Allocator>>::type getPastPresentationTimingGOOGLE( SwapchainKHR swapchain ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR* pInfo, MemoryRequirements2KHR* pMemoryRequirements ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
MemoryRequirements2KHR getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR & info ) const;
template <typename ...T>
StructureChain<T...> getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR & info ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR* pInfo, MemoryRequirements2KHR* pMemoryRequirements ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
MemoryRequirements2KHR getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR & info ) const;
template <typename ...T>
StructureChain<T...> getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR & info ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getImageSparseMemoryRequirements2KHR( const ImageSparseMemoryRequirementsInfo2KHR* pInfo, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements2KHR* pSparseMemoryRequirements ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SparseImageMemoryRequirements2KHR>>
std::vector<SparseImageMemoryRequirements2KHR,Allocator> getImageSparseMemoryRequirements2KHR( const ImageSparseMemoryRequirementsInfo2KHR & info ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createSamplerYcbcrConversionKHR( const SamplerYcbcrConversionCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SamplerYcbcrConversionKHR* pYcbcrConversion ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SamplerYcbcrConversionKHR>::type createSamplerYcbcrConversionKHR( const SamplerYcbcrConversionCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSamplerYcbcrConversionKHR createSamplerYcbcrConversionKHRUnique( const SamplerYcbcrConversionCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroySamplerYcbcrConversionKHR( SamplerYcbcrConversionKHR ycbcrConversion, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySamplerYcbcrConversionKHR( SamplerYcbcrConversionKHR ycbcrConversion, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createValidationCacheEXT( const ValidationCacheCreateInfoEXT* pCreateInfo, const AllocationCallbacks* pAllocator, ValidationCacheEXT* pValidationCache ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ValidationCacheEXT>::type createValidationCacheEXT( const ValidationCacheCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueValidationCacheEXT createValidationCacheEXTUnique( const ValidationCacheCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyValidationCacheEXT( ValidationCacheEXT validationCache, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyValidationCacheEXT( ValidationCacheEXT validationCache, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getValidationCacheDataEXT( ValidationCacheEXT validationCache, size_t* pDataSize, void* pData ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<uint8_t>>
typename ResultValueType<std::vector<uint8_t,Allocator>>::type getValidationCacheDataEXT( ValidationCacheEXT validationCache ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result mergeValidationCachesEXT( ValidationCacheEXT dstCache, uint32_t srcCacheCount, const ValidationCacheEXT* pSrcCaches ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type mergeValidationCachesEXT( ValidationCacheEXT dstCache, ArrayProxy<const ValidationCacheEXT> srcCaches ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getShaderInfoAMD( Pipeline pipeline, ShaderStageFlagBits shaderStage, ShaderInfoTypeAMD infoType, size_t* pInfoSize, void* pInfo ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<uint8_t>>
typename ResultValueType<std::vector<uint8_t,Allocator>>::type getShaderInfoAMD( Pipeline pipeline, ShaderStageFlagBits shaderStage, ShaderInfoTypeAMD infoType ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDevice() const
{
return m_device;
}
explicit operator bool() const
{
return m_device != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_device == VK_NULL_HANDLE;
}
private:
VkDevice m_device;
};
static_assert( sizeof( Device ) == sizeof( VkDevice ), "handle and wrapper have different size!" );
#ifndef VULKAN_HPP_NO_SMART_HANDLE
class BufferDeleter
{
public:
BufferDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( Buffer buffer )
{
m_device.destroyBuffer( buffer, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class BufferViewDeleter
{
public:
BufferViewDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( BufferView bufferView )
{
m_device.destroyBufferView( bufferView, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class CommandBufferDeleter
{
public:
CommandBufferDeleter( Device device = Device(), CommandPool commandPool = CommandPool() )
: m_device( device )
, m_commandPool( commandPool )
{}
void operator()( CommandBuffer commandBuffer )
{
m_device.freeCommandBuffers( m_commandPool, commandBuffer );
}
private:
Device m_device;
CommandPool m_commandPool;
};
class CommandPoolDeleter
{
public:
CommandPoolDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( CommandPool commandPool )
{
m_device.destroyCommandPool( commandPool, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class DescriptorPoolDeleter
{
public:
DescriptorPoolDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( DescriptorPool descriptorPool )
{
m_device.destroyDescriptorPool( descriptorPool, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class DescriptorSetDeleter
{
public:
DescriptorSetDeleter( Device device = Device(), DescriptorPool descriptorPool = DescriptorPool() )
: m_device( device )
, m_descriptorPool( descriptorPool )
{}
void operator()( DescriptorSet descriptorSet )
{
m_device.freeDescriptorSets( m_descriptorPool, descriptorSet );
}
private:
Device m_device;
DescriptorPool m_descriptorPool;
};
class DescriptorSetLayoutDeleter
{
public:
DescriptorSetLayoutDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( DescriptorSetLayout descriptorSetLayout )
{
m_device.destroyDescriptorSetLayout( descriptorSetLayout, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class DescriptorUpdateTemplateKHRDeleter
{
public:
DescriptorUpdateTemplateKHRDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( DescriptorUpdateTemplateKHR descriptorUpdateTemplateKHR )
{
m_device.destroyDescriptorUpdateTemplateKHR( descriptorUpdateTemplateKHR, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class DeviceMemoryDeleter
{
public:
DeviceMemoryDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( DeviceMemory deviceMemory )
{
m_device.freeMemory( deviceMemory, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class EventDeleter
{
public:
EventDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( Event event )
{
m_device.destroyEvent( event, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class FenceDeleter
{
public:
FenceDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( Fence fence )
{
m_device.destroyFence( fence, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class FramebufferDeleter
{
public:
FramebufferDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( Framebuffer framebuffer )
{
m_device.destroyFramebuffer( framebuffer, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class ImageDeleter
{
public:
ImageDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( Image image )
{
m_device.destroyImage( image, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class ImageViewDeleter
{
public:
ImageViewDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( ImageView imageView )
{
m_device.destroyImageView( imageView, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class IndirectCommandsLayoutNVXDeleter
{
public:
IndirectCommandsLayoutNVXDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( IndirectCommandsLayoutNVX indirectCommandsLayoutNVX )
{
m_device.destroyIndirectCommandsLayoutNVX( indirectCommandsLayoutNVX, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class ObjectTableNVXDeleter
{
public:
ObjectTableNVXDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( ObjectTableNVX objectTableNVX )
{
m_device.destroyObjectTableNVX( objectTableNVX, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class PipelineDeleter
{
public:
PipelineDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( Pipeline pipeline )
{
m_device.destroyPipeline( pipeline, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class PipelineCacheDeleter
{
public:
PipelineCacheDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( PipelineCache pipelineCache )
{
m_device.destroyPipelineCache( pipelineCache, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class PipelineLayoutDeleter
{
public:
PipelineLayoutDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( PipelineLayout pipelineLayout )
{
m_device.destroyPipelineLayout( pipelineLayout, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class QueryPoolDeleter
{
public:
QueryPoolDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( QueryPool queryPool )
{
m_device.destroyQueryPool( queryPool, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class RenderPassDeleter
{
public:
RenderPassDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( RenderPass renderPass )
{
m_device.destroyRenderPass( renderPass, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class SamplerDeleter
{
public:
SamplerDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( Sampler sampler )
{
m_device.destroySampler( sampler, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class SamplerYcbcrConversionKHRDeleter
{
public:
SamplerYcbcrConversionKHRDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( SamplerYcbcrConversionKHR samplerYcbcrConversionKHR )
{
m_device.destroySamplerYcbcrConversionKHR( samplerYcbcrConversionKHR, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class SemaphoreDeleter
{
public:
SemaphoreDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( Semaphore semaphore )
{
m_device.destroySemaphore( semaphore, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class ShaderModuleDeleter
{
public:
ShaderModuleDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( ShaderModule shaderModule )
{
m_device.destroyShaderModule( shaderModule, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class SwapchainKHRDeleter
{
public:
SwapchainKHRDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( SwapchainKHR swapchainKHR )
{
m_device.destroySwapchainKHR( swapchainKHR, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
class ValidationCacheEXTDeleter
{
public:
ValidationCacheEXTDeleter( Device device = Device(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_device( device )
, m_allocator( allocator )
{}
void operator()( ValidationCacheEXT validationCacheEXT )
{
m_device.destroyValidationCacheEXT( validationCacheEXT, m_allocator );
}
private:
Device m_device;
Optional<const AllocationCallbacks> m_allocator;
};
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
VULKAN_HPP_INLINE PFN_vkVoidFunction Device::getProcAddr( const char* pName ) const
{
return vkGetDeviceProcAddr( m_device, pName );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PFN_vkVoidFunction Device::getProcAddr( const std::string & name ) const
{
return vkGetDeviceProcAddr( m_device, name.c_str() );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroy( const AllocationCallbacks* pAllocator ) const
{
vkDestroyDevice( m_device, reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroy( Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyDevice( m_device, reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getQueue( uint32_t queueFamilyIndex, uint32_t queueIndex, Queue* pQueue ) const
{
vkGetDeviceQueue( m_device, queueFamilyIndex, queueIndex, reinterpret_cast<VkQueue*>( pQueue ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Queue Device::getQueue( uint32_t queueFamilyIndex, uint32_t queueIndex ) const
{
Queue queue;
vkGetDeviceQueue( m_device, queueFamilyIndex, queueIndex, reinterpret_cast<VkQueue*>( &queue ) );
return queue;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::waitIdle() const
{
return static_cast<Result>( vkDeviceWaitIdle( m_device ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type Device::waitIdle() const
{
Result result = static_cast<Result>( vkDeviceWaitIdle( m_device ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::waitIdle" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::allocateMemory( const MemoryAllocateInfo* pAllocateInfo, const AllocationCallbacks* pAllocator, DeviceMemory* pMemory ) const
{
return static_cast<Result>( vkAllocateMemory( m_device, reinterpret_cast<const VkMemoryAllocateInfo*>( pAllocateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkDeviceMemory*>( pMemory ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DeviceMemory>::type Device::allocateMemory( const MemoryAllocateInfo & allocateInfo, Optional<const AllocationCallbacks> allocator ) const
{
DeviceMemory memory;
Result result = static_cast<Result>( vkAllocateMemory( m_device, reinterpret_cast<const VkMemoryAllocateInfo*>( &allocateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkDeviceMemory*>( &memory ) ) );
return createResultValue( result, memory, "VULKAN_HPP_NAMESPACE::Device::allocateMemory" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueDeviceMemory Device::allocateMemoryUnique( const MemoryAllocateInfo & allocateInfo, Optional<const AllocationCallbacks> allocator ) const
{
DeviceMemoryDeleter deleter( *this, allocator );
return UniqueDeviceMemory( allocateMemory( allocateInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::freeMemory( DeviceMemory memory, const AllocationCallbacks* pAllocator ) const
{
vkFreeMemory( m_device, static_cast<VkDeviceMemory>( memory ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::freeMemory( DeviceMemory memory, Optional<const AllocationCallbacks> allocator ) const
{
vkFreeMemory( m_device, static_cast<VkDeviceMemory>( memory ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::mapMemory( DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags, void** ppData ) const
{
return static_cast<Result>( vkMapMemory( m_device, static_cast<VkDeviceMemory>( memory ), offset, size, static_cast<VkMemoryMapFlags>( flags ), ppData ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void*>::type Device::mapMemory( DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags ) const
{
void* pData;
Result result = static_cast<Result>( vkMapMemory( m_device, static_cast<VkDeviceMemory>( memory ), offset, size, static_cast<VkMemoryMapFlags>( flags ), &pData ) );
return createResultValue( result, pData, "VULKAN_HPP_NAMESPACE::Device::mapMemory" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::unmapMemory( DeviceMemory memory ) const
{
vkUnmapMemory( m_device, static_cast<VkDeviceMemory>( memory ) );
}
VULKAN_HPP_INLINE Result Device::flushMappedMemoryRanges( uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges ) const
{
return static_cast<Result>( vkFlushMappedMemoryRanges( m_device, memoryRangeCount, reinterpret_cast<const VkMappedMemoryRange*>( pMemoryRanges ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::flushMappedMemoryRanges( ArrayProxy<const MappedMemoryRange> memoryRanges ) const
{
Result result = static_cast<Result>( vkFlushMappedMemoryRanges( m_device, memoryRanges.size() , reinterpret_cast<const VkMappedMemoryRange*>( memoryRanges.data() ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::flushMappedMemoryRanges" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::invalidateMappedMemoryRanges( uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges ) const
{
return static_cast<Result>( vkInvalidateMappedMemoryRanges( m_device, memoryRangeCount, reinterpret_cast<const VkMappedMemoryRange*>( pMemoryRanges ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::invalidateMappedMemoryRanges( ArrayProxy<const MappedMemoryRange> memoryRanges ) const
{
Result result = static_cast<Result>( vkInvalidateMappedMemoryRanges( m_device, memoryRanges.size() , reinterpret_cast<const VkMappedMemoryRange*>( memoryRanges.data() ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::invalidateMappedMemoryRanges" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getMemoryCommitment( DeviceMemory memory, DeviceSize* pCommittedMemoryInBytes ) const
{
vkGetDeviceMemoryCommitment( m_device, static_cast<VkDeviceMemory>( memory ), pCommittedMemoryInBytes );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE DeviceSize Device::getMemoryCommitment( DeviceMemory memory ) const
{
DeviceSize committedMemoryInBytes;
vkGetDeviceMemoryCommitment( m_device, static_cast<VkDeviceMemory>( memory ), &committedMemoryInBytes );
return committedMemoryInBytes;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getBufferMemoryRequirements( Buffer buffer, MemoryRequirements* pMemoryRequirements ) const
{
vkGetBufferMemoryRequirements( m_device, static_cast<VkBuffer>( buffer ), reinterpret_cast<VkMemoryRequirements*>( pMemoryRequirements ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE MemoryRequirements Device::getBufferMemoryRequirements( Buffer buffer ) const
{
MemoryRequirements memoryRequirements;
vkGetBufferMemoryRequirements( m_device, static_cast<VkBuffer>( buffer ), reinterpret_cast<VkMemoryRequirements*>( &memoryRequirements ) );
return memoryRequirements;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::bindBufferMemory( Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset ) const
{
return static_cast<Result>( vkBindBufferMemory( m_device, static_cast<VkBuffer>( buffer ), static_cast<VkDeviceMemory>( memory ), memoryOffset ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type Device::bindBufferMemory( Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset ) const
{
Result result = static_cast<Result>( vkBindBufferMemory( m_device, static_cast<VkBuffer>( buffer ), static_cast<VkDeviceMemory>( memory ), memoryOffset ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::bindBufferMemory" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getImageMemoryRequirements( Image image, MemoryRequirements* pMemoryRequirements ) const
{
vkGetImageMemoryRequirements( m_device, static_cast<VkImage>( image ), reinterpret_cast<VkMemoryRequirements*>( pMemoryRequirements ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE MemoryRequirements Device::getImageMemoryRequirements( Image image ) const
{
MemoryRequirements memoryRequirements;
vkGetImageMemoryRequirements( m_device, static_cast<VkImage>( image ), reinterpret_cast<VkMemoryRequirements*>( &memoryRequirements ) );
return memoryRequirements;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::bindImageMemory( Image image, DeviceMemory memory, DeviceSize memoryOffset ) const
{
return static_cast<Result>( vkBindImageMemory( m_device, static_cast<VkImage>( image ), static_cast<VkDeviceMemory>( memory ), memoryOffset ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type Device::bindImageMemory( Image image, DeviceMemory memory, DeviceSize memoryOffset ) const
{
Result result = static_cast<Result>( vkBindImageMemory( m_device, static_cast<VkImage>( image ), static_cast<VkDeviceMemory>( memory ), memoryOffset ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::bindImageMemory" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getImageSparseMemoryRequirements( Image image, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements* pSparseMemoryRequirements ) const
{
vkGetImageSparseMemoryRequirements( m_device, static_cast<VkImage>( image ), pSparseMemoryRequirementCount, reinterpret_cast<VkSparseImageMemoryRequirements*>( pSparseMemoryRequirements ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<SparseImageMemoryRequirements,Allocator> Device::getImageSparseMemoryRequirements( Image image ) const
{
std::vector<SparseImageMemoryRequirements,Allocator> sparseMemoryRequirements;
uint32_t sparseMemoryRequirementCount;
vkGetImageSparseMemoryRequirements( m_device, static_cast<VkImage>( image ), &sparseMemoryRequirementCount, nullptr );
sparseMemoryRequirements.resize( sparseMemoryRequirementCount );
vkGetImageSparseMemoryRequirements( m_device, static_cast<VkImage>( image ), &sparseMemoryRequirementCount, reinterpret_cast<VkSparseImageMemoryRequirements*>( sparseMemoryRequirements.data() ) );
return sparseMemoryRequirements;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createFence( const FenceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const
{
return static_cast<Result>( vkCreateFence( m_device, reinterpret_cast<const VkFenceCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkFence*>( pFence ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Fence>::type Device::createFence( const FenceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Fence fence;
Result result = static_cast<Result>( vkCreateFence( m_device, reinterpret_cast<const VkFenceCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkFence*>( &fence ) ) );
return createResultValue( result, fence, "VULKAN_HPP_NAMESPACE::Device::createFence" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueFence Device::createFenceUnique( const FenceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
FenceDeleter deleter( *this, allocator );
return UniqueFence( createFence( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyFence( Fence fence, const AllocationCallbacks* pAllocator ) const
{
vkDestroyFence( m_device, static_cast<VkFence>( fence ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyFence( Fence fence, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyFence( m_device, static_cast<VkFence>( fence ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::resetFences( uint32_t fenceCount, const Fence* pFences ) const
{
return static_cast<Result>( vkResetFences( m_device, fenceCount, reinterpret_cast<const VkFence*>( pFences ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::resetFences( ArrayProxy<const Fence> fences ) const
{
Result result = static_cast<Result>( vkResetFences( m_device, fences.size() , reinterpret_cast<const VkFence*>( fences.data() ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::resetFences" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::getFenceStatus( Fence fence ) const
{
return static_cast<Result>( vkGetFenceStatus( m_device, static_cast<VkFence>( fence ) ) );
}
#else
VULKAN_HPP_INLINE Result Device::getFenceStatus( Fence fence ) const
{
Result result = static_cast<Result>( vkGetFenceStatus( m_device, static_cast<VkFence>( fence ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::getFenceStatus", { Result::eSuccess, Result::eNotReady } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::waitForFences( uint32_t fenceCount, const Fence* pFences, Bool32 waitAll, uint64_t timeout ) const
{
return static_cast<Result>( vkWaitForFences( m_device, fenceCount, reinterpret_cast<const VkFence*>( pFences ), waitAll, timeout ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::waitForFences( ArrayProxy<const Fence> fences, Bool32 waitAll, uint64_t timeout ) const
{
Result result = static_cast<Result>( vkWaitForFences( m_device, fences.size() , reinterpret_cast<const VkFence*>( fences.data() ), waitAll, timeout ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::waitForFences", { Result::eSuccess, Result::eTimeout } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createSemaphore( const SemaphoreCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Semaphore* pSemaphore ) const
{
return static_cast<Result>( vkCreateSemaphore( m_device, reinterpret_cast<const VkSemaphoreCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSemaphore*>( pSemaphore ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Semaphore>::type Device::createSemaphore( const SemaphoreCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Semaphore semaphore;
Result result = static_cast<Result>( vkCreateSemaphore( m_device, reinterpret_cast<const VkSemaphoreCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSemaphore*>( &semaphore ) ) );
return createResultValue( result, semaphore, "VULKAN_HPP_NAMESPACE::Device::createSemaphore" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSemaphore Device::createSemaphoreUnique( const SemaphoreCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SemaphoreDeleter deleter( *this, allocator );
return UniqueSemaphore( createSemaphore( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroySemaphore( Semaphore semaphore, const AllocationCallbacks* pAllocator ) const
{
vkDestroySemaphore( m_device, static_cast<VkSemaphore>( semaphore ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroySemaphore( Semaphore semaphore, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroySemaphore( m_device, static_cast<VkSemaphore>( semaphore ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createEvent( const EventCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Event* pEvent ) const
{
return static_cast<Result>( vkCreateEvent( m_device, reinterpret_cast<const VkEventCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkEvent*>( pEvent ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Event>::type Device::createEvent( const EventCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Event event;
Result result = static_cast<Result>( vkCreateEvent( m_device, reinterpret_cast<const VkEventCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkEvent*>( &event ) ) );
return createResultValue( result, event, "VULKAN_HPP_NAMESPACE::Device::createEvent" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueEvent Device::createEventUnique( const EventCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
EventDeleter deleter( *this, allocator );
return UniqueEvent( createEvent( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyEvent( Event event, const AllocationCallbacks* pAllocator ) const
{
vkDestroyEvent( m_device, static_cast<VkEvent>( event ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyEvent( Event event, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyEvent( m_device, static_cast<VkEvent>( event ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::getEventStatus( Event event ) const
{
return static_cast<Result>( vkGetEventStatus( m_device, static_cast<VkEvent>( event ) ) );
}
#else
VULKAN_HPP_INLINE Result Device::getEventStatus( Event event ) const
{
Result result = static_cast<Result>( vkGetEventStatus( m_device, static_cast<VkEvent>( event ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::getEventStatus", { Result::eEventSet, Result::eEventReset } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::setEvent( Event event ) const
{
return static_cast<Result>( vkSetEvent( m_device, static_cast<VkEvent>( event ) ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type Device::setEvent( Event event ) const
{
Result result = static_cast<Result>( vkSetEvent( m_device, static_cast<VkEvent>( event ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::setEvent" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::resetEvent( Event event ) const
{
return static_cast<Result>( vkResetEvent( m_device, static_cast<VkEvent>( event ) ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type Device::resetEvent( Event event ) const
{
Result result = static_cast<Result>( vkResetEvent( m_device, static_cast<VkEvent>( event ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::resetEvent" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createQueryPool( const QueryPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, QueryPool* pQueryPool ) const
{
return static_cast<Result>( vkCreateQueryPool( m_device, reinterpret_cast<const VkQueryPoolCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkQueryPool*>( pQueryPool ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<QueryPool>::type Device::createQueryPool( const QueryPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
QueryPool queryPool;
Result result = static_cast<Result>( vkCreateQueryPool( m_device, reinterpret_cast<const VkQueryPoolCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkQueryPool*>( &queryPool ) ) );
return createResultValue( result, queryPool, "VULKAN_HPP_NAMESPACE::Device::createQueryPool" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueQueryPool Device::createQueryPoolUnique( const QueryPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
QueryPoolDeleter deleter( *this, allocator );
return UniqueQueryPool( createQueryPool( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyQueryPool( QueryPool queryPool, const AllocationCallbacks* pAllocator ) const
{
vkDestroyQueryPool( m_device, static_cast<VkQueryPool>( queryPool ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyQueryPool( QueryPool queryPool, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyQueryPool( m_device, static_cast<VkQueryPool>( queryPool ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, DeviceSize stride, QueryResultFlags flags ) const
{
return static_cast<Result>( vkGetQueryPoolResults( m_device, static_cast<VkQueryPool>( queryPool ), firstQuery, queryCount, dataSize, pData, stride, static_cast<VkQueryResultFlags>( flags ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
VULKAN_HPP_INLINE Result Device::getQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, ArrayProxy<T> data, DeviceSize stride, QueryResultFlags flags ) const
{
Result result = static_cast<Result>( vkGetQueryPoolResults( m_device, static_cast<VkQueryPool>( queryPool ), firstQuery, queryCount, data.size() * sizeof( T ) , reinterpret_cast<void*>( data.data() ), stride, static_cast<VkQueryResultFlags>( flags ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::getQueryPoolResults", { Result::eSuccess, Result::eNotReady } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createBuffer( const BufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Buffer* pBuffer ) const
{
return static_cast<Result>( vkCreateBuffer( m_device, reinterpret_cast<const VkBufferCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkBuffer*>( pBuffer ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Buffer>::type Device::createBuffer( const BufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Buffer buffer;
Result result = static_cast<Result>( vkCreateBuffer( m_device, reinterpret_cast<const VkBufferCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkBuffer*>( &buffer ) ) );
return createResultValue( result, buffer, "VULKAN_HPP_NAMESPACE::Device::createBuffer" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueBuffer Device::createBufferUnique( const BufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
BufferDeleter deleter( *this, allocator );
return UniqueBuffer( createBuffer( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyBuffer( Buffer buffer, const AllocationCallbacks* pAllocator ) const
{
vkDestroyBuffer( m_device, static_cast<VkBuffer>( buffer ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyBuffer( Buffer buffer, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyBuffer( m_device, static_cast<VkBuffer>( buffer ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createBufferView( const BufferViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, BufferView* pView ) const
{
return static_cast<Result>( vkCreateBufferView( m_device, reinterpret_cast<const VkBufferViewCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkBufferView*>( pView ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<BufferView>::type Device::createBufferView( const BufferViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
BufferView view;
Result result = static_cast<Result>( vkCreateBufferView( m_device, reinterpret_cast<const VkBufferViewCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkBufferView*>( &view ) ) );
return createResultValue( result, view, "VULKAN_HPP_NAMESPACE::Device::createBufferView" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueBufferView Device::createBufferViewUnique( const BufferViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
BufferViewDeleter deleter( *this, allocator );
return UniqueBufferView( createBufferView( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyBufferView( BufferView bufferView, const AllocationCallbacks* pAllocator ) const
{
vkDestroyBufferView( m_device, static_cast<VkBufferView>( bufferView ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyBufferView( BufferView bufferView, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyBufferView( m_device, static_cast<VkBufferView>( bufferView ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createImage( const ImageCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Image* pImage ) const
{
return static_cast<Result>( vkCreateImage( m_device, reinterpret_cast<const VkImageCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkImage*>( pImage ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Image>::type Device::createImage( const ImageCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Image image;
Result result = static_cast<Result>( vkCreateImage( m_device, reinterpret_cast<const VkImageCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkImage*>( &image ) ) );
return createResultValue( result, image, "VULKAN_HPP_NAMESPACE::Device::createImage" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueImage Device::createImageUnique( const ImageCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ImageDeleter deleter( *this, allocator );
return UniqueImage( createImage( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyImage( Image image, const AllocationCallbacks* pAllocator ) const
{
vkDestroyImage( m_device, static_cast<VkImage>( image ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyImage( Image image, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyImage( m_device, static_cast<VkImage>( image ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getImageSubresourceLayout( Image image, const ImageSubresource* pSubresource, SubresourceLayout* pLayout ) const
{
vkGetImageSubresourceLayout( m_device, static_cast<VkImage>( image ), reinterpret_cast<const VkImageSubresource*>( pSubresource ), reinterpret_cast<VkSubresourceLayout*>( pLayout ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE SubresourceLayout Device::getImageSubresourceLayout( Image image, const ImageSubresource & subresource ) const
{
SubresourceLayout layout;
vkGetImageSubresourceLayout( m_device, static_cast<VkImage>( image ), reinterpret_cast<const VkImageSubresource*>( &subresource ), reinterpret_cast<VkSubresourceLayout*>( &layout ) );
return layout;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createImageView( const ImageViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ImageView* pView ) const
{
return static_cast<Result>( vkCreateImageView( m_device, reinterpret_cast<const VkImageViewCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkImageView*>( pView ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<ImageView>::type Device::createImageView( const ImageViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ImageView view;
Result result = static_cast<Result>( vkCreateImageView( m_device, reinterpret_cast<const VkImageViewCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkImageView*>( &view ) ) );
return createResultValue( result, view, "VULKAN_HPP_NAMESPACE::Device::createImageView" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueImageView Device::createImageViewUnique( const ImageViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ImageViewDeleter deleter( *this, allocator );
return UniqueImageView( createImageView( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyImageView( ImageView imageView, const AllocationCallbacks* pAllocator ) const
{
vkDestroyImageView( m_device, static_cast<VkImageView>( imageView ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyImageView( ImageView imageView, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyImageView( m_device, static_cast<VkImageView>( imageView ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createShaderModule( const ShaderModuleCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ShaderModule* pShaderModule ) const
{
return static_cast<Result>( vkCreateShaderModule( m_device, reinterpret_cast<const VkShaderModuleCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkShaderModule*>( pShaderModule ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<ShaderModule>::type Device::createShaderModule( const ShaderModuleCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ShaderModule shaderModule;
Result result = static_cast<Result>( vkCreateShaderModule( m_device, reinterpret_cast<const VkShaderModuleCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkShaderModule*>( &shaderModule ) ) );
return createResultValue( result, shaderModule, "VULKAN_HPP_NAMESPACE::Device::createShaderModule" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueShaderModule Device::createShaderModuleUnique( const ShaderModuleCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ShaderModuleDeleter deleter( *this, allocator );
return UniqueShaderModule( createShaderModule( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyShaderModule( ShaderModule shaderModule, const AllocationCallbacks* pAllocator ) const
{
vkDestroyShaderModule( m_device, static_cast<VkShaderModule>( shaderModule ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyShaderModule( ShaderModule shaderModule, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyShaderModule( m_device, static_cast<VkShaderModule>( shaderModule ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createPipelineCache( const PipelineCacheCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineCache* pPipelineCache ) const
{
return static_cast<Result>( vkCreatePipelineCache( m_device, reinterpret_cast<const VkPipelineCacheCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkPipelineCache*>( pPipelineCache ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<PipelineCache>::type Device::createPipelineCache( const PipelineCacheCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
PipelineCache pipelineCache;
Result result = static_cast<Result>( vkCreatePipelineCache( m_device, reinterpret_cast<const VkPipelineCacheCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkPipelineCache*>( &pipelineCache ) ) );
return createResultValue( result, pipelineCache, "VULKAN_HPP_NAMESPACE::Device::createPipelineCache" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniquePipelineCache Device::createPipelineCacheUnique( const PipelineCacheCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
PipelineCacheDeleter deleter( *this, allocator );
return UniquePipelineCache( createPipelineCache( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyPipelineCache( PipelineCache pipelineCache, const AllocationCallbacks* pAllocator ) const
{
vkDestroyPipelineCache( m_device, static_cast<VkPipelineCache>( pipelineCache ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyPipelineCache( PipelineCache pipelineCache, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyPipelineCache( m_device, static_cast<VkPipelineCache>( pipelineCache ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getPipelineCacheData( PipelineCache pipelineCache, size_t* pDataSize, void* pData ) const
{
return static_cast<Result>( vkGetPipelineCacheData( m_device, static_cast<VkPipelineCache>( pipelineCache ), pDataSize, pData ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<uint8_t,Allocator>>::type Device::getPipelineCacheData( PipelineCache pipelineCache ) const
{
std::vector<uint8_t,Allocator> data;
size_t dataSize;
Result result;
do
{
result = static_cast<Result>( vkGetPipelineCacheData( m_device, static_cast<VkPipelineCache>( pipelineCache ), &dataSize, nullptr ) );
if ( ( result == Result::eSuccess ) && dataSize )
{
data.resize( dataSize );
result = static_cast<Result>( vkGetPipelineCacheData( m_device, static_cast<VkPipelineCache>( pipelineCache ), &dataSize, reinterpret_cast<void*>( data.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( dataSize <= data.size() );
data.resize( dataSize );
return createResultValue( result, data, "VULKAN_HPP_NAMESPACE::Device::getPipelineCacheData" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::mergePipelineCaches( PipelineCache dstCache, uint32_t srcCacheCount, const PipelineCache* pSrcCaches ) const
{
return static_cast<Result>( vkMergePipelineCaches( m_device, static_cast<VkPipelineCache>( dstCache ), srcCacheCount, reinterpret_cast<const VkPipelineCache*>( pSrcCaches ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::mergePipelineCaches( PipelineCache dstCache, ArrayProxy<const PipelineCache> srcCaches ) const
{
Result result = static_cast<Result>( vkMergePipelineCaches( m_device, static_cast<VkPipelineCache>( dstCache ), srcCaches.size() , reinterpret_cast<const VkPipelineCache*>( srcCaches.data() ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::mergePipelineCaches" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createGraphicsPipelines( PipelineCache pipelineCache, uint32_t createInfoCount, const GraphicsPipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines ) const
{
return static_cast<Result>( vkCreateGraphicsPipelines( m_device, static_cast<VkPipelineCache>( pipelineCache ), createInfoCount, reinterpret_cast<const VkGraphicsPipelineCreateInfo*>( pCreateInfos ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkPipeline*>( pPipelines ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<Pipeline,Allocator>>::type Device::createGraphicsPipelines( PipelineCache pipelineCache, ArrayProxy<const GraphicsPipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator ) const
{
std::vector<Pipeline,Allocator> pipelines( createInfos.size() );
Result result = static_cast<Result>( vkCreateGraphicsPipelines( m_device, static_cast<VkPipelineCache>( pipelineCache ), createInfos.size() , reinterpret_cast<const VkGraphicsPipelineCreateInfo*>( createInfos.data() ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkPipeline*>( pipelines.data() ) ) );
return createResultValue( result, pipelines, "VULKAN_HPP_NAMESPACE::Device::createGraphicsPipelines" );
}
VULKAN_HPP_INLINE ResultValueType<Pipeline>::type Device::createGraphicsPipeline( PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Pipeline pipeline;
Result result = static_cast<Result>( vkCreateGraphicsPipelines( m_device, static_cast<VkPipelineCache>( pipelineCache ), 1 , reinterpret_cast<const VkGraphicsPipelineCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkPipeline*>( &pipeline ) ) );
return createResultValue( result, pipeline, "VULKAN_HPP_NAMESPACE::Device::createGraphicsPipeline" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<UniquePipeline> Device::createGraphicsPipelinesUnique( PipelineCache pipelineCache, ArrayProxy<const GraphicsPipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator ) const
{
PipelineDeleter deleter( *this, allocator );
std::vector<Pipeline,Allocator> pipelines = createGraphicsPipelines( pipelineCache, createInfos, allocator );
std::vector<UniquePipeline> uniquePipelines;
uniquePipelines.reserve( pipelines.size() );
for ( auto pipeline : pipelines )
{
uniquePipelines.push_back( UniquePipeline( pipeline, deleter ) );
}
return uniquePipelines;
}
VULKAN_HPP_INLINE UniquePipeline Device::createGraphicsPipelineUnique( PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
PipelineDeleter deleter( *this, allocator );
return UniquePipeline( createGraphicsPipeline( pipelineCache, createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createComputePipelines( PipelineCache pipelineCache, uint32_t createInfoCount, const ComputePipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines ) const
{
return static_cast<Result>( vkCreateComputePipelines( m_device, static_cast<VkPipelineCache>( pipelineCache ), createInfoCount, reinterpret_cast<const VkComputePipelineCreateInfo*>( pCreateInfos ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkPipeline*>( pPipelines ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<Pipeline,Allocator>>::type Device::createComputePipelines( PipelineCache pipelineCache, ArrayProxy<const ComputePipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator ) const
{
std::vector<Pipeline,Allocator> pipelines( createInfos.size() );
Result result = static_cast<Result>( vkCreateComputePipelines( m_device, static_cast<VkPipelineCache>( pipelineCache ), createInfos.size() , reinterpret_cast<const VkComputePipelineCreateInfo*>( createInfos.data() ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkPipeline*>( pipelines.data() ) ) );
return createResultValue( result, pipelines, "VULKAN_HPP_NAMESPACE::Device::createComputePipelines" );
}
VULKAN_HPP_INLINE ResultValueType<Pipeline>::type Device::createComputePipeline( PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Pipeline pipeline;
Result result = static_cast<Result>( vkCreateComputePipelines( m_device, static_cast<VkPipelineCache>( pipelineCache ), 1 , reinterpret_cast<const VkComputePipelineCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkPipeline*>( &pipeline ) ) );
return createResultValue( result, pipeline, "VULKAN_HPP_NAMESPACE::Device::createComputePipeline" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<UniquePipeline> Device::createComputePipelinesUnique( PipelineCache pipelineCache, ArrayProxy<const ComputePipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator ) const
{
PipelineDeleter deleter( *this, allocator );
std::vector<Pipeline,Allocator> pipelines = createComputePipelines( pipelineCache, createInfos, allocator );
std::vector<UniquePipeline> uniquePipelines;
uniquePipelines.reserve( pipelines.size() );
for ( auto pipeline : pipelines )
{
uniquePipelines.push_back( UniquePipeline( pipeline, deleter ) );
}
return uniquePipelines;
}
VULKAN_HPP_INLINE UniquePipeline Device::createComputePipelineUnique( PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
PipelineDeleter deleter( *this, allocator );
return UniquePipeline( createComputePipeline( pipelineCache, createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyPipeline( Pipeline pipeline, const AllocationCallbacks* pAllocator ) const
{
vkDestroyPipeline( m_device, static_cast<VkPipeline>( pipeline ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyPipeline( Pipeline pipeline, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyPipeline( m_device, static_cast<VkPipeline>( pipeline ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createPipelineLayout( const PipelineLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineLayout* pPipelineLayout ) const
{
return static_cast<Result>( vkCreatePipelineLayout( m_device, reinterpret_cast<const VkPipelineLayoutCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkPipelineLayout*>( pPipelineLayout ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<PipelineLayout>::type Device::createPipelineLayout( const PipelineLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
PipelineLayout pipelineLayout;
Result result = static_cast<Result>( vkCreatePipelineLayout( m_device, reinterpret_cast<const VkPipelineLayoutCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkPipelineLayout*>( &pipelineLayout ) ) );
return createResultValue( result, pipelineLayout, "VULKAN_HPP_NAMESPACE::Device::createPipelineLayout" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniquePipelineLayout Device::createPipelineLayoutUnique( const PipelineLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
PipelineLayoutDeleter deleter( *this, allocator );
return UniquePipelineLayout( createPipelineLayout( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyPipelineLayout( PipelineLayout pipelineLayout, const AllocationCallbacks* pAllocator ) const
{
vkDestroyPipelineLayout( m_device, static_cast<VkPipelineLayout>( pipelineLayout ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyPipelineLayout( PipelineLayout pipelineLayout, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyPipelineLayout( m_device, static_cast<VkPipelineLayout>( pipelineLayout ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createSampler( const SamplerCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Sampler* pSampler ) const
{
return static_cast<Result>( vkCreateSampler( m_device, reinterpret_cast<const VkSamplerCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSampler*>( pSampler ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Sampler>::type Device::createSampler( const SamplerCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Sampler sampler;
Result result = static_cast<Result>( vkCreateSampler( m_device, reinterpret_cast<const VkSamplerCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSampler*>( &sampler ) ) );
return createResultValue( result, sampler, "VULKAN_HPP_NAMESPACE::Device::createSampler" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSampler Device::createSamplerUnique( const SamplerCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SamplerDeleter deleter( *this, allocator );
return UniqueSampler( createSampler( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroySampler( Sampler sampler, const AllocationCallbacks* pAllocator ) const
{
vkDestroySampler( m_device, static_cast<VkSampler>( sampler ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroySampler( Sampler sampler, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroySampler( m_device, static_cast<VkSampler>( sampler ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createDescriptorSetLayout( const DescriptorSetLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorSetLayout* pSetLayout ) const
{
return static_cast<Result>( vkCreateDescriptorSetLayout( m_device, reinterpret_cast<const VkDescriptorSetLayoutCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkDescriptorSetLayout*>( pSetLayout ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DescriptorSetLayout>::type Device::createDescriptorSetLayout( const DescriptorSetLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DescriptorSetLayout setLayout;
Result result = static_cast<Result>( vkCreateDescriptorSetLayout( m_device, reinterpret_cast<const VkDescriptorSetLayoutCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkDescriptorSetLayout*>( &setLayout ) ) );
return createResultValue( result, setLayout, "VULKAN_HPP_NAMESPACE::Device::createDescriptorSetLayout" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueDescriptorSetLayout Device::createDescriptorSetLayoutUnique( const DescriptorSetLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DescriptorSetLayoutDeleter deleter( *this, allocator );
return UniqueDescriptorSetLayout( createDescriptorSetLayout( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout, const AllocationCallbacks* pAllocator ) const
{
vkDestroyDescriptorSetLayout( m_device, static_cast<VkDescriptorSetLayout>( descriptorSetLayout ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyDescriptorSetLayout( m_device, static_cast<VkDescriptorSetLayout>( descriptorSetLayout ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createDescriptorPool( const DescriptorPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorPool* pDescriptorPool ) const
{
return static_cast<Result>( vkCreateDescriptorPool( m_device, reinterpret_cast<const VkDescriptorPoolCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkDescriptorPool*>( pDescriptorPool ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DescriptorPool>::type Device::createDescriptorPool( const DescriptorPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DescriptorPool descriptorPool;
Result result = static_cast<Result>( vkCreateDescriptorPool( m_device, reinterpret_cast<const VkDescriptorPoolCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkDescriptorPool*>( &descriptorPool ) ) );
return createResultValue( result, descriptorPool, "VULKAN_HPP_NAMESPACE::Device::createDescriptorPool" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueDescriptorPool Device::createDescriptorPoolUnique( const DescriptorPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DescriptorPoolDeleter deleter( *this, allocator );
return UniqueDescriptorPool( createDescriptorPool( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyDescriptorPool( DescriptorPool descriptorPool, const AllocationCallbacks* pAllocator ) const
{
vkDestroyDescriptorPool( m_device, static_cast<VkDescriptorPool>( descriptorPool ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyDescriptorPool( DescriptorPool descriptorPool, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyDescriptorPool( m_device, static_cast<VkDescriptorPool>( descriptorPool ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::resetDescriptorPool( DescriptorPool descriptorPool, DescriptorPoolResetFlags flags ) const
{
return static_cast<Result>( vkResetDescriptorPool( m_device, static_cast<VkDescriptorPool>( descriptorPool ), static_cast<VkDescriptorPoolResetFlags>( flags ) ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type Device::resetDescriptorPool( DescriptorPool descriptorPool, DescriptorPoolResetFlags flags ) const
{
Result result = static_cast<Result>( vkResetDescriptorPool( m_device, static_cast<VkDescriptorPool>( descriptorPool ), static_cast<VkDescriptorPoolResetFlags>( flags ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::resetDescriptorPool" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::allocateDescriptorSets( const DescriptorSetAllocateInfo* pAllocateInfo, DescriptorSet* pDescriptorSets ) const
{
return static_cast<Result>( vkAllocateDescriptorSets( m_device, reinterpret_cast<const VkDescriptorSetAllocateInfo*>( pAllocateInfo ), reinterpret_cast<VkDescriptorSet*>( pDescriptorSets ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<DescriptorSet,Allocator>>::type Device::allocateDescriptorSets( const DescriptorSetAllocateInfo & allocateInfo ) const
{
std::vector<DescriptorSet,Allocator> descriptorSets( allocateInfo.descriptorSetCount );
Result result = static_cast<Result>( vkAllocateDescriptorSets( m_device, reinterpret_cast<const VkDescriptorSetAllocateInfo*>( &allocateInfo ), reinterpret_cast<VkDescriptorSet*>( descriptorSets.data() ) ) );
return createResultValue( result, descriptorSets, "VULKAN_HPP_NAMESPACE::Device::allocateDescriptorSets" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<UniqueDescriptorSet> Device::allocateDescriptorSetsUnique( const DescriptorSetAllocateInfo & allocateInfo ) const
{
DescriptorSetDeleter deleter( *this, allocateInfo.descriptorPool );
std::vector<DescriptorSet,Allocator> descriptorSets = allocateDescriptorSets( allocateInfo );
std::vector<UniqueDescriptorSet> uniqueDescriptorSets;
uniqueDescriptorSets.reserve( descriptorSets.size() );
for ( auto descriptorSet : descriptorSets )
{
uniqueDescriptorSets.push_back( UniqueDescriptorSet( descriptorSet, deleter ) );
}
return uniqueDescriptorSets;
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::freeDescriptorSets( DescriptorPool descriptorPool, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets ) const
{
return static_cast<Result>( vkFreeDescriptorSets( m_device, static_cast<VkDescriptorPool>( descriptorPool ), descriptorSetCount, reinterpret_cast<const VkDescriptorSet*>( pDescriptorSets ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::freeDescriptorSets( DescriptorPool descriptorPool, ArrayProxy<const DescriptorSet> descriptorSets ) const
{
Result result = static_cast<Result>( vkFreeDescriptorSets( m_device, static_cast<VkDescriptorPool>( descriptorPool ), descriptorSets.size() , reinterpret_cast<const VkDescriptorSet*>( descriptorSets.data() ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::freeDescriptorSets" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::updateDescriptorSets( uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const CopyDescriptorSet* pDescriptorCopies ) const
{
vkUpdateDescriptorSets( m_device, descriptorWriteCount, reinterpret_cast<const VkWriteDescriptorSet*>( pDescriptorWrites ), descriptorCopyCount, reinterpret_cast<const VkCopyDescriptorSet*>( pDescriptorCopies ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::updateDescriptorSets( ArrayProxy<const WriteDescriptorSet> descriptorWrites, ArrayProxy<const CopyDescriptorSet> descriptorCopies ) const
{
vkUpdateDescriptorSets( m_device, descriptorWrites.size() , reinterpret_cast<const VkWriteDescriptorSet*>( descriptorWrites.data() ), descriptorCopies.size() , reinterpret_cast<const VkCopyDescriptorSet*>( descriptorCopies.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createFramebuffer( const FramebufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Framebuffer* pFramebuffer ) const
{
return static_cast<Result>( vkCreateFramebuffer( m_device, reinterpret_cast<const VkFramebufferCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkFramebuffer*>( pFramebuffer ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Framebuffer>::type Device::createFramebuffer( const FramebufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Framebuffer framebuffer;
Result result = static_cast<Result>( vkCreateFramebuffer( m_device, reinterpret_cast<const VkFramebufferCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkFramebuffer*>( &framebuffer ) ) );
return createResultValue( result, framebuffer, "VULKAN_HPP_NAMESPACE::Device::createFramebuffer" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueFramebuffer Device::createFramebufferUnique( const FramebufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
FramebufferDeleter deleter( *this, allocator );
return UniqueFramebuffer( createFramebuffer( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyFramebuffer( Framebuffer framebuffer, const AllocationCallbacks* pAllocator ) const
{
vkDestroyFramebuffer( m_device, static_cast<VkFramebuffer>( framebuffer ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyFramebuffer( Framebuffer framebuffer, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyFramebuffer( m_device, static_cast<VkFramebuffer>( framebuffer ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createRenderPass( const RenderPassCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, RenderPass* pRenderPass ) const
{
return static_cast<Result>( vkCreateRenderPass( m_device, reinterpret_cast<const VkRenderPassCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkRenderPass*>( pRenderPass ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<RenderPass>::type Device::createRenderPass( const RenderPassCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
RenderPass renderPass;
Result result = static_cast<Result>( vkCreateRenderPass( m_device, reinterpret_cast<const VkRenderPassCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkRenderPass*>( &renderPass ) ) );
return createResultValue( result, renderPass, "VULKAN_HPP_NAMESPACE::Device::createRenderPass" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueRenderPass Device::createRenderPassUnique( const RenderPassCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
RenderPassDeleter deleter( *this, allocator );
return UniqueRenderPass( createRenderPass( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyRenderPass( RenderPass renderPass, const AllocationCallbacks* pAllocator ) const
{
vkDestroyRenderPass( m_device, static_cast<VkRenderPass>( renderPass ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyRenderPass( RenderPass renderPass, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyRenderPass( m_device, static_cast<VkRenderPass>( renderPass ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getRenderAreaGranularity( RenderPass renderPass, Extent2D* pGranularity ) const
{
vkGetRenderAreaGranularity( m_device, static_cast<VkRenderPass>( renderPass ), reinterpret_cast<VkExtent2D*>( pGranularity ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Extent2D Device::getRenderAreaGranularity( RenderPass renderPass ) const
{
Extent2D granularity;
vkGetRenderAreaGranularity( m_device, static_cast<VkRenderPass>( renderPass ), reinterpret_cast<VkExtent2D*>( &granularity ) );
return granularity;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createCommandPool( const CommandPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, CommandPool* pCommandPool ) const
{
return static_cast<Result>( vkCreateCommandPool( m_device, reinterpret_cast<const VkCommandPoolCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkCommandPool*>( pCommandPool ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<CommandPool>::type Device::createCommandPool( const CommandPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
CommandPool commandPool;
Result result = static_cast<Result>( vkCreateCommandPool( m_device, reinterpret_cast<const VkCommandPoolCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkCommandPool*>( &commandPool ) ) );
return createResultValue( result, commandPool, "VULKAN_HPP_NAMESPACE::Device::createCommandPool" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueCommandPool Device::createCommandPoolUnique( const CommandPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
CommandPoolDeleter deleter( *this, allocator );
return UniqueCommandPool( createCommandPool( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyCommandPool( CommandPool commandPool, const AllocationCallbacks* pAllocator ) const
{
vkDestroyCommandPool( m_device, static_cast<VkCommandPool>( commandPool ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyCommandPool( CommandPool commandPool, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyCommandPool( m_device, static_cast<VkCommandPool>( commandPool ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::resetCommandPool( CommandPool commandPool, CommandPoolResetFlags flags ) const
{
return static_cast<Result>( vkResetCommandPool( m_device, static_cast<VkCommandPool>( commandPool ), static_cast<VkCommandPoolResetFlags>( flags ) ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type Device::resetCommandPool( CommandPool commandPool, CommandPoolResetFlags flags ) const
{
Result result = static_cast<Result>( vkResetCommandPool( m_device, static_cast<VkCommandPool>( commandPool ), static_cast<VkCommandPoolResetFlags>( flags ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::resetCommandPool" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::allocateCommandBuffers( const CommandBufferAllocateInfo* pAllocateInfo, CommandBuffer* pCommandBuffers ) const
{
return static_cast<Result>( vkAllocateCommandBuffers( m_device, reinterpret_cast<const VkCommandBufferAllocateInfo*>( pAllocateInfo ), reinterpret_cast<VkCommandBuffer*>( pCommandBuffers ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<CommandBuffer,Allocator>>::type Device::allocateCommandBuffers( const CommandBufferAllocateInfo & allocateInfo ) const
{
std::vector<CommandBuffer,Allocator> commandBuffers( allocateInfo.commandBufferCount );
Result result = static_cast<Result>( vkAllocateCommandBuffers( m_device, reinterpret_cast<const VkCommandBufferAllocateInfo*>( &allocateInfo ), reinterpret_cast<VkCommandBuffer*>( commandBuffers.data() ) ) );
return createResultValue( result, commandBuffers, "VULKAN_HPP_NAMESPACE::Device::allocateCommandBuffers" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<UniqueCommandBuffer> Device::allocateCommandBuffersUnique( const CommandBufferAllocateInfo & allocateInfo ) const
{
CommandBufferDeleter deleter( *this, allocateInfo.commandPool );
std::vector<CommandBuffer,Allocator> commandBuffers = allocateCommandBuffers( allocateInfo );
std::vector<UniqueCommandBuffer> uniqueCommandBuffers;
uniqueCommandBuffers.reserve( commandBuffers.size() );
for ( auto commandBuffer : commandBuffers )
{
uniqueCommandBuffers.push_back( UniqueCommandBuffer( commandBuffer, deleter ) );
}
return uniqueCommandBuffers;
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::freeCommandBuffers( CommandPool commandPool, uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers ) const
{
vkFreeCommandBuffers( m_device, static_cast<VkCommandPool>( commandPool ), commandBufferCount, reinterpret_cast<const VkCommandBuffer*>( pCommandBuffers ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::freeCommandBuffers( CommandPool commandPool, ArrayProxy<const CommandBuffer> commandBuffers ) const
{
vkFreeCommandBuffers( m_device, static_cast<VkCommandPool>( commandPool ), commandBuffers.size() , reinterpret_cast<const VkCommandBuffer*>( commandBuffers.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createSharedSwapchainsKHR( uint32_t swapchainCount, const SwapchainCreateInfoKHR* pCreateInfos, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchains ) const
{
return static_cast<Result>( vkCreateSharedSwapchainsKHR( m_device, swapchainCount, reinterpret_cast<const VkSwapchainCreateInfoKHR*>( pCreateInfos ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSwapchainKHR*>( pSwapchains ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<SwapchainKHR,Allocator>>::type Device::createSharedSwapchainsKHR( ArrayProxy<const SwapchainCreateInfoKHR> createInfos, Optional<const AllocationCallbacks> allocator ) const
{
std::vector<SwapchainKHR,Allocator> swapchains( createInfos.size() );
Result result = static_cast<Result>( vkCreateSharedSwapchainsKHR( m_device, createInfos.size() , reinterpret_cast<const VkSwapchainCreateInfoKHR*>( createInfos.data() ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSwapchainKHR*>( swapchains.data() ) ) );
return createResultValue( result, swapchains, "VULKAN_HPP_NAMESPACE::Device::createSharedSwapchainsKHR" );
}
VULKAN_HPP_INLINE ResultValueType<SwapchainKHR>::type Device::createSharedSwapchainKHR( const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SwapchainKHR swapchain;
Result result = static_cast<Result>( vkCreateSharedSwapchainsKHR( m_device, 1 , reinterpret_cast<const VkSwapchainCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSwapchainKHR*>( &swapchain ) ) );
return createResultValue( result, swapchain, "VULKAN_HPP_NAMESPACE::Device::createSharedSwapchainKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<UniqueSwapchainKHR> Device::createSharedSwapchainsKHRUnique( ArrayProxy<const SwapchainCreateInfoKHR> createInfos, Optional<const AllocationCallbacks> allocator ) const
{
SwapchainKHRDeleter deleter( *this, allocator );
std::vector<SwapchainKHR,Allocator> swapchainKHRs = createSharedSwapchainsKHR( createInfos, allocator );
std::vector<UniqueSwapchainKHR> uniqueSwapchainKHRs;
uniqueSwapchainKHRs.reserve( swapchainKHRs.size() );
for ( auto swapchainKHR : swapchainKHRs )
{
uniqueSwapchainKHRs.push_back( UniqueSwapchainKHR( swapchainKHR, deleter ) );
}
return uniqueSwapchainKHRs;
}
VULKAN_HPP_INLINE UniqueSwapchainKHR Device::createSharedSwapchainKHRUnique( const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SwapchainKHRDeleter deleter( *this, allocator );
return UniqueSwapchainKHR( createSharedSwapchainKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createSwapchainKHR( const SwapchainCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchain ) const
{
return static_cast<Result>( vkCreateSwapchainKHR( m_device, reinterpret_cast<const VkSwapchainCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSwapchainKHR*>( pSwapchain ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SwapchainKHR>::type Device::createSwapchainKHR( const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SwapchainKHR swapchain;
Result result = static_cast<Result>( vkCreateSwapchainKHR( m_device, reinterpret_cast<const VkSwapchainCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSwapchainKHR*>( &swapchain ) ) );
return createResultValue( result, swapchain, "VULKAN_HPP_NAMESPACE::Device::createSwapchainKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSwapchainKHR Device::createSwapchainKHRUnique( const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SwapchainKHRDeleter deleter( *this, allocator );
return UniqueSwapchainKHR( createSwapchainKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroySwapchainKHR( SwapchainKHR swapchain, const AllocationCallbacks* pAllocator ) const
{
vkDestroySwapchainKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroySwapchainKHR( SwapchainKHR swapchain, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroySwapchainKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getSwapchainImagesKHR( SwapchainKHR swapchain, uint32_t* pSwapchainImageCount, Image* pSwapchainImages ) const
{
return static_cast<Result>( vkGetSwapchainImagesKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ), pSwapchainImageCount, reinterpret_cast<VkImage*>( pSwapchainImages ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<Image,Allocator>>::type Device::getSwapchainImagesKHR( SwapchainKHR swapchain ) const
{
std::vector<Image,Allocator> swapchainImages;
uint32_t swapchainImageCount;
Result result;
do
{
result = static_cast<Result>( vkGetSwapchainImagesKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ), &swapchainImageCount, nullptr ) );
if ( ( result == Result::eSuccess ) && swapchainImageCount )
{
swapchainImages.resize( swapchainImageCount );
result = static_cast<Result>( vkGetSwapchainImagesKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ), &swapchainImageCount, reinterpret_cast<VkImage*>( swapchainImages.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( swapchainImageCount <= swapchainImages.size() );
swapchainImages.resize( swapchainImageCount );
return createResultValue( result, swapchainImages, "VULKAN_HPP_NAMESPACE::Device::getSwapchainImagesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::acquireNextImageKHR( SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence, uint32_t* pImageIndex ) const
{
return static_cast<Result>( vkAcquireNextImageKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ), timeout, static_cast<VkSemaphore>( semaphore ), static_cast<VkFence>( fence ), pImageIndex ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValue<uint32_t> Device::acquireNextImageKHR( SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence ) const
{
uint32_t imageIndex;
Result result = static_cast<Result>( vkAcquireNextImageKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ), timeout, static_cast<VkSemaphore>( semaphore ), static_cast<VkFence>( fence ), &imageIndex ) );
return createResultValue( result, imageIndex, "VULKAN_HPP_NAMESPACE::Device::acquireNextImageKHR", { Result::eSuccess, Result::eTimeout, Result::eNotReady, Result::eSuboptimalKHR } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::debugMarkerSetObjectNameEXT( const DebugMarkerObjectNameInfoEXT* pNameInfo ) const
{
return static_cast<Result>( vkDebugMarkerSetObjectNameEXT( m_device, reinterpret_cast<const VkDebugMarkerObjectNameInfoEXT*>( pNameInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::debugMarkerSetObjectNameEXT( const DebugMarkerObjectNameInfoEXT & nameInfo ) const
{
Result result = static_cast<Result>( vkDebugMarkerSetObjectNameEXT( m_device, reinterpret_cast<const VkDebugMarkerObjectNameInfoEXT*>( &nameInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::debugMarkerSetObjectNameEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::debugMarkerSetObjectTagEXT( const DebugMarkerObjectTagInfoEXT* pTagInfo ) const
{
return static_cast<Result>( vkDebugMarkerSetObjectTagEXT( m_device, reinterpret_cast<const VkDebugMarkerObjectTagInfoEXT*>( pTagInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::debugMarkerSetObjectTagEXT( const DebugMarkerObjectTagInfoEXT & tagInfo ) const
{
Result result = static_cast<Result>( vkDebugMarkerSetObjectTagEXT( m_device, reinterpret_cast<const VkDebugMarkerObjectTagInfoEXT*>( &tagInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::debugMarkerSetObjectTagEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Result Device::getMemoryWin32HandleNV( DeviceMemory memory, ExternalMemoryHandleTypeFlagsNV handleType, HANDLE* pHandle ) const
{
return static_cast<Result>( vkGetMemoryWin32HandleNV( m_device, static_cast<VkDeviceMemory>( memory ), static_cast<VkExternalMemoryHandleTypeFlagsNV>( handleType ), pHandle ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<HANDLE>::type Device::getMemoryWin32HandleNV( DeviceMemory memory, ExternalMemoryHandleTypeFlagsNV handleType ) const
{
HANDLE handle;
Result result = static_cast<Result>( vkGetMemoryWin32HandleNV( m_device, static_cast<VkDeviceMemory>( memory ), static_cast<VkExternalMemoryHandleTypeFlagsNV>( handleType ), &handle ) );
return createResultValue( result, handle, "VULKAN_HPP_NAMESPACE::Device::getMemoryWin32HandleNV" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
VULKAN_HPP_INLINE Result Device::createIndirectCommandsLayoutNVX( const IndirectCommandsLayoutCreateInfoNVX* pCreateInfo, const AllocationCallbacks* pAllocator, IndirectCommandsLayoutNVX* pIndirectCommandsLayout ) const
{
return static_cast<Result>( vkCreateIndirectCommandsLayoutNVX( m_device, reinterpret_cast<const VkIndirectCommandsLayoutCreateInfoNVX*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkIndirectCommandsLayoutNVX*>( pIndirectCommandsLayout ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<IndirectCommandsLayoutNVX>::type Device::createIndirectCommandsLayoutNVX( const IndirectCommandsLayoutCreateInfoNVX & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
IndirectCommandsLayoutNVX indirectCommandsLayout;
Result result = static_cast<Result>( vkCreateIndirectCommandsLayoutNVX( m_device, reinterpret_cast<const VkIndirectCommandsLayoutCreateInfoNVX*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkIndirectCommandsLayoutNVX*>( &indirectCommandsLayout ) ) );
return createResultValue( result, indirectCommandsLayout, "VULKAN_HPP_NAMESPACE::Device::createIndirectCommandsLayoutNVX" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueIndirectCommandsLayoutNVX Device::createIndirectCommandsLayoutNVXUnique( const IndirectCommandsLayoutCreateInfoNVX & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
IndirectCommandsLayoutNVXDeleter deleter( *this, allocator );
return UniqueIndirectCommandsLayoutNVX( createIndirectCommandsLayoutNVX( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyIndirectCommandsLayoutNVX( IndirectCommandsLayoutNVX indirectCommandsLayout, const AllocationCallbacks* pAllocator ) const
{
vkDestroyIndirectCommandsLayoutNVX( m_device, static_cast<VkIndirectCommandsLayoutNVX>( indirectCommandsLayout ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyIndirectCommandsLayoutNVX( IndirectCommandsLayoutNVX indirectCommandsLayout, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyIndirectCommandsLayoutNVX( m_device, static_cast<VkIndirectCommandsLayoutNVX>( indirectCommandsLayout ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createObjectTableNVX( const ObjectTableCreateInfoNVX* pCreateInfo, const AllocationCallbacks* pAllocator, ObjectTableNVX* pObjectTable ) const
{
return static_cast<Result>( vkCreateObjectTableNVX( m_device, reinterpret_cast<const VkObjectTableCreateInfoNVX*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkObjectTableNVX*>( pObjectTable ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<ObjectTableNVX>::type Device::createObjectTableNVX( const ObjectTableCreateInfoNVX & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ObjectTableNVX objectTable;
Result result = static_cast<Result>( vkCreateObjectTableNVX( m_device, reinterpret_cast<const VkObjectTableCreateInfoNVX*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkObjectTableNVX*>( &objectTable ) ) );
return createResultValue( result, objectTable, "VULKAN_HPP_NAMESPACE::Device::createObjectTableNVX" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueObjectTableNVX Device::createObjectTableNVXUnique( const ObjectTableCreateInfoNVX & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ObjectTableNVXDeleter deleter( *this, allocator );
return UniqueObjectTableNVX( createObjectTableNVX( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyObjectTableNVX( ObjectTableNVX objectTable, const AllocationCallbacks* pAllocator ) const
{
vkDestroyObjectTableNVX( m_device, static_cast<VkObjectTableNVX>( objectTable ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyObjectTableNVX( ObjectTableNVX objectTable, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyObjectTableNVX( m_device, static_cast<VkObjectTableNVX>( objectTable ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::registerObjectsNVX( ObjectTableNVX objectTable, uint32_t objectCount, const ObjectTableEntryNVX* const* ppObjectTableEntries, const uint32_t* pObjectIndices ) const
{
return static_cast<Result>( vkRegisterObjectsNVX( m_device, static_cast<VkObjectTableNVX>( objectTable ), objectCount, reinterpret_cast<const VkObjectTableEntryNVX* const*>( ppObjectTableEntries ), pObjectIndices ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::registerObjectsNVX( ObjectTableNVX objectTable, ArrayProxy<const ObjectTableEntryNVX* const> pObjectTableEntries, ArrayProxy<const uint32_t> objectIndices ) const
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( pObjectTableEntries.size() == objectIndices.size() );
#else
if ( pObjectTableEntries.size() != objectIndices.size() )
{
throw LogicError( "VULKAN_HPP_NAMESPACE::Device::registerObjectsNVX: pObjectTableEntries.size() != objectIndices.size()" );
}
#endif // VULKAN_HPP_NO_EXCEPTIONS
Result result = static_cast<Result>( vkRegisterObjectsNVX( m_device, static_cast<VkObjectTableNVX>( objectTable ), pObjectTableEntries.size() , reinterpret_cast<const VkObjectTableEntryNVX* const*>( pObjectTableEntries.data() ), objectIndices.data() ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::registerObjectsNVX" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::unregisterObjectsNVX( ObjectTableNVX objectTable, uint32_t objectCount, const ObjectEntryTypeNVX* pObjectEntryTypes, const uint32_t* pObjectIndices ) const
{
return static_cast<Result>( vkUnregisterObjectsNVX( m_device, static_cast<VkObjectTableNVX>( objectTable ), objectCount, reinterpret_cast<const VkObjectEntryTypeNVX*>( pObjectEntryTypes ), pObjectIndices ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::unregisterObjectsNVX( ObjectTableNVX objectTable, ArrayProxy<const ObjectEntryTypeNVX> objectEntryTypes, ArrayProxy<const uint32_t> objectIndices ) const
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( objectEntryTypes.size() == objectIndices.size() );
#else
if ( objectEntryTypes.size() != objectIndices.size() )
{
throw LogicError( "VULKAN_HPP_NAMESPACE::Device::unregisterObjectsNVX: objectEntryTypes.size() != objectIndices.size()" );
}
#endif // VULKAN_HPP_NO_EXCEPTIONS
Result result = static_cast<Result>( vkUnregisterObjectsNVX( m_device, static_cast<VkObjectTableNVX>( objectTable ), objectEntryTypes.size() , reinterpret_cast<const VkObjectEntryTypeNVX*>( objectEntryTypes.data() ), objectIndices.data() ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::unregisterObjectsNVX" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::trimCommandPoolKHR( CommandPool commandPool, CommandPoolTrimFlagsKHR flags ) const
{
vkTrimCommandPoolKHR( m_device, static_cast<VkCommandPool>( commandPool ), static_cast<VkCommandPoolTrimFlagsKHR>( flags ) );
}
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Result Device::getMemoryWin32HandleKHR( const MemoryGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const
{
return static_cast<Result>( vkGetMemoryWin32HandleKHR( m_device, reinterpret_cast<const VkMemoryGetWin32HandleInfoKHR*>( pGetWin32HandleInfo ), pHandle ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<HANDLE>::type Device::getMemoryWin32HandleKHR( const MemoryGetWin32HandleInfoKHR & getWin32HandleInfo ) const
{
HANDLE handle;
Result result = static_cast<Result>( vkGetMemoryWin32HandleKHR( m_device, reinterpret_cast<const VkMemoryGetWin32HandleInfoKHR*>( &getWin32HandleInfo ), &handle ) );
return createResultValue( result, handle, "VULKAN_HPP_NAMESPACE::Device::getMemoryWin32HandleKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Result Device::getMemoryWin32HandlePropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, HANDLE handle, MemoryWin32HandlePropertiesKHR* pMemoryWin32HandleProperties ) const
{
return static_cast<Result>( vkGetMemoryWin32HandlePropertiesKHR( m_device, static_cast<VkExternalMemoryHandleTypeFlagBitsKHR>( handleType ), handle, reinterpret_cast<VkMemoryWin32HandlePropertiesKHR*>( pMemoryWin32HandleProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<MemoryWin32HandlePropertiesKHR>::type Device::getMemoryWin32HandlePropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, HANDLE handle ) const
{
MemoryWin32HandlePropertiesKHR memoryWin32HandleProperties;
Result result = static_cast<Result>( vkGetMemoryWin32HandlePropertiesKHR( m_device, static_cast<VkExternalMemoryHandleTypeFlagBitsKHR>( handleType ), handle, reinterpret_cast<VkMemoryWin32HandlePropertiesKHR*>( &memoryWin32HandleProperties ) ) );
return createResultValue( result, memoryWin32HandleProperties, "VULKAN_HPP_NAMESPACE::Device::getMemoryWin32HandlePropertiesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
VULKAN_HPP_INLINE Result Device::getMemoryFdKHR( const MemoryGetFdInfoKHR* pGetFdInfo, int* pFd ) const
{
return static_cast<Result>( vkGetMemoryFdKHR( m_device, reinterpret_cast<const VkMemoryGetFdInfoKHR*>( pGetFdInfo ), pFd ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<int>::type Device::getMemoryFdKHR( const MemoryGetFdInfoKHR & getFdInfo ) const
{
int fd;
Result result = static_cast<Result>( vkGetMemoryFdKHR( m_device, reinterpret_cast<const VkMemoryGetFdInfoKHR*>( &getFdInfo ), &fd ) );
return createResultValue( result, fd, "VULKAN_HPP_NAMESPACE::Device::getMemoryFdKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getMemoryFdPropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, int fd, MemoryFdPropertiesKHR* pMemoryFdProperties ) const
{
return static_cast<Result>( vkGetMemoryFdPropertiesKHR( m_device, static_cast<VkExternalMemoryHandleTypeFlagBitsKHR>( handleType ), fd, reinterpret_cast<VkMemoryFdPropertiesKHR*>( pMemoryFdProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<MemoryFdPropertiesKHR>::type Device::getMemoryFdPropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, int fd ) const
{
MemoryFdPropertiesKHR memoryFdProperties;
Result result = static_cast<Result>( vkGetMemoryFdPropertiesKHR( m_device, static_cast<VkExternalMemoryHandleTypeFlagBitsKHR>( handleType ), fd, reinterpret_cast<VkMemoryFdPropertiesKHR*>( &memoryFdProperties ) ) );
return createResultValue( result, memoryFdProperties, "VULKAN_HPP_NAMESPACE::Device::getMemoryFdPropertiesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Result Device::getSemaphoreWin32HandleKHR( const SemaphoreGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const
{
return static_cast<Result>( vkGetSemaphoreWin32HandleKHR( m_device, reinterpret_cast<const VkSemaphoreGetWin32HandleInfoKHR*>( pGetWin32HandleInfo ), pHandle ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<HANDLE>::type Device::getSemaphoreWin32HandleKHR( const SemaphoreGetWin32HandleInfoKHR & getWin32HandleInfo ) const
{
HANDLE handle;
Result result = static_cast<Result>( vkGetSemaphoreWin32HandleKHR( m_device, reinterpret_cast<const VkSemaphoreGetWin32HandleInfoKHR*>( &getWin32HandleInfo ), &handle ) );
return createResultValue( result, handle, "VULKAN_HPP_NAMESPACE::Device::getSemaphoreWin32HandleKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Result Device::importSemaphoreWin32HandleKHR( const ImportSemaphoreWin32HandleInfoKHR* pImportSemaphoreWin32HandleInfo ) const
{
return static_cast<Result>( vkImportSemaphoreWin32HandleKHR( m_device, reinterpret_cast<const VkImportSemaphoreWin32HandleInfoKHR*>( pImportSemaphoreWin32HandleInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::importSemaphoreWin32HandleKHR( const ImportSemaphoreWin32HandleInfoKHR & importSemaphoreWin32HandleInfo ) const
{
Result result = static_cast<Result>( vkImportSemaphoreWin32HandleKHR( m_device, reinterpret_cast<const VkImportSemaphoreWin32HandleInfoKHR*>( &importSemaphoreWin32HandleInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::importSemaphoreWin32HandleKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
VULKAN_HPP_INLINE Result Device::getSemaphoreFdKHR( const SemaphoreGetFdInfoKHR* pGetFdInfo, int* pFd ) const
{
return static_cast<Result>( vkGetSemaphoreFdKHR( m_device, reinterpret_cast<const VkSemaphoreGetFdInfoKHR*>( pGetFdInfo ), pFd ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<int>::type Device::getSemaphoreFdKHR( const SemaphoreGetFdInfoKHR & getFdInfo ) const
{
int fd;
Result result = static_cast<Result>( vkGetSemaphoreFdKHR( m_device, reinterpret_cast<const VkSemaphoreGetFdInfoKHR*>( &getFdInfo ), &fd ) );
return createResultValue( result, fd, "VULKAN_HPP_NAMESPACE::Device::getSemaphoreFdKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::importSemaphoreFdKHR( const ImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo ) const
{
return static_cast<Result>( vkImportSemaphoreFdKHR( m_device, reinterpret_cast<const VkImportSemaphoreFdInfoKHR*>( pImportSemaphoreFdInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::importSemaphoreFdKHR( const ImportSemaphoreFdInfoKHR & importSemaphoreFdInfo ) const
{
Result result = static_cast<Result>( vkImportSemaphoreFdKHR( m_device, reinterpret_cast<const VkImportSemaphoreFdInfoKHR*>( &importSemaphoreFdInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::importSemaphoreFdKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Result Device::getFenceWin32HandleKHR( const FenceGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const
{
return static_cast<Result>( vkGetFenceWin32HandleKHR( m_device, reinterpret_cast<const VkFenceGetWin32HandleInfoKHR*>( pGetWin32HandleInfo ), pHandle ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<HANDLE>::type Device::getFenceWin32HandleKHR( const FenceGetWin32HandleInfoKHR & getWin32HandleInfo ) const
{
HANDLE handle;
Result result = static_cast<Result>( vkGetFenceWin32HandleKHR( m_device, reinterpret_cast<const VkFenceGetWin32HandleInfoKHR*>( &getWin32HandleInfo ), &handle ) );
return createResultValue( result, handle, "VULKAN_HPP_NAMESPACE::Device::getFenceWin32HandleKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Result Device::importFenceWin32HandleKHR( const ImportFenceWin32HandleInfoKHR* pImportFenceWin32HandleInfo ) const
{
return static_cast<Result>( vkImportFenceWin32HandleKHR( m_device, reinterpret_cast<const VkImportFenceWin32HandleInfoKHR*>( pImportFenceWin32HandleInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::importFenceWin32HandleKHR( const ImportFenceWin32HandleInfoKHR & importFenceWin32HandleInfo ) const
{
Result result = static_cast<Result>( vkImportFenceWin32HandleKHR( m_device, reinterpret_cast<const VkImportFenceWin32HandleInfoKHR*>( &importFenceWin32HandleInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::importFenceWin32HandleKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
VULKAN_HPP_INLINE Result Device::getFenceFdKHR( const FenceGetFdInfoKHR* pGetFdInfo, int* pFd ) const
{
return static_cast<Result>( vkGetFenceFdKHR( m_device, reinterpret_cast<const VkFenceGetFdInfoKHR*>( pGetFdInfo ), pFd ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<int>::type Device::getFenceFdKHR( const FenceGetFdInfoKHR & getFdInfo ) const
{
int fd;
Result result = static_cast<Result>( vkGetFenceFdKHR( m_device, reinterpret_cast<const VkFenceGetFdInfoKHR*>( &getFdInfo ), &fd ) );
return createResultValue( result, fd, "VULKAN_HPP_NAMESPACE::Device::getFenceFdKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::importFenceFdKHR( const ImportFenceFdInfoKHR* pImportFenceFdInfo ) const
{
return static_cast<Result>( vkImportFenceFdKHR( m_device, reinterpret_cast<const VkImportFenceFdInfoKHR*>( pImportFenceFdInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::importFenceFdKHR( const ImportFenceFdInfoKHR & importFenceFdInfo ) const
{
Result result = static_cast<Result>( vkImportFenceFdKHR( m_device, reinterpret_cast<const VkImportFenceFdInfoKHR*>( &importFenceFdInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::importFenceFdKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::displayPowerControlEXT( DisplayKHR display, const DisplayPowerInfoEXT* pDisplayPowerInfo ) const
{
return static_cast<Result>( vkDisplayPowerControlEXT( m_device, static_cast<VkDisplayKHR>( display ), reinterpret_cast<const VkDisplayPowerInfoEXT*>( pDisplayPowerInfo ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::displayPowerControlEXT( DisplayKHR display, const DisplayPowerInfoEXT & displayPowerInfo ) const
{
Result result = static_cast<Result>( vkDisplayPowerControlEXT( m_device, static_cast<VkDisplayKHR>( display ), reinterpret_cast<const VkDisplayPowerInfoEXT*>( &displayPowerInfo ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::displayPowerControlEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::registerEventEXT( const DeviceEventInfoEXT* pDeviceEventInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const
{
return static_cast<Result>( vkRegisterDeviceEventEXT( m_device, reinterpret_cast<const VkDeviceEventInfoEXT*>( pDeviceEventInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkFence*>( pFence ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Fence>::type Device::registerEventEXT( const DeviceEventInfoEXT & deviceEventInfo, Optional<const AllocationCallbacks> allocator ) const
{
Fence fence;
Result result = static_cast<Result>( vkRegisterDeviceEventEXT( m_device, reinterpret_cast<const VkDeviceEventInfoEXT*>( &deviceEventInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkFence*>( &fence ) ) );
return createResultValue( result, fence, "VULKAN_HPP_NAMESPACE::Device::registerEventEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::registerDisplayEventEXT( DisplayKHR display, const DisplayEventInfoEXT* pDisplayEventInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const
{
return static_cast<Result>( vkRegisterDisplayEventEXT( m_device, static_cast<VkDisplayKHR>( display ), reinterpret_cast<const VkDisplayEventInfoEXT*>( pDisplayEventInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkFence*>( pFence ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Fence>::type Device::registerDisplayEventEXT( DisplayKHR display, const DisplayEventInfoEXT & displayEventInfo, Optional<const AllocationCallbacks> allocator ) const
{
Fence fence;
Result result = static_cast<Result>( vkRegisterDisplayEventEXT( m_device, static_cast<VkDisplayKHR>( display ), reinterpret_cast<const VkDisplayEventInfoEXT*>( &displayEventInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkFence*>( &fence ) ) );
return createResultValue( result, fence, "VULKAN_HPP_NAMESPACE::Device::registerDisplayEventEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getSwapchainCounterEXT( SwapchainKHR swapchain, SurfaceCounterFlagBitsEXT counter, uint64_t* pCounterValue ) const
{
return static_cast<Result>( vkGetSwapchainCounterEXT( m_device, static_cast<VkSwapchainKHR>( swapchain ), static_cast<VkSurfaceCounterFlagBitsEXT>( counter ), pCounterValue ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValue<uint64_t> Device::getSwapchainCounterEXT( SwapchainKHR swapchain, SurfaceCounterFlagBitsEXT counter ) const
{
uint64_t counterValue;
Result result = static_cast<Result>( vkGetSwapchainCounterEXT( m_device, static_cast<VkSwapchainKHR>( swapchain ), static_cast<VkSurfaceCounterFlagBitsEXT>( counter ), &counterValue ) );
return createResultValue( result, counterValue, "VULKAN_HPP_NAMESPACE::Device::getSwapchainCounterEXT", { Result::eSuccess, Result::eErrorDeviceLost, Result::eErrorOutOfDateKHR } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getGroupPeerMemoryFeaturesKHX( uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, PeerMemoryFeatureFlagsKHX* pPeerMemoryFeatures ) const
{
vkGetDeviceGroupPeerMemoryFeaturesKHX( m_device, heapIndex, localDeviceIndex, remoteDeviceIndex, reinterpret_cast<VkPeerMemoryFeatureFlagsKHX*>( pPeerMemoryFeatures ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PeerMemoryFeatureFlagsKHX Device::getGroupPeerMemoryFeaturesKHX( uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex ) const
{
PeerMemoryFeatureFlagsKHX peerMemoryFeatures;
vkGetDeviceGroupPeerMemoryFeaturesKHX( m_device, heapIndex, localDeviceIndex, remoteDeviceIndex, reinterpret_cast<VkPeerMemoryFeatureFlagsKHX*>( &peerMemoryFeatures ) );
return peerMemoryFeatures;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::bindBufferMemory2KHR( uint32_t bindInfoCount, const BindBufferMemoryInfoKHR* pBindInfos ) const
{
return static_cast<Result>( vkBindBufferMemory2KHR( m_device, bindInfoCount, reinterpret_cast<const VkBindBufferMemoryInfoKHR*>( pBindInfos ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::bindBufferMemory2KHR( ArrayProxy<const BindBufferMemoryInfoKHR> bindInfos ) const
{
Result result = static_cast<Result>( vkBindBufferMemory2KHR( m_device, bindInfos.size() , reinterpret_cast<const VkBindBufferMemoryInfoKHR*>( bindInfos.data() ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::bindBufferMemory2KHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::bindImageMemory2KHR( uint32_t bindInfoCount, const BindImageMemoryInfoKHR* pBindInfos ) const
{
return static_cast<Result>( vkBindImageMemory2KHR( m_device, bindInfoCount, reinterpret_cast<const VkBindImageMemoryInfoKHR*>( pBindInfos ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::bindImageMemory2KHR( ArrayProxy<const BindImageMemoryInfoKHR> bindInfos ) const
{
Result result = static_cast<Result>( vkBindImageMemory2KHR( m_device, bindInfos.size() , reinterpret_cast<const VkBindImageMemoryInfoKHR*>( bindInfos.data() ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::bindImageMemory2KHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getGroupPresentCapabilitiesKHX( DeviceGroupPresentCapabilitiesKHX* pDeviceGroupPresentCapabilities ) const
{
return static_cast<Result>( vkGetDeviceGroupPresentCapabilitiesKHX( m_device, reinterpret_cast<VkDeviceGroupPresentCapabilitiesKHX*>( pDeviceGroupPresentCapabilities ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DeviceGroupPresentCapabilitiesKHX>::type Device::getGroupPresentCapabilitiesKHX() const
{
DeviceGroupPresentCapabilitiesKHX deviceGroupPresentCapabilities;
Result result = static_cast<Result>( vkGetDeviceGroupPresentCapabilitiesKHX( m_device, reinterpret_cast<VkDeviceGroupPresentCapabilitiesKHX*>( &deviceGroupPresentCapabilities ) ) );
return createResultValue( result, deviceGroupPresentCapabilities, "VULKAN_HPP_NAMESPACE::Device::getGroupPresentCapabilitiesKHX" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getGroupSurfacePresentModesKHX( SurfaceKHR surface, DeviceGroupPresentModeFlagsKHX* pModes ) const
{
return static_cast<Result>( vkGetDeviceGroupSurfacePresentModesKHX( m_device, static_cast<VkSurfaceKHR>( surface ), reinterpret_cast<VkDeviceGroupPresentModeFlagsKHX*>( pModes ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DeviceGroupPresentModeFlagsKHX>::type Device::getGroupSurfacePresentModesKHX( SurfaceKHR surface ) const
{
DeviceGroupPresentModeFlagsKHX modes;
Result result = static_cast<Result>( vkGetDeviceGroupSurfacePresentModesKHX( m_device, static_cast<VkSurfaceKHR>( surface ), reinterpret_cast<VkDeviceGroupPresentModeFlagsKHX*>( &modes ) ) );
return createResultValue( result, modes, "VULKAN_HPP_NAMESPACE::Device::getGroupSurfacePresentModesKHX" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::acquireNextImage2KHX( const AcquireNextImageInfoKHX* pAcquireInfo, uint32_t* pImageIndex ) const
{
return static_cast<Result>( vkAcquireNextImage2KHX( m_device, reinterpret_cast<const VkAcquireNextImageInfoKHX*>( pAcquireInfo ), pImageIndex ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValue<uint32_t> Device::acquireNextImage2KHX( const AcquireNextImageInfoKHX & acquireInfo ) const
{
uint32_t imageIndex;
Result result = static_cast<Result>( vkAcquireNextImage2KHX( m_device, reinterpret_cast<const VkAcquireNextImageInfoKHX*>( &acquireInfo ), &imageIndex ) );
return createResultValue( result, imageIndex, "VULKAN_HPP_NAMESPACE::Device::acquireNextImage2KHX", { Result::eSuccess, Result::eTimeout, Result::eNotReady, Result::eSuboptimalKHR } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createDescriptorUpdateTemplateKHR( const DescriptorUpdateTemplateCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorUpdateTemplateKHR* pDescriptorUpdateTemplate ) const
{
return static_cast<Result>( vkCreateDescriptorUpdateTemplateKHR( m_device, reinterpret_cast<const VkDescriptorUpdateTemplateCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkDescriptorUpdateTemplateKHR*>( pDescriptorUpdateTemplate ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DescriptorUpdateTemplateKHR>::type Device::createDescriptorUpdateTemplateKHR( const DescriptorUpdateTemplateCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DescriptorUpdateTemplateKHR descriptorUpdateTemplate;
Result result = static_cast<Result>( vkCreateDescriptorUpdateTemplateKHR( m_device, reinterpret_cast<const VkDescriptorUpdateTemplateCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkDescriptorUpdateTemplateKHR*>( &descriptorUpdateTemplate ) ) );
return createResultValue( result, descriptorUpdateTemplate, "VULKAN_HPP_NAMESPACE::Device::createDescriptorUpdateTemplateKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueDescriptorUpdateTemplateKHR Device::createDescriptorUpdateTemplateKHRUnique( const DescriptorUpdateTemplateCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DescriptorUpdateTemplateKHRDeleter deleter( *this, allocator );
return UniqueDescriptorUpdateTemplateKHR( createDescriptorUpdateTemplateKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyDescriptorUpdateTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, const AllocationCallbacks* pAllocator ) const
{
vkDestroyDescriptorUpdateTemplateKHR( m_device, static_cast<VkDescriptorUpdateTemplateKHR>( descriptorUpdateTemplate ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyDescriptorUpdateTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyDescriptorUpdateTemplateKHR( m_device, static_cast<VkDescriptorUpdateTemplateKHR>( descriptorUpdateTemplate ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::updateDescriptorSetWithTemplateKHR( DescriptorSet descriptorSet, DescriptorUpdateTemplateKHR descriptorUpdateTemplate, const void* pData ) const
{
vkUpdateDescriptorSetWithTemplateKHR( m_device, static_cast<VkDescriptorSet>( descriptorSet ), static_cast<VkDescriptorUpdateTemplateKHR>( descriptorUpdateTemplate ), pData );
}
VULKAN_HPP_INLINE void Device::setHdrMetadataEXT( uint32_t swapchainCount, const SwapchainKHR* pSwapchains, const HdrMetadataEXT* pMetadata ) const
{
vkSetHdrMetadataEXT( m_device, swapchainCount, reinterpret_cast<const VkSwapchainKHR*>( pSwapchains ), reinterpret_cast<const VkHdrMetadataEXT*>( pMetadata ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::setHdrMetadataEXT( ArrayProxy<const SwapchainKHR> swapchains, ArrayProxy<const HdrMetadataEXT> metadata ) const
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( swapchains.size() == metadata.size() );
#else
if ( swapchains.size() != metadata.size() )
{
throw LogicError( "VULKAN_HPP_NAMESPACE::Device::setHdrMetadataEXT: swapchains.size() != metadata.size()" );
}
#endif // VULKAN_HPP_NO_EXCEPTIONS
vkSetHdrMetadataEXT( m_device, swapchains.size() , reinterpret_cast<const VkSwapchainKHR*>( swapchains.data() ), reinterpret_cast<const VkHdrMetadataEXT*>( metadata.data() ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result Device::getSwapchainStatusKHR( SwapchainKHR swapchain ) const
{
return static_cast<Result>( vkGetSwapchainStatusKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ) ) );
}
#else
VULKAN_HPP_INLINE Result Device::getSwapchainStatusKHR( SwapchainKHR swapchain ) const
{
Result result = static_cast<Result>( vkGetSwapchainStatusKHR( m_device, static_cast<VkSwapchainKHR>( swapchain ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::getSwapchainStatusKHR", { Result::eSuccess, Result::eSuboptimalKHR } );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getRefreshCycleDurationGOOGLE( SwapchainKHR swapchain, RefreshCycleDurationGOOGLE* pDisplayTimingProperties ) const
{
return static_cast<Result>( vkGetRefreshCycleDurationGOOGLE( m_device, static_cast<VkSwapchainKHR>( swapchain ), reinterpret_cast<VkRefreshCycleDurationGOOGLE*>( pDisplayTimingProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<RefreshCycleDurationGOOGLE>::type Device::getRefreshCycleDurationGOOGLE( SwapchainKHR swapchain ) const
{
RefreshCycleDurationGOOGLE displayTimingProperties;
Result result = static_cast<Result>( vkGetRefreshCycleDurationGOOGLE( m_device, static_cast<VkSwapchainKHR>( swapchain ), reinterpret_cast<VkRefreshCycleDurationGOOGLE*>( &displayTimingProperties ) ) );
return createResultValue( result, displayTimingProperties, "VULKAN_HPP_NAMESPACE::Device::getRefreshCycleDurationGOOGLE" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getPastPresentationTimingGOOGLE( SwapchainKHR swapchain, uint32_t* pPresentationTimingCount, PastPresentationTimingGOOGLE* pPresentationTimings ) const
{
return static_cast<Result>( vkGetPastPresentationTimingGOOGLE( m_device, static_cast<VkSwapchainKHR>( swapchain ), pPresentationTimingCount, reinterpret_cast<VkPastPresentationTimingGOOGLE*>( pPresentationTimings ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<PastPresentationTimingGOOGLE,Allocator>>::type Device::getPastPresentationTimingGOOGLE( SwapchainKHR swapchain ) const
{
std::vector<PastPresentationTimingGOOGLE,Allocator> presentationTimings;
uint32_t presentationTimingCount;
Result result = static_cast<Result>( vkGetPastPresentationTimingGOOGLE( m_device, static_cast<VkSwapchainKHR>( swapchain ), &presentationTimingCount, nullptr ) );
if ( ( result == Result::eSuccess ) && presentationTimingCount )
{
presentationTimings.resize( presentationTimingCount );
result = static_cast<Result>( vkGetPastPresentationTimingGOOGLE( m_device, static_cast<VkSwapchainKHR>( swapchain ), &presentationTimingCount, reinterpret_cast<VkPastPresentationTimingGOOGLE*>( presentationTimings.data() ) ) );
}
return createResultValue( result, presentationTimings, "VULKAN_HPP_NAMESPACE::Device::getPastPresentationTimingGOOGLE" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR* pInfo, MemoryRequirements2KHR* pMemoryRequirements ) const
{
vkGetBufferMemoryRequirements2KHR( m_device, reinterpret_cast<const VkBufferMemoryRequirementsInfo2KHR*>( pInfo ), reinterpret_cast<VkMemoryRequirements2KHR*>( pMemoryRequirements ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE MemoryRequirements2KHR Device::getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR & info ) const
{
MemoryRequirements2KHR memoryRequirements;
vkGetBufferMemoryRequirements2KHR( m_device, reinterpret_cast<const VkBufferMemoryRequirementsInfo2KHR*>( &info ), reinterpret_cast<VkMemoryRequirements2KHR*>( &memoryRequirements ) );
return memoryRequirements;
}
template <typename ...T>
VULKAN_HPP_INLINE StructureChain<T...> Device::getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR & info ) const
{
StructureChain<T...> structureChain;
MemoryRequirements2KHR& memoryRequirements = structureChain.template get<MemoryRequirements2KHR>();
vkGetBufferMemoryRequirements2KHR( m_device, reinterpret_cast<const VkBufferMemoryRequirementsInfo2KHR*>( &info ), reinterpret_cast<VkMemoryRequirements2KHR*>( &memoryRequirements ) );
return structureChain;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR* pInfo, MemoryRequirements2KHR* pMemoryRequirements ) const
{
vkGetImageMemoryRequirements2KHR( m_device, reinterpret_cast<const VkImageMemoryRequirementsInfo2KHR*>( pInfo ), reinterpret_cast<VkMemoryRequirements2KHR*>( pMemoryRequirements ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE MemoryRequirements2KHR Device::getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR & info ) const
{
MemoryRequirements2KHR memoryRequirements;
vkGetImageMemoryRequirements2KHR( m_device, reinterpret_cast<const VkImageMemoryRequirementsInfo2KHR*>( &info ), reinterpret_cast<VkMemoryRequirements2KHR*>( &memoryRequirements ) );
return memoryRequirements;
}
template <typename ...T>
VULKAN_HPP_INLINE StructureChain<T...> Device::getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR & info ) const
{
StructureChain<T...> structureChain;
MemoryRequirements2KHR& memoryRequirements = structureChain.template get<MemoryRequirements2KHR>();
vkGetImageMemoryRequirements2KHR( m_device, reinterpret_cast<const VkImageMemoryRequirementsInfo2KHR*>( &info ), reinterpret_cast<VkMemoryRequirements2KHR*>( &memoryRequirements ) );
return structureChain;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::getImageSparseMemoryRequirements2KHR( const ImageSparseMemoryRequirementsInfo2KHR* pInfo, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements2KHR* pSparseMemoryRequirements ) const
{
vkGetImageSparseMemoryRequirements2KHR( m_device, reinterpret_cast<const VkImageSparseMemoryRequirementsInfo2KHR*>( pInfo ), pSparseMemoryRequirementCount, reinterpret_cast<VkSparseImageMemoryRequirements2KHR*>( pSparseMemoryRequirements ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<SparseImageMemoryRequirements2KHR,Allocator> Device::getImageSparseMemoryRequirements2KHR( const ImageSparseMemoryRequirementsInfo2KHR & info ) const
{
std::vector<SparseImageMemoryRequirements2KHR,Allocator> sparseMemoryRequirements;
uint32_t sparseMemoryRequirementCount;
vkGetImageSparseMemoryRequirements2KHR( m_device, reinterpret_cast<const VkImageSparseMemoryRequirementsInfo2KHR*>( &info ), &sparseMemoryRequirementCount, nullptr );
sparseMemoryRequirements.resize( sparseMemoryRequirementCount );
vkGetImageSparseMemoryRequirements2KHR( m_device, reinterpret_cast<const VkImageSparseMemoryRequirementsInfo2KHR*>( &info ), &sparseMemoryRequirementCount, reinterpret_cast<VkSparseImageMemoryRequirements2KHR*>( sparseMemoryRequirements.data() ) );
return sparseMemoryRequirements;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createSamplerYcbcrConversionKHR( const SamplerYcbcrConversionCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SamplerYcbcrConversionKHR* pYcbcrConversion ) const
{
return static_cast<Result>( vkCreateSamplerYcbcrConversionKHR( m_device, reinterpret_cast<const VkSamplerYcbcrConversionCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSamplerYcbcrConversionKHR*>( pYcbcrConversion ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SamplerYcbcrConversionKHR>::type Device::createSamplerYcbcrConversionKHR( const SamplerYcbcrConversionCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SamplerYcbcrConversionKHR ycbcrConversion;
Result result = static_cast<Result>( vkCreateSamplerYcbcrConversionKHR( m_device, reinterpret_cast<const VkSamplerYcbcrConversionCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSamplerYcbcrConversionKHR*>( &ycbcrConversion ) ) );
return createResultValue( result, ycbcrConversion, "VULKAN_HPP_NAMESPACE::Device::createSamplerYcbcrConversionKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSamplerYcbcrConversionKHR Device::createSamplerYcbcrConversionKHRUnique( const SamplerYcbcrConversionCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SamplerYcbcrConversionKHRDeleter deleter( *this, allocator );
return UniqueSamplerYcbcrConversionKHR( createSamplerYcbcrConversionKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroySamplerYcbcrConversionKHR( SamplerYcbcrConversionKHR ycbcrConversion, const AllocationCallbacks* pAllocator ) const
{
vkDestroySamplerYcbcrConversionKHR( m_device, static_cast<VkSamplerYcbcrConversionKHR>( ycbcrConversion ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroySamplerYcbcrConversionKHR( SamplerYcbcrConversionKHR ycbcrConversion, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroySamplerYcbcrConversionKHR( m_device, static_cast<VkSamplerYcbcrConversionKHR>( ycbcrConversion ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::createValidationCacheEXT( const ValidationCacheCreateInfoEXT* pCreateInfo, const AllocationCallbacks* pAllocator, ValidationCacheEXT* pValidationCache ) const
{
return static_cast<Result>( vkCreateValidationCacheEXT( m_device, reinterpret_cast<const VkValidationCacheCreateInfoEXT*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkValidationCacheEXT*>( pValidationCache ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<ValidationCacheEXT>::type Device::createValidationCacheEXT( const ValidationCacheCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ValidationCacheEXT validationCache;
Result result = static_cast<Result>( vkCreateValidationCacheEXT( m_device, reinterpret_cast<const VkValidationCacheCreateInfoEXT*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkValidationCacheEXT*>( &validationCache ) ) );
return createResultValue( result, validationCache, "VULKAN_HPP_NAMESPACE::Device::createValidationCacheEXT" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueValidationCacheEXT Device::createValidationCacheEXTUnique( const ValidationCacheCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
ValidationCacheEXTDeleter deleter( *this, allocator );
return UniqueValidationCacheEXT( createValidationCacheEXT( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Device::destroyValidationCacheEXT( ValidationCacheEXT validationCache, const AllocationCallbacks* pAllocator ) const
{
vkDestroyValidationCacheEXT( m_device, static_cast<VkValidationCacheEXT>( validationCache ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Device::destroyValidationCacheEXT( ValidationCacheEXT validationCache, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyValidationCacheEXT( m_device, static_cast<VkValidationCacheEXT>( validationCache ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getValidationCacheDataEXT( ValidationCacheEXT validationCache, size_t* pDataSize, void* pData ) const
{
return static_cast<Result>( vkGetValidationCacheDataEXT( m_device, static_cast<VkValidationCacheEXT>( validationCache ), pDataSize, pData ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<uint8_t,Allocator>>::type Device::getValidationCacheDataEXT( ValidationCacheEXT validationCache ) const
{
std::vector<uint8_t,Allocator> data;
size_t dataSize;
Result result;
do
{
result = static_cast<Result>( vkGetValidationCacheDataEXT( m_device, static_cast<VkValidationCacheEXT>( validationCache ), &dataSize, nullptr ) );
if ( ( result == Result::eSuccess ) && dataSize )
{
data.resize( dataSize );
result = static_cast<Result>( vkGetValidationCacheDataEXT( m_device, static_cast<VkValidationCacheEXT>( validationCache ), &dataSize, reinterpret_cast<void*>( data.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( dataSize <= data.size() );
data.resize( dataSize );
return createResultValue( result, data, "VULKAN_HPP_NAMESPACE::Device::getValidationCacheDataEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::mergeValidationCachesEXT( ValidationCacheEXT dstCache, uint32_t srcCacheCount, const ValidationCacheEXT* pSrcCaches ) const
{
return static_cast<Result>( vkMergeValidationCachesEXT( m_device, static_cast<VkValidationCacheEXT>( dstCache ), srcCacheCount, reinterpret_cast<const VkValidationCacheEXT*>( pSrcCaches ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<void>::type Device::mergeValidationCachesEXT( ValidationCacheEXT dstCache, ArrayProxy<const ValidationCacheEXT> srcCaches ) const
{
Result result = static_cast<Result>( vkMergeValidationCachesEXT( m_device, static_cast<VkValidationCacheEXT>( dstCache ), srcCaches.size() , reinterpret_cast<const VkValidationCacheEXT*>( srcCaches.data() ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::Device::mergeValidationCachesEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Device::getShaderInfoAMD( Pipeline pipeline, ShaderStageFlagBits shaderStage, ShaderInfoTypeAMD infoType, size_t* pInfoSize, void* pInfo ) const
{
return static_cast<Result>( vkGetShaderInfoAMD( m_device, static_cast<VkPipeline>( pipeline ), static_cast<VkShaderStageFlagBits>( shaderStage ), static_cast<VkShaderInfoTypeAMD>( infoType ), pInfoSize, pInfo ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<uint8_t,Allocator>>::type Device::getShaderInfoAMD( Pipeline pipeline, ShaderStageFlagBits shaderStage, ShaderInfoTypeAMD infoType ) const
{
std::vector<uint8_t,Allocator> info;
size_t infoSize;
Result result;
do
{
result = static_cast<Result>( vkGetShaderInfoAMD( m_device, static_cast<VkPipeline>( pipeline ), static_cast<VkShaderStageFlagBits>( shaderStage ), static_cast<VkShaderInfoTypeAMD>( infoType ), &infoSize, nullptr ) );
if ( ( result == Result::eSuccess ) && infoSize )
{
info.resize( infoSize );
result = static_cast<Result>( vkGetShaderInfoAMD( m_device, static_cast<VkPipeline>( pipeline ), static_cast<VkShaderStageFlagBits>( shaderStage ), static_cast<VkShaderInfoTypeAMD>( infoType ), &infoSize, reinterpret_cast<void*>( info.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( infoSize <= info.size() );
info.resize( infoSize );
return createResultValue( result, info, "VULKAN_HPP_NAMESPACE::Device::getShaderInfoAMD" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_NO_SMART_HANDLE
class DeviceDeleter;
using UniqueDevice = UniqueHandle<Device, DeviceDeleter>;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
class PhysicalDevice
{
public:
PhysicalDevice()
: m_physicalDevice(VK_NULL_HANDLE)
{}
PhysicalDevice( std::nullptr_t )
: m_physicalDevice(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT PhysicalDevice( VkPhysicalDevice physicalDevice )
: m_physicalDevice( physicalDevice )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
PhysicalDevice & operator=(VkPhysicalDevice physicalDevice)
{
m_physicalDevice = physicalDevice;
return *this;
}
#endif
PhysicalDevice & operator=( std::nullptr_t )
{
m_physicalDevice = VK_NULL_HANDLE;
return *this;
}
bool operator==( PhysicalDevice const & rhs ) const
{
return m_physicalDevice == rhs.m_physicalDevice;
}
bool operator!=(PhysicalDevice const & rhs ) const
{
return m_physicalDevice != rhs.m_physicalDevice;
}
bool operator<(PhysicalDevice const & rhs ) const
{
return m_physicalDevice < rhs.m_physicalDevice;
}
void getProperties( PhysicalDeviceProperties* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceProperties getProperties() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getQueueFamilyProperties( uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties* pQueueFamilyProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<QueueFamilyProperties>>
std::vector<QueueFamilyProperties,Allocator> getQueueFamilyProperties() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getMemoryProperties( PhysicalDeviceMemoryProperties* pMemoryProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceMemoryProperties getMemoryProperties() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getFeatures( PhysicalDeviceFeatures* pFeatures ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceFeatures getFeatures() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getFormatProperties( Format format, FormatProperties* pFormatProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
FormatProperties getFormatProperties( Format format ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getImageFormatProperties( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ImageFormatProperties* pImageFormatProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ImageFormatProperties>::type getImageFormatProperties( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDevice( const DeviceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Device* pDevice ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Device>::type createDevice( const DeviceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueDevice createDeviceUnique( const DeviceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result enumerateDeviceLayerProperties( uint32_t* pPropertyCount, LayerProperties* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<LayerProperties>>
typename ResultValueType<std::vector<LayerProperties,Allocator>>::type enumerateDeviceLayerProperties() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result enumerateDeviceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<ExtensionProperties>>
typename ResultValueType<std::vector<ExtensionProperties,Allocator>>::type enumerateDeviceExtensionProperties( Optional<const std::string> layerName = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getSparseImageFormatProperties( Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling, uint32_t* pPropertyCount, SparseImageFormatProperties* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SparseImageFormatProperties>>
std::vector<SparseImageFormatProperties,Allocator> getSparseImageFormatProperties( Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayPropertiesKHR( uint32_t* pPropertyCount, DisplayPropertiesKHR* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DisplayPropertiesKHR>>
typename ResultValueType<std::vector<DisplayPropertiesKHR,Allocator>>::type getDisplayPropertiesKHR() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayPlanePropertiesKHR( uint32_t* pPropertyCount, DisplayPlanePropertiesKHR* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DisplayPlanePropertiesKHR>>
typename ResultValueType<std::vector<DisplayPlanePropertiesKHR,Allocator>>::type getDisplayPlanePropertiesKHR() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayPlaneSupportedDisplaysKHR( uint32_t planeIndex, uint32_t* pDisplayCount, DisplayKHR* pDisplays ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DisplayKHR>>
typename ResultValueType<std::vector<DisplayKHR,Allocator>>::type getDisplayPlaneSupportedDisplaysKHR( uint32_t planeIndex ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayModePropertiesKHR( DisplayKHR display, uint32_t* pPropertyCount, DisplayModePropertiesKHR* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DisplayModePropertiesKHR>>
typename ResultValueType<std::vector<DisplayModePropertiesKHR,Allocator>>::type getDisplayModePropertiesKHR( DisplayKHR display ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDisplayModeKHR( DisplayKHR display, const DisplayModeCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DisplayModeKHR* pMode ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DisplayModeKHR>::type createDisplayModeKHR( DisplayKHR display, const DisplayModeCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayPlaneCapabilitiesKHR( DisplayModeKHR mode, uint32_t planeIndex, DisplayPlaneCapabilitiesKHR* pCapabilities ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DisplayPlaneCapabilitiesKHR>::type getDisplayPlaneCapabilitiesKHR( DisplayModeKHR mode, uint32_t planeIndex ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_MIR_KHR
Bool32 getMirPresentationSupportKHR( uint32_t queueFamilyIndex, MirConnection* connection ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Bool32 getMirPresentationSupportKHR( uint32_t queueFamilyIndex, MirConnection & connection ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_MIR_KHR*/
Result getSurfaceSupportKHR( uint32_t queueFamilyIndex, SurfaceKHR surface, Bool32* pSupported ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Bool32>::type getSurfaceSupportKHR( uint32_t queueFamilyIndex, SurfaceKHR surface ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfaceCapabilitiesKHR( SurfaceKHR surface, SurfaceCapabilitiesKHR* pSurfaceCapabilities ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceCapabilitiesKHR>::type getSurfaceCapabilitiesKHR( SurfaceKHR surface ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfaceFormatsKHR( SurfaceKHR surface, uint32_t* pSurfaceFormatCount, SurfaceFormatKHR* pSurfaceFormats ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SurfaceFormatKHR>>
typename ResultValueType<std::vector<SurfaceFormatKHR,Allocator>>::type getSurfaceFormatsKHR( SurfaceKHR surface ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfacePresentModesKHR( SurfaceKHR surface, uint32_t* pPresentModeCount, PresentModeKHR* pPresentModes ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<PresentModeKHR>>
typename ResultValueType<std::vector<PresentModeKHR,Allocator>>::type getSurfacePresentModesKHR( SurfaceKHR surface ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
Bool32 getWaylandPresentationSupportKHR( uint32_t queueFamilyIndex, struct wl_display* display ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Bool32 getWaylandPresentationSupportKHR( uint32_t queueFamilyIndex, struct wl_display & display ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Bool32 getWin32PresentationSupportKHR( uint32_t queueFamilyIndex ) const;
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
Bool32 getXlibPresentationSupportKHR( uint32_t queueFamilyIndex, Display* dpy, VisualID visualID ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Bool32 getXlibPresentationSupportKHR( uint32_t queueFamilyIndex, Display & dpy, VisualID visualID ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
Bool32 getXcbPresentationSupportKHR( uint32_t queueFamilyIndex, xcb_connection_t* connection, xcb_visualid_t visual_id ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Bool32 getXcbPresentationSupportKHR( uint32_t queueFamilyIndex, xcb_connection_t & connection, xcb_visualid_t visual_id ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XCB_KHR*/
Result getExternalImageFormatPropertiesNV( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ExternalMemoryHandleTypeFlagsNV externalHandleType, ExternalImageFormatPropertiesNV* pExternalImageFormatProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ExternalImageFormatPropertiesNV>::type getExternalImageFormatPropertiesNV( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ExternalMemoryHandleTypeFlagsNV externalHandleType ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getGeneratedCommandsPropertiesNVX( DeviceGeneratedCommandsFeaturesNVX* pFeatures, DeviceGeneratedCommandsLimitsNVX* pLimits ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
DeviceGeneratedCommandsLimitsNVX getGeneratedCommandsPropertiesNVX( DeviceGeneratedCommandsFeaturesNVX & features ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getFeatures2KHR( PhysicalDeviceFeatures2KHR* pFeatures ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceFeatures2KHR getFeatures2KHR() const;
template <typename ...T>
StructureChain<T...> getFeatures2KHR() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getProperties2KHR( PhysicalDeviceProperties2KHR* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceProperties2KHR getProperties2KHR() const;
template <typename ...T>
StructureChain<T...> getProperties2KHR() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getFormatProperties2KHR( Format format, FormatProperties2KHR* pFormatProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
FormatProperties2KHR getFormatProperties2KHR( Format format ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR* pImageFormatInfo, ImageFormatProperties2KHR* pImageFormatProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ImageFormatProperties2KHR>::type getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR & imageFormatInfo ) const;
template <typename ...T>
typename ResultValueType<StructureChain<T...>>::type getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR & imageFormatInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getQueueFamilyProperties2KHR( uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties2KHR* pQueueFamilyProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<QueueFamilyProperties2KHR>>
std::vector<QueueFamilyProperties2KHR,Allocator> getQueueFamilyProperties2KHR() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getMemoryProperties2KHR( PhysicalDeviceMemoryProperties2KHR* pMemoryProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceMemoryProperties2KHR getMemoryProperties2KHR() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getSparseImageFormatProperties2KHR( const PhysicalDeviceSparseImageFormatInfo2KHR* pFormatInfo, uint32_t* pPropertyCount, SparseImageFormatProperties2KHR* pProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SparseImageFormatProperties2KHR>>
std::vector<SparseImageFormatProperties2KHR,Allocator> getSparseImageFormatProperties2KHR( const PhysicalDeviceSparseImageFormatInfo2KHR & formatInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getExternalBufferPropertiesKHR( const PhysicalDeviceExternalBufferInfoKHR* pExternalBufferInfo, ExternalBufferPropertiesKHR* pExternalBufferProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ExternalBufferPropertiesKHR getExternalBufferPropertiesKHR( const PhysicalDeviceExternalBufferInfoKHR & externalBufferInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getExternalSemaphorePropertiesKHR( const PhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo, ExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ExternalSemaphorePropertiesKHR getExternalSemaphorePropertiesKHR( const PhysicalDeviceExternalSemaphoreInfoKHR & externalSemaphoreInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getExternalFencePropertiesKHR( const PhysicalDeviceExternalFenceInfoKHR* pExternalFenceInfo, ExternalFencePropertiesKHR* pExternalFenceProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ExternalFencePropertiesKHR getExternalFencePropertiesKHR( const PhysicalDeviceExternalFenceInfoKHR & externalFenceInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result releaseDisplayEXT( DisplayKHR display ) const;
#else
ResultValueType<void>::type releaseDisplayEXT( DisplayKHR display ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
Result acquireXlibDisplayEXT( Display* dpy, DisplayKHR display ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Display>::type acquireXlibDisplayEXT( DisplayKHR display ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XLIB_XRANDR_EXT*/
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
Result getRandROutputDisplayEXT( Display* dpy, RROutput rrOutput, DisplayKHR* pDisplay ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DisplayKHR>::type getRandROutputDisplayEXT( Display & dpy, RROutput rrOutput ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XLIB_XRANDR_EXT*/
Result getSurfaceCapabilities2EXT( SurfaceKHR surface, SurfaceCapabilities2EXT* pSurfaceCapabilities ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceCapabilities2EXT>::type getSurfaceCapabilities2EXT( SurfaceKHR surface ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getPresentRectanglesKHX( SurfaceKHR surface, uint32_t* pRectCount, Rect2D* pRects ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<Rect2D>>
typename ResultValueType<std::vector<Rect2D,Allocator>>::type getPresentRectanglesKHX( SurfaceKHR surface ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getMultisamplePropertiesEXT( SampleCountFlagBits samples, MultisamplePropertiesEXT* pMultisampleProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
MultisamplePropertiesEXT getMultisamplePropertiesEXT( SampleCountFlagBits samples ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, SurfaceCapabilities2KHR* pSurfaceCapabilities ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceCapabilities2KHR>::type getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const;
template <typename ...T>
typename ResultValueType<StructureChain<T...>>::type getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfaceFormats2KHR( const PhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, uint32_t* pSurfaceFormatCount, SurfaceFormat2KHR* pSurfaceFormats ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SurfaceFormat2KHR>>
typename ResultValueType<std::vector<SurfaceFormat2KHR,Allocator>>::type getSurfaceFormats2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkPhysicalDevice() const
{
return m_physicalDevice;
}
explicit operator bool() const
{
return m_physicalDevice != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_physicalDevice == VK_NULL_HANDLE;
}
private:
VkPhysicalDevice m_physicalDevice;
};
static_assert( sizeof( PhysicalDevice ) == sizeof( VkPhysicalDevice ), "handle and wrapper have different size!" );
#ifndef VULKAN_HPP_NO_SMART_HANDLE
class DeviceDeleter
{
public:
DeviceDeleter( Optional<const AllocationCallbacks> allocator = nullptr )
: m_allocator( allocator )
{}
void operator()( Device device )
{
device.destroy( m_allocator );
}
private:
Optional<const AllocationCallbacks> m_allocator;
};
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
VULKAN_HPP_INLINE void PhysicalDevice::getProperties( PhysicalDeviceProperties* pProperties ) const
{
vkGetPhysicalDeviceProperties( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceProperties*>( pProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PhysicalDeviceProperties PhysicalDevice::getProperties() const
{
PhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceProperties*>( &properties ) );
return properties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getQueueFamilyProperties( uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties* pQueueFamilyProperties ) const
{
vkGetPhysicalDeviceQueueFamilyProperties( m_physicalDevice, pQueueFamilyPropertyCount, reinterpret_cast<VkQueueFamilyProperties*>( pQueueFamilyProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<QueueFamilyProperties,Allocator> PhysicalDevice::getQueueFamilyProperties() const
{
std::vector<QueueFamilyProperties,Allocator> queueFamilyProperties;
uint32_t queueFamilyPropertyCount;
vkGetPhysicalDeviceQueueFamilyProperties( m_physicalDevice, &queueFamilyPropertyCount, nullptr );
queueFamilyProperties.resize( queueFamilyPropertyCount );
vkGetPhysicalDeviceQueueFamilyProperties( m_physicalDevice, &queueFamilyPropertyCount, reinterpret_cast<VkQueueFamilyProperties*>( queueFamilyProperties.data() ) );
return queueFamilyProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getMemoryProperties( PhysicalDeviceMemoryProperties* pMemoryProperties ) const
{
vkGetPhysicalDeviceMemoryProperties( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceMemoryProperties*>( pMemoryProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PhysicalDeviceMemoryProperties PhysicalDevice::getMemoryProperties() const
{
PhysicalDeviceMemoryProperties memoryProperties;
vkGetPhysicalDeviceMemoryProperties( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceMemoryProperties*>( &memoryProperties ) );
return memoryProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getFeatures( PhysicalDeviceFeatures* pFeatures ) const
{
vkGetPhysicalDeviceFeatures( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceFeatures*>( pFeatures ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PhysicalDeviceFeatures PhysicalDevice::getFeatures() const
{
PhysicalDeviceFeatures features;
vkGetPhysicalDeviceFeatures( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceFeatures*>( &features ) );
return features;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getFormatProperties( Format format, FormatProperties* pFormatProperties ) const
{
vkGetPhysicalDeviceFormatProperties( m_physicalDevice, static_cast<VkFormat>( format ), reinterpret_cast<VkFormatProperties*>( pFormatProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE FormatProperties PhysicalDevice::getFormatProperties( Format format ) const
{
FormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties( m_physicalDevice, static_cast<VkFormat>( format ), reinterpret_cast<VkFormatProperties*>( &formatProperties ) );
return formatProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getImageFormatProperties( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ImageFormatProperties* pImageFormatProperties ) const
{
return static_cast<Result>( vkGetPhysicalDeviceImageFormatProperties( m_physicalDevice, static_cast<VkFormat>( format ), static_cast<VkImageType>( type ), static_cast<VkImageTiling>( tiling ), static_cast<VkImageUsageFlags>( usage ), static_cast<VkImageCreateFlags>( flags ), reinterpret_cast<VkImageFormatProperties*>( pImageFormatProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<ImageFormatProperties>::type PhysicalDevice::getImageFormatProperties( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags ) const
{
ImageFormatProperties imageFormatProperties;
Result result = static_cast<Result>( vkGetPhysicalDeviceImageFormatProperties( m_physicalDevice, static_cast<VkFormat>( format ), static_cast<VkImageType>( type ), static_cast<VkImageTiling>( tiling ), static_cast<VkImageUsageFlags>( usage ), static_cast<VkImageCreateFlags>( flags ), reinterpret_cast<VkImageFormatProperties*>( &imageFormatProperties ) ) );
return createResultValue( result, imageFormatProperties, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getImageFormatProperties" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::createDevice( const DeviceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Device* pDevice ) const
{
return static_cast<Result>( vkCreateDevice( m_physicalDevice, reinterpret_cast<const VkDeviceCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkDevice*>( pDevice ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Device>::type PhysicalDevice::createDevice( const DeviceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
Device device;
Result result = static_cast<Result>( vkCreateDevice( m_physicalDevice, reinterpret_cast<const VkDeviceCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkDevice*>( &device ) ) );
return createResultValue( result, device, "VULKAN_HPP_NAMESPACE::PhysicalDevice::createDevice" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueDevice PhysicalDevice::createDeviceUnique( const DeviceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DeviceDeleter deleter( allocator );
return UniqueDevice( createDevice( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::enumerateDeviceLayerProperties( uint32_t* pPropertyCount, LayerProperties* pProperties ) const
{
return static_cast<Result>( vkEnumerateDeviceLayerProperties( m_physicalDevice, pPropertyCount, reinterpret_cast<VkLayerProperties*>( pProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<LayerProperties,Allocator>>::type PhysicalDevice::enumerateDeviceLayerProperties() const
{
std::vector<LayerProperties,Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>( vkEnumerateDeviceLayerProperties( m_physicalDevice, &propertyCount, nullptr ) );
if ( ( result == Result::eSuccess ) && propertyCount )
{
properties.resize( propertyCount );
result = static_cast<Result>( vkEnumerateDeviceLayerProperties( m_physicalDevice, &propertyCount, reinterpret_cast<VkLayerProperties*>( properties.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( propertyCount <= properties.size() );
properties.resize( propertyCount );
return createResultValue( result, properties, "VULKAN_HPP_NAMESPACE::PhysicalDevice::enumerateDeviceLayerProperties" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::enumerateDeviceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties ) const
{
return static_cast<Result>( vkEnumerateDeviceExtensionProperties( m_physicalDevice, pLayerName, pPropertyCount, reinterpret_cast<VkExtensionProperties*>( pProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<ExtensionProperties,Allocator>>::type PhysicalDevice::enumerateDeviceExtensionProperties( Optional<const std::string> layerName ) const
{
std::vector<ExtensionProperties,Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>( vkEnumerateDeviceExtensionProperties( m_physicalDevice, layerName ? layerName->c_str() : nullptr, &propertyCount, nullptr ) );
if ( ( result == Result::eSuccess ) && propertyCount )
{
properties.resize( propertyCount );
result = static_cast<Result>( vkEnumerateDeviceExtensionProperties( m_physicalDevice, layerName ? layerName->c_str() : nullptr, &propertyCount, reinterpret_cast<VkExtensionProperties*>( properties.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( propertyCount <= properties.size() );
properties.resize( propertyCount );
return createResultValue( result, properties, "VULKAN_HPP_NAMESPACE::PhysicalDevice::enumerateDeviceExtensionProperties" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getSparseImageFormatProperties( Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling, uint32_t* pPropertyCount, SparseImageFormatProperties* pProperties ) const
{
vkGetPhysicalDeviceSparseImageFormatProperties( m_physicalDevice, static_cast<VkFormat>( format ), static_cast<VkImageType>( type ), static_cast<VkSampleCountFlagBits>( samples ), static_cast<VkImageUsageFlags>( usage ), static_cast<VkImageTiling>( tiling ), pPropertyCount, reinterpret_cast<VkSparseImageFormatProperties*>( pProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<SparseImageFormatProperties,Allocator> PhysicalDevice::getSparseImageFormatProperties( Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling ) const
{
std::vector<SparseImageFormatProperties,Allocator> properties;
uint32_t propertyCount;
vkGetPhysicalDeviceSparseImageFormatProperties( m_physicalDevice, static_cast<VkFormat>( format ), static_cast<VkImageType>( type ), static_cast<VkSampleCountFlagBits>( samples ), static_cast<VkImageUsageFlags>( usage ), static_cast<VkImageTiling>( tiling ), &propertyCount, nullptr );
properties.resize( propertyCount );
vkGetPhysicalDeviceSparseImageFormatProperties( m_physicalDevice, static_cast<VkFormat>( format ), static_cast<VkImageType>( type ), static_cast<VkSampleCountFlagBits>( samples ), static_cast<VkImageUsageFlags>( usage ), static_cast<VkImageTiling>( tiling ), &propertyCount, reinterpret_cast<VkSparseImageFormatProperties*>( properties.data() ) );
return properties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPropertiesKHR( uint32_t* pPropertyCount, DisplayPropertiesKHR* pProperties ) const
{
return static_cast<Result>( vkGetPhysicalDeviceDisplayPropertiesKHR( m_physicalDevice, pPropertyCount, reinterpret_cast<VkDisplayPropertiesKHR*>( pProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<DisplayPropertiesKHR,Allocator>>::type PhysicalDevice::getDisplayPropertiesKHR() const
{
std::vector<DisplayPropertiesKHR,Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>( vkGetPhysicalDeviceDisplayPropertiesKHR( m_physicalDevice, &propertyCount, nullptr ) );
if ( ( result == Result::eSuccess ) && propertyCount )
{
properties.resize( propertyCount );
result = static_cast<Result>( vkGetPhysicalDeviceDisplayPropertiesKHR( m_physicalDevice, &propertyCount, reinterpret_cast<VkDisplayPropertiesKHR*>( properties.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( propertyCount <= properties.size() );
properties.resize( propertyCount );
return createResultValue( result, properties, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getDisplayPropertiesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPlanePropertiesKHR( uint32_t* pPropertyCount, DisplayPlanePropertiesKHR* pProperties ) const
{
return static_cast<Result>( vkGetPhysicalDeviceDisplayPlanePropertiesKHR( m_physicalDevice, pPropertyCount, reinterpret_cast<VkDisplayPlanePropertiesKHR*>( pProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<DisplayPlanePropertiesKHR,Allocator>>::type PhysicalDevice::getDisplayPlanePropertiesKHR() const
{
std::vector<DisplayPlanePropertiesKHR,Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>( vkGetPhysicalDeviceDisplayPlanePropertiesKHR( m_physicalDevice, &propertyCount, nullptr ) );
if ( ( result == Result::eSuccess ) && propertyCount )
{
properties.resize( propertyCount );
result = static_cast<Result>( vkGetPhysicalDeviceDisplayPlanePropertiesKHR( m_physicalDevice, &propertyCount, reinterpret_cast<VkDisplayPlanePropertiesKHR*>( properties.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( propertyCount <= properties.size() );
properties.resize( propertyCount );
return createResultValue( result, properties, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getDisplayPlanePropertiesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPlaneSupportedDisplaysKHR( uint32_t planeIndex, uint32_t* pDisplayCount, DisplayKHR* pDisplays ) const
{
return static_cast<Result>( vkGetDisplayPlaneSupportedDisplaysKHR( m_physicalDevice, planeIndex, pDisplayCount, reinterpret_cast<VkDisplayKHR*>( pDisplays ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<DisplayKHR,Allocator>>::type PhysicalDevice::getDisplayPlaneSupportedDisplaysKHR( uint32_t planeIndex ) const
{
std::vector<DisplayKHR,Allocator> displays;
uint32_t displayCount;
Result result;
do
{
result = static_cast<Result>( vkGetDisplayPlaneSupportedDisplaysKHR( m_physicalDevice, planeIndex, &displayCount, nullptr ) );
if ( ( result == Result::eSuccess ) && displayCount )
{
displays.resize( displayCount );
result = static_cast<Result>( vkGetDisplayPlaneSupportedDisplaysKHR( m_physicalDevice, planeIndex, &displayCount, reinterpret_cast<VkDisplayKHR*>( displays.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( displayCount <= displays.size() );
displays.resize( displayCount );
return createResultValue( result, displays, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getDisplayPlaneSupportedDisplaysKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayModePropertiesKHR( DisplayKHR display, uint32_t* pPropertyCount, DisplayModePropertiesKHR* pProperties ) const
{
return static_cast<Result>( vkGetDisplayModePropertiesKHR( m_physicalDevice, static_cast<VkDisplayKHR>( display ), pPropertyCount, reinterpret_cast<VkDisplayModePropertiesKHR*>( pProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<DisplayModePropertiesKHR,Allocator>>::type PhysicalDevice::getDisplayModePropertiesKHR( DisplayKHR display ) const
{
std::vector<DisplayModePropertiesKHR,Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>( vkGetDisplayModePropertiesKHR( m_physicalDevice, static_cast<VkDisplayKHR>( display ), &propertyCount, nullptr ) );
if ( ( result == Result::eSuccess ) && propertyCount )
{
properties.resize( propertyCount );
result = static_cast<Result>( vkGetDisplayModePropertiesKHR( m_physicalDevice, static_cast<VkDisplayKHR>( display ), &propertyCount, reinterpret_cast<VkDisplayModePropertiesKHR*>( properties.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( propertyCount <= properties.size() );
properties.resize( propertyCount );
return createResultValue( result, properties, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getDisplayModePropertiesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::createDisplayModeKHR( DisplayKHR display, const DisplayModeCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DisplayModeKHR* pMode ) const
{
return static_cast<Result>( vkCreateDisplayModeKHR( m_physicalDevice, static_cast<VkDisplayKHR>( display ), reinterpret_cast<const VkDisplayModeCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkDisplayModeKHR*>( pMode ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DisplayModeKHR>::type PhysicalDevice::createDisplayModeKHR( DisplayKHR display, const DisplayModeCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DisplayModeKHR mode;
Result result = static_cast<Result>( vkCreateDisplayModeKHR( m_physicalDevice, static_cast<VkDisplayKHR>( display ), reinterpret_cast<const VkDisplayModeCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkDisplayModeKHR*>( &mode ) ) );
return createResultValue( result, mode, "VULKAN_HPP_NAMESPACE::PhysicalDevice::createDisplayModeKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPlaneCapabilitiesKHR( DisplayModeKHR mode, uint32_t planeIndex, DisplayPlaneCapabilitiesKHR* pCapabilities ) const
{
return static_cast<Result>( vkGetDisplayPlaneCapabilitiesKHR( m_physicalDevice, static_cast<VkDisplayModeKHR>( mode ), planeIndex, reinterpret_cast<VkDisplayPlaneCapabilitiesKHR*>( pCapabilities ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DisplayPlaneCapabilitiesKHR>::type PhysicalDevice::getDisplayPlaneCapabilitiesKHR( DisplayModeKHR mode, uint32_t planeIndex ) const
{
DisplayPlaneCapabilitiesKHR capabilities;
Result result = static_cast<Result>( vkGetDisplayPlaneCapabilitiesKHR( m_physicalDevice, static_cast<VkDisplayModeKHR>( mode ), planeIndex, reinterpret_cast<VkDisplayPlaneCapabilitiesKHR*>( &capabilities ) ) );
return createResultValue( result, capabilities, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getDisplayPlaneCapabilitiesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_MIR_KHR
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getMirPresentationSupportKHR( uint32_t queueFamilyIndex, MirConnection* connection ) const
{
return vkGetPhysicalDeviceMirPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, connection );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getMirPresentationSupportKHR( uint32_t queueFamilyIndex, MirConnection & connection ) const
{
return vkGetPhysicalDeviceMirPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, &connection );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_MIR_KHR*/
VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceSupportKHR( uint32_t queueFamilyIndex, SurfaceKHR surface, Bool32* pSupported ) const
{
return static_cast<Result>( vkGetPhysicalDeviceSurfaceSupportKHR( m_physicalDevice, queueFamilyIndex, static_cast<VkSurfaceKHR>( surface ), pSupported ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Bool32>::type PhysicalDevice::getSurfaceSupportKHR( uint32_t queueFamilyIndex, SurfaceKHR surface ) const
{
Bool32 supported;
Result result = static_cast<Result>( vkGetPhysicalDeviceSurfaceSupportKHR( m_physicalDevice, queueFamilyIndex, static_cast<VkSurfaceKHR>( surface ), &supported ) );
return createResultValue( result, supported, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getSurfaceSupportKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceCapabilitiesKHR( SurfaceKHR surface, SurfaceCapabilitiesKHR* pSurfaceCapabilities ) const
{
return static_cast<Result>( vkGetPhysicalDeviceSurfaceCapabilitiesKHR( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), reinterpret_cast<VkSurfaceCapabilitiesKHR*>( pSurfaceCapabilities ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceCapabilitiesKHR>::type PhysicalDevice::getSurfaceCapabilitiesKHR( SurfaceKHR surface ) const
{
SurfaceCapabilitiesKHR surfaceCapabilities;
Result result = static_cast<Result>( vkGetPhysicalDeviceSurfaceCapabilitiesKHR( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), reinterpret_cast<VkSurfaceCapabilitiesKHR*>( &surfaceCapabilities ) ) );
return createResultValue( result, surfaceCapabilities, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getSurfaceCapabilitiesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceFormatsKHR( SurfaceKHR surface, uint32_t* pSurfaceFormatCount, SurfaceFormatKHR* pSurfaceFormats ) const
{
return static_cast<Result>( vkGetPhysicalDeviceSurfaceFormatsKHR( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), pSurfaceFormatCount, reinterpret_cast<VkSurfaceFormatKHR*>( pSurfaceFormats ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<SurfaceFormatKHR,Allocator>>::type PhysicalDevice::getSurfaceFormatsKHR( SurfaceKHR surface ) const
{
std::vector<SurfaceFormatKHR,Allocator> surfaceFormats;
uint32_t surfaceFormatCount;
Result result;
do
{
result = static_cast<Result>( vkGetPhysicalDeviceSurfaceFormatsKHR( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), &surfaceFormatCount, nullptr ) );
if ( ( result == Result::eSuccess ) && surfaceFormatCount )
{
surfaceFormats.resize( surfaceFormatCount );
result = static_cast<Result>( vkGetPhysicalDeviceSurfaceFormatsKHR( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), &surfaceFormatCount, reinterpret_cast<VkSurfaceFormatKHR*>( surfaceFormats.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( surfaceFormatCount <= surfaceFormats.size() );
surfaceFormats.resize( surfaceFormatCount );
return createResultValue( result, surfaceFormats, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getSurfaceFormatsKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getSurfacePresentModesKHR( SurfaceKHR surface, uint32_t* pPresentModeCount, PresentModeKHR* pPresentModes ) const
{
return static_cast<Result>( vkGetPhysicalDeviceSurfacePresentModesKHR( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), pPresentModeCount, reinterpret_cast<VkPresentModeKHR*>( pPresentModes ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<PresentModeKHR,Allocator>>::type PhysicalDevice::getSurfacePresentModesKHR( SurfaceKHR surface ) const
{
std::vector<PresentModeKHR,Allocator> presentModes;
uint32_t presentModeCount;
Result result;
do
{
result = static_cast<Result>( vkGetPhysicalDeviceSurfacePresentModesKHR( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), &presentModeCount, nullptr ) );
if ( ( result == Result::eSuccess ) && presentModeCount )
{
presentModes.resize( presentModeCount );
result = static_cast<Result>( vkGetPhysicalDeviceSurfacePresentModesKHR( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), &presentModeCount, reinterpret_cast<VkPresentModeKHR*>( presentModes.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( presentModeCount <= presentModes.size() );
presentModes.resize( presentModeCount );
return createResultValue( result, presentModes, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getSurfacePresentModesKHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getWaylandPresentationSupportKHR( uint32_t queueFamilyIndex, struct wl_display* display ) const
{
return vkGetPhysicalDeviceWaylandPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, display );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getWaylandPresentationSupportKHR( uint32_t queueFamilyIndex, struct wl_display & display ) const
{
return vkGetPhysicalDeviceWaylandPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, &display );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getWin32PresentationSupportKHR( uint32_t queueFamilyIndex ) const
{
return vkGetPhysicalDeviceWin32PresentationSupportKHR( m_physicalDevice, queueFamilyIndex );
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getXlibPresentationSupportKHR( uint32_t queueFamilyIndex, Display* dpy, VisualID visualID ) const
{
return vkGetPhysicalDeviceXlibPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, dpy, visualID );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getXlibPresentationSupportKHR( uint32_t queueFamilyIndex, Display & dpy, VisualID visualID ) const
{
return vkGetPhysicalDeviceXlibPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, &dpy, visualID );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getXcbPresentationSupportKHR( uint32_t queueFamilyIndex, xcb_connection_t* connection, xcb_visualid_t visual_id ) const
{
return vkGetPhysicalDeviceXcbPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, connection, visual_id );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Bool32 PhysicalDevice::getXcbPresentationSupportKHR( uint32_t queueFamilyIndex, xcb_connection_t & connection, xcb_visualid_t visual_id ) const
{
return vkGetPhysicalDeviceXcbPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, &connection, visual_id );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XCB_KHR*/
VULKAN_HPP_INLINE Result PhysicalDevice::getExternalImageFormatPropertiesNV( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ExternalMemoryHandleTypeFlagsNV externalHandleType, ExternalImageFormatPropertiesNV* pExternalImageFormatProperties ) const
{
return static_cast<Result>( vkGetPhysicalDeviceExternalImageFormatPropertiesNV( m_physicalDevice, static_cast<VkFormat>( format ), static_cast<VkImageType>( type ), static_cast<VkImageTiling>( tiling ), static_cast<VkImageUsageFlags>( usage ), static_cast<VkImageCreateFlags>( flags ), static_cast<VkExternalMemoryHandleTypeFlagsNV>( externalHandleType ), reinterpret_cast<VkExternalImageFormatPropertiesNV*>( pExternalImageFormatProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<ExternalImageFormatPropertiesNV>::type PhysicalDevice::getExternalImageFormatPropertiesNV( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ExternalMemoryHandleTypeFlagsNV externalHandleType ) const
{
ExternalImageFormatPropertiesNV externalImageFormatProperties;
Result result = static_cast<Result>( vkGetPhysicalDeviceExternalImageFormatPropertiesNV( m_physicalDevice, static_cast<VkFormat>( format ), static_cast<VkImageType>( type ), static_cast<VkImageTiling>( tiling ), static_cast<VkImageUsageFlags>( usage ), static_cast<VkImageCreateFlags>( flags ), static_cast<VkExternalMemoryHandleTypeFlagsNV>( externalHandleType ), reinterpret_cast<VkExternalImageFormatPropertiesNV*>( &externalImageFormatProperties ) ) );
return createResultValue( result, externalImageFormatProperties, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getExternalImageFormatPropertiesNV" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getGeneratedCommandsPropertiesNVX( DeviceGeneratedCommandsFeaturesNVX* pFeatures, DeviceGeneratedCommandsLimitsNVX* pLimits ) const
{
vkGetPhysicalDeviceGeneratedCommandsPropertiesNVX( m_physicalDevice, reinterpret_cast<VkDeviceGeneratedCommandsFeaturesNVX*>( pFeatures ), reinterpret_cast<VkDeviceGeneratedCommandsLimitsNVX*>( pLimits ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE DeviceGeneratedCommandsLimitsNVX PhysicalDevice::getGeneratedCommandsPropertiesNVX( DeviceGeneratedCommandsFeaturesNVX & features ) const
{
DeviceGeneratedCommandsLimitsNVX limits;
vkGetPhysicalDeviceGeneratedCommandsPropertiesNVX( m_physicalDevice, reinterpret_cast<VkDeviceGeneratedCommandsFeaturesNVX*>( &features ), reinterpret_cast<VkDeviceGeneratedCommandsLimitsNVX*>( &limits ) );
return limits;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getFeatures2KHR( PhysicalDeviceFeatures2KHR* pFeatures ) const
{
vkGetPhysicalDeviceFeatures2KHR( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceFeatures2KHR*>( pFeatures ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PhysicalDeviceFeatures2KHR PhysicalDevice::getFeatures2KHR() const
{
PhysicalDeviceFeatures2KHR features;
vkGetPhysicalDeviceFeatures2KHR( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceFeatures2KHR*>( &features ) );
return features;
}
template <typename ...T>
VULKAN_HPP_INLINE StructureChain<T...> PhysicalDevice::getFeatures2KHR() const
{
StructureChain<T...> structureChain;
PhysicalDeviceFeatures2KHR& features = structureChain.template get<PhysicalDeviceFeatures2KHR>();
vkGetPhysicalDeviceFeatures2KHR( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceFeatures2KHR*>( &features ) );
return structureChain;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getProperties2KHR( PhysicalDeviceProperties2KHR* pProperties ) const
{
vkGetPhysicalDeviceProperties2KHR( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceProperties2KHR*>( pProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PhysicalDeviceProperties2KHR PhysicalDevice::getProperties2KHR() const
{
PhysicalDeviceProperties2KHR properties;
vkGetPhysicalDeviceProperties2KHR( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceProperties2KHR*>( &properties ) );
return properties;
}
template <typename ...T>
VULKAN_HPP_INLINE StructureChain<T...> PhysicalDevice::getProperties2KHR() const
{
StructureChain<T...> structureChain;
PhysicalDeviceProperties2KHR& properties = structureChain.template get<PhysicalDeviceProperties2KHR>();
vkGetPhysicalDeviceProperties2KHR( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceProperties2KHR*>( &properties ) );
return structureChain;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getFormatProperties2KHR( Format format, FormatProperties2KHR* pFormatProperties ) const
{
vkGetPhysicalDeviceFormatProperties2KHR( m_physicalDevice, static_cast<VkFormat>( format ), reinterpret_cast<VkFormatProperties2KHR*>( pFormatProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE FormatProperties2KHR PhysicalDevice::getFormatProperties2KHR( Format format ) const
{
FormatProperties2KHR formatProperties;
vkGetPhysicalDeviceFormatProperties2KHR( m_physicalDevice, static_cast<VkFormat>( format ), reinterpret_cast<VkFormatProperties2KHR*>( &formatProperties ) );
return formatProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR* pImageFormatInfo, ImageFormatProperties2KHR* pImageFormatProperties ) const
{
return static_cast<Result>( vkGetPhysicalDeviceImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceImageFormatInfo2KHR*>( pImageFormatInfo ), reinterpret_cast<VkImageFormatProperties2KHR*>( pImageFormatProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<ImageFormatProperties2KHR>::type PhysicalDevice::getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR & imageFormatInfo ) const
{
ImageFormatProperties2KHR imageFormatProperties;
Result result = static_cast<Result>( vkGetPhysicalDeviceImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceImageFormatInfo2KHR*>( &imageFormatInfo ), reinterpret_cast<VkImageFormatProperties2KHR*>( &imageFormatProperties ) ) );
return createResultValue( result, imageFormatProperties, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getImageFormatProperties2KHR" );
}
template <typename ...T>
VULKAN_HPP_INLINE typename ResultValueType<StructureChain<T...>>::type PhysicalDevice::getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR & imageFormatInfo ) const
{
StructureChain<T...> structureChain;
ImageFormatProperties2KHR& imageFormatProperties = structureChain.template get<ImageFormatProperties2KHR>();
Result result = static_cast<Result>( vkGetPhysicalDeviceImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceImageFormatInfo2KHR*>( &imageFormatInfo ), reinterpret_cast<VkImageFormatProperties2KHR*>( &imageFormatProperties ) ) );
return createResultValue( result, structureChain, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getImageFormatProperties2KHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getQueueFamilyProperties2KHR( uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties2KHR* pQueueFamilyProperties ) const
{
vkGetPhysicalDeviceQueueFamilyProperties2KHR( m_physicalDevice, pQueueFamilyPropertyCount, reinterpret_cast<VkQueueFamilyProperties2KHR*>( pQueueFamilyProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<QueueFamilyProperties2KHR,Allocator> PhysicalDevice::getQueueFamilyProperties2KHR() const
{
std::vector<QueueFamilyProperties2KHR,Allocator> queueFamilyProperties;
uint32_t queueFamilyPropertyCount;
vkGetPhysicalDeviceQueueFamilyProperties2KHR( m_physicalDevice, &queueFamilyPropertyCount, nullptr );
queueFamilyProperties.resize( queueFamilyPropertyCount );
vkGetPhysicalDeviceQueueFamilyProperties2KHR( m_physicalDevice, &queueFamilyPropertyCount, reinterpret_cast<VkQueueFamilyProperties2KHR*>( queueFamilyProperties.data() ) );
return queueFamilyProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getMemoryProperties2KHR( PhysicalDeviceMemoryProperties2KHR* pMemoryProperties ) const
{
vkGetPhysicalDeviceMemoryProperties2KHR( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceMemoryProperties2KHR*>( pMemoryProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PhysicalDeviceMemoryProperties2KHR PhysicalDevice::getMemoryProperties2KHR() const
{
PhysicalDeviceMemoryProperties2KHR memoryProperties;
vkGetPhysicalDeviceMemoryProperties2KHR( m_physicalDevice, reinterpret_cast<VkPhysicalDeviceMemoryProperties2KHR*>( &memoryProperties ) );
return memoryProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getSparseImageFormatProperties2KHR( const PhysicalDeviceSparseImageFormatInfo2KHR* pFormatInfo, uint32_t* pPropertyCount, SparseImageFormatProperties2KHR* pProperties ) const
{
vkGetPhysicalDeviceSparseImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSparseImageFormatInfo2KHR*>( pFormatInfo ), pPropertyCount, reinterpret_cast<VkSparseImageFormatProperties2KHR*>( pProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE std::vector<SparseImageFormatProperties2KHR,Allocator> PhysicalDevice::getSparseImageFormatProperties2KHR( const PhysicalDeviceSparseImageFormatInfo2KHR & formatInfo ) const
{
std::vector<SparseImageFormatProperties2KHR,Allocator> properties;
uint32_t propertyCount;
vkGetPhysicalDeviceSparseImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSparseImageFormatInfo2KHR*>( &formatInfo ), &propertyCount, nullptr );
properties.resize( propertyCount );
vkGetPhysicalDeviceSparseImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSparseImageFormatInfo2KHR*>( &formatInfo ), &propertyCount, reinterpret_cast<VkSparseImageFormatProperties2KHR*>( properties.data() ) );
return properties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getExternalBufferPropertiesKHR( const PhysicalDeviceExternalBufferInfoKHR* pExternalBufferInfo, ExternalBufferPropertiesKHR* pExternalBufferProperties ) const
{
vkGetPhysicalDeviceExternalBufferPropertiesKHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceExternalBufferInfoKHR*>( pExternalBufferInfo ), reinterpret_cast<VkExternalBufferPropertiesKHR*>( pExternalBufferProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ExternalBufferPropertiesKHR PhysicalDevice::getExternalBufferPropertiesKHR( const PhysicalDeviceExternalBufferInfoKHR & externalBufferInfo ) const
{
ExternalBufferPropertiesKHR externalBufferProperties;
vkGetPhysicalDeviceExternalBufferPropertiesKHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceExternalBufferInfoKHR*>( &externalBufferInfo ), reinterpret_cast<VkExternalBufferPropertiesKHR*>( &externalBufferProperties ) );
return externalBufferProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getExternalSemaphorePropertiesKHR( const PhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo, ExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties ) const
{
vkGetPhysicalDeviceExternalSemaphorePropertiesKHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceExternalSemaphoreInfoKHR*>( pExternalSemaphoreInfo ), reinterpret_cast<VkExternalSemaphorePropertiesKHR*>( pExternalSemaphoreProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ExternalSemaphorePropertiesKHR PhysicalDevice::getExternalSemaphorePropertiesKHR( const PhysicalDeviceExternalSemaphoreInfoKHR & externalSemaphoreInfo ) const
{
ExternalSemaphorePropertiesKHR externalSemaphoreProperties;
vkGetPhysicalDeviceExternalSemaphorePropertiesKHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceExternalSemaphoreInfoKHR*>( &externalSemaphoreInfo ), reinterpret_cast<VkExternalSemaphorePropertiesKHR*>( &externalSemaphoreProperties ) );
return externalSemaphoreProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getExternalFencePropertiesKHR( const PhysicalDeviceExternalFenceInfoKHR* pExternalFenceInfo, ExternalFencePropertiesKHR* pExternalFenceProperties ) const
{
vkGetPhysicalDeviceExternalFencePropertiesKHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceExternalFenceInfoKHR*>( pExternalFenceInfo ), reinterpret_cast<VkExternalFencePropertiesKHR*>( pExternalFenceProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ExternalFencePropertiesKHR PhysicalDevice::getExternalFencePropertiesKHR( const PhysicalDeviceExternalFenceInfoKHR & externalFenceInfo ) const
{
ExternalFencePropertiesKHR externalFenceProperties;
vkGetPhysicalDeviceExternalFencePropertiesKHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceExternalFenceInfoKHR*>( &externalFenceInfo ), reinterpret_cast<VkExternalFencePropertiesKHR*>( &externalFenceProperties ) );
return externalFenceProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE Result PhysicalDevice::releaseDisplayEXT( DisplayKHR display ) const
{
return static_cast<Result>( vkReleaseDisplayEXT( m_physicalDevice, static_cast<VkDisplayKHR>( display ) ) );
}
#else
VULKAN_HPP_INLINE ResultValueType<void>::type PhysicalDevice::releaseDisplayEXT( DisplayKHR display ) const
{
Result result = static_cast<Result>( vkReleaseDisplayEXT( m_physicalDevice, static_cast<VkDisplayKHR>( display ) ) );
return createResultValue( result, "VULKAN_HPP_NAMESPACE::PhysicalDevice::releaseDisplayEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
VULKAN_HPP_INLINE Result PhysicalDevice::acquireXlibDisplayEXT( Display* dpy, DisplayKHR display ) const
{
return static_cast<Result>( vkAcquireXlibDisplayEXT( m_physicalDevice, dpy, static_cast<VkDisplayKHR>( display ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Display>::type PhysicalDevice::acquireXlibDisplayEXT( DisplayKHR display ) const
{
Display dpy;
Result result = static_cast<Result>( vkAcquireXlibDisplayEXT( m_physicalDevice, &dpy, static_cast<VkDisplayKHR>( display ) ) );
return createResultValue( result, dpy, "VULKAN_HPP_NAMESPACE::PhysicalDevice::acquireXlibDisplayEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XLIB_XRANDR_EXT*/
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
VULKAN_HPP_INLINE Result PhysicalDevice::getRandROutputDisplayEXT( Display* dpy, RROutput rrOutput, DisplayKHR* pDisplay ) const
{
return static_cast<Result>( vkGetRandROutputDisplayEXT( m_physicalDevice, dpy, rrOutput, reinterpret_cast<VkDisplayKHR*>( pDisplay ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DisplayKHR>::type PhysicalDevice::getRandROutputDisplayEXT( Display & dpy, RROutput rrOutput ) const
{
DisplayKHR display;
Result result = static_cast<Result>( vkGetRandROutputDisplayEXT( m_physicalDevice, &dpy, rrOutput, reinterpret_cast<VkDisplayKHR*>( &display ) ) );
return createResultValue( result, display, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getRandROutputDisplayEXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XLIB_XRANDR_EXT*/
VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceCapabilities2EXT( SurfaceKHR surface, SurfaceCapabilities2EXT* pSurfaceCapabilities ) const
{
return static_cast<Result>( vkGetPhysicalDeviceSurfaceCapabilities2EXT( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), reinterpret_cast<VkSurfaceCapabilities2EXT*>( pSurfaceCapabilities ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceCapabilities2EXT>::type PhysicalDevice::getSurfaceCapabilities2EXT( SurfaceKHR surface ) const
{
SurfaceCapabilities2EXT surfaceCapabilities;
Result result = static_cast<Result>( vkGetPhysicalDeviceSurfaceCapabilities2EXT( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), reinterpret_cast<VkSurfaceCapabilities2EXT*>( &surfaceCapabilities ) ) );
return createResultValue( result, surfaceCapabilities, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getSurfaceCapabilities2EXT" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getPresentRectanglesKHX( SurfaceKHR surface, uint32_t* pRectCount, Rect2D* pRects ) const
{
return static_cast<Result>( vkGetPhysicalDevicePresentRectanglesKHX( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), pRectCount, reinterpret_cast<VkRect2D*>( pRects ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<Rect2D,Allocator>>::type PhysicalDevice::getPresentRectanglesKHX( SurfaceKHR surface ) const
{
std::vector<Rect2D,Allocator> rects;
uint32_t rectCount;
Result result;
do
{
result = static_cast<Result>( vkGetPhysicalDevicePresentRectanglesKHX( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), &rectCount, nullptr ) );
if ( ( result == Result::eSuccess ) && rectCount )
{
rects.resize( rectCount );
result = static_cast<Result>( vkGetPhysicalDevicePresentRectanglesKHX( m_physicalDevice, static_cast<VkSurfaceKHR>( surface ), &rectCount, reinterpret_cast<VkRect2D*>( rects.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( rectCount <= rects.size() );
rects.resize( rectCount );
return createResultValue( result, rects, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getPresentRectanglesKHX" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void PhysicalDevice::getMultisamplePropertiesEXT( SampleCountFlagBits samples, MultisamplePropertiesEXT* pMultisampleProperties ) const
{
vkGetPhysicalDeviceMultisamplePropertiesEXT( m_physicalDevice, static_cast<VkSampleCountFlagBits>( samples ), reinterpret_cast<VkMultisamplePropertiesEXT*>( pMultisampleProperties ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE MultisamplePropertiesEXT PhysicalDevice::getMultisamplePropertiesEXT( SampleCountFlagBits samples ) const
{
MultisamplePropertiesEXT multisampleProperties;
vkGetPhysicalDeviceMultisamplePropertiesEXT( m_physicalDevice, static_cast<VkSampleCountFlagBits>( samples ), reinterpret_cast<VkMultisamplePropertiesEXT*>( &multisampleProperties ) );
return multisampleProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, SurfaceCapabilities2KHR* pSurfaceCapabilities ) const
{
return static_cast<Result>( vkGetPhysicalDeviceSurfaceCapabilities2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSurfaceInfo2KHR*>( pSurfaceInfo ), reinterpret_cast<VkSurfaceCapabilities2KHR*>( pSurfaceCapabilities ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceCapabilities2KHR>::type PhysicalDevice::getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const
{
SurfaceCapabilities2KHR surfaceCapabilities;
Result result = static_cast<Result>( vkGetPhysicalDeviceSurfaceCapabilities2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSurfaceInfo2KHR*>( &surfaceInfo ), reinterpret_cast<VkSurfaceCapabilities2KHR*>( &surfaceCapabilities ) ) );
return createResultValue( result, surfaceCapabilities, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getSurfaceCapabilities2KHR" );
}
template <typename ...T>
VULKAN_HPP_INLINE typename ResultValueType<StructureChain<T...>>::type PhysicalDevice::getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const
{
StructureChain<T...> structureChain;
SurfaceCapabilities2KHR& surfaceCapabilities = structureChain.template get<SurfaceCapabilities2KHR>();
Result result = static_cast<Result>( vkGetPhysicalDeviceSurfaceCapabilities2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSurfaceInfo2KHR*>( &surfaceInfo ), reinterpret_cast<VkSurfaceCapabilities2KHR*>( &surfaceCapabilities ) ) );
return createResultValue( result, structureChain, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getSurfaceCapabilities2KHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceFormats2KHR( const PhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, uint32_t* pSurfaceFormatCount, SurfaceFormat2KHR* pSurfaceFormats ) const
{
return static_cast<Result>( vkGetPhysicalDeviceSurfaceFormats2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSurfaceInfo2KHR*>( pSurfaceInfo ), pSurfaceFormatCount, reinterpret_cast<VkSurfaceFormat2KHR*>( pSurfaceFormats ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<SurfaceFormat2KHR,Allocator>>::type PhysicalDevice::getSurfaceFormats2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const
{
std::vector<SurfaceFormat2KHR,Allocator> surfaceFormats;
uint32_t surfaceFormatCount;
Result result;
do
{
result = static_cast<Result>( vkGetPhysicalDeviceSurfaceFormats2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSurfaceInfo2KHR*>( &surfaceInfo ), &surfaceFormatCount, nullptr ) );
if ( ( result == Result::eSuccess ) && surfaceFormatCount )
{
surfaceFormats.resize( surfaceFormatCount );
result = static_cast<Result>( vkGetPhysicalDeviceSurfaceFormats2KHR( m_physicalDevice, reinterpret_cast<const VkPhysicalDeviceSurfaceInfo2KHR*>( &surfaceInfo ), &surfaceFormatCount, reinterpret_cast<VkSurfaceFormat2KHR*>( surfaceFormats.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( surfaceFormatCount <= surfaceFormats.size() );
surfaceFormats.resize( surfaceFormatCount );
return createResultValue( result, surfaceFormats, "VULKAN_HPP_NAMESPACE::PhysicalDevice::getSurfaceFormats2KHR" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
struct CmdProcessCommandsInfoNVX
{
CmdProcessCommandsInfoNVX( ObjectTableNVX objectTable_ = ObjectTableNVX(), IndirectCommandsLayoutNVX indirectCommandsLayout_ = IndirectCommandsLayoutNVX(), uint32_t indirectCommandsTokenCount_ = 0, const IndirectCommandsTokenNVX* pIndirectCommandsTokens_ = nullptr, uint32_t maxSequencesCount_ = 0, CommandBuffer targetCommandBuffer_ = CommandBuffer(), Buffer sequencesCountBuffer_ = Buffer(), DeviceSize sequencesCountOffset_ = 0, Buffer sequencesIndexBuffer_ = Buffer(), DeviceSize sequencesIndexOffset_ = 0 )
: sType( StructureType::eCmdProcessCommandsInfoNVX )
, pNext( nullptr )
, objectTable( objectTable_ )
, indirectCommandsLayout( indirectCommandsLayout_ )
, indirectCommandsTokenCount( indirectCommandsTokenCount_ )
, pIndirectCommandsTokens( pIndirectCommandsTokens_ )
, maxSequencesCount( maxSequencesCount_ )
, targetCommandBuffer( targetCommandBuffer_ )
, sequencesCountBuffer( sequencesCountBuffer_ )
, sequencesCountOffset( sequencesCountOffset_ )
, sequencesIndexBuffer( sequencesIndexBuffer_ )
, sequencesIndexOffset( sequencesIndexOffset_ )
{
}
CmdProcessCommandsInfoNVX( VkCmdProcessCommandsInfoNVX const & rhs )
{
memcpy( this, &rhs, sizeof( CmdProcessCommandsInfoNVX ) );
}
CmdProcessCommandsInfoNVX& operator=( VkCmdProcessCommandsInfoNVX const & rhs )
{
memcpy( this, &rhs, sizeof( CmdProcessCommandsInfoNVX ) );
return *this;
}
CmdProcessCommandsInfoNVX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
CmdProcessCommandsInfoNVX& setObjectTable( ObjectTableNVX objectTable_ )
{
objectTable = objectTable_;
return *this;
}
CmdProcessCommandsInfoNVX& setIndirectCommandsLayout( IndirectCommandsLayoutNVX indirectCommandsLayout_ )
{
indirectCommandsLayout = indirectCommandsLayout_;
return *this;
}
CmdProcessCommandsInfoNVX& setIndirectCommandsTokenCount( uint32_t indirectCommandsTokenCount_ )
{
indirectCommandsTokenCount = indirectCommandsTokenCount_;
return *this;
}
CmdProcessCommandsInfoNVX& setPIndirectCommandsTokens( const IndirectCommandsTokenNVX* pIndirectCommandsTokens_ )
{
pIndirectCommandsTokens = pIndirectCommandsTokens_;
return *this;
}
CmdProcessCommandsInfoNVX& setMaxSequencesCount( uint32_t maxSequencesCount_ )
{
maxSequencesCount = maxSequencesCount_;
return *this;
}
CmdProcessCommandsInfoNVX& setTargetCommandBuffer( CommandBuffer targetCommandBuffer_ )
{
targetCommandBuffer = targetCommandBuffer_;
return *this;
}
CmdProcessCommandsInfoNVX& setSequencesCountBuffer( Buffer sequencesCountBuffer_ )
{
sequencesCountBuffer = sequencesCountBuffer_;
return *this;
}
CmdProcessCommandsInfoNVX& setSequencesCountOffset( DeviceSize sequencesCountOffset_ )
{
sequencesCountOffset = sequencesCountOffset_;
return *this;
}
CmdProcessCommandsInfoNVX& setSequencesIndexBuffer( Buffer sequencesIndexBuffer_ )
{
sequencesIndexBuffer = sequencesIndexBuffer_;
return *this;
}
CmdProcessCommandsInfoNVX& setSequencesIndexOffset( DeviceSize sequencesIndexOffset_ )
{
sequencesIndexOffset = sequencesIndexOffset_;
return *this;
}
operator const VkCmdProcessCommandsInfoNVX&() const
{
return *reinterpret_cast<const VkCmdProcessCommandsInfoNVX*>(this);
}
bool operator==( CmdProcessCommandsInfoNVX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( objectTable == rhs.objectTable )
&& ( indirectCommandsLayout == rhs.indirectCommandsLayout )
&& ( indirectCommandsTokenCount == rhs.indirectCommandsTokenCount )
&& ( pIndirectCommandsTokens == rhs.pIndirectCommandsTokens )
&& ( maxSequencesCount == rhs.maxSequencesCount )
&& ( targetCommandBuffer == rhs.targetCommandBuffer )
&& ( sequencesCountBuffer == rhs.sequencesCountBuffer )
&& ( sequencesCountOffset == rhs.sequencesCountOffset )
&& ( sequencesIndexBuffer == rhs.sequencesIndexBuffer )
&& ( sequencesIndexOffset == rhs.sequencesIndexOffset );
}
bool operator!=( CmdProcessCommandsInfoNVX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
ObjectTableNVX objectTable;
IndirectCommandsLayoutNVX indirectCommandsLayout;
uint32_t indirectCommandsTokenCount;
const IndirectCommandsTokenNVX* pIndirectCommandsTokens;
uint32_t maxSequencesCount;
CommandBuffer targetCommandBuffer;
Buffer sequencesCountBuffer;
DeviceSize sequencesCountOffset;
Buffer sequencesIndexBuffer;
DeviceSize sequencesIndexOffset;
};
static_assert( sizeof( CmdProcessCommandsInfoNVX ) == sizeof( VkCmdProcessCommandsInfoNVX ), "struct and wrapper have different size!" );
struct PhysicalDeviceGroupPropertiesKHX
{
operator const VkPhysicalDeviceGroupPropertiesKHX&() const
{
return *reinterpret_cast<const VkPhysicalDeviceGroupPropertiesKHX*>(this);
}
bool operator==( PhysicalDeviceGroupPropertiesKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( physicalDeviceCount == rhs.physicalDeviceCount )
&& ( memcmp( physicalDevices, rhs.physicalDevices, VK_MAX_DEVICE_GROUP_SIZE_KHX * sizeof( PhysicalDevice ) ) == 0 )
&& ( subsetAllocation == rhs.subsetAllocation );
}
bool operator!=( PhysicalDeviceGroupPropertiesKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
void* pNext;
uint32_t physicalDeviceCount;
PhysicalDevice physicalDevices[VK_MAX_DEVICE_GROUP_SIZE_KHX];
Bool32 subsetAllocation;
};
static_assert( sizeof( PhysicalDeviceGroupPropertiesKHX ) == sizeof( VkPhysicalDeviceGroupPropertiesKHX ), "struct and wrapper have different size!" );
#ifndef VULKAN_HPP_NO_SMART_HANDLE
class DebugReportCallbackEXTDeleter;
using UniqueDebugReportCallbackEXT = UniqueHandle<DebugReportCallbackEXT, DebugReportCallbackEXTDeleter>;
class SurfaceKHRDeleter;
using UniqueSurfaceKHR = UniqueHandle<SurfaceKHR, SurfaceKHRDeleter>;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
class Instance
{
public:
Instance()
: m_instance(VK_NULL_HANDLE)
{}
Instance( std::nullptr_t )
: m_instance(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT Instance( VkInstance instance )
: m_instance( instance )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Instance & operator=(VkInstance instance)
{
m_instance = instance;
return *this;
}
#endif
Instance & operator=( std::nullptr_t )
{
m_instance = VK_NULL_HANDLE;
return *this;
}
bool operator==( Instance const & rhs ) const
{
return m_instance == rhs.m_instance;
}
bool operator!=(Instance const & rhs ) const
{
return m_instance != rhs.m_instance;
}
bool operator<(Instance const & rhs ) const
{
return m_instance < rhs.m_instance;
}
void destroy( const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroy( Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result enumeratePhysicalDevices( uint32_t* pPhysicalDeviceCount, PhysicalDevice* pPhysicalDevices ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<PhysicalDevice>>
typename ResultValueType<std::vector<PhysicalDevice,Allocator>>::type enumeratePhysicalDevices() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
PFN_vkVoidFunction getProcAddr( const char* pName ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PFN_vkVoidFunction getProcAddr( const std::string & name ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_ANDROID_KHR
Result createAndroidSurfaceKHR( const AndroidSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createAndroidSurfaceKHR( const AndroidSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createAndroidSurfaceKHRUnique( const AndroidSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
Result createDisplayPlaneSurfaceKHR( const DisplaySurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createDisplayPlaneSurfaceKHR( const DisplaySurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createDisplayPlaneSurfaceKHRUnique( const DisplaySurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_MIR_KHR
Result createMirSurfaceKHR( const MirSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createMirSurfaceKHR( const MirSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createMirSurfaceKHRUnique( const MirSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_MIR_KHR*/
void destroySurfaceKHR( SurfaceKHR surface, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySurfaceKHR( SurfaceKHR surface, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_VI_NN
Result createViSurfaceNN( const ViSurfaceCreateInfoNN* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createViSurfaceNN( const ViSurfaceCreateInfoNN & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createViSurfaceNNUnique( const ViSurfaceCreateInfoNN & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_VI_NN*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
Result createWaylandSurfaceKHR( const WaylandSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createWaylandSurfaceKHR( const WaylandSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createWaylandSurfaceKHRUnique( const WaylandSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result createWin32SurfaceKHR( const Win32SurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createWin32SurfaceKHR( const Win32SurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createWin32SurfaceKHRUnique( const Win32SurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
Result createXlibSurfaceKHR( const XlibSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createXlibSurfaceKHR( const XlibSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createXlibSurfaceKHRUnique( const XlibSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
Result createXcbSurfaceKHR( const XcbSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createXcbSurfaceKHR( const XcbSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createXcbSurfaceKHRUnique( const XcbSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XCB_KHR*/
Result createDebugReportCallbackEXT( const DebugReportCallbackCreateInfoEXT* pCreateInfo, const AllocationCallbacks* pAllocator, DebugReportCallbackEXT* pCallback ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DebugReportCallbackEXT>::type createDebugReportCallbackEXT( const DebugReportCallbackCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueDebugReportCallbackEXT createDebugReportCallbackEXTUnique( const DebugReportCallbackCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyDebugReportCallbackEXT( DebugReportCallbackEXT callback, const AllocationCallbacks* pAllocator ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyDebugReportCallbackEXT( DebugReportCallbackEXT callback, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void debugReportMessageEXT( DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void debugReportMessageEXT( DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const std::string & layerPrefix, const std::string & message ) const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result enumeratePhysicalDeviceGroupsKHX( uint32_t* pPhysicalDeviceGroupCount, PhysicalDeviceGroupPropertiesKHX* pPhysicalDeviceGroupProperties ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<PhysicalDeviceGroupPropertiesKHX>>
typename ResultValueType<std::vector<PhysicalDeviceGroupPropertiesKHX,Allocator>>::type enumeratePhysicalDeviceGroupsKHX() const;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_IOS_MVK
Result createIOSSurfaceMVK( const IOSSurfaceCreateInfoMVK* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createIOSSurfaceMVK( const IOSSurfaceCreateInfoMVK & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createIOSSurfaceMVKUnique( const IOSSurfaceCreateInfoMVK & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_IOS_MVK*/
#ifdef VK_USE_PLATFORM_MACOS_MVK
Result createMacOSSurfaceMVK( const MacOSSurfaceCreateInfoMVK* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createMacOSSurfaceMVK( const MacOSSurfaceCreateInfoMVK & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueSurfaceKHR createMacOSSurfaceMVKUnique( const MacOSSurfaceCreateInfoMVK & createInfo, Optional<const AllocationCallbacks> allocator = nullptr ) const;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_MACOS_MVK*/
VULKAN_HPP_TYPESAFE_EXPLICIT operator VkInstance() const
{
return m_instance;
}
explicit operator bool() const
{
return m_instance != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_instance == VK_NULL_HANDLE;
}
private:
VkInstance m_instance;
};
static_assert( sizeof( Instance ) == sizeof( VkInstance ), "handle and wrapper have different size!" );
#ifndef VULKAN_HPP_NO_SMART_HANDLE
class DebugReportCallbackEXTDeleter
{
public:
DebugReportCallbackEXTDeleter( Instance instance = Instance(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_instance( instance )
, m_allocator( allocator )
{}
void operator()( DebugReportCallbackEXT debugReportCallbackEXT )
{
m_instance.destroyDebugReportCallbackEXT( debugReportCallbackEXT, m_allocator );
}
private:
Instance m_instance;
Optional<const AllocationCallbacks> m_allocator;
};
class SurfaceKHRDeleter
{
public:
SurfaceKHRDeleter( Instance instance = Instance(), Optional<const AllocationCallbacks> allocator = nullptr )
: m_instance( instance )
, m_allocator( allocator )
{}
void operator()( SurfaceKHR surfaceKHR )
{
m_instance.destroySurfaceKHR( surfaceKHR, m_allocator );
}
private:
Instance m_instance;
Optional<const AllocationCallbacks> m_allocator;
};
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
VULKAN_HPP_INLINE void Instance::destroy( const AllocationCallbacks* pAllocator ) const
{
vkDestroyInstance( m_instance, reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Instance::destroy( Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyInstance( m_instance, reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Instance::enumeratePhysicalDevices( uint32_t* pPhysicalDeviceCount, PhysicalDevice* pPhysicalDevices ) const
{
return static_cast<Result>( vkEnumeratePhysicalDevices( m_instance, pPhysicalDeviceCount, reinterpret_cast<VkPhysicalDevice*>( pPhysicalDevices ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<PhysicalDevice,Allocator>>::type Instance::enumeratePhysicalDevices() const
{
std::vector<PhysicalDevice,Allocator> physicalDevices;
uint32_t physicalDeviceCount;
Result result;
do
{
result = static_cast<Result>( vkEnumeratePhysicalDevices( m_instance, &physicalDeviceCount, nullptr ) );
if ( ( result == Result::eSuccess ) && physicalDeviceCount )
{
physicalDevices.resize( physicalDeviceCount );
result = static_cast<Result>( vkEnumeratePhysicalDevices( m_instance, &physicalDeviceCount, reinterpret_cast<VkPhysicalDevice*>( physicalDevices.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( physicalDeviceCount <= physicalDevices.size() );
physicalDevices.resize( physicalDeviceCount );
return createResultValue( result, physicalDevices, "VULKAN_HPP_NAMESPACE::Instance::enumeratePhysicalDevices" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE PFN_vkVoidFunction Instance::getProcAddr( const char* pName ) const
{
return vkGetInstanceProcAddr( m_instance, pName );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE PFN_vkVoidFunction Instance::getProcAddr( const std::string & name ) const
{
return vkGetInstanceProcAddr( m_instance, name.c_str() );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VULKAN_HPP_INLINE Result Instance::createAndroidSurfaceKHR( const AndroidSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateAndroidSurfaceKHR( m_instance, reinterpret_cast<const VkAndroidSurfaceCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createAndroidSurfaceKHR( const AndroidSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateAndroidSurfaceKHR( m_instance, reinterpret_cast<const VkAndroidSurfaceCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createAndroidSurfaceKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createAndroidSurfaceKHRUnique( const AndroidSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createAndroidSurfaceKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
VULKAN_HPP_INLINE Result Instance::createDisplayPlaneSurfaceKHR( const DisplaySurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateDisplayPlaneSurfaceKHR( m_instance, reinterpret_cast<const VkDisplaySurfaceCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createDisplayPlaneSurfaceKHR( const DisplaySurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateDisplayPlaneSurfaceKHR( m_instance, reinterpret_cast<const VkDisplaySurfaceCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createDisplayPlaneSurfaceKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createDisplayPlaneSurfaceKHRUnique( const DisplaySurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createDisplayPlaneSurfaceKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_MIR_KHR
VULKAN_HPP_INLINE Result Instance::createMirSurfaceKHR( const MirSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateMirSurfaceKHR( m_instance, reinterpret_cast<const VkMirSurfaceCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createMirSurfaceKHR( const MirSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateMirSurfaceKHR( m_instance, reinterpret_cast<const VkMirSurfaceCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createMirSurfaceKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createMirSurfaceKHRUnique( const MirSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createMirSurfaceKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_MIR_KHR*/
VULKAN_HPP_INLINE void Instance::destroySurfaceKHR( SurfaceKHR surface, const AllocationCallbacks* pAllocator ) const
{
vkDestroySurfaceKHR( m_instance, static_cast<VkSurfaceKHR>( surface ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Instance::destroySurfaceKHR( SurfaceKHR surface, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroySurfaceKHR( m_instance, static_cast<VkSurfaceKHR>( surface ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_VI_NN
VULKAN_HPP_INLINE Result Instance::createViSurfaceNN( const ViSurfaceCreateInfoNN* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateViSurfaceNN( m_instance, reinterpret_cast<const VkViSurfaceCreateInfoNN*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createViSurfaceNN( const ViSurfaceCreateInfoNN & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateViSurfaceNN( m_instance, reinterpret_cast<const VkViSurfaceCreateInfoNN*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createViSurfaceNN" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createViSurfaceNNUnique( const ViSurfaceCreateInfoNN & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createViSurfaceNN( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_VI_NN*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
VULKAN_HPP_INLINE Result Instance::createWaylandSurfaceKHR( const WaylandSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateWaylandSurfaceKHR( m_instance, reinterpret_cast<const VkWaylandSurfaceCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createWaylandSurfaceKHR( const WaylandSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateWaylandSurfaceKHR( m_instance, reinterpret_cast<const VkWaylandSurfaceCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createWaylandSurfaceKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createWaylandSurfaceKHRUnique( const WaylandSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createWaylandSurfaceKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE Result Instance::createWin32SurfaceKHR( const Win32SurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateWin32SurfaceKHR( m_instance, reinterpret_cast<const VkWin32SurfaceCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createWin32SurfaceKHR( const Win32SurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateWin32SurfaceKHR( m_instance, reinterpret_cast<const VkWin32SurfaceCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createWin32SurfaceKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createWin32SurfaceKHRUnique( const Win32SurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createWin32SurfaceKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
VULKAN_HPP_INLINE Result Instance::createXlibSurfaceKHR( const XlibSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateXlibSurfaceKHR( m_instance, reinterpret_cast<const VkXlibSurfaceCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createXlibSurfaceKHR( const XlibSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateXlibSurfaceKHR( m_instance, reinterpret_cast<const VkXlibSurfaceCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createXlibSurfaceKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createXlibSurfaceKHRUnique( const XlibSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createXlibSurfaceKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
VULKAN_HPP_INLINE Result Instance::createXcbSurfaceKHR( const XcbSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateXcbSurfaceKHR( m_instance, reinterpret_cast<const VkXcbSurfaceCreateInfoKHR*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createXcbSurfaceKHR( const XcbSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateXcbSurfaceKHR( m_instance, reinterpret_cast<const VkXcbSurfaceCreateInfoKHR*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createXcbSurfaceKHR" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createXcbSurfaceKHRUnique( const XcbSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createXcbSurfaceKHR( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_XCB_KHR*/
VULKAN_HPP_INLINE Result Instance::createDebugReportCallbackEXT( const DebugReportCallbackCreateInfoEXT* pCreateInfo, const AllocationCallbacks* pAllocator, DebugReportCallbackEXT* pCallback ) const
{
return static_cast<Result>( vkCreateDebugReportCallbackEXT( m_instance, reinterpret_cast<const VkDebugReportCallbackCreateInfoEXT*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkDebugReportCallbackEXT*>( pCallback ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<DebugReportCallbackEXT>::type Instance::createDebugReportCallbackEXT( const DebugReportCallbackCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DebugReportCallbackEXT callback;
Result result = static_cast<Result>( vkCreateDebugReportCallbackEXT( m_instance, reinterpret_cast<const VkDebugReportCallbackCreateInfoEXT*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkDebugReportCallbackEXT*>( &callback ) ) );
return createResultValue( result, callback, "VULKAN_HPP_NAMESPACE::Instance::createDebugReportCallbackEXT" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueDebugReportCallbackEXT Instance::createDebugReportCallbackEXTUnique( const DebugReportCallbackCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
DebugReportCallbackEXTDeleter deleter( *this, allocator );
return UniqueDebugReportCallbackEXT( createDebugReportCallbackEXT( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Instance::destroyDebugReportCallbackEXT( DebugReportCallbackEXT callback, const AllocationCallbacks* pAllocator ) const
{
vkDestroyDebugReportCallbackEXT( m_instance, static_cast<VkDebugReportCallbackEXT>( callback ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Instance::destroyDebugReportCallbackEXT( DebugReportCallbackEXT callback, Optional<const AllocationCallbacks> allocator ) const
{
vkDestroyDebugReportCallbackEXT( m_instance, static_cast<VkDebugReportCallbackEXT>( callback ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ) );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE void Instance::debugReportMessageEXT( DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage ) const
{
vkDebugReportMessageEXT( m_instance, static_cast<VkDebugReportFlagsEXT>( flags ), static_cast<VkDebugReportObjectTypeEXT>( objectType ), object, location, messageCode, pLayerPrefix, pMessage );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE void Instance::debugReportMessageEXT( DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const std::string & layerPrefix, const std::string & message ) const
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( layerPrefix.size() == message.size() );
#else
if ( layerPrefix.size() != message.size() )
{
throw LogicError( "VULKAN_HPP_NAMESPACE::Instance::debugReportMessageEXT: layerPrefix.size() != message.size()" );
}
#endif // VULKAN_HPP_NO_EXCEPTIONS
vkDebugReportMessageEXT( m_instance, static_cast<VkDebugReportFlagsEXT>( flags ), static_cast<VkDebugReportObjectTypeEXT>( objectType ), object, location, messageCode, layerPrefix.c_str(), message.c_str() );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
VULKAN_HPP_INLINE Result Instance::enumeratePhysicalDeviceGroupsKHX( uint32_t* pPhysicalDeviceGroupCount, PhysicalDeviceGroupPropertiesKHX* pPhysicalDeviceGroupProperties ) const
{
return static_cast<Result>( vkEnumeratePhysicalDeviceGroupsKHX( m_instance, pPhysicalDeviceGroupCount, reinterpret_cast<VkPhysicalDeviceGroupPropertiesKHX*>( pPhysicalDeviceGroupProperties ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator>
VULKAN_HPP_INLINE typename ResultValueType<std::vector<PhysicalDeviceGroupPropertiesKHX,Allocator>>::type Instance::enumeratePhysicalDeviceGroupsKHX() const
{
std::vector<PhysicalDeviceGroupPropertiesKHX,Allocator> physicalDeviceGroupProperties;
uint32_t physicalDeviceGroupCount;
Result result;
do
{
result = static_cast<Result>( vkEnumeratePhysicalDeviceGroupsKHX( m_instance, &physicalDeviceGroupCount, nullptr ) );
if ( ( result == Result::eSuccess ) && physicalDeviceGroupCount )
{
physicalDeviceGroupProperties.resize( physicalDeviceGroupCount );
result = static_cast<Result>( vkEnumeratePhysicalDeviceGroupsKHX( m_instance, &physicalDeviceGroupCount, reinterpret_cast<VkPhysicalDeviceGroupPropertiesKHX*>( physicalDeviceGroupProperties.data() ) ) );
}
} while ( result == Result::eIncomplete );
assert( physicalDeviceGroupCount <= physicalDeviceGroupProperties.size() );
physicalDeviceGroupProperties.resize( physicalDeviceGroupCount );
return createResultValue( result, physicalDeviceGroupProperties, "VULKAN_HPP_NAMESPACE::Instance::enumeratePhysicalDeviceGroupsKHX" );
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_IOS_MVK
VULKAN_HPP_INLINE Result Instance::createIOSSurfaceMVK( const IOSSurfaceCreateInfoMVK* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateIOSSurfaceMVK( m_instance, reinterpret_cast<const VkIOSSurfaceCreateInfoMVK*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createIOSSurfaceMVK( const IOSSurfaceCreateInfoMVK & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateIOSSurfaceMVK( m_instance, reinterpret_cast<const VkIOSSurfaceCreateInfoMVK*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createIOSSurfaceMVK" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createIOSSurfaceMVKUnique( const IOSSurfaceCreateInfoMVK & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createIOSSurfaceMVK( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_IOS_MVK*/
#ifdef VK_USE_PLATFORM_MACOS_MVK
VULKAN_HPP_INLINE Result Instance::createMacOSSurfaceMVK( const MacOSSurfaceCreateInfoMVK* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const
{
return static_cast<Result>( vkCreateMacOSSurfaceMVK( m_instance, reinterpret_cast<const VkMacOSSurfaceCreateInfoMVK*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkSurfaceKHR*>( pSurface ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<SurfaceKHR>::type Instance::createMacOSSurfaceMVK( const MacOSSurfaceCreateInfoMVK & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHR surface;
Result result = static_cast<Result>( vkCreateMacOSSurfaceMVK( m_instance, reinterpret_cast<const VkMacOSSurfaceCreateInfoMVK*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkSurfaceKHR*>( &surface ) ) );
return createResultValue( result, surface, "VULKAN_HPP_NAMESPACE::Instance::createMacOSSurfaceMVK" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createMacOSSurfaceMVKUnique( const MacOSSurfaceCreateInfoMVK & createInfo, Optional<const AllocationCallbacks> allocator ) const
{
SurfaceKHRDeleter deleter( *this, allocator );
return UniqueSurfaceKHR( createMacOSSurfaceMVK( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VK_USE_PLATFORM_MACOS_MVK*/
struct DeviceGroupDeviceCreateInfoKHX
{
DeviceGroupDeviceCreateInfoKHX( uint32_t physicalDeviceCount_ = 0, const PhysicalDevice* pPhysicalDevices_ = nullptr )
: sType( StructureType::eDeviceGroupDeviceCreateInfoKHX )
, pNext( nullptr )
, physicalDeviceCount( physicalDeviceCount_ )
, pPhysicalDevices( pPhysicalDevices_ )
{
}
DeviceGroupDeviceCreateInfoKHX( VkDeviceGroupDeviceCreateInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupDeviceCreateInfoKHX ) );
}
DeviceGroupDeviceCreateInfoKHX& operator=( VkDeviceGroupDeviceCreateInfoKHX const & rhs )
{
memcpy( this, &rhs, sizeof( DeviceGroupDeviceCreateInfoKHX ) );
return *this;
}
DeviceGroupDeviceCreateInfoKHX& setPNext( const void* pNext_ )
{
pNext = pNext_;
return *this;
}
DeviceGroupDeviceCreateInfoKHX& setPhysicalDeviceCount( uint32_t physicalDeviceCount_ )
{
physicalDeviceCount = physicalDeviceCount_;
return *this;
}
DeviceGroupDeviceCreateInfoKHX& setPPhysicalDevices( const PhysicalDevice* pPhysicalDevices_ )
{
pPhysicalDevices = pPhysicalDevices_;
return *this;
}
operator const VkDeviceGroupDeviceCreateInfoKHX&() const
{
return *reinterpret_cast<const VkDeviceGroupDeviceCreateInfoKHX*>(this);
}
bool operator==( DeviceGroupDeviceCreateInfoKHX const& rhs ) const
{
return ( sType == rhs.sType )
&& ( pNext == rhs.pNext )
&& ( physicalDeviceCount == rhs.physicalDeviceCount )
&& ( pPhysicalDevices == rhs.pPhysicalDevices );
}
bool operator!=( DeviceGroupDeviceCreateInfoKHX const& rhs ) const
{
return !operator==( rhs );
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t physicalDeviceCount;
const PhysicalDevice* pPhysicalDevices;
};
static_assert( sizeof( DeviceGroupDeviceCreateInfoKHX ) == sizeof( VkDeviceGroupDeviceCreateInfoKHX ), "struct and wrapper have different size!" );
#ifndef VULKAN_HPP_NO_SMART_HANDLE
class InstanceDeleter;
using UniqueInstance = UniqueHandle<Instance, InstanceDeleter>;
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
Result createInstance( const InstanceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Instance* pInstance );
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Instance>::type createInstance( const InstanceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr );
#ifndef VULKAN_HPP_NO_SMART_HANDLE
UniqueInstance createInstanceUnique( const InstanceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr );
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_NO_SMART_HANDLE
class InstanceDeleter
{
public:
InstanceDeleter( Optional<const AllocationCallbacks> allocator = nullptr )
: m_allocator( allocator )
{}
void operator()( Instance instance )
{
instance.destroy( m_allocator );
}
private:
Optional<const AllocationCallbacks> m_allocator;
};
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
VULKAN_HPP_INLINE Result createInstance( const InstanceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Instance* pInstance )
{
return static_cast<Result>( vkCreateInstance( reinterpret_cast<const VkInstanceCreateInfo*>( pCreateInfo ), reinterpret_cast<const VkAllocationCallbacks*>( pAllocator ), reinterpret_cast<VkInstance*>( pInstance ) ) );
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
VULKAN_HPP_INLINE ResultValueType<Instance>::type createInstance( const InstanceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator )
{
Instance instance;
Result result = static_cast<Result>( vkCreateInstance( reinterpret_cast<const VkInstanceCreateInfo*>( &createInfo ), reinterpret_cast<const VkAllocationCallbacks*>( static_cast<const AllocationCallbacks*>( allocator ) ), reinterpret_cast<VkInstance*>( &instance ) ) );
return createResultValue( result, instance, "VULKAN_HPP_NAMESPACE::createInstance" );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
VULKAN_HPP_INLINE UniqueInstance createInstanceUnique( const InstanceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator )
{
InstanceDeleter deleter( allocator );
return UniqueInstance( createInstance( createInfo, allocator ), deleter );
}
#endif /*VULKAN_HPP_NO_SMART_HANDLE*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
template <> struct isStructureChainValid<PresentInfoKHR, DisplayPresentInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageCreateInfo, DedicatedAllocationImageCreateInfoNV>{ enum { value = true }; };
template <> struct isStructureChainValid<BufferCreateInfo, DedicatedAllocationBufferCreateInfoNV>{ enum { value = true }; };
template <> struct isStructureChainValid<MemoryAllocateInfo, DedicatedAllocationMemoryAllocateInfoNV>{ enum { value = true }; };
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<MemoryAllocateInfo, ExportMemoryWin32HandleInfoNV>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<SubmitInfo, Win32KeyedMutexAcquireReleaseInfoNV>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
template <> struct isStructureChainValid<DeviceCreateInfo, PhysicalDeviceFeatures2KHR>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDevicePushDescriptorPropertiesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<PresentInfoKHR, PresentRegionsKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceFeatures2KHR, PhysicalDeviceVariablePointerFeaturesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<DeviceCreateInfo, PhysicalDeviceVariablePointerFeaturesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDeviceIDPropertiesKHR>{ enum { value = true }; };
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<MemoryAllocateInfo, ExportMemoryWin32HandleInfoKHR>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<SubmitInfo, Win32KeyedMutexAcquireReleaseInfoKHR>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<SemaphoreCreateInfo, ExportSemaphoreWin32HandleInfoKHR>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<SubmitInfo, D3D12FenceSubmitInfoKHR>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<FenceCreateInfo, ExportFenceWin32HandleInfoKHR>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
template <> struct isStructureChainValid<PhysicalDeviceFeatures2KHR, PhysicalDeviceMultiviewFeaturesKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<DeviceCreateInfo, PhysicalDeviceMultiviewFeaturesKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDeviceMultiviewPropertiesKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<RenderPassCreateInfo, RenderPassMultiviewCreateInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<BindBufferMemoryInfoKHR, BindBufferMemoryDeviceGroupInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<BindImageMemoryInfoKHR, BindImageMemoryDeviceGroupInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<RenderPassBeginInfo, DeviceGroupRenderPassBeginInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<CommandBufferBeginInfo, DeviceGroupCommandBufferBeginInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<SubmitInfo, DeviceGroupSubmitInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<BindSparseInfo, DeviceGroupBindSparseInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageCreateInfo, ImageSwapchainCreateInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<BindImageMemoryInfoKHR, BindImageMemorySwapchainInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<PresentInfoKHR, PresentTimesInfoGOOGLE>{ enum { value = true }; };
template <> struct isStructureChainValid<PipelineViewportStateCreateInfo, PipelineViewportWScalingStateCreateInfoNV>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDeviceDiscardRectanglePropertiesEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceFeatures2KHR, PhysicalDevice16BitStorageFeaturesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<DeviceCreateInfo, PhysicalDevice16BitStorageFeaturesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<MemoryRequirements2KHR, MemoryDedicatedRequirementsKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<MemoryAllocateInfo, MemoryDedicatedAllocateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<SamplerCreateInfo, SamplerYcbcrConversionInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageViewCreateInfo, SamplerYcbcrConversionInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceFeatures2KHR, PhysicalDeviceSamplerYcbcrConversionFeaturesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<DeviceCreateInfo, PhysicalDeviceSamplerYcbcrConversionFeaturesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageFormatProperties2KHR, SamplerYcbcrConversionImageFormatPropertiesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageFormatProperties2KHR, TextureLODGatherFormatPropertiesAMD>{ enum { value = true }; };
template <> struct isStructureChainValid<PipelineMultisampleStateCreateInfo, PipelineCoverageToColorStateCreateInfoNV>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDeviceSamplerFilterMinmaxPropertiesEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceFeatures2KHR, PhysicalDeviceBlendOperationAdvancedFeaturesEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDeviceBlendOperationAdvancedPropertiesEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageCreateInfo, ImageFormatListCreateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ShaderModuleCreateInfo, ShaderModuleValidationCacheCreateInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<SurfaceCapabilities2KHR, SharedPresentSurfaceCapabilitiesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageViewCreateInfo, ImageViewUsageCreateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<RenderPassCreateInfo, RenderPassInputAttachmentAspectCreateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<BindImageMemoryInfoKHR, BindImagePlaneMemoryInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageMemoryRequirementsInfo2KHR, ImagePlaneMemoryRequirementsInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageMemoryBarrier, SampleLocationsInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<RenderPassBeginInfo, RenderPassSampleLocationsBeginInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PipelineMultisampleStateCreateInfo, PipelineSampleLocationsStateCreateInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDeviceSampleLocationsPropertiesEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<InstanceCreateInfo, DebugReportCallbackCreateInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PipelineRasterizationStateCreateInfo, PipelineRasterizationStateRasterizationOrderAMD>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageCreateInfo, ExternalMemoryImageCreateInfoNV>{ enum { value = true }; };
template <> struct isStructureChainValid<MemoryAllocateInfo, ExportMemoryAllocateInfoNV>{ enum { value = true }; };
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<MemoryAllocateInfo, ImportMemoryWin32HandleInfoNV>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
template <> struct isStructureChainValid<InstanceCreateInfo, ValidationFlagsEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceImageFormatInfo2KHR, PhysicalDeviceExternalImageFormatInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageCreateInfo, ExternalMemoryImageCreateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<BufferCreateInfo, ExternalMemoryBufferCreateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<MemoryAllocateInfo, ExportMemoryAllocateInfoKHR>{ enum { value = true }; };
#ifdef VK_USE_PLATFORM_WIN32_KHR
template <> struct isStructureChainValid<MemoryAllocateInfo, ImportMemoryWin32HandleInfoKHR>{ enum { value = true }; };
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
template <> struct isStructureChainValid<MemoryAllocateInfo, ImportMemoryFdInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<ImageFormatProperties2KHR, ExternalImageFormatPropertiesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<SemaphoreCreateInfo, ExportSemaphoreCreateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<FenceCreateInfo, ExportFenceCreateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<SwapchainCreateInfoKHR, SwapchainCounterCreateInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<MemoryAllocateInfo, MemoryAllocateFlagsInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<PresentInfoKHR, DeviceGroupPresentInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<SwapchainCreateInfoKHR, DeviceGroupSwapchainCreateInfoKHX>{ enum { value = true }; };
template <> struct isStructureChainValid<PipelineViewportStateCreateInfo, PipelineViewportSwizzleStateCreateInfoNV>{ enum { value = true }; };
template <> struct isStructureChainValid<GraphicsPipelineCreateInfo, PipelineDiscardRectangleStateCreateInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PhysicalDeviceProperties2KHR, PhysicalDevicePointClippingPropertiesKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<SamplerCreateInfo, SamplerReductionModeCreateInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PipelineTessellationStateCreateInfo, PipelineTessellationDomainOriginStateCreateInfoKHR>{ enum { value = true }; };
template <> struct isStructureChainValid<PipelineColorBlendStateCreateInfo, PipelineColorBlendAdvancedStateCreateInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<PipelineMultisampleStateCreateInfo, PipelineCoverageModulationStateCreateInfoNV>{ enum { value = true }; };
template <> struct isStructureChainValid<DeviceQueueCreateInfo, DeviceQueueGlobalPriorityCreateInfoEXT>{ enum { value = true }; };
template <> struct isStructureChainValid<DeviceCreateInfo, DeviceGroupDeviceCreateInfoKHX>{ enum { value = true }; };
VULKAN_HPP_INLINE std::string to_string(FramebufferCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(FramebufferCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(QueryPoolCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(QueryPoolCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(RenderPassCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(RenderPassCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(SamplerCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(SamplerCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineLayoutCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineLayoutCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineCacheCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineCacheCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineDepthStencilStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineDepthStencilStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineDynamicStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineDynamicStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineColorBlendStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineColorBlendStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineMultisampleStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineMultisampleStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineRasterizationStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineRasterizationStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineViewportStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineViewportStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineTessellationStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineTessellationStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineInputAssemblyStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineInputAssemblyStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineVertexInputStateCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineVertexInputStateCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineShaderStageCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineShaderStageCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(BufferViewCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(BufferViewCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(InstanceCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(InstanceCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(DeviceCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(DeviceCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(DeviceQueueCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(DeviceQueueCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(ImageViewCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(ImageViewCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(SemaphoreCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(SemaphoreCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(ShaderModuleCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(ShaderModuleCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(EventCreateFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(EventCreateFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(MemoryMapFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(MemoryMapFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(DescriptorPoolResetFlagBits)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(DescriptorPoolResetFlags)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(DescriptorUpdateTemplateCreateFlagBitsKHR)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(DescriptorUpdateTemplateCreateFlagsKHR)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(DisplayModeCreateFlagBitsKHR)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(DisplayModeCreateFlagsKHR)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(DisplaySurfaceCreateFlagBitsKHR)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(DisplaySurfaceCreateFlagsKHR)
{
return "{}";
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VULKAN_HPP_INLINE std::string to_string(AndroidSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VULKAN_HPP_INLINE std::string to_string(AndroidSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
VULKAN_HPP_INLINE std::string to_string(MirSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
VULKAN_HPP_INLINE std::string to_string(MirSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_VI_NN
VULKAN_HPP_INLINE std::string to_string(ViSurfaceCreateFlagBitsNN)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_VI_NN*/
#ifdef VK_USE_PLATFORM_VI_NN
VULKAN_HPP_INLINE std::string to_string(ViSurfaceCreateFlagsNN)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_VI_NN*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
VULKAN_HPP_INLINE std::string to_string(WaylandSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
VULKAN_HPP_INLINE std::string to_string(WaylandSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE std::string to_string(Win32SurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
VULKAN_HPP_INLINE std::string to_string(Win32SurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
VULKAN_HPP_INLINE std::string to_string(XlibSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
VULKAN_HPP_INLINE std::string to_string(XlibSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
VULKAN_HPP_INLINE std::string to_string(XcbSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
VULKAN_HPP_INLINE std::string to_string(XcbSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifdef VK_USE_PLATFORM_IOS_MVK
VULKAN_HPP_INLINE std::string to_string(IOSSurfaceCreateFlagBitsMVK)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_IOS_MVK*/
#ifdef VK_USE_PLATFORM_IOS_MVK
VULKAN_HPP_INLINE std::string to_string(IOSSurfaceCreateFlagsMVK)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_IOS_MVK*/
#ifdef VK_USE_PLATFORM_MACOS_MVK
VULKAN_HPP_INLINE std::string to_string(MacOSSurfaceCreateFlagBitsMVK)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_MACOS_MVK*/
#ifdef VK_USE_PLATFORM_MACOS_MVK
VULKAN_HPP_INLINE std::string to_string(MacOSSurfaceCreateFlagsMVK)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_MACOS_MVK*/
VULKAN_HPP_INLINE std::string to_string(CommandPoolTrimFlagBitsKHR)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(CommandPoolTrimFlagsKHR)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineViewportSwizzleStateCreateFlagBitsNV)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineViewportSwizzleStateCreateFlagsNV)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineDiscardRectangleStateCreateFlagBitsEXT)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineDiscardRectangleStateCreateFlagsEXT)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineCoverageToColorStateCreateFlagBitsNV)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineCoverageToColorStateCreateFlagsNV)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineCoverageModulationStateCreateFlagBitsNV)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(PipelineCoverageModulationStateCreateFlagsNV)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(ValidationCacheCreateFlagBitsEXT)
{
return "(void)";
}
VULKAN_HPP_INLINE std::string to_string(ValidationCacheCreateFlagsEXT)
{
return "{}";
}
VULKAN_HPP_INLINE std::string to_string(ImageLayout value)
{
switch (value)
{
case ImageLayout::eUndefined: return "Undefined";
case ImageLayout::eGeneral: return "General";
case ImageLayout::eColorAttachmentOptimal: return "ColorAttachmentOptimal";
case ImageLayout::eDepthStencilAttachmentOptimal: return "DepthStencilAttachmentOptimal";
case ImageLayout::eDepthStencilReadOnlyOptimal: return "DepthStencilReadOnlyOptimal";
case ImageLayout::eShaderReadOnlyOptimal: return "ShaderReadOnlyOptimal";
case ImageLayout::eTransferSrcOptimal: return "TransferSrcOptimal";
case ImageLayout::eTransferDstOptimal: return "TransferDstOptimal";
case ImageLayout::ePreinitialized: return "Preinitialized";
case ImageLayout::ePresentSrcKHR: return "PresentSrcKHR";
case ImageLayout::eSharedPresentKHR: return "SharedPresentKHR";
case ImageLayout::eDepthReadOnlyStencilAttachmentOptimalKHR: return "DepthReadOnlyStencilAttachmentOptimalKHR";
case ImageLayout::eDepthAttachmentStencilReadOnlyOptimalKHR: return "DepthAttachmentStencilReadOnlyOptimalKHR";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(AttachmentLoadOp value)
{
switch (value)
{
case AttachmentLoadOp::eLoad: return "Load";
case AttachmentLoadOp::eClear: return "Clear";
case AttachmentLoadOp::eDontCare: return "DontCare";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(AttachmentStoreOp value)
{
switch (value)
{
case AttachmentStoreOp::eStore: return "Store";
case AttachmentStoreOp::eDontCare: return "DontCare";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ImageType value)
{
switch (value)
{
case ImageType::e1D: return "1D";
case ImageType::e2D: return "2D";
case ImageType::e3D: return "3D";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ImageTiling value)
{
switch (value)
{
case ImageTiling::eOptimal: return "Optimal";
case ImageTiling::eLinear: return "Linear";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ImageViewType value)
{
switch (value)
{
case ImageViewType::e1D: return "1D";
case ImageViewType::e2D: return "2D";
case ImageViewType::e3D: return "3D";
case ImageViewType::eCube: return "Cube";
case ImageViewType::e1DArray: return "1DArray";
case ImageViewType::e2DArray: return "2DArray";
case ImageViewType::eCubeArray: return "CubeArray";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CommandBufferLevel value)
{
switch (value)
{
case CommandBufferLevel::ePrimary: return "Primary";
case CommandBufferLevel::eSecondary: return "Secondary";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ComponentSwizzle value)
{
switch (value)
{
case ComponentSwizzle::eIdentity: return "Identity";
case ComponentSwizzle::eZero: return "Zero";
case ComponentSwizzle::eOne: return "One";
case ComponentSwizzle::eR: return "R";
case ComponentSwizzle::eG: return "G";
case ComponentSwizzle::eB: return "B";
case ComponentSwizzle::eA: return "A";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DescriptorType value)
{
switch (value)
{
case DescriptorType::eSampler: return "Sampler";
case DescriptorType::eCombinedImageSampler: return "CombinedImageSampler";
case DescriptorType::eSampledImage: return "SampledImage";
case DescriptorType::eStorageImage: return "StorageImage";
case DescriptorType::eUniformTexelBuffer: return "UniformTexelBuffer";
case DescriptorType::eStorageTexelBuffer: return "StorageTexelBuffer";
case DescriptorType::eUniformBuffer: return "UniformBuffer";
case DescriptorType::eStorageBuffer: return "StorageBuffer";
case DescriptorType::eUniformBufferDynamic: return "UniformBufferDynamic";
case DescriptorType::eStorageBufferDynamic: return "StorageBufferDynamic";
case DescriptorType::eInputAttachment: return "InputAttachment";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(QueryType value)
{
switch (value)
{
case QueryType::eOcclusion: return "Occlusion";
case QueryType::ePipelineStatistics: return "PipelineStatistics";
case QueryType::eTimestamp: return "Timestamp";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(BorderColor value)
{
switch (value)
{
case BorderColor::eFloatTransparentBlack: return "FloatTransparentBlack";
case BorderColor::eIntTransparentBlack: return "IntTransparentBlack";
case BorderColor::eFloatOpaqueBlack: return "FloatOpaqueBlack";
case BorderColor::eIntOpaqueBlack: return "IntOpaqueBlack";
case BorderColor::eFloatOpaqueWhite: return "FloatOpaqueWhite";
case BorderColor::eIntOpaqueWhite: return "IntOpaqueWhite";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PipelineBindPoint value)
{
switch (value)
{
case PipelineBindPoint::eGraphics: return "Graphics";
case PipelineBindPoint::eCompute: return "Compute";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PipelineCacheHeaderVersion value)
{
switch (value)
{
case PipelineCacheHeaderVersion::eOne: return "One";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PrimitiveTopology value)
{
switch (value)
{
case PrimitiveTopology::ePointList: return "PointList";
case PrimitiveTopology::eLineList: return "LineList";
case PrimitiveTopology::eLineStrip: return "LineStrip";
case PrimitiveTopology::eTriangleList: return "TriangleList";
case PrimitiveTopology::eTriangleStrip: return "TriangleStrip";
case PrimitiveTopology::eTriangleFan: return "TriangleFan";
case PrimitiveTopology::eLineListWithAdjacency: return "LineListWithAdjacency";
case PrimitiveTopology::eLineStripWithAdjacency: return "LineStripWithAdjacency";
case PrimitiveTopology::eTriangleListWithAdjacency: return "TriangleListWithAdjacency";
case PrimitiveTopology::eTriangleStripWithAdjacency: return "TriangleStripWithAdjacency";
case PrimitiveTopology::ePatchList: return "PatchList";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SharingMode value)
{
switch (value)
{
case SharingMode::eExclusive: return "Exclusive";
case SharingMode::eConcurrent: return "Concurrent";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(IndexType value)
{
switch (value)
{
case IndexType::eUint16: return "Uint16";
case IndexType::eUint32: return "Uint32";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(Filter value)
{
switch (value)
{
case Filter::eNearest: return "Nearest";
case Filter::eLinear: return "Linear";
case Filter::eCubicIMG: return "CubicIMG";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SamplerMipmapMode value)
{
switch (value)
{
case SamplerMipmapMode::eNearest: return "Nearest";
case SamplerMipmapMode::eLinear: return "Linear";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SamplerAddressMode value)
{
switch (value)
{
case SamplerAddressMode::eRepeat: return "Repeat";
case SamplerAddressMode::eMirroredRepeat: return "MirroredRepeat";
case SamplerAddressMode::eClampToEdge: return "ClampToEdge";
case SamplerAddressMode::eClampToBorder: return "ClampToBorder";
case SamplerAddressMode::eMirrorClampToEdge: return "MirrorClampToEdge";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CompareOp value)
{
switch (value)
{
case CompareOp::eNever: return "Never";
case CompareOp::eLess: return "Less";
case CompareOp::eEqual: return "Equal";
case CompareOp::eLessOrEqual: return "LessOrEqual";
case CompareOp::eGreater: return "Greater";
case CompareOp::eNotEqual: return "NotEqual";
case CompareOp::eGreaterOrEqual: return "GreaterOrEqual";
case CompareOp::eAlways: return "Always";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PolygonMode value)
{
switch (value)
{
case PolygonMode::eFill: return "Fill";
case PolygonMode::eLine: return "Line";
case PolygonMode::ePoint: return "Point";
case PolygonMode::eFillRectangleNV: return "FillRectangleNV";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CullModeFlagBits value)
{
switch (value)
{
case CullModeFlagBits::eNone: return "None";
case CullModeFlagBits::eFront: return "Front";
case CullModeFlagBits::eBack: return "Back";
case CullModeFlagBits::eFrontAndBack: return "FrontAndBack";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CullModeFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CullModeFlagBits::eNone) result += "None | ";
if (value & CullModeFlagBits::eFront) result += "Front | ";
if (value & CullModeFlagBits::eBack) result += "Back | ";
if (value & CullModeFlagBits::eFrontAndBack) result += "FrontAndBack | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(FrontFace value)
{
switch (value)
{
case FrontFace::eCounterClockwise: return "CounterClockwise";
case FrontFace::eClockwise: return "Clockwise";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(BlendFactor value)
{
switch (value)
{
case BlendFactor::eZero: return "Zero";
case BlendFactor::eOne: return "One";
case BlendFactor::eSrcColor: return "SrcColor";
case BlendFactor::eOneMinusSrcColor: return "OneMinusSrcColor";
case BlendFactor::eDstColor: return "DstColor";
case BlendFactor::eOneMinusDstColor: return "OneMinusDstColor";
case BlendFactor::eSrcAlpha: return "SrcAlpha";
case BlendFactor::eOneMinusSrcAlpha: return "OneMinusSrcAlpha";
case BlendFactor::eDstAlpha: return "DstAlpha";
case BlendFactor::eOneMinusDstAlpha: return "OneMinusDstAlpha";
case BlendFactor::eConstantColor: return "ConstantColor";
case BlendFactor::eOneMinusConstantColor: return "OneMinusConstantColor";
case BlendFactor::eConstantAlpha: return "ConstantAlpha";
case BlendFactor::eOneMinusConstantAlpha: return "OneMinusConstantAlpha";
case BlendFactor::eSrcAlphaSaturate: return "SrcAlphaSaturate";
case BlendFactor::eSrc1Color: return "Src1Color";
case BlendFactor::eOneMinusSrc1Color: return "OneMinusSrc1Color";
case BlendFactor::eSrc1Alpha: return "Src1Alpha";
case BlendFactor::eOneMinusSrc1Alpha: return "OneMinusSrc1Alpha";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(BlendOp value)
{
switch (value)
{
case BlendOp::eAdd: return "Add";
case BlendOp::eSubtract: return "Subtract";
case BlendOp::eReverseSubtract: return "ReverseSubtract";
case BlendOp::eMin: return "Min";
case BlendOp::eMax: return "Max";
case BlendOp::eZeroEXT: return "ZeroEXT";
case BlendOp::eSrcEXT: return "SrcEXT";
case BlendOp::eDstEXT: return "DstEXT";
case BlendOp::eSrcOverEXT: return "SrcOverEXT";
case BlendOp::eDstOverEXT: return "DstOverEXT";
case BlendOp::eSrcInEXT: return "SrcInEXT";
case BlendOp::eDstInEXT: return "DstInEXT";
case BlendOp::eSrcOutEXT: return "SrcOutEXT";
case BlendOp::eDstOutEXT: return "DstOutEXT";
case BlendOp::eSrcAtopEXT: return "SrcAtopEXT";
case BlendOp::eDstAtopEXT: return "DstAtopEXT";
case BlendOp::eXorEXT: return "XorEXT";
case BlendOp::eMultiplyEXT: return "MultiplyEXT";
case BlendOp::eScreenEXT: return "ScreenEXT";
case BlendOp::eOverlayEXT: return "OverlayEXT";
case BlendOp::eDarkenEXT: return "DarkenEXT";
case BlendOp::eLightenEXT: return "LightenEXT";
case BlendOp::eColordodgeEXT: return "ColordodgeEXT";
case BlendOp::eColorburnEXT: return "ColorburnEXT";
case BlendOp::eHardlightEXT: return "HardlightEXT";
case BlendOp::eSoftlightEXT: return "SoftlightEXT";
case BlendOp::eDifferenceEXT: return "DifferenceEXT";
case BlendOp::eExclusionEXT: return "ExclusionEXT";
case BlendOp::eInvertEXT: return "InvertEXT";
case BlendOp::eInvertRgbEXT: return "InvertRgbEXT";
case BlendOp::eLineardodgeEXT: return "LineardodgeEXT";
case BlendOp::eLinearburnEXT: return "LinearburnEXT";
case BlendOp::eVividlightEXT: return "VividlightEXT";
case BlendOp::eLinearlightEXT: return "LinearlightEXT";
case BlendOp::ePinlightEXT: return "PinlightEXT";
case BlendOp::eHardmixEXT: return "HardmixEXT";
case BlendOp::eHslHueEXT: return "HslHueEXT";
case BlendOp::eHslSaturationEXT: return "HslSaturationEXT";
case BlendOp::eHslColorEXT: return "HslColorEXT";
case BlendOp::eHslLuminosityEXT: return "HslLuminosityEXT";
case BlendOp::ePlusEXT: return "PlusEXT";
case BlendOp::ePlusClampedEXT: return "PlusClampedEXT";
case BlendOp::ePlusClampedAlphaEXT: return "PlusClampedAlphaEXT";
case BlendOp::ePlusDarkerEXT: return "PlusDarkerEXT";
case BlendOp::eMinusEXT: return "MinusEXT";
case BlendOp::eMinusClampedEXT: return "MinusClampedEXT";
case BlendOp::eContrastEXT: return "ContrastEXT";
case BlendOp::eInvertOvgEXT: return "InvertOvgEXT";
case BlendOp::eRedEXT: return "RedEXT";
case BlendOp::eGreenEXT: return "GreenEXT";
case BlendOp::eBlueEXT: return "BlueEXT";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(StencilOp value)
{
switch (value)
{
case StencilOp::eKeep: return "Keep";
case StencilOp::eZero: return "Zero";
case StencilOp::eReplace: return "Replace";
case StencilOp::eIncrementAndClamp: return "IncrementAndClamp";
case StencilOp::eDecrementAndClamp: return "DecrementAndClamp";
case StencilOp::eInvert: return "Invert";
case StencilOp::eIncrementAndWrap: return "IncrementAndWrap";
case StencilOp::eDecrementAndWrap: return "DecrementAndWrap";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(LogicOp value)
{
switch (value)
{
case LogicOp::eClear: return "Clear";
case LogicOp::eAnd: return "And";
case LogicOp::eAndReverse: return "AndReverse";
case LogicOp::eCopy: return "Copy";
case LogicOp::eAndInverted: return "AndInverted";
case LogicOp::eNoOp: return "NoOp";
case LogicOp::eXor: return "Xor";
case LogicOp::eOr: return "Or";
case LogicOp::eNor: return "Nor";
case LogicOp::eEquivalent: return "Equivalent";
case LogicOp::eInvert: return "Invert";
case LogicOp::eOrReverse: return "OrReverse";
case LogicOp::eCopyInverted: return "CopyInverted";
case LogicOp::eOrInverted: return "OrInverted";
case LogicOp::eNand: return "Nand";
case LogicOp::eSet: return "Set";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(InternalAllocationType value)
{
switch (value)
{
case InternalAllocationType::eExecutable: return "Executable";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SystemAllocationScope value)
{
switch (value)
{
case SystemAllocationScope::eCommand: return "Command";
case SystemAllocationScope::eObject: return "Object";
case SystemAllocationScope::eCache: return "Cache";
case SystemAllocationScope::eDevice: return "Device";
case SystemAllocationScope::eInstance: return "Instance";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PhysicalDeviceType value)
{
switch (value)
{
case PhysicalDeviceType::eOther: return "Other";
case PhysicalDeviceType::eIntegratedGpu: return "IntegratedGpu";
case PhysicalDeviceType::eDiscreteGpu: return "DiscreteGpu";
case PhysicalDeviceType::eVirtualGpu: return "VirtualGpu";
case PhysicalDeviceType::eCpu: return "Cpu";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(VertexInputRate value)
{
switch (value)
{
case VertexInputRate::eVertex: return "Vertex";
case VertexInputRate::eInstance: return "Instance";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(Format value)
{
switch (value)
{
case Format::eUndefined: return "Undefined";
case Format::eR4G4UnormPack8: return "R4G4UnormPack8";
case Format::eR4G4B4A4UnormPack16: return "R4G4B4A4UnormPack16";
case Format::eB4G4R4A4UnormPack16: return "B4G4R4A4UnormPack16";
case Format::eR5G6B5UnormPack16: return "R5G6B5UnormPack16";
case Format::eB5G6R5UnormPack16: return "B5G6R5UnormPack16";
case Format::eR5G5B5A1UnormPack16: return "R5G5B5A1UnormPack16";
case Format::eB5G5R5A1UnormPack16: return "B5G5R5A1UnormPack16";
case Format::eA1R5G5B5UnormPack16: return "A1R5G5B5UnormPack16";
case Format::eR8Unorm: return "R8Unorm";
case Format::eR8Snorm: return "R8Snorm";
case Format::eR8Uscaled: return "R8Uscaled";
case Format::eR8Sscaled: return "R8Sscaled";
case Format::eR8Uint: return "R8Uint";
case Format::eR8Sint: return "R8Sint";
case Format::eR8Srgb: return "R8Srgb";
case Format::eR8G8Unorm: return "R8G8Unorm";
case Format::eR8G8Snorm: return "R8G8Snorm";
case Format::eR8G8Uscaled: return "R8G8Uscaled";
case Format::eR8G8Sscaled: return "R8G8Sscaled";
case Format::eR8G8Uint: return "R8G8Uint";
case Format::eR8G8Sint: return "R8G8Sint";
case Format::eR8G8Srgb: return "R8G8Srgb";
case Format::eR8G8B8Unorm: return "R8G8B8Unorm";
case Format::eR8G8B8Snorm: return "R8G8B8Snorm";
case Format::eR8G8B8Uscaled: return "R8G8B8Uscaled";
case Format::eR8G8B8Sscaled: return "R8G8B8Sscaled";
case Format::eR8G8B8Uint: return "R8G8B8Uint";
case Format::eR8G8B8Sint: return "R8G8B8Sint";
case Format::eR8G8B8Srgb: return "R8G8B8Srgb";
case Format::eB8G8R8Unorm: return "B8G8R8Unorm";
case Format::eB8G8R8Snorm: return "B8G8R8Snorm";
case Format::eB8G8R8Uscaled: return "B8G8R8Uscaled";
case Format::eB8G8R8Sscaled: return "B8G8R8Sscaled";
case Format::eB8G8R8Uint: return "B8G8R8Uint";
case Format::eB8G8R8Sint: return "B8G8R8Sint";
case Format::eB8G8R8Srgb: return "B8G8R8Srgb";
case Format::eR8G8B8A8Unorm: return "R8G8B8A8Unorm";
case Format::eR8G8B8A8Snorm: return "R8G8B8A8Snorm";
case Format::eR8G8B8A8Uscaled: return "R8G8B8A8Uscaled";
case Format::eR8G8B8A8Sscaled: return "R8G8B8A8Sscaled";
case Format::eR8G8B8A8Uint: return "R8G8B8A8Uint";
case Format::eR8G8B8A8Sint: return "R8G8B8A8Sint";
case Format::eR8G8B8A8Srgb: return "R8G8B8A8Srgb";
case Format::eB8G8R8A8Unorm: return "B8G8R8A8Unorm";
case Format::eB8G8R8A8Snorm: return "B8G8R8A8Snorm";
case Format::eB8G8R8A8Uscaled: return "B8G8R8A8Uscaled";
case Format::eB8G8R8A8Sscaled: return "B8G8R8A8Sscaled";
case Format::eB8G8R8A8Uint: return "B8G8R8A8Uint";
case Format::eB8G8R8A8Sint: return "B8G8R8A8Sint";
case Format::eB8G8R8A8Srgb: return "B8G8R8A8Srgb";
case Format::eA8B8G8R8UnormPack32: return "A8B8G8R8UnormPack32";
case Format::eA8B8G8R8SnormPack32: return "A8B8G8R8SnormPack32";
case Format::eA8B8G8R8UscaledPack32: return "A8B8G8R8UscaledPack32";
case Format::eA8B8G8R8SscaledPack32: return "A8B8G8R8SscaledPack32";
case Format::eA8B8G8R8UintPack32: return "A8B8G8R8UintPack32";
case Format::eA8B8G8R8SintPack32: return "A8B8G8R8SintPack32";
case Format::eA8B8G8R8SrgbPack32: return "A8B8G8R8SrgbPack32";
case Format::eA2R10G10B10UnormPack32: return "A2R10G10B10UnormPack32";
case Format::eA2R10G10B10SnormPack32: return "A2R10G10B10SnormPack32";
case Format::eA2R10G10B10UscaledPack32: return "A2R10G10B10UscaledPack32";
case Format::eA2R10G10B10SscaledPack32: return "A2R10G10B10SscaledPack32";
case Format::eA2R10G10B10UintPack32: return "A2R10G10B10UintPack32";
case Format::eA2R10G10B10SintPack32: return "A2R10G10B10SintPack32";
case Format::eA2B10G10R10UnormPack32: return "A2B10G10R10UnormPack32";
case Format::eA2B10G10R10SnormPack32: return "A2B10G10R10SnormPack32";
case Format::eA2B10G10R10UscaledPack32: return "A2B10G10R10UscaledPack32";
case Format::eA2B10G10R10SscaledPack32: return "A2B10G10R10SscaledPack32";
case Format::eA2B10G10R10UintPack32: return "A2B10G10R10UintPack32";
case Format::eA2B10G10R10SintPack32: return "A2B10G10R10SintPack32";
case Format::eR16Unorm: return "R16Unorm";
case Format::eR16Snorm: return "R16Snorm";
case Format::eR16Uscaled: return "R16Uscaled";
case Format::eR16Sscaled: return "R16Sscaled";
case Format::eR16Uint: return "R16Uint";
case Format::eR16Sint: return "R16Sint";
case Format::eR16Sfloat: return "R16Sfloat";
case Format::eR16G16Unorm: return "R16G16Unorm";
case Format::eR16G16Snorm: return "R16G16Snorm";
case Format::eR16G16Uscaled: return "R16G16Uscaled";
case Format::eR16G16Sscaled: return "R16G16Sscaled";
case Format::eR16G16Uint: return "R16G16Uint";
case Format::eR16G16Sint: return "R16G16Sint";
case Format::eR16G16Sfloat: return "R16G16Sfloat";
case Format::eR16G16B16Unorm: return "R16G16B16Unorm";
case Format::eR16G16B16Snorm: return "R16G16B16Snorm";
case Format::eR16G16B16Uscaled: return "R16G16B16Uscaled";
case Format::eR16G16B16Sscaled: return "R16G16B16Sscaled";
case Format::eR16G16B16Uint: return "R16G16B16Uint";
case Format::eR16G16B16Sint: return "R16G16B16Sint";
case Format::eR16G16B16Sfloat: return "R16G16B16Sfloat";
case Format::eR16G16B16A16Unorm: return "R16G16B16A16Unorm";
case Format::eR16G16B16A16Snorm: return "R16G16B16A16Snorm";
case Format::eR16G16B16A16Uscaled: return "R16G16B16A16Uscaled";
case Format::eR16G16B16A16Sscaled: return "R16G16B16A16Sscaled";
case Format::eR16G16B16A16Uint: return "R16G16B16A16Uint";
case Format::eR16G16B16A16Sint: return "R16G16B16A16Sint";
case Format::eR16G16B16A16Sfloat: return "R16G16B16A16Sfloat";
case Format::eR32Uint: return "R32Uint";
case Format::eR32Sint: return "R32Sint";
case Format::eR32Sfloat: return "R32Sfloat";
case Format::eR32G32Uint: return "R32G32Uint";
case Format::eR32G32Sint: return "R32G32Sint";
case Format::eR32G32Sfloat: return "R32G32Sfloat";
case Format::eR32G32B32Uint: return "R32G32B32Uint";
case Format::eR32G32B32Sint: return "R32G32B32Sint";
case Format::eR32G32B32Sfloat: return "R32G32B32Sfloat";
case Format::eR32G32B32A32Uint: return "R32G32B32A32Uint";
case Format::eR32G32B32A32Sint: return "R32G32B32A32Sint";
case Format::eR32G32B32A32Sfloat: return "R32G32B32A32Sfloat";
case Format::eR64Uint: return "R64Uint";
case Format::eR64Sint: return "R64Sint";
case Format::eR64Sfloat: return "R64Sfloat";
case Format::eR64G64Uint: return "R64G64Uint";
case Format::eR64G64Sint: return "R64G64Sint";
case Format::eR64G64Sfloat: return "R64G64Sfloat";
case Format::eR64G64B64Uint: return "R64G64B64Uint";
case Format::eR64G64B64Sint: return "R64G64B64Sint";
case Format::eR64G64B64Sfloat: return "R64G64B64Sfloat";
case Format::eR64G64B64A64Uint: return "R64G64B64A64Uint";
case Format::eR64G64B64A64Sint: return "R64G64B64A64Sint";
case Format::eR64G64B64A64Sfloat: return "R64G64B64A64Sfloat";
case Format::eB10G11R11UfloatPack32: return "B10G11R11UfloatPack32";
case Format::eE5B9G9R9UfloatPack32: return "E5B9G9R9UfloatPack32";
case Format::eD16Unorm: return "D16Unorm";
case Format::eX8D24UnormPack32: return "X8D24UnormPack32";
case Format::eD32Sfloat: return "D32Sfloat";
case Format::eS8Uint: return "S8Uint";
case Format::eD16UnormS8Uint: return "D16UnormS8Uint";
case Format::eD24UnormS8Uint: return "D24UnormS8Uint";
case Format::eD32SfloatS8Uint: return "D32SfloatS8Uint";
case Format::eBc1RgbUnormBlock: return "Bc1RgbUnormBlock";
case Format::eBc1RgbSrgbBlock: return "Bc1RgbSrgbBlock";
case Format::eBc1RgbaUnormBlock: return "Bc1RgbaUnormBlock";
case Format::eBc1RgbaSrgbBlock: return "Bc1RgbaSrgbBlock";
case Format::eBc2UnormBlock: return "Bc2UnormBlock";
case Format::eBc2SrgbBlock: return "Bc2SrgbBlock";
case Format::eBc3UnormBlock: return "Bc3UnormBlock";
case Format::eBc3SrgbBlock: return "Bc3SrgbBlock";
case Format::eBc4UnormBlock: return "Bc4UnormBlock";
case Format::eBc4SnormBlock: return "Bc4SnormBlock";
case Format::eBc5UnormBlock: return "Bc5UnormBlock";
case Format::eBc5SnormBlock: return "Bc5SnormBlock";
case Format::eBc6HUfloatBlock: return "Bc6HUfloatBlock";
case Format::eBc6HSfloatBlock: return "Bc6HSfloatBlock";
case Format::eBc7UnormBlock: return "Bc7UnormBlock";
case Format::eBc7SrgbBlock: return "Bc7SrgbBlock";
case Format::eEtc2R8G8B8UnormBlock: return "Etc2R8G8B8UnormBlock";
case Format::eEtc2R8G8B8SrgbBlock: return "Etc2R8G8B8SrgbBlock";
case Format::eEtc2R8G8B8A1UnormBlock: return "Etc2R8G8B8A1UnormBlock";
case Format::eEtc2R8G8B8A1SrgbBlock: return "Etc2R8G8B8A1SrgbBlock";
case Format::eEtc2R8G8B8A8UnormBlock: return "Etc2R8G8B8A8UnormBlock";
case Format::eEtc2R8G8B8A8SrgbBlock: return "Etc2R8G8B8A8SrgbBlock";
case Format::eEacR11UnormBlock: return "EacR11UnormBlock";
case Format::eEacR11SnormBlock: return "EacR11SnormBlock";
case Format::eEacR11G11UnormBlock: return "EacR11G11UnormBlock";
case Format::eEacR11G11SnormBlock: return "EacR11G11SnormBlock";
case Format::eAstc4x4UnormBlock: return "Astc4x4UnormBlock";
case Format::eAstc4x4SrgbBlock: return "Astc4x4SrgbBlock";
case Format::eAstc5x4UnormBlock: return "Astc5x4UnormBlock";
case Format::eAstc5x4SrgbBlock: return "Astc5x4SrgbBlock";
case Format::eAstc5x5UnormBlock: return "Astc5x5UnormBlock";
case Format::eAstc5x5SrgbBlock: return "Astc5x5SrgbBlock";
case Format::eAstc6x5UnormBlock: return "Astc6x5UnormBlock";
case Format::eAstc6x5SrgbBlock: return "Astc6x5SrgbBlock";
case Format::eAstc6x6UnormBlock: return "Astc6x6UnormBlock";
case Format::eAstc6x6SrgbBlock: return "Astc6x6SrgbBlock";
case Format::eAstc8x5UnormBlock: return "Astc8x5UnormBlock";
case Format::eAstc8x5SrgbBlock: return "Astc8x5SrgbBlock";
case Format::eAstc8x6UnormBlock: return "Astc8x6UnormBlock";
case Format::eAstc8x6SrgbBlock: return "Astc8x6SrgbBlock";
case Format::eAstc8x8UnormBlock: return "Astc8x8UnormBlock";
case Format::eAstc8x8SrgbBlock: return "Astc8x8SrgbBlock";
case Format::eAstc10x5UnormBlock: return "Astc10x5UnormBlock";
case Format::eAstc10x5SrgbBlock: return "Astc10x5SrgbBlock";
case Format::eAstc10x6UnormBlock: return "Astc10x6UnormBlock";
case Format::eAstc10x6SrgbBlock: return "Astc10x6SrgbBlock";
case Format::eAstc10x8UnormBlock: return "Astc10x8UnormBlock";
case Format::eAstc10x8SrgbBlock: return "Astc10x8SrgbBlock";
case Format::eAstc10x10UnormBlock: return "Astc10x10UnormBlock";
case Format::eAstc10x10SrgbBlock: return "Astc10x10SrgbBlock";
case Format::eAstc12x10UnormBlock: return "Astc12x10UnormBlock";
case Format::eAstc12x10SrgbBlock: return "Astc12x10SrgbBlock";
case Format::eAstc12x12UnormBlock: return "Astc12x12UnormBlock";
case Format::eAstc12x12SrgbBlock: return "Astc12x12SrgbBlock";
case Format::ePvrtc12BppUnormBlockIMG: return "Pvrtc12BppUnormBlockIMG";
case Format::ePvrtc14BppUnormBlockIMG: return "Pvrtc14BppUnormBlockIMG";
case Format::ePvrtc22BppUnormBlockIMG: return "Pvrtc22BppUnormBlockIMG";
case Format::ePvrtc24BppUnormBlockIMG: return "Pvrtc24BppUnormBlockIMG";
case Format::ePvrtc12BppSrgbBlockIMG: return "Pvrtc12BppSrgbBlockIMG";
case Format::ePvrtc14BppSrgbBlockIMG: return "Pvrtc14BppSrgbBlockIMG";
case Format::ePvrtc22BppSrgbBlockIMG: return "Pvrtc22BppSrgbBlockIMG";
case Format::ePvrtc24BppSrgbBlockIMG: return "Pvrtc24BppSrgbBlockIMG";
case Format::eG8B8G8R8422UnormKHR: return "G8B8G8R8422UnormKHR";
case Format::eB8G8R8G8422UnormKHR: return "B8G8R8G8422UnormKHR";
case Format::eG8B8R83Plane420UnormKHR: return "G8B8R83Plane420UnormKHR";
case Format::eG8B8R82Plane420UnormKHR: return "G8B8R82Plane420UnormKHR";
case Format::eG8B8R83Plane422UnormKHR: return "G8B8R83Plane422UnormKHR";
case Format::eG8B8R82Plane422UnormKHR: return "G8B8R82Plane422UnormKHR";
case Format::eG8B8R83Plane444UnormKHR: return "G8B8R83Plane444UnormKHR";
case Format::eR10X6UnormPack16KHR: return "R10X6UnormPack16KHR";
case Format::eR10X6G10X6Unorm2Pack16KHR: return "R10X6G10X6Unorm2Pack16KHR";
case Format::eR10X6G10X6B10X6A10X6Unorm4Pack16KHR: return "R10X6G10X6B10X6A10X6Unorm4Pack16KHR";
case Format::eG10X6B10X6G10X6R10X6422Unorm4Pack16KHR: return "G10X6B10X6G10X6R10X6422Unorm4Pack16KHR";
case Format::eB10X6G10X6R10X6G10X6422Unorm4Pack16KHR: return "B10X6G10X6R10X6G10X6422Unorm4Pack16KHR";
case Format::eG10X6B10X6R10X63Plane420Unorm3Pack16KHR: return "G10X6B10X6R10X63Plane420Unorm3Pack16KHR";
case Format::eG10X6B10X6R10X62Plane420Unorm3Pack16KHR: return "G10X6B10X6R10X62Plane420Unorm3Pack16KHR";
case Format::eG10X6B10X6R10X63Plane422Unorm3Pack16KHR: return "G10X6B10X6R10X63Plane422Unorm3Pack16KHR";
case Format::eG10X6B10X6R10X62Plane422Unorm3Pack16KHR: return "G10X6B10X6R10X62Plane422Unorm3Pack16KHR";
case Format::eG10X6B10X6R10X63Plane444Unorm3Pack16KHR: return "G10X6B10X6R10X63Plane444Unorm3Pack16KHR";
case Format::eR12X4UnormPack16KHR: return "R12X4UnormPack16KHR";
case Format::eR12X4G12X4Unorm2Pack16KHR: return "R12X4G12X4Unorm2Pack16KHR";
case Format::eR12X4G12X4B12X4A12X4Unorm4Pack16KHR: return "R12X4G12X4B12X4A12X4Unorm4Pack16KHR";
case Format::eG12X4B12X4G12X4R12X4422Unorm4Pack16KHR: return "G12X4B12X4G12X4R12X4422Unorm4Pack16KHR";
case Format::eB12X4G12X4R12X4G12X4422Unorm4Pack16KHR: return "B12X4G12X4R12X4G12X4422Unorm4Pack16KHR";
case Format::eG12X4B12X4R12X43Plane420Unorm3Pack16KHR: return "G12X4B12X4R12X43Plane420Unorm3Pack16KHR";
case Format::eG12X4B12X4R12X42Plane420Unorm3Pack16KHR: return "G12X4B12X4R12X42Plane420Unorm3Pack16KHR";
case Format::eG12X4B12X4R12X43Plane422Unorm3Pack16KHR: return "G12X4B12X4R12X43Plane422Unorm3Pack16KHR";
case Format::eG12X4B12X4R12X42Plane422Unorm3Pack16KHR: return "G12X4B12X4R12X42Plane422Unorm3Pack16KHR";
case Format::eG12X4B12X4R12X43Plane444Unorm3Pack16KHR: return "G12X4B12X4R12X43Plane444Unorm3Pack16KHR";
case Format::eG16B16G16R16422UnormKHR: return "G16B16G16R16422UnormKHR";
case Format::eB16G16R16G16422UnormKHR: return "B16G16R16G16422UnormKHR";
case Format::eG16B16R163Plane420UnormKHR: return "G16B16R163Plane420UnormKHR";
case Format::eG16B16R162Plane420UnormKHR: return "G16B16R162Plane420UnormKHR";
case Format::eG16B16R163Plane422UnormKHR: return "G16B16R163Plane422UnormKHR";
case Format::eG16B16R162Plane422UnormKHR: return "G16B16R162Plane422UnormKHR";
case Format::eG16B16R163Plane444UnormKHR: return "G16B16R163Plane444UnormKHR";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(StructureType value)
{
switch (value)
{
case StructureType::eApplicationInfo: return "ApplicationInfo";
case StructureType::eInstanceCreateInfo: return "InstanceCreateInfo";
case StructureType::eDeviceQueueCreateInfo: return "DeviceQueueCreateInfo";
case StructureType::eDeviceCreateInfo: return "DeviceCreateInfo";
case StructureType::eSubmitInfo: return "SubmitInfo";
case StructureType::eMemoryAllocateInfo: return "MemoryAllocateInfo";
case StructureType::eMappedMemoryRange: return "MappedMemoryRange";
case StructureType::eBindSparseInfo: return "BindSparseInfo";
case StructureType::eFenceCreateInfo: return "FenceCreateInfo";
case StructureType::eSemaphoreCreateInfo: return "SemaphoreCreateInfo";
case StructureType::eEventCreateInfo: return "EventCreateInfo";
case StructureType::eQueryPoolCreateInfo: return "QueryPoolCreateInfo";
case StructureType::eBufferCreateInfo: return "BufferCreateInfo";
case StructureType::eBufferViewCreateInfo: return "BufferViewCreateInfo";
case StructureType::eImageCreateInfo: return "ImageCreateInfo";
case StructureType::eImageViewCreateInfo: return "ImageViewCreateInfo";
case StructureType::eShaderModuleCreateInfo: return "ShaderModuleCreateInfo";
case StructureType::ePipelineCacheCreateInfo: return "PipelineCacheCreateInfo";
case StructureType::ePipelineShaderStageCreateInfo: return "PipelineShaderStageCreateInfo";
case StructureType::ePipelineVertexInputStateCreateInfo: return "PipelineVertexInputStateCreateInfo";
case StructureType::ePipelineInputAssemblyStateCreateInfo: return "PipelineInputAssemblyStateCreateInfo";
case StructureType::ePipelineTessellationStateCreateInfo: return "PipelineTessellationStateCreateInfo";
case StructureType::ePipelineViewportStateCreateInfo: return "PipelineViewportStateCreateInfo";
case StructureType::ePipelineRasterizationStateCreateInfo: return "PipelineRasterizationStateCreateInfo";
case StructureType::ePipelineMultisampleStateCreateInfo: return "PipelineMultisampleStateCreateInfo";
case StructureType::ePipelineDepthStencilStateCreateInfo: return "PipelineDepthStencilStateCreateInfo";
case StructureType::ePipelineColorBlendStateCreateInfo: return "PipelineColorBlendStateCreateInfo";
case StructureType::ePipelineDynamicStateCreateInfo: return "PipelineDynamicStateCreateInfo";
case StructureType::eGraphicsPipelineCreateInfo: return "GraphicsPipelineCreateInfo";
case StructureType::eComputePipelineCreateInfo: return "ComputePipelineCreateInfo";
case StructureType::ePipelineLayoutCreateInfo: return "PipelineLayoutCreateInfo";
case StructureType::eSamplerCreateInfo: return "SamplerCreateInfo";
case StructureType::eDescriptorSetLayoutCreateInfo: return "DescriptorSetLayoutCreateInfo";
case StructureType::eDescriptorPoolCreateInfo: return "DescriptorPoolCreateInfo";
case StructureType::eDescriptorSetAllocateInfo: return "DescriptorSetAllocateInfo";
case StructureType::eWriteDescriptorSet: return "WriteDescriptorSet";
case StructureType::eCopyDescriptorSet: return "CopyDescriptorSet";
case StructureType::eFramebufferCreateInfo: return "FramebufferCreateInfo";
case StructureType::eRenderPassCreateInfo: return "RenderPassCreateInfo";
case StructureType::eCommandPoolCreateInfo: return "CommandPoolCreateInfo";
case StructureType::eCommandBufferAllocateInfo: return "CommandBufferAllocateInfo";
case StructureType::eCommandBufferInheritanceInfo: return "CommandBufferInheritanceInfo";
case StructureType::eCommandBufferBeginInfo: return "CommandBufferBeginInfo";
case StructureType::eRenderPassBeginInfo: return "RenderPassBeginInfo";
case StructureType::eBufferMemoryBarrier: return "BufferMemoryBarrier";
case StructureType::eImageMemoryBarrier: return "ImageMemoryBarrier";
case StructureType::eMemoryBarrier: return "MemoryBarrier";
case StructureType::eLoaderInstanceCreateInfo: return "LoaderInstanceCreateInfo";
case StructureType::eLoaderDeviceCreateInfo: return "LoaderDeviceCreateInfo";
case StructureType::eSwapchainCreateInfoKHR: return "SwapchainCreateInfoKHR";
case StructureType::ePresentInfoKHR: return "PresentInfoKHR";
case StructureType::eDisplayModeCreateInfoKHR: return "DisplayModeCreateInfoKHR";
case StructureType::eDisplaySurfaceCreateInfoKHR: return "DisplaySurfaceCreateInfoKHR";
case StructureType::eDisplayPresentInfoKHR: return "DisplayPresentInfoKHR";
case StructureType::eXlibSurfaceCreateInfoKHR: return "XlibSurfaceCreateInfoKHR";
case StructureType::eXcbSurfaceCreateInfoKHR: return "XcbSurfaceCreateInfoKHR";
case StructureType::eWaylandSurfaceCreateInfoKHR: return "WaylandSurfaceCreateInfoKHR";
case StructureType::eMirSurfaceCreateInfoKHR: return "MirSurfaceCreateInfoKHR";
case StructureType::eAndroidSurfaceCreateInfoKHR: return "AndroidSurfaceCreateInfoKHR";
case StructureType::eWin32SurfaceCreateInfoKHR: return "Win32SurfaceCreateInfoKHR";
case StructureType::eDebugReportCallbackCreateInfoEXT: return "DebugReportCallbackCreateInfoEXT";
case StructureType::ePipelineRasterizationStateRasterizationOrderAMD: return "PipelineRasterizationStateRasterizationOrderAMD";
case StructureType::eDebugMarkerObjectNameInfoEXT: return "DebugMarkerObjectNameInfoEXT";
case StructureType::eDebugMarkerObjectTagInfoEXT: return "DebugMarkerObjectTagInfoEXT";
case StructureType::eDebugMarkerMarkerInfoEXT: return "DebugMarkerMarkerInfoEXT";
case StructureType::eDedicatedAllocationImageCreateInfoNV: return "DedicatedAllocationImageCreateInfoNV";
case StructureType::eDedicatedAllocationBufferCreateInfoNV: return "DedicatedAllocationBufferCreateInfoNV";
case StructureType::eDedicatedAllocationMemoryAllocateInfoNV: return "DedicatedAllocationMemoryAllocateInfoNV";
case StructureType::eTextureLodGatherFormatPropertiesAMD: return "TextureLodGatherFormatPropertiesAMD";
case StructureType::eRenderPassMultiviewCreateInfoKHX: return "RenderPassMultiviewCreateInfoKHX";
case StructureType::ePhysicalDeviceMultiviewFeaturesKHX: return "PhysicalDeviceMultiviewFeaturesKHX";
case StructureType::ePhysicalDeviceMultiviewPropertiesKHX: return "PhysicalDeviceMultiviewPropertiesKHX";
case StructureType::eExternalMemoryImageCreateInfoNV: return "ExternalMemoryImageCreateInfoNV";
case StructureType::eExportMemoryAllocateInfoNV: return "ExportMemoryAllocateInfoNV";
case StructureType::eImportMemoryWin32HandleInfoNV: return "ImportMemoryWin32HandleInfoNV";
case StructureType::eExportMemoryWin32HandleInfoNV: return "ExportMemoryWin32HandleInfoNV";
case StructureType::eWin32KeyedMutexAcquireReleaseInfoNV: return "Win32KeyedMutexAcquireReleaseInfoNV";
case StructureType::ePhysicalDeviceFeatures2KHR: return "PhysicalDeviceFeatures2KHR";
case StructureType::ePhysicalDeviceProperties2KHR: return "PhysicalDeviceProperties2KHR";
case StructureType::eFormatProperties2KHR: return "FormatProperties2KHR";
case StructureType::eImageFormatProperties2KHR: return "ImageFormatProperties2KHR";
case StructureType::ePhysicalDeviceImageFormatInfo2KHR: return "PhysicalDeviceImageFormatInfo2KHR";
case StructureType::eQueueFamilyProperties2KHR: return "QueueFamilyProperties2KHR";
case StructureType::ePhysicalDeviceMemoryProperties2KHR: return "PhysicalDeviceMemoryProperties2KHR";
case StructureType::eSparseImageFormatProperties2KHR: return "SparseImageFormatProperties2KHR";
case StructureType::ePhysicalDeviceSparseImageFormatInfo2KHR: return "PhysicalDeviceSparseImageFormatInfo2KHR";
case StructureType::eMemoryAllocateFlagsInfoKHX: return "MemoryAllocateFlagsInfoKHX";
case StructureType::eDeviceGroupRenderPassBeginInfoKHX: return "DeviceGroupRenderPassBeginInfoKHX";
case StructureType::eDeviceGroupCommandBufferBeginInfoKHX: return "DeviceGroupCommandBufferBeginInfoKHX";
case StructureType::eDeviceGroupSubmitInfoKHX: return "DeviceGroupSubmitInfoKHX";
case StructureType::eDeviceGroupBindSparseInfoKHX: return "DeviceGroupBindSparseInfoKHX";
case StructureType::eAcquireNextImageInfoKHX: return "AcquireNextImageInfoKHX";
case StructureType::eBindBufferMemoryDeviceGroupInfoKHX: return "BindBufferMemoryDeviceGroupInfoKHX";
case StructureType::eBindImageMemoryDeviceGroupInfoKHX: return "BindImageMemoryDeviceGroupInfoKHX";
case StructureType::eDeviceGroupPresentCapabilitiesKHX: return "DeviceGroupPresentCapabilitiesKHX";
case StructureType::eImageSwapchainCreateInfoKHX: return "ImageSwapchainCreateInfoKHX";
case StructureType::eBindImageMemorySwapchainInfoKHX: return "BindImageMemorySwapchainInfoKHX";
case StructureType::eDeviceGroupPresentInfoKHX: return "DeviceGroupPresentInfoKHX";
case StructureType::eDeviceGroupSwapchainCreateInfoKHX: return "DeviceGroupSwapchainCreateInfoKHX";
case StructureType::eValidationFlagsEXT: return "ValidationFlagsEXT";
case StructureType::eViSurfaceCreateInfoNN: return "ViSurfaceCreateInfoNN";
case StructureType::ePhysicalDeviceGroupPropertiesKHX: return "PhysicalDeviceGroupPropertiesKHX";
case StructureType::eDeviceGroupDeviceCreateInfoKHX: return "DeviceGroupDeviceCreateInfoKHX";
case StructureType::ePhysicalDeviceExternalImageFormatInfoKHR: return "PhysicalDeviceExternalImageFormatInfoKHR";
case StructureType::eExternalImageFormatPropertiesKHR: return "ExternalImageFormatPropertiesKHR";
case StructureType::ePhysicalDeviceExternalBufferInfoKHR: return "PhysicalDeviceExternalBufferInfoKHR";
case StructureType::eExternalBufferPropertiesKHR: return "ExternalBufferPropertiesKHR";
case StructureType::ePhysicalDeviceIdPropertiesKHR: return "PhysicalDeviceIdPropertiesKHR";
case StructureType::eExternalMemoryBufferCreateInfoKHR: return "ExternalMemoryBufferCreateInfoKHR";
case StructureType::eExternalMemoryImageCreateInfoKHR: return "ExternalMemoryImageCreateInfoKHR";
case StructureType::eExportMemoryAllocateInfoKHR: return "ExportMemoryAllocateInfoKHR";
case StructureType::eImportMemoryWin32HandleInfoKHR: return "ImportMemoryWin32HandleInfoKHR";
case StructureType::eExportMemoryWin32HandleInfoKHR: return "ExportMemoryWin32HandleInfoKHR";
case StructureType::eMemoryWin32HandlePropertiesKHR: return "MemoryWin32HandlePropertiesKHR";
case StructureType::eMemoryGetWin32HandleInfoKHR: return "MemoryGetWin32HandleInfoKHR";
case StructureType::eImportMemoryFdInfoKHR: return "ImportMemoryFdInfoKHR";
case StructureType::eMemoryFdPropertiesKHR: return "MemoryFdPropertiesKHR";
case StructureType::eMemoryGetFdInfoKHR: return "MemoryGetFdInfoKHR";
case StructureType::eWin32KeyedMutexAcquireReleaseInfoKHR: return "Win32KeyedMutexAcquireReleaseInfoKHR";
case StructureType::ePhysicalDeviceExternalSemaphoreInfoKHR: return "PhysicalDeviceExternalSemaphoreInfoKHR";
case StructureType::eExternalSemaphorePropertiesKHR: return "ExternalSemaphorePropertiesKHR";
case StructureType::eExportSemaphoreCreateInfoKHR: return "ExportSemaphoreCreateInfoKHR";
case StructureType::eImportSemaphoreWin32HandleInfoKHR: return "ImportSemaphoreWin32HandleInfoKHR";
case StructureType::eExportSemaphoreWin32HandleInfoKHR: return "ExportSemaphoreWin32HandleInfoKHR";
case StructureType::eD3D12FenceSubmitInfoKHR: return "D3D12FenceSubmitInfoKHR";
case StructureType::eSemaphoreGetWin32HandleInfoKHR: return "SemaphoreGetWin32HandleInfoKHR";
case StructureType::eImportSemaphoreFdInfoKHR: return "ImportSemaphoreFdInfoKHR";
case StructureType::eSemaphoreGetFdInfoKHR: return "SemaphoreGetFdInfoKHR";
case StructureType::ePhysicalDevicePushDescriptorPropertiesKHR: return "PhysicalDevicePushDescriptorPropertiesKHR";
case StructureType::ePhysicalDevice16BitStorageFeaturesKHR: return "PhysicalDevice16BitStorageFeaturesKHR";
case StructureType::ePresentRegionsKHR: return "PresentRegionsKHR";
case StructureType::eDescriptorUpdateTemplateCreateInfoKHR: return "DescriptorUpdateTemplateCreateInfoKHR";
case StructureType::eObjectTableCreateInfoNVX: return "ObjectTableCreateInfoNVX";
case StructureType::eIndirectCommandsLayoutCreateInfoNVX: return "IndirectCommandsLayoutCreateInfoNVX";
case StructureType::eCmdProcessCommandsInfoNVX: return "CmdProcessCommandsInfoNVX";
case StructureType::eCmdReserveSpaceForCommandsInfoNVX: return "CmdReserveSpaceForCommandsInfoNVX";
case StructureType::eDeviceGeneratedCommandsLimitsNVX: return "DeviceGeneratedCommandsLimitsNVX";
case StructureType::eDeviceGeneratedCommandsFeaturesNVX: return "DeviceGeneratedCommandsFeaturesNVX";
case StructureType::ePipelineViewportWScalingStateCreateInfoNV: return "PipelineViewportWScalingStateCreateInfoNV";
case StructureType::eSurfaceCapabilities2EXT: return "SurfaceCapabilities2EXT";
case StructureType::eDisplayPowerInfoEXT: return "DisplayPowerInfoEXT";
case StructureType::eDeviceEventInfoEXT: return "DeviceEventInfoEXT";
case StructureType::eDisplayEventInfoEXT: return "DisplayEventInfoEXT";
case StructureType::eSwapchainCounterCreateInfoEXT: return "SwapchainCounterCreateInfoEXT";
case StructureType::ePresentTimesInfoGOOGLE: return "PresentTimesInfoGOOGLE";
case StructureType::ePhysicalDeviceMultiviewPerViewAttributesPropertiesNVX: return "PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX";
case StructureType::ePipelineViewportSwizzleStateCreateInfoNV: return "PipelineViewportSwizzleStateCreateInfoNV";
case StructureType::ePhysicalDeviceDiscardRectanglePropertiesEXT: return "PhysicalDeviceDiscardRectanglePropertiesEXT";
case StructureType::ePipelineDiscardRectangleStateCreateInfoEXT: return "PipelineDiscardRectangleStateCreateInfoEXT";
case StructureType::eHdrMetadataEXT: return "HdrMetadataEXT";
case StructureType::eSharedPresentSurfaceCapabilitiesKHR: return "SharedPresentSurfaceCapabilitiesKHR";
case StructureType::ePhysicalDeviceExternalFenceInfoKHR: return "PhysicalDeviceExternalFenceInfoKHR";
case StructureType::eExternalFencePropertiesKHR: return "ExternalFencePropertiesKHR";
case StructureType::eExportFenceCreateInfoKHR: return "ExportFenceCreateInfoKHR";
case StructureType::eImportFenceWin32HandleInfoKHR: return "ImportFenceWin32HandleInfoKHR";
case StructureType::eExportFenceWin32HandleInfoKHR: return "ExportFenceWin32HandleInfoKHR";
case StructureType::eFenceGetWin32HandleInfoKHR: return "FenceGetWin32HandleInfoKHR";
case StructureType::eImportFenceFdInfoKHR: return "ImportFenceFdInfoKHR";
case StructureType::eFenceGetFdInfoKHR: return "FenceGetFdInfoKHR";
case StructureType::ePhysicalDevicePointClippingPropertiesKHR: return "PhysicalDevicePointClippingPropertiesKHR";
case StructureType::eRenderPassInputAttachmentAspectCreateInfoKHR: return "RenderPassInputAttachmentAspectCreateInfoKHR";
case StructureType::eImageViewUsageCreateInfoKHR: return "ImageViewUsageCreateInfoKHR";
case StructureType::ePipelineTessellationDomainOriginStateCreateInfoKHR: return "PipelineTessellationDomainOriginStateCreateInfoKHR";
case StructureType::ePhysicalDeviceSurfaceInfo2KHR: return "PhysicalDeviceSurfaceInfo2KHR";
case StructureType::eSurfaceCapabilities2KHR: return "SurfaceCapabilities2KHR";
case StructureType::eSurfaceFormat2KHR: return "SurfaceFormat2KHR";
case StructureType::ePhysicalDeviceVariablePointerFeaturesKHR: return "PhysicalDeviceVariablePointerFeaturesKHR";
case StructureType::eIosSurfaceCreateInfoMVK: return "IosSurfaceCreateInfoMVK";
case StructureType::eMacosSurfaceCreateInfoMVK: return "MacosSurfaceCreateInfoMVK";
case StructureType::eMemoryDedicatedRequirementsKHR: return "MemoryDedicatedRequirementsKHR";
case StructureType::eMemoryDedicatedAllocateInfoKHR: return "MemoryDedicatedAllocateInfoKHR";
case StructureType::ePhysicalDeviceSamplerFilterMinmaxPropertiesEXT: return "PhysicalDeviceSamplerFilterMinmaxPropertiesEXT";
case StructureType::eSamplerReductionModeCreateInfoEXT: return "SamplerReductionModeCreateInfoEXT";
case StructureType::eSampleLocationsInfoEXT: return "SampleLocationsInfoEXT";
case StructureType::eRenderPassSampleLocationsBeginInfoEXT: return "RenderPassSampleLocationsBeginInfoEXT";
case StructureType::ePipelineSampleLocationsStateCreateInfoEXT: return "PipelineSampleLocationsStateCreateInfoEXT";
case StructureType::ePhysicalDeviceSampleLocationsPropertiesEXT: return "PhysicalDeviceSampleLocationsPropertiesEXT";
case StructureType::eMultisamplePropertiesEXT: return "MultisamplePropertiesEXT";
case StructureType::eBufferMemoryRequirementsInfo2KHR: return "BufferMemoryRequirementsInfo2KHR";
case StructureType::eImageMemoryRequirementsInfo2KHR: return "ImageMemoryRequirementsInfo2KHR";
case StructureType::eImageSparseMemoryRequirementsInfo2KHR: return "ImageSparseMemoryRequirementsInfo2KHR";
case StructureType::eMemoryRequirements2KHR: return "MemoryRequirements2KHR";
case StructureType::eSparseImageMemoryRequirements2KHR: return "SparseImageMemoryRequirements2KHR";
case StructureType::eImageFormatListCreateInfoKHR: return "ImageFormatListCreateInfoKHR";
case StructureType::ePhysicalDeviceBlendOperationAdvancedFeaturesEXT: return "PhysicalDeviceBlendOperationAdvancedFeaturesEXT";
case StructureType::ePhysicalDeviceBlendOperationAdvancedPropertiesEXT: return "PhysicalDeviceBlendOperationAdvancedPropertiesEXT";
case StructureType::ePipelineColorBlendAdvancedStateCreateInfoEXT: return "PipelineColorBlendAdvancedStateCreateInfoEXT";
case StructureType::ePipelineCoverageToColorStateCreateInfoNV: return "PipelineCoverageToColorStateCreateInfoNV";
case StructureType::ePipelineCoverageModulationStateCreateInfoNV: return "PipelineCoverageModulationStateCreateInfoNV";
case StructureType::eSamplerYcbcrConversionCreateInfoKHR: return "SamplerYcbcrConversionCreateInfoKHR";
case StructureType::eSamplerYcbcrConversionInfoKHR: return "SamplerYcbcrConversionInfoKHR";
case StructureType::eBindImagePlaneMemoryInfoKHR: return "BindImagePlaneMemoryInfoKHR";
case StructureType::eImagePlaneMemoryRequirementsInfoKHR: return "ImagePlaneMemoryRequirementsInfoKHR";
case StructureType::ePhysicalDeviceSamplerYcbcrConversionFeaturesKHR: return "PhysicalDeviceSamplerYcbcrConversionFeaturesKHR";
case StructureType::eSamplerYcbcrConversionImageFormatPropertiesKHR: return "SamplerYcbcrConversionImageFormatPropertiesKHR";
case StructureType::eBindBufferMemoryInfoKHR: return "BindBufferMemoryInfoKHR";
case StructureType::eBindImageMemoryInfoKHR: return "BindImageMemoryInfoKHR";
case StructureType::eValidationCacheCreateInfoEXT: return "ValidationCacheCreateInfoEXT";
case StructureType::eShaderModuleValidationCacheCreateInfoEXT: return "ShaderModuleValidationCacheCreateInfoEXT";
case StructureType::eDeviceQueueGlobalPriorityCreateInfoEXT: return "DeviceQueueGlobalPriorityCreateInfoEXT";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SubpassContents value)
{
switch (value)
{
case SubpassContents::eInline: return "Inline";
case SubpassContents::eSecondaryCommandBuffers: return "SecondaryCommandBuffers";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DynamicState value)
{
switch (value)
{
case DynamicState::eViewport: return "Viewport";
case DynamicState::eScissor: return "Scissor";
case DynamicState::eLineWidth: return "LineWidth";
case DynamicState::eDepthBias: return "DepthBias";
case DynamicState::eBlendConstants: return "BlendConstants";
case DynamicState::eDepthBounds: return "DepthBounds";
case DynamicState::eStencilCompareMask: return "StencilCompareMask";
case DynamicState::eStencilWriteMask: return "StencilWriteMask";
case DynamicState::eStencilReference: return "StencilReference";
case DynamicState::eViewportWScalingNV: return "ViewportWScalingNV";
case DynamicState::eDiscardRectangleEXT: return "DiscardRectangleEXT";
case DynamicState::eSampleLocationsEXT: return "SampleLocationsEXT";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DescriptorUpdateTemplateTypeKHR value)
{
switch (value)
{
case DescriptorUpdateTemplateTypeKHR::eDescriptorSet: return "DescriptorSet";
case DescriptorUpdateTemplateTypeKHR::ePushDescriptors: return "PushDescriptors";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ObjectType value)
{
switch (value)
{
case ObjectType::eUnknown: return "Unknown";
case ObjectType::eInstance: return "Instance";
case ObjectType::ePhysicalDevice: return "PhysicalDevice";
case ObjectType::eDevice: return "Device";
case ObjectType::eQueue: return "Queue";
case ObjectType::eSemaphore: return "Semaphore";
case ObjectType::eCommandBuffer: return "CommandBuffer";
case ObjectType::eFence: return "Fence";
case ObjectType::eDeviceMemory: return "DeviceMemory";
case ObjectType::eBuffer: return "Buffer";
case ObjectType::eImage: return "Image";
case ObjectType::eEvent: return "Event";
case ObjectType::eQueryPool: return "QueryPool";
case ObjectType::eBufferView: return "BufferView";
case ObjectType::eImageView: return "ImageView";
case ObjectType::eShaderModule: return "ShaderModule";
case ObjectType::ePipelineCache: return "PipelineCache";
case ObjectType::ePipelineLayout: return "PipelineLayout";
case ObjectType::eRenderPass: return "RenderPass";
case ObjectType::ePipeline: return "Pipeline";
case ObjectType::eDescriptorSetLayout: return "DescriptorSetLayout";
case ObjectType::eSampler: return "Sampler";
case ObjectType::eDescriptorPool: return "DescriptorPool";
case ObjectType::eDescriptorSet: return "DescriptorSet";
case ObjectType::eFramebuffer: return "Framebuffer";
case ObjectType::eCommandPool: return "CommandPool";
case ObjectType::eSurfaceKHR: return "SurfaceKHR";
case ObjectType::eSwapchainKHR: return "SwapchainKHR";
case ObjectType::eDisplayKHR: return "DisplayKHR";
case ObjectType::eDisplayModeKHR: return "DisplayModeKHR";
case ObjectType::eDebugReportCallbackEXT: return "DebugReportCallbackEXT";
case ObjectType::eDescriptorUpdateTemplateKHR: return "DescriptorUpdateTemplateKHR";
case ObjectType::eObjectTableNVX: return "ObjectTableNVX";
case ObjectType::eIndirectCommandsLayoutNVX: return "IndirectCommandsLayoutNVX";
case ObjectType::eSamplerYcbcrConversionKHR: return "SamplerYcbcrConversionKHR";
case ObjectType::eValidationCacheEXT: return "ValidationCacheEXT";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(QueueFlagBits value)
{
switch (value)
{
case QueueFlagBits::eGraphics: return "Graphics";
case QueueFlagBits::eCompute: return "Compute";
case QueueFlagBits::eTransfer: return "Transfer";
case QueueFlagBits::eSparseBinding: return "SparseBinding";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(QueueFlags value)
{
if (!value) return "{}";
std::string result;
if (value & QueueFlagBits::eGraphics) result += "Graphics | ";
if (value & QueueFlagBits::eCompute) result += "Compute | ";
if (value & QueueFlagBits::eTransfer) result += "Transfer | ";
if (value & QueueFlagBits::eSparseBinding) result += "SparseBinding | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(MemoryPropertyFlagBits value)
{
switch (value)
{
case MemoryPropertyFlagBits::eDeviceLocal: return "DeviceLocal";
case MemoryPropertyFlagBits::eHostVisible: return "HostVisible";
case MemoryPropertyFlagBits::eHostCoherent: return "HostCoherent";
case MemoryPropertyFlagBits::eHostCached: return "HostCached";
case MemoryPropertyFlagBits::eLazilyAllocated: return "LazilyAllocated";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(MemoryPropertyFlags value)
{
if (!value) return "{}";
std::string result;
if (value & MemoryPropertyFlagBits::eDeviceLocal) result += "DeviceLocal | ";
if (value & MemoryPropertyFlagBits::eHostVisible) result += "HostVisible | ";
if (value & MemoryPropertyFlagBits::eHostCoherent) result += "HostCoherent | ";
if (value & MemoryPropertyFlagBits::eHostCached) result += "HostCached | ";
if (value & MemoryPropertyFlagBits::eLazilyAllocated) result += "LazilyAllocated | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(MemoryHeapFlagBits value)
{
switch (value)
{
case MemoryHeapFlagBits::eDeviceLocal: return "DeviceLocal";
case MemoryHeapFlagBits::eMultiInstanceKHX: return "MultiInstanceKHX";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(MemoryHeapFlags value)
{
if (!value) return "{}";
std::string result;
if (value & MemoryHeapFlagBits::eDeviceLocal) result += "DeviceLocal | ";
if (value & MemoryHeapFlagBits::eMultiInstanceKHX) result += "MultiInstanceKHX | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(AccessFlagBits value)
{
switch (value)
{
case AccessFlagBits::eIndirectCommandRead: return "IndirectCommandRead";
case AccessFlagBits::eIndexRead: return "IndexRead";
case AccessFlagBits::eVertexAttributeRead: return "VertexAttributeRead";
case AccessFlagBits::eUniformRead: return "UniformRead";
case AccessFlagBits::eInputAttachmentRead: return "InputAttachmentRead";
case AccessFlagBits::eShaderRead: return "ShaderRead";
case AccessFlagBits::eShaderWrite: return "ShaderWrite";
case AccessFlagBits::eColorAttachmentRead: return "ColorAttachmentRead";
case AccessFlagBits::eColorAttachmentWrite: return "ColorAttachmentWrite";
case AccessFlagBits::eDepthStencilAttachmentRead: return "DepthStencilAttachmentRead";
case AccessFlagBits::eDepthStencilAttachmentWrite: return "DepthStencilAttachmentWrite";
case AccessFlagBits::eTransferRead: return "TransferRead";
case AccessFlagBits::eTransferWrite: return "TransferWrite";
case AccessFlagBits::eHostRead: return "HostRead";
case AccessFlagBits::eHostWrite: return "HostWrite";
case AccessFlagBits::eMemoryRead: return "MemoryRead";
case AccessFlagBits::eMemoryWrite: return "MemoryWrite";
case AccessFlagBits::eCommandProcessReadNVX: return "CommandProcessReadNVX";
case AccessFlagBits::eCommandProcessWriteNVX: return "CommandProcessWriteNVX";
case AccessFlagBits::eColorAttachmentReadNoncoherentEXT: return "ColorAttachmentReadNoncoherentEXT";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(AccessFlags value)
{
if (!value) return "{}";
std::string result;
if (value & AccessFlagBits::eIndirectCommandRead) result += "IndirectCommandRead | ";
if (value & AccessFlagBits::eIndexRead) result += "IndexRead | ";
if (value & AccessFlagBits::eVertexAttributeRead) result += "VertexAttributeRead | ";
if (value & AccessFlagBits::eUniformRead) result += "UniformRead | ";
if (value & AccessFlagBits::eInputAttachmentRead) result += "InputAttachmentRead | ";
if (value & AccessFlagBits::eShaderRead) result += "ShaderRead | ";
if (value & AccessFlagBits::eShaderWrite) result += "ShaderWrite | ";
if (value & AccessFlagBits::eColorAttachmentRead) result += "ColorAttachmentRead | ";
if (value & AccessFlagBits::eColorAttachmentWrite) result += "ColorAttachmentWrite | ";
if (value & AccessFlagBits::eDepthStencilAttachmentRead) result += "DepthStencilAttachmentRead | ";
if (value & AccessFlagBits::eDepthStencilAttachmentWrite) result += "DepthStencilAttachmentWrite | ";
if (value & AccessFlagBits::eTransferRead) result += "TransferRead | ";
if (value & AccessFlagBits::eTransferWrite) result += "TransferWrite | ";
if (value & AccessFlagBits::eHostRead) result += "HostRead | ";
if (value & AccessFlagBits::eHostWrite) result += "HostWrite | ";
if (value & AccessFlagBits::eMemoryRead) result += "MemoryRead | ";
if (value & AccessFlagBits::eMemoryWrite) result += "MemoryWrite | ";
if (value & AccessFlagBits::eCommandProcessReadNVX) result += "CommandProcessReadNVX | ";
if (value & AccessFlagBits::eCommandProcessWriteNVX) result += "CommandProcessWriteNVX | ";
if (value & AccessFlagBits::eColorAttachmentReadNoncoherentEXT) result += "ColorAttachmentReadNoncoherentEXT | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(BufferUsageFlagBits value)
{
switch (value)
{
case BufferUsageFlagBits::eTransferSrc: return "TransferSrc";
case BufferUsageFlagBits::eTransferDst: return "TransferDst";
case BufferUsageFlagBits::eUniformTexelBuffer: return "UniformTexelBuffer";
case BufferUsageFlagBits::eStorageTexelBuffer: return "StorageTexelBuffer";
case BufferUsageFlagBits::eUniformBuffer: return "UniformBuffer";
case BufferUsageFlagBits::eStorageBuffer: return "StorageBuffer";
case BufferUsageFlagBits::eIndexBuffer: return "IndexBuffer";
case BufferUsageFlagBits::eVertexBuffer: return "VertexBuffer";
case BufferUsageFlagBits::eIndirectBuffer: return "IndirectBuffer";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(BufferUsageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & BufferUsageFlagBits::eTransferSrc) result += "TransferSrc | ";
if (value & BufferUsageFlagBits::eTransferDst) result += "TransferDst | ";
if (value & BufferUsageFlagBits::eUniformTexelBuffer) result += "UniformTexelBuffer | ";
if (value & BufferUsageFlagBits::eStorageTexelBuffer) result += "StorageTexelBuffer | ";
if (value & BufferUsageFlagBits::eUniformBuffer) result += "UniformBuffer | ";
if (value & BufferUsageFlagBits::eStorageBuffer) result += "StorageBuffer | ";
if (value & BufferUsageFlagBits::eIndexBuffer) result += "IndexBuffer | ";
if (value & BufferUsageFlagBits::eVertexBuffer) result += "VertexBuffer | ";
if (value & BufferUsageFlagBits::eIndirectBuffer) result += "IndirectBuffer | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(BufferCreateFlagBits value)
{
switch (value)
{
case BufferCreateFlagBits::eSparseBinding: return "SparseBinding";
case BufferCreateFlagBits::eSparseResidency: return "SparseResidency";
case BufferCreateFlagBits::eSparseAliased: return "SparseAliased";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(BufferCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & BufferCreateFlagBits::eSparseBinding) result += "SparseBinding | ";
if (value & BufferCreateFlagBits::eSparseResidency) result += "SparseResidency | ";
if (value & BufferCreateFlagBits::eSparseAliased) result += "SparseAliased | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ShaderStageFlagBits value)
{
switch (value)
{
case ShaderStageFlagBits::eVertex: return "Vertex";
case ShaderStageFlagBits::eTessellationControl: return "TessellationControl";
case ShaderStageFlagBits::eTessellationEvaluation: return "TessellationEvaluation";
case ShaderStageFlagBits::eGeometry: return "Geometry";
case ShaderStageFlagBits::eFragment: return "Fragment";
case ShaderStageFlagBits::eCompute: return "Compute";
case ShaderStageFlagBits::eAllGraphics: return "AllGraphics";
case ShaderStageFlagBits::eAll: return "All";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ShaderStageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ShaderStageFlagBits::eVertex) result += "Vertex | ";
if (value & ShaderStageFlagBits::eTessellationControl) result += "TessellationControl | ";
if (value & ShaderStageFlagBits::eTessellationEvaluation) result += "TessellationEvaluation | ";
if (value & ShaderStageFlagBits::eGeometry) result += "Geometry | ";
if (value & ShaderStageFlagBits::eFragment) result += "Fragment | ";
if (value & ShaderStageFlagBits::eCompute) result += "Compute | ";
if (value & ShaderStageFlagBits::eAllGraphics) result += "AllGraphics | ";
if (value & ShaderStageFlagBits::eAll) result += "All | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ImageUsageFlagBits value)
{
switch (value)
{
case ImageUsageFlagBits::eTransferSrc: return "TransferSrc";
case ImageUsageFlagBits::eTransferDst: return "TransferDst";
case ImageUsageFlagBits::eSampled: return "Sampled";
case ImageUsageFlagBits::eStorage: return "Storage";
case ImageUsageFlagBits::eColorAttachment: return "ColorAttachment";
case ImageUsageFlagBits::eDepthStencilAttachment: return "DepthStencilAttachment";
case ImageUsageFlagBits::eTransientAttachment: return "TransientAttachment";
case ImageUsageFlagBits::eInputAttachment: return "InputAttachment";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ImageUsageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ImageUsageFlagBits::eTransferSrc) result += "TransferSrc | ";
if (value & ImageUsageFlagBits::eTransferDst) result += "TransferDst | ";
if (value & ImageUsageFlagBits::eSampled) result += "Sampled | ";
if (value & ImageUsageFlagBits::eStorage) result += "Storage | ";
if (value & ImageUsageFlagBits::eColorAttachment) result += "ColorAttachment | ";
if (value & ImageUsageFlagBits::eDepthStencilAttachment) result += "DepthStencilAttachment | ";
if (value & ImageUsageFlagBits::eTransientAttachment) result += "TransientAttachment | ";
if (value & ImageUsageFlagBits::eInputAttachment) result += "InputAttachment | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ImageCreateFlagBits value)
{
switch (value)
{
case ImageCreateFlagBits::eSparseBinding: return "SparseBinding";
case ImageCreateFlagBits::eSparseResidency: return "SparseResidency";
case ImageCreateFlagBits::eSparseAliased: return "SparseAliased";
case ImageCreateFlagBits::eMutableFormat: return "MutableFormat";
case ImageCreateFlagBits::eCubeCompatible: return "CubeCompatible";
case ImageCreateFlagBits::eBindSfrKHX: return "BindSfrKHX";
case ImageCreateFlagBits::e2DArrayCompatibleKHR: return "2DArrayCompatibleKHR";
case ImageCreateFlagBits::eBlockTexelViewCompatibleKHR: return "BlockTexelViewCompatibleKHR";
case ImageCreateFlagBits::eExtendedUsageKHR: return "ExtendedUsageKHR";
case ImageCreateFlagBits::eSampleLocationsCompatibleDepthEXT: return "SampleLocationsCompatibleDepthEXT";
case ImageCreateFlagBits::eDisjointKHR: return "DisjointKHR";
case ImageCreateFlagBits::eAliasKHR: return "AliasKHR";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ImageCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ImageCreateFlagBits::eSparseBinding) result += "SparseBinding | ";
if (value & ImageCreateFlagBits::eSparseResidency) result += "SparseResidency | ";
if (value & ImageCreateFlagBits::eSparseAliased) result += "SparseAliased | ";
if (value & ImageCreateFlagBits::eMutableFormat) result += "MutableFormat | ";
if (value & ImageCreateFlagBits::eCubeCompatible) result += "CubeCompatible | ";
if (value & ImageCreateFlagBits::eBindSfrKHX) result += "BindSfrKHX | ";
if (value & ImageCreateFlagBits::e2DArrayCompatibleKHR) result += "2DArrayCompatibleKHR | ";
if (value & ImageCreateFlagBits::eBlockTexelViewCompatibleKHR) result += "BlockTexelViewCompatibleKHR | ";
if (value & ImageCreateFlagBits::eExtendedUsageKHR) result += "ExtendedUsageKHR | ";
if (value & ImageCreateFlagBits::eSampleLocationsCompatibleDepthEXT) result += "SampleLocationsCompatibleDepthEXT | ";
if (value & ImageCreateFlagBits::eDisjointKHR) result += "DisjointKHR | ";
if (value & ImageCreateFlagBits::eAliasKHR) result += "AliasKHR | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineCreateFlagBits value)
{
switch (value)
{
case PipelineCreateFlagBits::eDisableOptimization: return "DisableOptimization";
case PipelineCreateFlagBits::eAllowDerivatives: return "AllowDerivatives";
case PipelineCreateFlagBits::eDerivative: return "Derivative";
case PipelineCreateFlagBits::eViewIndexFromDeviceIndexKHX: return "ViewIndexFromDeviceIndexKHX";
case PipelineCreateFlagBits::eDispatchBaseKHX: return "DispatchBaseKHX";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PipelineCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & PipelineCreateFlagBits::eDisableOptimization) result += "DisableOptimization | ";
if (value & PipelineCreateFlagBits::eAllowDerivatives) result += "AllowDerivatives | ";
if (value & PipelineCreateFlagBits::eDerivative) result += "Derivative | ";
if (value & PipelineCreateFlagBits::eViewIndexFromDeviceIndexKHX) result += "ViewIndexFromDeviceIndexKHX | ";
if (value & PipelineCreateFlagBits::eDispatchBaseKHX) result += "DispatchBaseKHX | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ColorComponentFlagBits value)
{
switch (value)
{
case ColorComponentFlagBits::eR: return "R";
case ColorComponentFlagBits::eG: return "G";
case ColorComponentFlagBits::eB: return "B";
case ColorComponentFlagBits::eA: return "A";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ColorComponentFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ColorComponentFlagBits::eR) result += "R | ";
if (value & ColorComponentFlagBits::eG) result += "G | ";
if (value & ColorComponentFlagBits::eB) result += "B | ";
if (value & ColorComponentFlagBits::eA) result += "A | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(FenceCreateFlagBits value)
{
switch (value)
{
case FenceCreateFlagBits::eSignaled: return "Signaled";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(FenceCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & FenceCreateFlagBits::eSignaled) result += "Signaled | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(FormatFeatureFlagBits value)
{
switch (value)
{
case FormatFeatureFlagBits::eSampledImage: return "SampledImage";
case FormatFeatureFlagBits::eStorageImage: return "StorageImage";
case FormatFeatureFlagBits::eStorageImageAtomic: return "StorageImageAtomic";
case FormatFeatureFlagBits::eUniformTexelBuffer: return "UniformTexelBuffer";
case FormatFeatureFlagBits::eStorageTexelBuffer: return "StorageTexelBuffer";
case FormatFeatureFlagBits::eStorageTexelBufferAtomic: return "StorageTexelBufferAtomic";
case FormatFeatureFlagBits::eVertexBuffer: return "VertexBuffer";
case FormatFeatureFlagBits::eColorAttachment: return "ColorAttachment";
case FormatFeatureFlagBits::eColorAttachmentBlend: return "ColorAttachmentBlend";
case FormatFeatureFlagBits::eDepthStencilAttachment: return "DepthStencilAttachment";
case FormatFeatureFlagBits::eBlitSrc: return "BlitSrc";
case FormatFeatureFlagBits::eBlitDst: return "BlitDst";
case FormatFeatureFlagBits::eSampledImageFilterLinear: return "SampledImageFilterLinear";
case FormatFeatureFlagBits::eSampledImageFilterCubicIMG: return "SampledImageFilterCubicIMG";
case FormatFeatureFlagBits::eTransferSrcKHR: return "TransferSrcKHR";
case FormatFeatureFlagBits::eTransferDstKHR: return "TransferDstKHR";
case FormatFeatureFlagBits::eSampledImageFilterMinmaxEXT: return "SampledImageFilterMinmaxEXT";
case FormatFeatureFlagBits::eMidpointChromaSamplesKHR: return "MidpointChromaSamplesKHR";
case FormatFeatureFlagBits::eSampledImageYcbcrConversionLinearFilterKHR: return "SampledImageYcbcrConversionLinearFilterKHR";
case FormatFeatureFlagBits::eSampledImageYcbcrConversionSeparateReconstructionFilterKHR: return "SampledImageYcbcrConversionSeparateReconstructionFilterKHR";
case FormatFeatureFlagBits::eSampledImageYcbcrConversionChromaReconstructionExplicitKHR: return "SampledImageYcbcrConversionChromaReconstructionExplicitKHR";
case FormatFeatureFlagBits::eSampledImageYcbcrConversionChromaReconstructionExplicitForceableKHR: return "SampledImageYcbcrConversionChromaReconstructionExplicitForceableKHR";
case FormatFeatureFlagBits::eDisjointKHR: return "DisjointKHR";
case FormatFeatureFlagBits::eCositedChromaSamplesKHR: return "CositedChromaSamplesKHR";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(FormatFeatureFlags value)
{
if (!value) return "{}";
std::string result;
if (value & FormatFeatureFlagBits::eSampledImage) result += "SampledImage | ";
if (value & FormatFeatureFlagBits::eStorageImage) result += "StorageImage | ";
if (value & FormatFeatureFlagBits::eStorageImageAtomic) result += "StorageImageAtomic | ";
if (value & FormatFeatureFlagBits::eUniformTexelBuffer) result += "UniformTexelBuffer | ";
if (value & FormatFeatureFlagBits::eStorageTexelBuffer) result += "StorageTexelBuffer | ";
if (value & FormatFeatureFlagBits::eStorageTexelBufferAtomic) result += "StorageTexelBufferAtomic | ";
if (value & FormatFeatureFlagBits::eVertexBuffer) result += "VertexBuffer | ";
if (value & FormatFeatureFlagBits::eColorAttachment) result += "ColorAttachment | ";
if (value & FormatFeatureFlagBits::eColorAttachmentBlend) result += "ColorAttachmentBlend | ";
if (value & FormatFeatureFlagBits::eDepthStencilAttachment) result += "DepthStencilAttachment | ";
if (value & FormatFeatureFlagBits::eBlitSrc) result += "BlitSrc | ";
if (value & FormatFeatureFlagBits::eBlitDst) result += "BlitDst | ";
if (value & FormatFeatureFlagBits::eSampledImageFilterLinear) result += "SampledImageFilterLinear | ";
if (value & FormatFeatureFlagBits::eSampledImageFilterCubicIMG) result += "SampledImageFilterCubicIMG | ";
if (value & FormatFeatureFlagBits::eTransferSrcKHR) result += "TransferSrcKHR | ";
if (value & FormatFeatureFlagBits::eTransferDstKHR) result += "TransferDstKHR | ";
if (value & FormatFeatureFlagBits::eSampledImageFilterMinmaxEXT) result += "SampledImageFilterMinmaxEXT | ";
if (value & FormatFeatureFlagBits::eMidpointChromaSamplesKHR) result += "MidpointChromaSamplesKHR | ";
if (value & FormatFeatureFlagBits::eSampledImageYcbcrConversionLinearFilterKHR) result += "SampledImageYcbcrConversionLinearFilterKHR | ";
if (value & FormatFeatureFlagBits::eSampledImageYcbcrConversionSeparateReconstructionFilterKHR) result += "SampledImageYcbcrConversionSeparateReconstructionFilterKHR | ";
if (value & FormatFeatureFlagBits::eSampledImageYcbcrConversionChromaReconstructionExplicitKHR) result += "SampledImageYcbcrConversionChromaReconstructionExplicitKHR | ";
if (value & FormatFeatureFlagBits::eSampledImageYcbcrConversionChromaReconstructionExplicitForceableKHR) result += "SampledImageYcbcrConversionChromaReconstructionExplicitForceableKHR | ";
if (value & FormatFeatureFlagBits::eDisjointKHR) result += "DisjointKHR | ";
if (value & FormatFeatureFlagBits::eCositedChromaSamplesKHR) result += "CositedChromaSamplesKHR | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(QueryControlFlagBits value)
{
switch (value)
{
case QueryControlFlagBits::ePrecise: return "Precise";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(QueryControlFlags value)
{
if (!value) return "{}";
std::string result;
if (value & QueryControlFlagBits::ePrecise) result += "Precise | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(QueryResultFlagBits value)
{
switch (value)
{
case QueryResultFlagBits::e64: return "64";
case QueryResultFlagBits::eWait: return "Wait";
case QueryResultFlagBits::eWithAvailability: return "WithAvailability";
case QueryResultFlagBits::ePartial: return "Partial";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(QueryResultFlags value)
{
if (!value) return "{}";
std::string result;
if (value & QueryResultFlagBits::e64) result += "64 | ";
if (value & QueryResultFlagBits::eWait) result += "Wait | ";
if (value & QueryResultFlagBits::eWithAvailability) result += "WithAvailability | ";
if (value & QueryResultFlagBits::ePartial) result += "Partial | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(CommandBufferUsageFlagBits value)
{
switch (value)
{
case CommandBufferUsageFlagBits::eOneTimeSubmit: return "OneTimeSubmit";
case CommandBufferUsageFlagBits::eRenderPassContinue: return "RenderPassContinue";
case CommandBufferUsageFlagBits::eSimultaneousUse: return "SimultaneousUse";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CommandBufferUsageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CommandBufferUsageFlagBits::eOneTimeSubmit) result += "OneTimeSubmit | ";
if (value & CommandBufferUsageFlagBits::eRenderPassContinue) result += "RenderPassContinue | ";
if (value & CommandBufferUsageFlagBits::eSimultaneousUse) result += "SimultaneousUse | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(QueryPipelineStatisticFlagBits value)
{
switch (value)
{
case QueryPipelineStatisticFlagBits::eInputAssemblyVertices: return "InputAssemblyVertices";
case QueryPipelineStatisticFlagBits::eInputAssemblyPrimitives: return "InputAssemblyPrimitives";
case QueryPipelineStatisticFlagBits::eVertexShaderInvocations: return "VertexShaderInvocations";
case QueryPipelineStatisticFlagBits::eGeometryShaderInvocations: return "GeometryShaderInvocations";
case QueryPipelineStatisticFlagBits::eGeometryShaderPrimitives: return "GeometryShaderPrimitives";
case QueryPipelineStatisticFlagBits::eClippingInvocations: return "ClippingInvocations";
case QueryPipelineStatisticFlagBits::eClippingPrimitives: return "ClippingPrimitives";
case QueryPipelineStatisticFlagBits::eFragmentShaderInvocations: return "FragmentShaderInvocations";
case QueryPipelineStatisticFlagBits::eTessellationControlShaderPatches: return "TessellationControlShaderPatches";
case QueryPipelineStatisticFlagBits::eTessellationEvaluationShaderInvocations: return "TessellationEvaluationShaderInvocations";
case QueryPipelineStatisticFlagBits::eComputeShaderInvocations: return "ComputeShaderInvocations";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(QueryPipelineStatisticFlags value)
{
if (!value) return "{}";
std::string result;
if (value & QueryPipelineStatisticFlagBits::eInputAssemblyVertices) result += "InputAssemblyVertices | ";
if (value & QueryPipelineStatisticFlagBits::eInputAssemblyPrimitives) result += "InputAssemblyPrimitives | ";
if (value & QueryPipelineStatisticFlagBits::eVertexShaderInvocations) result += "VertexShaderInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eGeometryShaderInvocations) result += "GeometryShaderInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eGeometryShaderPrimitives) result += "GeometryShaderPrimitives | ";
if (value & QueryPipelineStatisticFlagBits::eClippingInvocations) result += "ClippingInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eClippingPrimitives) result += "ClippingPrimitives | ";
if (value & QueryPipelineStatisticFlagBits::eFragmentShaderInvocations) result += "FragmentShaderInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eTessellationControlShaderPatches) result += "TessellationControlShaderPatches | ";
if (value & QueryPipelineStatisticFlagBits::eTessellationEvaluationShaderInvocations) result += "TessellationEvaluationShaderInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eComputeShaderInvocations) result += "ComputeShaderInvocations | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ImageAspectFlagBits value)
{
switch (value)
{
case ImageAspectFlagBits::eColor: return "Color";
case ImageAspectFlagBits::eDepth: return "Depth";
case ImageAspectFlagBits::eStencil: return "Stencil";
case ImageAspectFlagBits::eMetadata: return "Metadata";
case ImageAspectFlagBits::ePlane0KHR: return "Plane0KHR";
case ImageAspectFlagBits::ePlane1KHR: return "Plane1KHR";
case ImageAspectFlagBits::ePlane2KHR: return "Plane2KHR";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ImageAspectFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ImageAspectFlagBits::eColor) result += "Color | ";
if (value & ImageAspectFlagBits::eDepth) result += "Depth | ";
if (value & ImageAspectFlagBits::eStencil) result += "Stencil | ";
if (value & ImageAspectFlagBits::eMetadata) result += "Metadata | ";
if (value & ImageAspectFlagBits::ePlane0KHR) result += "Plane0KHR | ";
if (value & ImageAspectFlagBits::ePlane1KHR) result += "Plane1KHR | ";
if (value & ImageAspectFlagBits::ePlane2KHR) result += "Plane2KHR | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(SparseImageFormatFlagBits value)
{
switch (value)
{
case SparseImageFormatFlagBits::eSingleMiptail: return "SingleMiptail";
case SparseImageFormatFlagBits::eAlignedMipSize: return "AlignedMipSize";
case SparseImageFormatFlagBits::eNonstandardBlockSize: return "NonstandardBlockSize";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SparseImageFormatFlags value)
{
if (!value) return "{}";
std::string result;
if (value & SparseImageFormatFlagBits::eSingleMiptail) result += "SingleMiptail | ";
if (value & SparseImageFormatFlagBits::eAlignedMipSize) result += "AlignedMipSize | ";
if (value & SparseImageFormatFlagBits::eNonstandardBlockSize) result += "NonstandardBlockSize | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(SparseMemoryBindFlagBits value)
{
switch (value)
{
case SparseMemoryBindFlagBits::eMetadata: return "Metadata";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SparseMemoryBindFlags value)
{
if (!value) return "{}";
std::string result;
if (value & SparseMemoryBindFlagBits::eMetadata) result += "Metadata | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(PipelineStageFlagBits value)
{
switch (value)
{
case PipelineStageFlagBits::eTopOfPipe: return "TopOfPipe";
case PipelineStageFlagBits::eDrawIndirect: return "DrawIndirect";
case PipelineStageFlagBits::eVertexInput: return "VertexInput";
case PipelineStageFlagBits::eVertexShader: return "VertexShader";
case PipelineStageFlagBits::eTessellationControlShader: return "TessellationControlShader";
case PipelineStageFlagBits::eTessellationEvaluationShader: return "TessellationEvaluationShader";
case PipelineStageFlagBits::eGeometryShader: return "GeometryShader";
case PipelineStageFlagBits::eFragmentShader: return "FragmentShader";
case PipelineStageFlagBits::eEarlyFragmentTests: return "EarlyFragmentTests";
case PipelineStageFlagBits::eLateFragmentTests: return "LateFragmentTests";
case PipelineStageFlagBits::eColorAttachmentOutput: return "ColorAttachmentOutput";
case PipelineStageFlagBits::eComputeShader: return "ComputeShader";
case PipelineStageFlagBits::eTransfer: return "Transfer";
case PipelineStageFlagBits::eBottomOfPipe: return "BottomOfPipe";
case PipelineStageFlagBits::eHost: return "Host";
case PipelineStageFlagBits::eAllGraphics: return "AllGraphics";
case PipelineStageFlagBits::eAllCommands: return "AllCommands";
case PipelineStageFlagBits::eCommandProcessNVX: return "CommandProcessNVX";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PipelineStageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & PipelineStageFlagBits::eTopOfPipe) result += "TopOfPipe | ";
if (value & PipelineStageFlagBits::eDrawIndirect) result += "DrawIndirect | ";
if (value & PipelineStageFlagBits::eVertexInput) result += "VertexInput | ";
if (value & PipelineStageFlagBits::eVertexShader) result += "VertexShader | ";
if (value & PipelineStageFlagBits::eTessellationControlShader) result += "TessellationControlShader | ";
if (value & PipelineStageFlagBits::eTessellationEvaluationShader) result += "TessellationEvaluationShader | ";
if (value & PipelineStageFlagBits::eGeometryShader) result += "GeometryShader | ";
if (value & PipelineStageFlagBits::eFragmentShader) result += "FragmentShader | ";
if (value & PipelineStageFlagBits::eEarlyFragmentTests) result += "EarlyFragmentTests | ";
if (value & PipelineStageFlagBits::eLateFragmentTests) result += "LateFragmentTests | ";
if (value & PipelineStageFlagBits::eColorAttachmentOutput) result += "ColorAttachmentOutput | ";
if (value & PipelineStageFlagBits::eComputeShader) result += "ComputeShader | ";
if (value & PipelineStageFlagBits::eTransfer) result += "Transfer | ";
if (value & PipelineStageFlagBits::eBottomOfPipe) result += "BottomOfPipe | ";
if (value & PipelineStageFlagBits::eHost) result += "Host | ";
if (value & PipelineStageFlagBits::eAllGraphics) result += "AllGraphics | ";
if (value & PipelineStageFlagBits::eAllCommands) result += "AllCommands | ";
if (value & PipelineStageFlagBits::eCommandProcessNVX) result += "CommandProcessNVX | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(CommandPoolCreateFlagBits value)
{
switch (value)
{
case CommandPoolCreateFlagBits::eTransient: return "Transient";
case CommandPoolCreateFlagBits::eResetCommandBuffer: return "ResetCommandBuffer";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CommandPoolCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CommandPoolCreateFlagBits::eTransient) result += "Transient | ";
if (value & CommandPoolCreateFlagBits::eResetCommandBuffer) result += "ResetCommandBuffer | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(CommandPoolResetFlagBits value)
{
switch (value)
{
case CommandPoolResetFlagBits::eReleaseResources: return "ReleaseResources";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CommandPoolResetFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CommandPoolResetFlagBits::eReleaseResources) result += "ReleaseResources | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(CommandBufferResetFlagBits value)
{
switch (value)
{
case CommandBufferResetFlagBits::eReleaseResources: return "ReleaseResources";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CommandBufferResetFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CommandBufferResetFlagBits::eReleaseResources) result += "ReleaseResources | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(SampleCountFlagBits value)
{
switch (value)
{
case SampleCountFlagBits::e1: return "1";
case SampleCountFlagBits::e2: return "2";
case SampleCountFlagBits::e4: return "4";
case SampleCountFlagBits::e8: return "8";
case SampleCountFlagBits::e16: return "16";
case SampleCountFlagBits::e32: return "32";
case SampleCountFlagBits::e64: return "64";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SampleCountFlags value)
{
if (!value) return "{}";
std::string result;
if (value & SampleCountFlagBits::e1) result += "1 | ";
if (value & SampleCountFlagBits::e2) result += "2 | ";
if (value & SampleCountFlagBits::e4) result += "4 | ";
if (value & SampleCountFlagBits::e8) result += "8 | ";
if (value & SampleCountFlagBits::e16) result += "16 | ";
if (value & SampleCountFlagBits::e32) result += "32 | ";
if (value & SampleCountFlagBits::e64) result += "64 | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(AttachmentDescriptionFlagBits value)
{
switch (value)
{
case AttachmentDescriptionFlagBits::eMayAlias: return "MayAlias";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(AttachmentDescriptionFlags value)
{
if (!value) return "{}";
std::string result;
if (value & AttachmentDescriptionFlagBits::eMayAlias) result += "MayAlias | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(StencilFaceFlagBits value)
{
switch (value)
{
case StencilFaceFlagBits::eFront: return "Front";
case StencilFaceFlagBits::eBack: return "Back";
case StencilFaceFlagBits::eVkStencilFrontAndBack: return "VkStencilFrontAndBack";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(StencilFaceFlags value)
{
if (!value) return "{}";
std::string result;
if (value & StencilFaceFlagBits::eFront) result += "Front | ";
if (value & StencilFaceFlagBits::eBack) result += "Back | ";
if (value & StencilFaceFlagBits::eVkStencilFrontAndBack) result += "VkStencilFrontAndBack | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(DescriptorPoolCreateFlagBits value)
{
switch (value)
{
case DescriptorPoolCreateFlagBits::eFreeDescriptorSet: return "FreeDescriptorSet";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DescriptorPoolCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & DescriptorPoolCreateFlagBits::eFreeDescriptorSet) result += "FreeDescriptorSet | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(DependencyFlagBits value)
{
switch (value)
{
case DependencyFlagBits::eByRegion: return "ByRegion";
case DependencyFlagBits::eViewLocalKHX: return "ViewLocalKHX";
case DependencyFlagBits::eDeviceGroupKHX: return "DeviceGroupKHX";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DependencyFlags value)
{
if (!value) return "{}";
std::string result;
if (value & DependencyFlagBits::eByRegion) result += "ByRegion | ";
if (value & DependencyFlagBits::eViewLocalKHX) result += "ViewLocalKHX | ";
if (value & DependencyFlagBits::eDeviceGroupKHX) result += "DeviceGroupKHX | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(PresentModeKHR value)
{
switch (value)
{
case PresentModeKHR::eImmediate: return "Immediate";
case PresentModeKHR::eMailbox: return "Mailbox";
case PresentModeKHR::eFifo: return "Fifo";
case PresentModeKHR::eFifoRelaxed: return "FifoRelaxed";
case PresentModeKHR::eSharedDemandRefresh: return "SharedDemandRefresh";
case PresentModeKHR::eSharedContinuousRefresh: return "SharedContinuousRefresh";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ColorSpaceKHR value)
{
switch (value)
{
case ColorSpaceKHR::eSrgbNonlinear: return "SrgbNonlinear";
case ColorSpaceKHR::eDisplayP3NonlinearEXT: return "DisplayP3NonlinearEXT";
case ColorSpaceKHR::eExtendedSrgbLinearEXT: return "ExtendedSrgbLinearEXT";
case ColorSpaceKHR::eDciP3LinearEXT: return "DciP3LinearEXT";
case ColorSpaceKHR::eDciP3NonlinearEXT: return "DciP3NonlinearEXT";
case ColorSpaceKHR::eBt709LinearEXT: return "Bt709LinearEXT";
case ColorSpaceKHR::eBt709NonlinearEXT: return "Bt709NonlinearEXT";
case ColorSpaceKHR::eBt2020LinearEXT: return "Bt2020LinearEXT";
case ColorSpaceKHR::eHdr10St2084EXT: return "Hdr10St2084EXT";
case ColorSpaceKHR::eDolbyvisionEXT: return "DolbyvisionEXT";
case ColorSpaceKHR::eHdr10HlgEXT: return "Hdr10HlgEXT";
case ColorSpaceKHR::eAdobergbLinearEXT: return "AdobergbLinearEXT";
case ColorSpaceKHR::eAdobergbNonlinearEXT: return "AdobergbNonlinearEXT";
case ColorSpaceKHR::ePassThroughEXT: return "PassThroughEXT";
case ColorSpaceKHR::eExtendedSrgbNonlinearEXT: return "ExtendedSrgbNonlinearEXT";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DisplayPlaneAlphaFlagBitsKHR value)
{
switch (value)
{
case DisplayPlaneAlphaFlagBitsKHR::eOpaque: return "Opaque";
case DisplayPlaneAlphaFlagBitsKHR::eGlobal: return "Global";
case DisplayPlaneAlphaFlagBitsKHR::ePerPixel: return "PerPixel";
case DisplayPlaneAlphaFlagBitsKHR::ePerPixelPremultiplied: return "PerPixelPremultiplied";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DisplayPlaneAlphaFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & DisplayPlaneAlphaFlagBitsKHR::eOpaque) result += "Opaque | ";
if (value & DisplayPlaneAlphaFlagBitsKHR::eGlobal) result += "Global | ";
if (value & DisplayPlaneAlphaFlagBitsKHR::ePerPixel) result += "PerPixel | ";
if (value & DisplayPlaneAlphaFlagBitsKHR::ePerPixelPremultiplied) result += "PerPixelPremultiplied | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(CompositeAlphaFlagBitsKHR value)
{
switch (value)
{
case CompositeAlphaFlagBitsKHR::eOpaque: return "Opaque";
case CompositeAlphaFlagBitsKHR::ePreMultiplied: return "PreMultiplied";
case CompositeAlphaFlagBitsKHR::ePostMultiplied: return "PostMultiplied";
case CompositeAlphaFlagBitsKHR::eInherit: return "Inherit";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CompositeAlphaFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & CompositeAlphaFlagBitsKHR::eOpaque) result += "Opaque | ";
if (value & CompositeAlphaFlagBitsKHR::ePreMultiplied) result += "PreMultiplied | ";
if (value & CompositeAlphaFlagBitsKHR::ePostMultiplied) result += "PostMultiplied | ";
if (value & CompositeAlphaFlagBitsKHR::eInherit) result += "Inherit | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(SurfaceTransformFlagBitsKHR value)
{
switch (value)
{
case SurfaceTransformFlagBitsKHR::eIdentity: return "Identity";
case SurfaceTransformFlagBitsKHR::eRotate90: return "Rotate90";
case SurfaceTransformFlagBitsKHR::eRotate180: return "Rotate180";
case SurfaceTransformFlagBitsKHR::eRotate270: return "Rotate270";
case SurfaceTransformFlagBitsKHR::eHorizontalMirror: return "HorizontalMirror";
case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate90: return "HorizontalMirrorRotate90";
case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate180: return "HorizontalMirrorRotate180";
case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate270: return "HorizontalMirrorRotate270";
case SurfaceTransformFlagBitsKHR::eInherit: return "Inherit";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SurfaceTransformFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & SurfaceTransformFlagBitsKHR::eIdentity) result += "Identity | ";
if (value & SurfaceTransformFlagBitsKHR::eRotate90) result += "Rotate90 | ";
if (value & SurfaceTransformFlagBitsKHR::eRotate180) result += "Rotate180 | ";
if (value & SurfaceTransformFlagBitsKHR::eRotate270) result += "Rotate270 | ";
if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirror) result += "HorizontalMirror | ";
if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate90) result += "HorizontalMirrorRotate90 | ";
if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate180) result += "HorizontalMirrorRotate180 | ";
if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate270) result += "HorizontalMirrorRotate270 | ";
if (value & SurfaceTransformFlagBitsKHR::eInherit) result += "Inherit | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(DebugReportFlagBitsEXT value)
{
switch (value)
{
case DebugReportFlagBitsEXT::eInformation: return "Information";
case DebugReportFlagBitsEXT::eWarning: return "Warning";
case DebugReportFlagBitsEXT::ePerformanceWarning: return "PerformanceWarning";
case DebugReportFlagBitsEXT::eError: return "Error";
case DebugReportFlagBitsEXT::eDebug: return "Debug";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DebugReportFlagsEXT value)
{
if (!value) return "{}";
std::string result;
if (value & DebugReportFlagBitsEXT::eInformation) result += "Information | ";
if (value & DebugReportFlagBitsEXT::eWarning) result += "Warning | ";
if (value & DebugReportFlagBitsEXT::ePerformanceWarning) result += "PerformanceWarning | ";
if (value & DebugReportFlagBitsEXT::eError) result += "Error | ";
if (value & DebugReportFlagBitsEXT::eDebug) result += "Debug | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(DebugReportObjectTypeEXT value)
{
switch (value)
{
case DebugReportObjectTypeEXT::eUnknown: return "Unknown";
case DebugReportObjectTypeEXT::eInstance: return "Instance";
case DebugReportObjectTypeEXT::ePhysicalDevice: return "PhysicalDevice";
case DebugReportObjectTypeEXT::eDevice: return "Device";
case DebugReportObjectTypeEXT::eQueue: return "Queue";
case DebugReportObjectTypeEXT::eSemaphore: return "Semaphore";
case DebugReportObjectTypeEXT::eCommandBuffer: return "CommandBuffer";
case DebugReportObjectTypeEXT::eFence: return "Fence";
case DebugReportObjectTypeEXT::eDeviceMemory: return "DeviceMemory";
case DebugReportObjectTypeEXT::eBuffer: return "Buffer";
case DebugReportObjectTypeEXT::eImage: return "Image";
case DebugReportObjectTypeEXT::eEvent: return "Event";
case DebugReportObjectTypeEXT::eQueryPool: return "QueryPool";
case DebugReportObjectTypeEXT::eBufferView: return "BufferView";
case DebugReportObjectTypeEXT::eImageView: return "ImageView";
case DebugReportObjectTypeEXT::eShaderModule: return "ShaderModule";
case DebugReportObjectTypeEXT::ePipelineCache: return "PipelineCache";
case DebugReportObjectTypeEXT::ePipelineLayout: return "PipelineLayout";
case DebugReportObjectTypeEXT::eRenderPass: return "RenderPass";
case DebugReportObjectTypeEXT::ePipeline: return "Pipeline";
case DebugReportObjectTypeEXT::eDescriptorSetLayout: return "DescriptorSetLayout";
case DebugReportObjectTypeEXT::eSampler: return "Sampler";
case DebugReportObjectTypeEXT::eDescriptorPool: return "DescriptorPool";
case DebugReportObjectTypeEXT::eDescriptorSet: return "DescriptorSet";
case DebugReportObjectTypeEXT::eFramebuffer: return "Framebuffer";
case DebugReportObjectTypeEXT::eCommandPool: return "CommandPool";
case DebugReportObjectTypeEXT::eSurfaceKhr: return "SurfaceKhr";
case DebugReportObjectTypeEXT::eSwapchainKhr: return "SwapchainKhr";
case DebugReportObjectTypeEXT::eDebugReportCallbackExt: return "DebugReportCallbackExt";
case DebugReportObjectTypeEXT::eDisplayKhr: return "DisplayKhr";
case DebugReportObjectTypeEXT::eDisplayModeKhr: return "DisplayModeKhr";
case DebugReportObjectTypeEXT::eObjectTableNvx: return "ObjectTableNvx";
case DebugReportObjectTypeEXT::eIndirectCommandsLayoutNvx: return "IndirectCommandsLayoutNvx";
case DebugReportObjectTypeEXT::eValidationCache: return "ValidationCache";
case DebugReportObjectTypeEXT::eDescriptorUpdateTemplateKHR: return "DescriptorUpdateTemplateKHR";
case DebugReportObjectTypeEXT::eSamplerYcbcrConversionKHR: return "SamplerYcbcrConversionKHR";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(RasterizationOrderAMD value)
{
switch (value)
{
case RasterizationOrderAMD::eStrict: return "Strict";
case RasterizationOrderAMD::eRelaxed: return "Relaxed";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalMemoryHandleTypeFlagBitsNV value)
{
switch (value)
{
case ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32: return "OpaqueWin32";
case ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32Kmt: return "OpaqueWin32Kmt";
case ExternalMemoryHandleTypeFlagBitsNV::eD3D11Image: return "D3D11Image";
case ExternalMemoryHandleTypeFlagBitsNV::eD3D11ImageKmt: return "D3D11ImageKmt";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalMemoryHandleTypeFlagsNV value)
{
if (!value) return "{}";
std::string result;
if (value & ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32) result += "OpaqueWin32 | ";
if (value & ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32Kmt) result += "OpaqueWin32Kmt | ";
if (value & ExternalMemoryHandleTypeFlagBitsNV::eD3D11Image) result += "D3D11Image | ";
if (value & ExternalMemoryHandleTypeFlagBitsNV::eD3D11ImageKmt) result += "D3D11ImageKmt | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ExternalMemoryFeatureFlagBitsNV value)
{
switch (value)
{
case ExternalMemoryFeatureFlagBitsNV::eDedicatedOnly: return "DedicatedOnly";
case ExternalMemoryFeatureFlagBitsNV::eExportable: return "Exportable";
case ExternalMemoryFeatureFlagBitsNV::eImportable: return "Importable";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalMemoryFeatureFlagsNV value)
{
if (!value) return "{}";
std::string result;
if (value & ExternalMemoryFeatureFlagBitsNV::eDedicatedOnly) result += "DedicatedOnly | ";
if (value & ExternalMemoryFeatureFlagBitsNV::eExportable) result += "Exportable | ";
if (value & ExternalMemoryFeatureFlagBitsNV::eImportable) result += "Importable | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ValidationCheckEXT value)
{
switch (value)
{
case ValidationCheckEXT::eAll: return "All";
case ValidationCheckEXT::eShaders: return "Shaders";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(IndirectCommandsLayoutUsageFlagBitsNVX value)
{
switch (value)
{
case IndirectCommandsLayoutUsageFlagBitsNVX::eUnorderedSequences: return "UnorderedSequences";
case IndirectCommandsLayoutUsageFlagBitsNVX::eSparseSequences: return "SparseSequences";
case IndirectCommandsLayoutUsageFlagBitsNVX::eEmptyExecutions: return "EmptyExecutions";
case IndirectCommandsLayoutUsageFlagBitsNVX::eIndexedSequences: return "IndexedSequences";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(IndirectCommandsLayoutUsageFlagsNVX value)
{
if (!value) return "{}";
std::string result;
if (value & IndirectCommandsLayoutUsageFlagBitsNVX::eUnorderedSequences) result += "UnorderedSequences | ";
if (value & IndirectCommandsLayoutUsageFlagBitsNVX::eSparseSequences) result += "SparseSequences | ";
if (value & IndirectCommandsLayoutUsageFlagBitsNVX::eEmptyExecutions) result += "EmptyExecutions | ";
if (value & IndirectCommandsLayoutUsageFlagBitsNVX::eIndexedSequences) result += "IndexedSequences | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ObjectEntryUsageFlagBitsNVX value)
{
switch (value)
{
case ObjectEntryUsageFlagBitsNVX::eGraphics: return "Graphics";
case ObjectEntryUsageFlagBitsNVX::eCompute: return "Compute";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ObjectEntryUsageFlagsNVX value)
{
if (!value) return "{}";
std::string result;
if (value & ObjectEntryUsageFlagBitsNVX::eGraphics) result += "Graphics | ";
if (value & ObjectEntryUsageFlagBitsNVX::eCompute) result += "Compute | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(IndirectCommandsTokenTypeNVX value)
{
switch (value)
{
case IndirectCommandsTokenTypeNVX::ePipeline: return "Pipeline";
case IndirectCommandsTokenTypeNVX::eDescriptorSet: return "DescriptorSet";
case IndirectCommandsTokenTypeNVX::eIndexBuffer: return "IndexBuffer";
case IndirectCommandsTokenTypeNVX::eVertexBuffer: return "VertexBuffer";
case IndirectCommandsTokenTypeNVX::ePushConstant: return "PushConstant";
case IndirectCommandsTokenTypeNVX::eDrawIndexed: return "DrawIndexed";
case IndirectCommandsTokenTypeNVX::eDraw: return "Draw";
case IndirectCommandsTokenTypeNVX::eDispatch: return "Dispatch";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ObjectEntryTypeNVX value)
{
switch (value)
{
case ObjectEntryTypeNVX::eDescriptorSet: return "DescriptorSet";
case ObjectEntryTypeNVX::ePipeline: return "Pipeline";
case ObjectEntryTypeNVX::eIndexBuffer: return "IndexBuffer";
case ObjectEntryTypeNVX::eVertexBuffer: return "VertexBuffer";
case ObjectEntryTypeNVX::ePushConstant: return "PushConstant";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DescriptorSetLayoutCreateFlagBits value)
{
switch (value)
{
case DescriptorSetLayoutCreateFlagBits::ePushDescriptorKHR: return "PushDescriptorKHR";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DescriptorSetLayoutCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & DescriptorSetLayoutCreateFlagBits::ePushDescriptorKHR) result += "PushDescriptorKHR | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ExternalMemoryHandleTypeFlagBitsKHR value)
{
switch (value)
{
case ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd: return "OpaqueFd";
case ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32: return "OpaqueWin32";
case ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32Kmt: return "OpaqueWin32Kmt";
case ExternalMemoryHandleTypeFlagBitsKHR::eD3D11Texture: return "D3D11Texture";
case ExternalMemoryHandleTypeFlagBitsKHR::eD3D11TextureKmt: return "D3D11TextureKmt";
case ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Heap: return "D3D12Heap";
case ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Resource: return "D3D12Resource";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalMemoryHandleTypeFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd) result += "OpaqueFd | ";
if (value & ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32) result += "OpaqueWin32 | ";
if (value & ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) result += "OpaqueWin32Kmt | ";
if (value & ExternalMemoryHandleTypeFlagBitsKHR::eD3D11Texture) result += "D3D11Texture | ";
if (value & ExternalMemoryHandleTypeFlagBitsKHR::eD3D11TextureKmt) result += "D3D11TextureKmt | ";
if (value & ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Heap) result += "D3D12Heap | ";
if (value & ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Resource) result += "D3D12Resource | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ExternalMemoryFeatureFlagBitsKHR value)
{
switch (value)
{
case ExternalMemoryFeatureFlagBitsKHR::eDedicatedOnly: return "DedicatedOnly";
case ExternalMemoryFeatureFlagBitsKHR::eExportable: return "Exportable";
case ExternalMemoryFeatureFlagBitsKHR::eImportable: return "Importable";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalMemoryFeatureFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & ExternalMemoryFeatureFlagBitsKHR::eDedicatedOnly) result += "DedicatedOnly | ";
if (value & ExternalMemoryFeatureFlagBitsKHR::eExportable) result += "Exportable | ";
if (value & ExternalMemoryFeatureFlagBitsKHR::eImportable) result += "Importable | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ExternalSemaphoreHandleTypeFlagBitsKHR value)
{
switch (value)
{
case ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd: return "OpaqueFd";
case ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32: return "OpaqueWin32";
case ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32Kmt: return "OpaqueWin32Kmt";
case ExternalSemaphoreHandleTypeFlagBitsKHR::eD3D12Fence: return "D3D12Fence";
case ExternalSemaphoreHandleTypeFlagBitsKHR::eSyncFd: return "SyncFd";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalSemaphoreHandleTypeFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd) result += "OpaqueFd | ";
if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32) result += "OpaqueWin32 | ";
if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) result += "OpaqueWin32Kmt | ";
if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eD3D12Fence) result += "D3D12Fence | ";
if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eSyncFd) result += "SyncFd | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ExternalSemaphoreFeatureFlagBitsKHR value)
{
switch (value)
{
case ExternalSemaphoreFeatureFlagBitsKHR::eExportable: return "Exportable";
case ExternalSemaphoreFeatureFlagBitsKHR::eImportable: return "Importable";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalSemaphoreFeatureFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & ExternalSemaphoreFeatureFlagBitsKHR::eExportable) result += "Exportable | ";
if (value & ExternalSemaphoreFeatureFlagBitsKHR::eImportable) result += "Importable | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(SemaphoreImportFlagBitsKHR value)
{
switch (value)
{
case SemaphoreImportFlagBitsKHR::eTemporary: return "Temporary";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SemaphoreImportFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & SemaphoreImportFlagBitsKHR::eTemporary) result += "Temporary | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ExternalFenceHandleTypeFlagBitsKHR value)
{
switch (value)
{
case ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd: return "OpaqueFd";
case ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32: return "OpaqueWin32";
case ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32Kmt: return "OpaqueWin32Kmt";
case ExternalFenceHandleTypeFlagBitsKHR::eSyncFd: return "SyncFd";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalFenceHandleTypeFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd) result += "OpaqueFd | ";
if (value & ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32) result += "OpaqueWin32 | ";
if (value & ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) result += "OpaqueWin32Kmt | ";
if (value & ExternalFenceHandleTypeFlagBitsKHR::eSyncFd) result += "SyncFd | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ExternalFenceFeatureFlagBitsKHR value)
{
switch (value)
{
case ExternalFenceFeatureFlagBitsKHR::eExportable: return "Exportable";
case ExternalFenceFeatureFlagBitsKHR::eImportable: return "Importable";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ExternalFenceFeatureFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & ExternalFenceFeatureFlagBitsKHR::eExportable) result += "Exportable | ";
if (value & ExternalFenceFeatureFlagBitsKHR::eImportable) result += "Importable | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(FenceImportFlagBitsKHR value)
{
switch (value)
{
case FenceImportFlagBitsKHR::eTemporary: return "Temporary";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(FenceImportFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & FenceImportFlagBitsKHR::eTemporary) result += "Temporary | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(SurfaceCounterFlagBitsEXT value)
{
switch (value)
{
case SurfaceCounterFlagBitsEXT::eVblank: return "Vblank";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SurfaceCounterFlagsEXT value)
{
if (!value) return "{}";
std::string result;
if (value & SurfaceCounterFlagBitsEXT::eVblank) result += "Vblank | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(DisplayPowerStateEXT value)
{
switch (value)
{
case DisplayPowerStateEXT::eOff: return "Off";
case DisplayPowerStateEXT::eSuspend: return "Suspend";
case DisplayPowerStateEXT::eOn: return "On";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DeviceEventTypeEXT value)
{
switch (value)
{
case DeviceEventTypeEXT::eDisplayHotplug: return "DisplayHotplug";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DisplayEventTypeEXT value)
{
switch (value)
{
case DisplayEventTypeEXT::eFirstPixelOut: return "FirstPixelOut";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PeerMemoryFeatureFlagBitsKHX value)
{
switch (value)
{
case PeerMemoryFeatureFlagBitsKHX::eCopySrc: return "CopySrc";
case PeerMemoryFeatureFlagBitsKHX::eCopyDst: return "CopyDst";
case PeerMemoryFeatureFlagBitsKHX::eGenericSrc: return "GenericSrc";
case PeerMemoryFeatureFlagBitsKHX::eGenericDst: return "GenericDst";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(PeerMemoryFeatureFlagsKHX value)
{
if (!value) return "{}";
std::string result;
if (value & PeerMemoryFeatureFlagBitsKHX::eCopySrc) result += "CopySrc | ";
if (value & PeerMemoryFeatureFlagBitsKHX::eCopyDst) result += "CopyDst | ";
if (value & PeerMemoryFeatureFlagBitsKHX::eGenericSrc) result += "GenericSrc | ";
if (value & PeerMemoryFeatureFlagBitsKHX::eGenericDst) result += "GenericDst | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(MemoryAllocateFlagBitsKHX value)
{
switch (value)
{
case MemoryAllocateFlagBitsKHX::eDeviceMask: return "DeviceMask";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(MemoryAllocateFlagsKHX value)
{
if (!value) return "{}";
std::string result;
if (value & MemoryAllocateFlagBitsKHX::eDeviceMask) result += "DeviceMask | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(DeviceGroupPresentModeFlagBitsKHX value)
{
switch (value)
{
case DeviceGroupPresentModeFlagBitsKHX::eLocal: return "Local";
case DeviceGroupPresentModeFlagBitsKHX::eRemote: return "Remote";
case DeviceGroupPresentModeFlagBitsKHX::eSum: return "Sum";
case DeviceGroupPresentModeFlagBitsKHX::eLocalMultiDevice: return "LocalMultiDevice";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DeviceGroupPresentModeFlagsKHX value)
{
if (!value) return "{}";
std::string result;
if (value & DeviceGroupPresentModeFlagBitsKHX::eLocal) result += "Local | ";
if (value & DeviceGroupPresentModeFlagBitsKHX::eRemote) result += "Remote | ";
if (value & DeviceGroupPresentModeFlagBitsKHX::eSum) result += "Sum | ";
if (value & DeviceGroupPresentModeFlagBitsKHX::eLocalMultiDevice) result += "LocalMultiDevice | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(SwapchainCreateFlagBitsKHR value)
{
switch (value)
{
case SwapchainCreateFlagBitsKHR::eBindSfrKHX: return "BindSfrKHX";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SwapchainCreateFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & SwapchainCreateFlagBitsKHR::eBindSfrKHX) result += "BindSfrKHX | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(ViewportCoordinateSwizzleNV value)
{
switch (value)
{
case ViewportCoordinateSwizzleNV::ePositiveX: return "PositiveX";
case ViewportCoordinateSwizzleNV::eNegativeX: return "NegativeX";
case ViewportCoordinateSwizzleNV::ePositiveY: return "PositiveY";
case ViewportCoordinateSwizzleNV::eNegativeY: return "NegativeY";
case ViewportCoordinateSwizzleNV::ePositiveZ: return "PositiveZ";
case ViewportCoordinateSwizzleNV::eNegativeZ: return "NegativeZ";
case ViewportCoordinateSwizzleNV::ePositiveW: return "PositiveW";
case ViewportCoordinateSwizzleNV::eNegativeW: return "NegativeW";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(DiscardRectangleModeEXT value)
{
switch (value)
{
case DiscardRectangleModeEXT::eInclusive: return "Inclusive";
case DiscardRectangleModeEXT::eExclusive: return "Exclusive";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SubpassDescriptionFlagBits value)
{
switch (value)
{
case SubpassDescriptionFlagBits::ePerViewAttributesNVX: return "PerViewAttributesNVX";
case SubpassDescriptionFlagBits::ePerViewPositionXOnlyNVX: return "PerViewPositionXOnlyNVX";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SubpassDescriptionFlags value)
{
if (!value) return "{}";
std::string result;
if (value & SubpassDescriptionFlagBits::ePerViewAttributesNVX) result += "PerViewAttributesNVX | ";
if (value & SubpassDescriptionFlagBits::ePerViewPositionXOnlyNVX) result += "PerViewPositionXOnlyNVX | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
VULKAN_HPP_INLINE std::string to_string(PointClippingBehaviorKHR value)
{
switch (value)
{
case PointClippingBehaviorKHR::eAllClipPlanes: return "AllClipPlanes";
case PointClippingBehaviorKHR::eUserClipPlanesOnly: return "UserClipPlanesOnly";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SamplerReductionModeEXT value)
{
switch (value)
{
case SamplerReductionModeEXT::eWeightedAverage: return "WeightedAverage";
case SamplerReductionModeEXT::eMin: return "Min";
case SamplerReductionModeEXT::eMax: return "Max";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(TessellationDomainOriginKHR value)
{
switch (value)
{
case TessellationDomainOriginKHR::eUpperLeft: return "UpperLeft";
case TessellationDomainOriginKHR::eLowerLeft: return "LowerLeft";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SamplerYcbcrModelConversionKHR value)
{
switch (value)
{
case SamplerYcbcrModelConversionKHR::eRgbIdentity: return "RgbIdentity";
case SamplerYcbcrModelConversionKHR::eYcbcrIdentity: return "YcbcrIdentity";
case SamplerYcbcrModelConversionKHR::eYcbcr709: return "Ycbcr709";
case SamplerYcbcrModelConversionKHR::eYcbcr601: return "Ycbcr601";
case SamplerYcbcrModelConversionKHR::eYcbcr2020: return "Ycbcr2020";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(SamplerYcbcrRangeKHR value)
{
switch (value)
{
case SamplerYcbcrRangeKHR::eItuFull: return "ItuFull";
case SamplerYcbcrRangeKHR::eItuNarrow: return "ItuNarrow";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ChromaLocationKHR value)
{
switch (value)
{
case ChromaLocationKHR::eCositedEven: return "CositedEven";
case ChromaLocationKHR::eMidpoint: return "Midpoint";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(BlendOverlapEXT value)
{
switch (value)
{
case BlendOverlapEXT::eUncorrelated: return "Uncorrelated";
case BlendOverlapEXT::eDisjoint: return "Disjoint";
case BlendOverlapEXT::eConjoint: return "Conjoint";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(CoverageModulationModeNV value)
{
switch (value)
{
case CoverageModulationModeNV::eNone: return "None";
case CoverageModulationModeNV::eRgb: return "Rgb";
case CoverageModulationModeNV::eAlpha: return "Alpha";
case CoverageModulationModeNV::eRgba: return "Rgba";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ValidationCacheHeaderVersionEXT value)
{
switch (value)
{
case ValidationCacheHeaderVersionEXT::eOne: return "One";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(ShaderInfoTypeAMD value)
{
switch (value)
{
case ShaderInfoTypeAMD::eStatistics: return "Statistics";
case ShaderInfoTypeAMD::eBinary: return "Binary";
case ShaderInfoTypeAMD::eDisassembly: return "Disassembly";
default: return "invalid";
}
}
VULKAN_HPP_INLINE std::string to_string(QueueGlobalPriorityEXT value)
{
switch (value)
{
case QueueGlobalPriorityEXT::eLow: return "Low";
case QueueGlobalPriorityEXT::eMedium: return "Medium";
case QueueGlobalPriorityEXT::eHigh: return "High";
case QueueGlobalPriorityEXT::eRealtime: return "Realtime";
default: return "invalid";
}
}
} // namespace VULKAN_HPP_NAMESPACE
#endif