Vulkan-Hpp/VulkanHppGenerator.cpp

5022 lines
176 KiB
C++

// Copyright(c) 2015-2016, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cassert>
#include <algorithm>
#include <fstream>
#include <functional>
#include <iterator>
#include <sstream>
#include <exception>
#include <regex>
#include <iterator>
#include "VulkanHppGenerator.hpp"
const std::string vkNamespace = R"(
#if !defined(VULKAN_HPP_NAMESPACE)
#define VULKAN_HPP_NAMESPACE vk
#endif
#define VULKAN_HPP_STRINGIFY2(text) #text
#define VULKAN_HPP_STRINGIFY(text) VULKAN_HPP_STRINGIFY2(text)
#define VULKAN_HPP_NAMESPACE_STRING VULKAN_HPP_STRINGIFY(VULKAN_HPP_NAMESPACE)
namespace VULKAN_HPP_NAMESPACE
{
)";
const std::string exceptionHeader = R"(
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# define noexcept _NOEXCEPT
#endif
class ErrorCategoryImpl : public std::error_category
{
public:
virtual const char* name() const noexcept override { return VULKAN_HPP_NAMESPACE_STRING"::Result"; }
virtual std::string message(int ev) const override { return to_string(static_cast<Result>(ev)); }
};
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# undef noexcept
#endif
VULKAN_HPP_INLINE const std::error_category& errorCategory()
{
static ErrorCategoryImpl instance;
return instance;
}
VULKAN_HPP_INLINE std::error_code make_error_code(Result e)
{
return std::error_code(static_cast<int>(e), errorCategory());
}
VULKAN_HPP_INLINE std::error_condition make_error_condition(Result e)
{
return std::error_condition(static_cast<int>(e), errorCategory());
}
)";
const std::string exceptionClassesHeader = R"(
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# define noexcept _NOEXCEPT
#endif
class Error
{
public:
virtual ~Error() = default;
virtual const char* what() const noexcept = 0;
};
class LogicError : public Error, public std::logic_error
{
public:
explicit LogicError( const std::string& what )
: Error(), std::logic_error(what) {}
explicit LogicError( char const * what )
: Error(), std::logic_error(what) {}
virtual ~LogicError() = default;
virtual const char* what() const noexcept { return std::logic_error::what(); }
};
class SystemError : public Error, public std::system_error
{
public:
SystemError( std::error_code ec )
: Error(), std::system_error(ec) {}
SystemError( std::error_code ec, std::string const& what )
: Error(), std::system_error(ec, what) {}
SystemError( std::error_code ec, char const * what )
: Error(), std::system_error(ec, what) {}
SystemError( int ev, std::error_category const& ecat )
: Error(), std::system_error(ev, ecat) {}
SystemError( int ev, std::error_category const& ecat, std::string const& what)
: Error(), std::system_error(ev, ecat, what) {}
SystemError( int ev, std::error_category const& ecat, char const * what)
: Error(), std::system_error(ev, ecat, what) {}
virtual ~SystemError() = default;
virtual const char* what() const noexcept { return std::system_error::what(); }
};
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# undef noexcept
#endif
)";
const std::string flagsHeader = R"(
template <typename FlagBitsType> struct FlagTraits
{
enum { allFlags = 0 };
};
template <typename BitType, typename MaskType = VkFlags>
class Flags
{
public:
Flags()
: m_mask(0)
{
}
Flags(BitType bit)
: m_mask(static_cast<MaskType>(bit))
{
}
Flags(Flags<BitType> const& rhs)
: m_mask(rhs.m_mask)
{
}
explicit Flags(MaskType flags)
: m_mask(flags)
{
}
Flags<BitType> & operator=(Flags<BitType> const& rhs)
{
m_mask = rhs.m_mask;
return *this;
}
Flags<BitType> & operator|=(Flags<BitType> const& rhs)
{
m_mask |= rhs.m_mask;
return *this;
}
Flags<BitType> & operator&=(Flags<BitType> const& rhs)
{
m_mask &= rhs.m_mask;
return *this;
}
Flags<BitType> & operator^=(Flags<BitType> const& rhs)
{
m_mask ^= rhs.m_mask;
return *this;
}
Flags<BitType> operator|(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result |= rhs;
return result;
}
Flags<BitType> operator&(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result &= rhs;
return result;
}
Flags<BitType> operator^(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result ^= rhs;
return result;
}
bool operator!() const
{
return !m_mask;
}
Flags<BitType> operator~() const
{
Flags<BitType> result(*this);
result.m_mask ^= FlagTraits<BitType>::allFlags;
return result;
}
bool operator==(Flags<BitType> const& rhs) const
{
return m_mask == rhs.m_mask;
}
bool operator!=(Flags<BitType> const& rhs) const
{
return m_mask != rhs.m_mask;
}
explicit operator bool() const
{
return !!m_mask;
}
explicit operator MaskType() const
{
return m_mask;
}
private:
MaskType m_mask;
};
template <typename BitType>
Flags<BitType> operator|(BitType bit, Flags<BitType> const& flags)
{
return flags | bit;
}
template <typename BitType>
Flags<BitType> operator&(BitType bit, Flags<BitType> const& flags)
{
return flags & bit;
}
template <typename BitType>
Flags<BitType> operator^(BitType bit, Flags<BitType> const& flags)
{
return flags ^ bit;
}
)";
const std::string optionalClassHeader = R"(
template <typename RefType>
class Optional
{
public:
Optional(RefType & reference) { m_ptr = &reference; }
Optional(RefType * ptr) { m_ptr = ptr; }
Optional(std::nullptr_t) { m_ptr = nullptr; }
operator RefType*() const { return m_ptr; }
RefType const* operator->() const { return m_ptr; }
explicit operator bool() const { return !!m_ptr; }
private:
RefType *m_ptr;
};
)";
const std::string arrayProxyHeader = R"(
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
class ArrayProxy
{
public:
ArrayProxy(std::nullptr_t)
: m_count(0)
, m_ptr(nullptr)
{}
ArrayProxy(T & ptr)
: m_count(1)
, m_ptr(&ptr)
{}
ArrayProxy(uint32_t count, T * ptr)
: m_count(count)
, m_ptr(ptr)
{}
template <size_t N>
ArrayProxy(std::array<typename std::remove_const<T>::type, N> & data)
: m_count(N)
, m_ptr(data.data())
{}
template <size_t N>
ArrayProxy(std::array<typename std::remove_const<T>::type, N> const& data)
: m_count(N)
, m_ptr(data.data())
{}
template <class Allocator = std::allocator<typename std::remove_const<T>::type>>
ArrayProxy(std::vector<typename std::remove_const<T>::type, Allocator> & data)
: m_count(static_cast<uint32_t>(data.size()))
, m_ptr(data.data())
{}
template <class Allocator = std::allocator<typename std::remove_const<T>::type>>
ArrayProxy(std::vector<typename std::remove_const<T>::type, Allocator> const& data)
: m_count(static_cast<uint32_t>(data.size()))
, m_ptr(data.data())
{}
ArrayProxy(std::initializer_list<T> const& data)
: m_count(static_cast<uint32_t>(data.end() - data.begin()))
, m_ptr(data.begin())
{}
const T * begin() const
{
return m_ptr;
}
const T * end() const
{
return m_ptr + m_count;
}
const T & front() const
{
VULKAN_HPP_ASSERT(m_count && m_ptr);
return *m_ptr;
}
const T & back() const
{
VULKAN_HPP_ASSERT(m_count && m_ptr);
return *(m_ptr + m_count - 1);
}
bool empty() const
{
return (m_count == 0);
}
uint32_t size() const
{
return m_count;
}
T * data() const
{
return m_ptr;
}
private:
uint32_t m_count;
T * m_ptr;
};
#endif
)";
const std::string structureChainHeader = R"(
template <typename X, typename Y> struct isStructureChainValid { enum { value = false }; };
template <class Element>
class StructureChainElement
{
public:
explicit operator Element&() { return value; }
explicit operator const Element&() const { return value; }
private:
Element value;
};
template<typename ...StructureElements>
class StructureChain : private StructureChainElement<StructureElements>...
{
public:
StructureChain()
{
link<StructureElements...>();
}
StructureChain(StructureChain const &rhs)
{
linkAndCopy<StructureElements...>(rhs);
}
StructureChain& operator=(StructureChain const &rhs)
{
linkAndCopy<StructureElements...>(rhs);
return *this;
}
template<typename ClassType> ClassType& get() { return static_cast<ClassType&>(*this);}
private:
template<typename X>
void link()
{
}
template<typename X, typename Y, typename ...Z>
void link()
{
static_assert(isStructureChainValid<X,Y>::value, "The structure chain is not valid!");
X& x = static_cast<X&>(*this);
Y& y = static_cast<Y&>(*this);
x.pNext = &y;
link<Y, Z...>();
}
template<typename X>
void linkAndCopy(StructureChain const &rhs)
{
static_cast<X&>(*this) = static_cast<X const &>(rhs);
}
template<typename X, typename Y, typename ...Z>
void linkAndCopy(StructureChain const &rhs)
{
static_assert(isStructureChainValid<X,Y>::value, "The structure chain is not valid!");
X& x = static_cast<X&>(*this);
Y& y = static_cast<Y&>(*this);
x = static_cast<X const &>(rhs);
x.pNext = &y;
linkAndCopy<Y, Z...>(rhs);
}
};
)";
const std::string versionCheckHeader = R"(
#if !defined(VULKAN_HPP_HAS_UNRESTRICTED_UNIONS)
# if defined(__clang__)
# if __has_feature(cxx_unrestricted_unions)
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# elif defined(__GNUC__)
# define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
# if 40600 <= GCC_VERSION
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# elif defined(_MSC_VER)
# if 1900 <= _MSC_VER
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# endif
#endif
)";
const std::string inlineHeader = R"(
#if !defined(VULKAN_HPP_INLINE)
# if defined(__clang___)
# if __has_attribute(always_inline)
# define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__
# else
# define VULKAN_HPP_INLINE inline
# endif
# elif defined(__GNUC__)
# define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__
# elif defined(_MSC_VER)
# define VULKAN_HPP_INLINE __forceinline
# else
# define VULKAN_HPP_INLINE inline
# endif
#endif
)";
const std::string explicitHeader = R"(
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
# define VULKAN_HPP_TYPESAFE_EXPLICIT
#else
# define VULKAN_HPP_TYPESAFE_EXPLICIT explicit
#endif
)";
const std::string resultValueHeader = R"(
template <typename T>
struct ResultValue
{
ResultValue( Result r, T & v )
: result( r )
, value( v )
{}
ResultValue( Result r, T && v )
: result( r )
, value( std::move( v ) )
{}
Result result;
T value;
operator std::tuple<Result&, T&>() { return std::tuple<Result&, T&>(result, value); }
};
template <typename T>
struct ResultValueType
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
typedef ResultValue<T> type;
#else
typedef T type;
#endif
};
template <>
struct ResultValueType<void>
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
typedef Result type;
#else
typedef void type;
#endif
};
)";
const std::string createResultValueHeader = R"(
VULKAN_HPP_INLINE ResultValueType<void>::type createResultValue( Result result, char const * message )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
VULKAN_HPP_ASSERT( result == Result::eSuccess );
return result;
#else
if ( result != Result::eSuccess )
{
throwResultException( result, message );
}
#endif
}
template <typename T>
VULKAN_HPP_INLINE typename ResultValueType<T>::type createResultValue( Result result, T & data, char const * message )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
VULKAN_HPP_ASSERT( result == Result::eSuccess );
return ResultValue<T>( result, data );
#else
if ( result != Result::eSuccess )
{
throwResultException( result, message );
}
return std::move( data );
#endif
}
VULKAN_HPP_INLINE Result createResultValue( Result result, char const * message, std::initializer_list<Result> successCodes )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
VULKAN_HPP_ASSERT( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() );
#else
if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() )
{
throwResultException( result, message );
}
#endif
return result;
}
template <typename T>
VULKAN_HPP_INLINE ResultValue<T> createResultValue( Result result, T & data, char const * message, std::initializer_list<Result> successCodes )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
VULKAN_HPP_ASSERT( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() );
#else
if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() )
{
throwResultException( result, message );
}
#endif
return ResultValue<T>( result, data );
}
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename T>
VULKAN_HPP_INLINE typename ResultValueType<UniqueHandle<T>>::type createResultValue( Result result, T & data, char const * message, typename UniqueHandleTraits<T>::deleter const& deleter )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
VULKAN_HPP_ASSERT( result == Result::eSuccess );
return ResultValue<UniqueHandle<T>>( result, UniqueHandle<T>(data, deleter) );
#else
if ( result != Result::eSuccess )
{
throwResultException( result, message );
}
return UniqueHandle<T>(data, deleter);
#endif
}
#endif
)";
const std::string uniqueHandleHeader = R"(
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Type> class UniqueHandleTraits;
template <typename Type>
class UniqueHandle : public UniqueHandleTraits<Type>::deleter
{
private:
using Deleter = typename UniqueHandleTraits<Type>::deleter;
public:
explicit UniqueHandle( Type const& value = Type(), Deleter const& deleter = Deleter() )
: Deleter( deleter)
, m_value( value )
{}
UniqueHandle( UniqueHandle const& ) = delete;
UniqueHandle( UniqueHandle && other )
: Deleter( std::move( static_cast<Deleter&>( other ) ) )
, m_value( other.release() )
{}
~UniqueHandle()
{
if ( m_value ) this->destroy( m_value );
}
UniqueHandle & operator=( UniqueHandle const& ) = delete;
UniqueHandle & operator=( UniqueHandle && other )
{
reset( other.release() );
*static_cast<Deleter*>(this) = std::move( static_cast<Deleter&>(other) );
return *this;
}
explicit operator bool() const
{
return m_value.operator bool();
}
Type const* operator->() const
{
return &m_value;
}
Type * operator->()
{
return &m_value;
}
Type const& operator*() const
{
return m_value;
}
Type & operator*()
{
return m_value;
}
const Type & get() const
{
return m_value;
}
Type & get()
{
return m_value;
}
void reset( Type const& value = Type() )
{
if ( m_value != value )
{
if ( m_value ) this->destroy( m_value );
m_value = value;
}
}
Type release()
{
Type value = m_value;
m_value = nullptr;
return value;
}
void swap( UniqueHandle<Type> & rhs )
{
std::swap(m_value, rhs.m_value);
std::swap(static_cast<Deleter&>(*this), static_cast<Deleter&>(rhs));
}
private:
Type m_value;
};
template <typename Type>
VULKAN_HPP_INLINE void swap( UniqueHandle<Type> & lhs, UniqueHandle<Type> & rhs )
{
lhs.swap( rhs );
}
#endif
)";
const std::string deleterClassString = R"(
struct AllocationCallbacks;
template <typename OwnerType>
class ObjectDeleter
{
public:
ObjectDeleter(OwnerType owner = OwnerType(), Optional<const AllocationCallbacks> allocator = nullptr)
: m_owner(owner)
, m_allocator(allocator)
{}
OwnerType getOwner() const { return m_owner; }
Optional<const AllocationCallbacks> getAllocator() const { return m_allocator; }
protected:
template <typename T>
void destroy(T t)
{
m_owner.destroy(t, m_allocator);
}
private:
OwnerType m_owner;
Optional<const AllocationCallbacks> m_allocator;
};
class NoParent;
template <>
class ObjectDeleter<NoParent>
{
public:
ObjectDeleter( Optional<const AllocationCallbacks> allocator = nullptr )
: m_allocator( allocator )
{}
Optional<const AllocationCallbacks> getAllocator() const { return m_allocator; }
protected:
template <typename T>
void destroy(T t)
{
t.destroy( m_allocator );
}
private:
Optional<const AllocationCallbacks> m_allocator;
};
template <typename OwnerType, typename PoolType>
class PoolDeleter
{
public:
PoolDeleter(OwnerType owner = OwnerType(), PoolType pool = PoolType())
: m_owner(owner)
, m_pool(pool)
{}
OwnerType getOwner() const { return m_owner; }
PoolType getPool() const { return m_pool; }
protected:
template <typename T>
void destroy(T t)
{
m_owner.free(m_pool, t);
}
private:
OwnerType m_owner;
PoolType m_pool;
};
)";
std::string replaceWithMap(std::string const &input, std::map<std::string, std::string> replacements)
{
// This will match ${someVariable} and contain someVariable in match group 1
std::regex re(R"(\$\{([^\}]+)\})");
auto it = std::sregex_iterator(input.begin(), input.end(), re);
auto end = std::sregex_iterator();
// No match, just return the original string
if (it == end)
{
return input;
}
std::string result = "";
while (it != end)
{
std::smatch match = *it;
auto itReplacement = replacements.find(match[1].str());
assert(itReplacement != replacements.end());
result += match.prefix().str() + ((itReplacement != replacements.end()) ? itReplacement->second : match[0].str());
++it;
// we've passed the last match. Append the rest of the orignal string
if (it == end)
{
result += match.suffix().str();
}
}
return result;
}
bool beginsWith(std::string const& text, std::string const& prefix);
void checkAttributes(std::map<std::string, std::string> const& attributes, int line, std::map<std::string, std::set<std::string>> const& required, std::map<std::string, std::set<std::string>> const& optional);
void checkElements(std::vector<tinyxml2::XMLElement const*> const& elements, std::set<std::string> const& values);
void checkEmptyElement(tinyxml2::XMLElement const* element);
void checkOrderedElements(std::vector<tinyxml2::XMLElement const*> const& elements, std::vector<std::string> const& values);
std::string createEnumValueName(std::string const& name, std::string const& prefix, std::string const& postfix, bool bitmask, std::string const& tag);
bool endsWith(std::string const& text, std::string const& postfix);
void enterProtect(std::ostream &os, std::string const& protect);
std::string extractTag(std::string const& name);
std::string findTag(std::string const& name, std::set<std::string> const& tags);
std::string generateEnumNameForFlags(std::string const& name);
std::map<std::string, std::string> getAttributes(tinyxml2::XMLElement const* element);
std::vector<tinyxml2::XMLElement const*> getChildElements(tinyxml2::XMLElement const* element);
bool isErrorEnum(std::string const& enumName);
void leaveProtect(std::ostream &os, std::string const& protect);
std::string readArraySize(tinyxml2::XMLNode const* node, std::string& name);
std::string startUpperCase(std::string const& input);
std::string startLowerCase(std::string const& input);
std::string strip(std::string const& value, std::string const& prefix, std::string const& postfix = std::string());
std::string stripErrorEnumPrefix(std::string const& enumName);
std::string stripPluralS(std::string const& name);
std::vector<std::string> tokenize(std::string tokenString, char separator);
std::string trim(std::string const& input);
std::string trimEnd(std::string const& input);
std::string toCamelCase(std::string const& value);
std::string toUpperCase(std::string const& name);
void writeFunctionHeaderName(std::ostream & os, std::string const& name, bool singular, bool unique);
void writeReinterpretCast(std::ostream & os, bool leadingConst, bool vulkanType, std::string const& type, bool trailingPointerToConst);
void writeStandardOrEnhanced(std::ostream & os, std::string const& standard, std::string const& enhanced);
void writeTypesafeCheck(std::ostream & os, std::string const& typesafeCheck);
void writeVersionCheck(std::ostream & os, std::string const& version);
#if !defined(NDEBUG)
void skipFeatureRequire(tinyxml2::XMLElement const* element);
void skipImplicitExternSyncParams(tinyxml2::XMLElement const* element);
void skipTypeEnum(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes);
void skipTypeInclude(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes);
#endif
bool beginsWith(std::string const& text, std::string const& prefix)
{
return !prefix.empty() && text.substr(0, prefix.length()) == prefix;
}
// check the validity of an attributes map
// attributes : the map of name/value pairs of the encountered attributes
// line : the line in the xml file where the attributes are listed
// required : the required attributes, with a set of allowed values per attribute
// optional : the optional attributes, with a set of allowed values per attribute
void checkAttributes(std::map<std::string, std::string> const& attributes, int line, std::map<std::string, std::set<std::string>> const& required, std::map<std::string, std::set<std::string>> const& optional)
{
std::stringstream ss;
ss << line;
std::string lineNumber = ss.str();
// check if all required attributes are included and if there is a set of allowed values, check if the actual value is part of that set
for (auto const& r : required)
{
auto attributesIt = attributes.find(r.first);
if (attributesIt == attributes.end())
{
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": missing attribute <" + r.first + ">");
}
if (!r.second.empty() && (r.second.find(attributesIt->second) == r.second.end()))
{
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected attribute value <" + attributesIt->second + "> in attribute <" + r.first + ">");
}
}
// check if all not required attributes or optional, and if there is a set of allowed values, check if the actual value is part of that set
for (auto const& a : attributes)
{
if (required.find(a.first) == required.end())
{
auto optionalIt = optional.find(a.first);
if (optionalIt == optional.end())
{
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected attribute <" + a.first + ">");
}
if (!optionalIt->second.empty())
{
std::vector<std::string> values = tokenize(a.second, ',');
for (auto const& v : values)
{
if (optionalIt->second.find(v) == optionalIt->second.end())
{
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected attribute value <" + v + "> in attribute <" + a.first + ">");
}
}
}
}
}
}
void checkElements(std::vector<tinyxml2::XMLElement const*> const& elements, std::set<std::string> const& values)
{
for (auto e : elements)
{
if (values.find(e->Value()) == values.end())
{
std::stringstream ss;
ss << e->GetLineNum();
std::string lineNumber = ss.str();
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected element value <" + e->Value() + ">");
}
}
}
void checkEmptyElement(tinyxml2::XMLElement const* element)
{
checkAttributes(getAttributes(element), element->GetLineNum(), {}, {});
checkElements(getChildElements(element), {});
}
void checkOrderedElements(std::vector<tinyxml2::XMLElement const*> const& elements, std::vector<std::string> const& values)
{
for (size_t i = 0; i < elements.size(); i++)
{
std::stringstream ss;
ss << elements[i]->GetLineNum();
std::string lineNumber = ss.str();
if (values.size() <= i)
{
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected surplus element <" + elements[i]->Value() + ">");
}
if (values[i] != elements[i]->Value())
{
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected element <" + elements[i]->Value() + ">, expected <" + values[i] + ">");
}
}
}
std::string createEnumValueName(std::string const& name, std::string const& prefix, std::string const& postfix, bool bitmask, std::string const& tag)
{
std::string result = "e" + toCamelCase(strip(name, prefix, postfix));
if (bitmask)
{
size_t pos = result.find("Bit");
if (pos != std::string::npos)
{
result.erase(pos, 3);
}
}
if (!tag.empty() && (result.substr(result.length() - tag.length()) == toCamelCase(tag)))
{
result = result.substr(0, result.length() - tag.length()) + tag;
}
return result;
}
bool endsWith(std::string const& text, std::string const& postfix)
{
return !postfix.empty() && (postfix.length() < text.length()) && (text.substr(text.length() - postfix.length()) == postfix);
}
void enterProtect(std::ostream &os, std::string const& protect)
{
if (!protect.empty())
{
os << "#ifdef " << protect << std::endl;
}
}
std::string extractTag(std::string const& name)
{
// the name is supposed to look like: VK_<tag>_<other>
size_t start = name.find('_');
assert((start != std::string::npos) && (name.substr(0, start) == "VK"));
size_t end = name.find('_', start + 1);
assert(end != std::string::npos);
return name.substr(start + 1, end - start - 1);
}
std::string findTag(std::string const& name, std::set<std::string> const& tags)
{
// find the tag in a name, return that tag or an empty string
auto tagIt = std::find_if(tags.begin(), tags.end(), [&name](std::string const& t)
{
size_t pos = name.find(t);
return (pos != std::string::npos) && (pos == name.length() - t.length());
});
return tagIt != tags.end() ? *tagIt : "";
}
std::string generateEnumNameForFlags(std::string const& name)
{
// create a string, where the substring "Flags" is replaced by "FlagBits"
std::string generatedName = name;
size_t pos = generatedName.rfind("Flags");
assert(pos != std::string::npos);
generatedName.replace(pos, 5, "FlagBits");
return generatedName;
}
std::map<std::string, std::string> getAttributes(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes;
for (auto attribute = element->FirstAttribute(); attribute; attribute = attribute->Next())
{
assert(attributes.find(attribute->Name()) == attributes.end());
attributes[attribute->Name()] = attribute->Value();
}
return attributes;
}
std::vector<tinyxml2::XMLElement const*> getChildElements(tinyxml2::XMLElement const* element)
{
std::vector<tinyxml2::XMLElement const*> childElements;
for (tinyxml2::XMLElement const* childElement = element->FirstChildElement(); childElement; childElement = childElement->NextSiblingElement())
{
childElements.push_back(childElement);
}
return childElements;
}
bool isErrorEnum(std::string const& enumName)
{
return (enumName.substr(0, 6) == "eError");
}
void leaveProtect(std::ostream &os, std::string const& protect)
{
if (!protect.empty())
{
os << "#endif /*" << protect << "*/" << std::endl;
}
}
std::string readArraySize(tinyxml2::XMLNode const* node, std::string& name)
{
std::string arraySize;
if (name.back() == ']')
{
// if the parameter has '[' and ']' in its name, get the stuff inbetween those as the array size and erase that part from the parameter name
assert(!node->NextSibling());
size_t pos = name.find('[');
assert(pos != std::string::npos);
arraySize = name.substr(pos + 1, name.length() - 2 - pos);
name.erase(pos);
}
else
{
// otherwise look for a sibling of this node
node = node->NextSibling();
if (node && node->ToText())
{
assert(node->Value());
std::string value = trimEnd(node->Value());
if (value == "[")
{
// if this node has '[' as its value, the next node holds the array size, and the node after that needs to hold ']', and there should be no more siblings
node = node->NextSibling();
assert(node && node->ToElement() && (strcmp(node->Value(), "enum") == 0));
arraySize = node->ToElement()->GetText();
node = node->NextSibling();
assert(node && node->ToText() && (trimEnd(node->Value()) == "]"));
}
else
{
// otherwise, the node holds '[' and ']', so get the stuff in between those as the array size
assert((value.front() == '[') && (value.back() == ']'));
arraySize = value.substr(1, value.length() - 2);
}
assert(!node->NextSibling() || ((strcmp(node->NextSibling()->Value(), "comment") == 0) && !node->NextSibling()->NextSibling()));
}
}
return arraySize;
}
std::string startUpperCase(std::string const& input)
{
return static_cast<char>(toupper(input[0])) + input.substr(1);
}
std::string startLowerCase(std::string const& input)
{
return input.empty() ? "" : static_cast<char>(tolower(input[0])) + input.substr(1);
}
std::string strip(std::string const& value, std::string const& prefix, std::string const& postfix)
{
std::string strippedValue = value;
if (beginsWith(strippedValue, prefix))
{
strippedValue.erase(0, prefix.length());
}
if (endsWith(strippedValue, postfix))
{
strippedValue.erase(strippedValue.length() - postfix.length());
}
return strippedValue;
}
std::string stripErrorEnumPrefix(std::string const& enumName)
{
assert(isErrorEnum(enumName));
return strip(enumName, "eError");
}
std::string stripPluralS(std::string const& name)
{
std::string strippedName(name);
size_t pos = strippedName.rfind('s');
assert(pos != std::string::npos);
strippedName.erase(pos, 1);
return strippedName;
}
std::vector<std::string> tokenize(std::string tokenString, char separator)
{
std::vector<std::string> tokens;
size_t start = 0, end;
do
{
end = tokenString.find(separator, start);
tokens.push_back(tokenString.substr(start, end - start));
start = end + 1;
} while (end != std::string::npos);
return tokens;
}
std::string trim(std::string const& input)
{
std::string result = input;
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](char c) { return !std::isspace(c); }));
result.erase(std::find_if(result.rbegin(), result.rend(), [](char c) { return !std::isspace(c); }).base(), result.end());
return result;
}
std::string trimEnd(std::string const& input)
{
std::string result = input;
result.erase(std::find_if(result.rbegin(), result.rend(), [](char c) { return !std::isspace(c); }).base(), result.end());
return result;
}
std::string toCamelCase(std::string const& value)
{
assert(!value.empty() && (isupper(value[0]) || isdigit(value[0])));
std::string result;
result.reserve(value.size());
result.push_back(value[0]);
for (size_t i = 1; i < value.size(); i++)
{
if (value[i] != '_')
{
if ((value[i - 1] == '_') || isdigit(value[i - 1]))
{
result.push_back(value[i]);
}
else
{
result.push_back(tolower(value[i]));
}
}
}
return result;
}
std::string toUpperCase(std::string const& name)
{
std::string convertedName;
for (size_t i = 0; i<name.length(); i++)
{
if (isupper(name[i]) && ((i == 0) || islower(name[i - 1]) || isdigit(name[i - 1])))
{
convertedName.push_back('_');
}
convertedName.push_back(toupper(name[i]));
}
return convertedName;
}
void writeFunctionHeaderName(std::ostream & os, std::string const& name, bool singular, bool unique)
{
os << (singular ? stripPluralS(name) : name);
if (unique)
{
os << "Unique";
}
}
void writeReinterpretCast(std::ostream & os, bool leadingConst, bool vulkanType, std::string const& type, bool trailingPointerToConst)
{
os << "reinterpret_cast<";
if (leadingConst)
{
os << "const ";
}
if (vulkanType)
{
os << "Vk";
}
os << type;
if (trailingPointerToConst)
{
os << "* const";
}
os << "*>";
}
void writeStandardOrEnhanced(std::ostream & os, std::string const& standard, std::string const& enhanced)
{
if (standard == enhanced)
{
// standard and enhanced string are equal -> just use one of them and we're done
os << standard;
}
else
{
// standard and enhanced string differ -> use both, wrapping the enhanced by !VULKAN_HPP_DISABLE_ENHANCED_MODE
// determine the argument list of that standard, and compare it with that of the enhanced
// if they are equal -> need to have just one; if they differ -> need to have both
size_t standardStart = standard.find('(');
size_t standardCount = standard.find(')', standardStart) - standardStart;
size_t enhancedStart = enhanced.find('(');
bool unchangedInterface = (standard.substr(standardStart, standardCount) == enhanced.substr(enhancedStart, standardCount));
if (unchangedInterface)
{
os << "#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE" << std::endl;
}
os << standard
<< (unchangedInterface ? "#else" : "#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE") << std::endl
<< enhanced
<< "#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/" << std::endl;
}
}
void writeTypesafeCheck(std::ostream & os, std::string const& typesafeCheck)
{
os << "// 32-bit vulkan is not typesafe for handles, so don't allow copy constructors on this platform by default." << std::endl
<< "// To enable this feature on 32-bit platforms please define VULKAN_HPP_TYPESAFE_CONVERSION" << std::endl
<< typesafeCheck << std::endl
<< "# if !defined( VULKAN_HPP_TYPESAFE_CONVERSION )" << std::endl
<< "# define VULKAN_HPP_TYPESAFE_CONVERSION" << std::endl
<< "# endif" << std::endl
<< "#endif" << std::endl;
}
void writeVersionCheck(std::ostream & os, std::string const& version)
{
os << "static_assert( VK_HEADER_VERSION == " << version << " , \"Wrong VK_HEADER_VERSION!\" );" << std::endl
<< std::endl;
}
#if !defined(NDEBUG)
void skipFeatureRequire(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), {}, { { "name",{} } });
checkElements(getChildElements(element), {});
}
void skipImplicitExternSyncParams(tinyxml2::XMLElement const* element)
{
checkAttributes(getAttributes(element), element->GetLineNum(), {}, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkOrderedElements(children, { "param" });
checkEmptyElement(children[0]);
}
void skipTypeEnum(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes)
{
checkAttributes(attributes, element->GetLineNum(), { { "category",{ "enum" } } }, { { "alias", {} }, { "name",{} } });
checkElements(getChildElements(element), {});
}
void skipTypeInclude(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes)
{
checkAttributes(getAttributes(element), element->GetLineNum(), { { "category",{ "include" } } }, { { "name",{} } });
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "name" });
for (auto child : children)
{
checkEmptyElement(child);
}
}
#endif
template <typename T>
void VulkanHppGenerator::checkAlias(std::map<std::string, T> const& data, std::string const& name, int line)
{
if (data.find(name) == data.end())
{
std::stringstream ss;
ss << line;
std::string lineNumber = ss.str();
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": missing alias <" + name + ">");
}
}
bool VulkanHppGenerator::containsUnion(std::string const& type, std::map<std::string, StructData> const& structs)
{
// a simple recursive check if a type is or contains a union
std::map<std::string, StructData>::const_iterator sit = structs.find(type);
bool found = (sit != structs.end());
if (found)
{
found = sit->second.isUnion;
for (std::vector<MemberData>::const_iterator mit = sit->second.members.begin(); mit != sit->second.members.end() && !found; ++mit)
{
found = (mit->type == mit->pureType) && containsUnion(mit->type, structs);
}
}
return found;
}
std::map<std::string, std::string> VulkanHppGenerator::createDefaults()
{
std::map<std::string, std::string> defaultValues;
for (auto dependency : m_dependencies)
{
assert(defaultValues.find(dependency.name) == defaultValues.end());
switch (dependency.category)
{
case DependencyData::Category::BITMASK:
case DependencyData::Category::HANDLE:
case DependencyData::Category::STRUCT:
case DependencyData::Category::UNION: // just call the default constructor for bitmasks, handles, structs, and unions (which are mapped to classes)
defaultValues[dependency.name] = dependency.name + "()";
break;
case DependencyData::Category::COMMAND: // commands should never be asked for defaults
break;
case DependencyData::Category::ENUM:
assert(m_enums.find(dependency.name) != m_enums.end());
setDefault(dependency.name, defaultValues, m_enums.find(dependency.name)->second);
break;
case DependencyData::Category::FUNC_POINTER: // func_pointers default to nullptr
defaultValues[dependency.name] = "nullptr";
break;
case DependencyData::Category::REQUIRED: // all required default to "0"
case DependencyData::Category::SCALAR: // all scalars default to "0"
defaultValues[dependency.name] = "0";
break;
default:
assert(false);
break;
}
}
return defaultValues;
}
void VulkanHppGenerator::determineEnhancedReturnType(CommandData & commandData)
{
std::string returnType;
// if there is a return parameter of type void or Result, and if it's of type Result it either has just one success code
// or two success codes, where the second one is of type eIncomplete and it's a two-step process
// -> we can return that parameter
if ((commandData.returnParam != ~0)
&& ((commandData.returnType == "void")
|| ((commandData.returnType == "Result")
&& ((commandData.successCodes.size() == 1)
|| ((commandData.successCodes.size() == 2)
&& (commandData.successCodes[1] == "eIncomplete")
&& commandData.twoStep)))))
{
if (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end())
{
// the return parameter is a vector-type parameter
if (commandData.params[commandData.returnParam].pureType == "void")
{
// for a vector of void, we use a vector of uint8_t, instead
commandData.enhancedReturnType = "std::vector<uint8_t,Allocator>";
}
else
{
// for the other parameters, we use a vector of the pure type
commandData.enhancedReturnType = "std::vector<" + commandData.params[commandData.returnParam].pureType + ",Allocator>";
}
}
else
{
// it's a simple parameter -> get the type and just remove the trailing '*' (originally, it's a pointer)
assert(commandData.params[commandData.returnParam].type.back() == '*');
assert(commandData.params[commandData.returnParam].type.find("const") == std::string::npos);
commandData.enhancedReturnType = commandData.params[commandData.returnParam].type;
commandData.enhancedReturnType.pop_back();
}
}
else if ((commandData.returnType == "Result") && (commandData.successCodes.size() == 1))
{
// an original return of type "Result" with just one successCode is changed to void, errors throw an exception
commandData.enhancedReturnType = "void";
}
else
{
// the return type just stays the original return type
commandData.enhancedReturnType = commandData.returnType;
}
}
void VulkanHppGenerator::determineReducedName(CommandData & commandData)
{
commandData.reducedName = commandData.fullName;
std::string searchName = commandData.params[0].pureType;
size_t pos = commandData.fullName.find(searchName);
if ((pos == std::string::npos) && isupper(searchName[0]))
{
searchName[0] = tolower(searchName[0]);
pos = commandData.fullName.find(searchName);
}
if (pos != std::string::npos)
{
commandData.reducedName.erase(pos, searchName.length());
}
else if ((searchName == "commandBuffer") && (commandData.fullName.find("cmd") == 0))
{
commandData.reducedName.erase(0, 3);
pos = 0;
}
if ((pos == 0) && isupper(commandData.reducedName[0]))
{
commandData.reducedName[0] = tolower(commandData.reducedName[0]);
}
}
void VulkanHppGenerator::determineReturnParam(CommandData & commandData)
{
// for return types of type Result or void, we can replace determine a parameter to return
if ((commandData.returnType == "Result") || (commandData.returnType == "void"))
{
for (size_t i = 0; i < commandData.params.size(); i++)
{
if ((commandData.params[i].type.find('*') != std::string::npos)
&& (commandData.params[i].type.find("const") == std::string::npos)
&& std::find_if(commandData.vectorParams.begin(), commandData.vectorParams.end(), [i](std::pair<size_t, size_t> const& vp) { return vp.second == i; }) == commandData.vectorParams.end()
&& ((commandData.vectorParams.find(i) == commandData.vectorParams.end()) || commandData.twoStep || (commandData.successCodes.size() == 1)))
{
// it's a non-const pointer, not a vector-size parameter, if it's a vector parameter, its a two-step process or there's just one success code
// -> look for another non-cost pointer argument
auto paramIt = std::find_if(commandData.params.begin() + i + 1, commandData.params.end(), [](ParamData const& pd)
{
return (pd.type.find('*') != std::string::npos) && (pd.type.find("const") == std::string::npos);
});
// if there is another such argument, we can't decide which one to return -> return none (~0)
// otherwise return the index of the selcted parameter
commandData.returnParam = paramIt != commandData.params.end() ? ~0 : i;
}
}
}
}
void VulkanHppGenerator::determineSkippedParams(CommandData & commandData)
{
// the size-parameters of vector parameters are not explicitly used in the enhanced API
std::for_each(commandData.vectorParams.begin(), commandData.vectorParams.end(), [&commandData](std::pair<size_t, size_t> const& vp) { if (vp.second != ~0) commandData.skippedParams.insert(vp.second); });
// and the return parameter is also skipped
if (commandData.returnParam != ~0)
{
commandData.skippedParams.insert(commandData.returnParam);
}
}
void VulkanHppGenerator::determineTemplateParam(CommandData & commandData)
{
for (size_t i = 0; i < commandData.params.size(); i++)
{
// any vector parameter on the pure type void is templatized in the enhanced API
if ((commandData.vectorParams.find(i) != commandData.vectorParams.end()) && (commandData.params[i].pureType == "void"))
{
#if !defined(NDEBUG)
for (size_t j = i + 1; j < commandData.params.size(); j++)
{
assert((commandData.vectorParams.find(j) == commandData.vectorParams.end()) || (commandData.params[j].pureType != "void"));
}
#endif
commandData.templateParam = i;
break;
}
}
assert((commandData.templateParam == ~0) || (commandData.vectorParams.find(commandData.templateParam) != commandData.vectorParams.end()));
}
void VulkanHppGenerator::determineVectorParams(CommandData & commandData)
{
// look for the parameters whose len equals the name of an other parameter
for (auto it = commandData.params.begin(), begin = it, end = commandData.params.end(); it != end; ++it)
{
if (!it->len.empty())
{
auto findLambda = [it](ParamData const& pd) { return pd.name == it->len; };
auto findIt = std::find_if(begin, it, findLambda); // look for a parameter named as the len of this parameter
assert((std::count_if(begin, end, findLambda) == 0) || (findIt < it)); // make sure, there is no other parameter like that
// add this parameter as a vector parameter, using the len-name parameter as the second value (or ~0 if there is nothing like that)
commandData.vectorParams.insert(std::make_pair(std::distance(begin, it), findIt < it ? std::distance(begin, findIt) : ~0));
assert((commandData.vectorParams[std::distance(begin, it)] != ~0)
|| (it->len == "null-terminated")
|| (it->len == "pAllocateInfo::descriptorSetCount")
|| (it->len == "pAllocateInfo::commandBufferCount"));
}
}
}
std::string VulkanHppGenerator::generateCall(CommandData const& commandData, bool firstCall, bool singular)
{
std::ostringstream call;
writeCall(call, commandData, firstCall, singular);
return call.str();
}
std::string const& VulkanHppGenerator::getTypesafeCheck() const
{
return m_typesafeCheck;
}
std::string const& VulkanHppGenerator::getVersion() const
{
return m_version;
}
std::string const& VulkanHppGenerator::getVulkanLicenseHeader() const
{
return m_vulkanLicenseHeader;
}
void VulkanHppGenerator::linkCommandToHandle(CommandData & commandData)
{
// first, find the handle named like the type of the first argument
// if there is no such handle, look for the unnamed "handle", that gathers all the functions not tied to a specific handle
assert(!commandData.params.empty());
std::map<std::string, HandleData>::iterator hit = m_handles.find(commandData.params[0].pureType);
if (hit == m_handles.end())
{
hit = m_handles.find("");
}
assert(hit != m_handles.end());
// put the command into the handle's list of commands, and store the handle in the commands className
hit->second.commands.push_back(commandData.fullName);
commandData.className = hit->first;
// add the dependencies of the command to the dependencies of the handle
DependencyData const& commandDD = m_dependencies.back();
std::list<DependencyData>::iterator handleDD = std::find_if(m_dependencies.begin(), m_dependencies.end(), [hit](DependencyData const& dd) { return dd.name == hit->first; });
assert((handleDD != m_dependencies.end()) || hit->first.empty());
if (handleDD != m_dependencies.end())
{
std::copy_if(commandDD.dependencies.begin(), commandDD.dependencies.end(), std::inserter(handleDD->dependencies, handleDD->dependencies.end()), [hit](std::string const& d) { return d != hit->first; });
}
}
bool VulkanHppGenerator::readCommandParam(tinyxml2::XMLElement const* element, std::set<std::string> & dependencies, std::vector<ParamData> & params)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), {}, { { "externsync",{} },{ "len",{} },{ "noautovalidity",{ "true" } },{ "optional",{ "false", "true" } } });
checkElements(getChildElements(element), { "name", "type" });
ParamData param;
bool isTwoStep = false;
auto lenAttribute = attributes.find("len");
if (lenAttribute != attributes.end())
{
param.len = lenAttribute->second;
auto pit = std::find_if(params.begin(), params.end(), [&param](ParamData const& pd) { return param.len == pd.name; });
if (pit != params.end())
{
isTwoStep = (pit->type.find('*') != std::string::npos);
}
}
// get the type of the parameter, and put it into the list of dependencies
tinyxml2::XMLNode const* child = readCommandParamType(element->FirstChild(), param);
dependencies.insert(param.pureType);
assert(child->ToElement());
tinyxml2::XMLElement const* nameElement = child->ToElement();
checkEmptyElement(nameElement);
param.name = child->ToElement()->GetText();
param.arraySize = readArraySize(child, param.name);
auto optionalAttribute = attributes.find("optional");
param.optional = (optionalAttribute != attributes.end()) && (optionalAttribute->second == "true");
params.push_back(param);
assert(!isTwoStep || (param.type.substr(0, 6) != "const "));
return isTwoStep;
}
tinyxml2::XMLNode const* VulkanHppGenerator::readCommandParamType(tinyxml2::XMLNode const* node, ParamData& param)
{
assert(node);
if (node->ToText())
{
// start type with "const" or "struct", if needed
std::string value = trim(node->Value());
assert((value == "const") || (value == "struct"));
param.type = value + " ";
node = node->NextSibling();
assert(node);
}
// get the pure type
assert(node->ToElement());
tinyxml2::XMLElement const* typeElement = node->ToElement();
checkEmptyElement(typeElement);
std::string type = strip(node->ToElement()->GetText(), "Vk");
param.unchangedType = param.type + node->ToElement()->GetText();
param.type += type;
param.pureType = type;
// end with "*", "**", or "* const*", if needed
node = node->NextSibling();
assert(node);
if (node->ToText())
{
std::string value = trimEnd(node->Value());
assert((value == "*") || (value == "**") || (value == "* const*"));
param.type += value;
param.unchangedType += value;
node = node->NextSibling();
}
return node;
}
void VulkanHppGenerator::readCommands(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), {}, { { "comment",{} } });
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "command" });
for (auto child : children)
{
readCommandsCommand(child);
}
}
void VulkanHppGenerator::readCommandsCommand(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), {},
{ { "alias", {} },
{ "cmdbufferlevel",{ "primary", "secondary" } },
{ "comment",{} },
{ "errorcodes",{} },
{ "name", {} },
{ "pipeline",{ "compute", "graphics", "transfer" } },
{ "queues",{ "compute", "graphics", "sparse_binding", "transfer" } },
{ "renderpass",{ "both", "inside", "outside" } },
{ "successcodes",{} }
});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
CommandData commandData;
auto aliasIt = attributes.find("alias");
if (aliasIt != attributes.end())
{
// for command aliases, create a copy of the aliased command
checkAttributes(attributes, element->GetLineNum(), { { "alias",{} },{ "name",{} } }, {}); // re-check on alias type!
checkElements(children, {});
std::string alias = startLowerCase(strip(aliasIt->second, "vk"));
checkAlias(m_commands, alias, element->GetLineNum());
auto commandsIt = m_commands.find(alias);
assert(commandsIt != m_commands.end());
commandData = commandsIt->second;
commandData.fullName = startLowerCase(strip(attributes.find("name")->second, "vk"));
determineReducedName(commandData);
linkCommandToHandle(commandData);
// add a DependencyData to this name
m_dependencies.push_back(DependencyData(DependencyData::Category::COMMAND, commandData.fullName));
m_dependencies.back().dependencies.insert(alias);
}
else
{
checkElements(children, { "implicitexternsyncparams", "param", "proto" });
// read the success codes
auto successcodesAttribute = attributes.find("successcodes");
if (successcodesAttribute != attributes.end())
{
commandData.successCodes = tokenize(successcodesAttribute->second, ',');
for (auto & code : commandData.successCodes)
{
std::string tag = findTag(code, m_tags);
// on each success code: prepend 'e', strip "VK_" and a tag, convert it to camel case, and add the tag again
code = std::string("e") + toCamelCase(strip(code, "VK_", tag)) + tag;
}
}
for (auto child : children)
{
std::string value = child->Value();
if (value == "param")
{
commandData.twoStep |= readCommandParam(child, m_dependencies.back().dependencies, commandData.params);
}
else if (value == "proto")
{
readCommandProto(child, commandData.returnType, commandData.unchangedReturnType, commandData.fullName);
}
#if !defined(NDEBUG)
else
{
assert(value == "implicitexternsyncparams");
skipImplicitExternSyncParams(child);
}
#endif
}
determineReducedName(commandData);
linkCommandToHandle(commandData);
registerDeleter(commandData);
determineVectorParams(commandData);
determineReturnParam(commandData);
determineTemplateParam(commandData);
determineEnhancedReturnType(commandData);
determineSkippedParams(commandData);
}
// insert the commandData into the commands-map,
assert(m_commands.find(commandData.fullName) == m_commands.end());
m_commands.insert(std::make_pair(commandData.fullName, commandData));
}
void VulkanHppGenerator::readCommandProto(tinyxml2::XMLElement const* element, std::string & returnType, std::string & unchangedReturnType, std::string & fullName)
{
checkAttributes(getAttributes(element), element->GetLineNum(), {}, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkOrderedElements(children, { "type", "name" });
// get return type and name of the command
returnType = strip(children[0]->GetText(), "Vk");
unchangedReturnType = children[0]->GetText();
fullName = startLowerCase(strip(children[1]->GetText(), "vk"));
// add an empty DependencyData to this name
m_dependencies.push_back(DependencyData(DependencyData::Category::COMMAND, fullName));
}
void VulkanHppGenerator::readComment(tinyxml2::XMLElement const* element)
{
checkAttributes(getAttributes(element), element->GetLineNum(), {}, {});
checkElements(getChildElements(element), {});
assert(element->GetText());
std::string text = element->GetText();
if (text.find("\nCopyright") == 0)
{
assert(m_vulkanLicenseHeader.empty());
m_vulkanLicenseHeader = text;
// erase the part after the Copyright text
size_t pos = m_vulkanLicenseHeader.find("\n\n-----");
assert(pos != std::string::npos);
m_vulkanLicenseHeader.erase(pos);
// replace any '\n' with "\n// "
for (size_t pos = m_vulkanLicenseHeader.find('\n'); pos != std::string::npos; pos = m_vulkanLicenseHeader.find('\n', pos + 1))
{
m_vulkanLicenseHeader.replace(pos, 1, "\n// ");
}
// and add a little message on our own
m_vulkanLicenseHeader += "\n\n// This header is generated from the Khronos Vulkan XML API Registry.";
}
m_vulkanLicenseHeader.erase(m_vulkanLicenseHeader.begin(), std::find_if(m_vulkanLicenseHeader.begin(), m_vulkanLicenseHeader.end(), [](char c) { return !std::isspace(c); }));
}
void VulkanHppGenerator::readDisabledExtensionRequire(tinyxml2::XMLElement const* element)
{
checkAttributes(getAttributes(element), element->GetLineNum(), {}, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "command", "enum", "type" });
for (auto child : children)
{
checkElements(getChildElements(child), {});
std::string value = child->Value();
if ((value == "command") || (value == "type"))
{
std::map<std::string, std::string> attributes = getAttributes(child);
checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {});
// disable a command or a type !
auto nameAttribute = attributes.find("name");
std::string name = (value == "command") ? startLowerCase(strip(nameAttribute->second, "vk")) : strip(nameAttribute->second, "Vk");
// search this name in the dependencies list and remove it
std::list<DependencyData>::const_iterator depIt = std::find_if(m_dependencies.begin(), m_dependencies.end(), [&name](DependencyData const& dd) { return(dd.name == name); });
assert(depIt != m_dependencies.end());
m_dependencies.erase(depIt);
// erase it from all dependency sets
for (auto & dep : m_dependencies)
{
dep.dependencies.erase(name);
}
if (value == "command")
{
// first unlink the command from its class
auto commandsIt = m_commands.find(name);
assert(commandsIt != m_commands.end());
assert(!commandsIt->second.className.empty());
auto handlesIt = m_handles.find(commandsIt->second.className);
assert(handlesIt != m_handles.end());
auto it = std::find(handlesIt->second.commands.begin(), handlesIt->second.commands.end(), name);
assert(it != handlesIt->second.commands.end());
handlesIt->second.commands.erase(it);
// then remove the command
m_commands.erase(name);
}
else
{
// a type simply needs to be removed from the structs and vkTypes sets
assert((m_structs.find(name) != m_structs.end()) && (m_vkTypes.find(name) != m_vkTypes.end()));
m_structs.erase(name);
m_vkTypes.erase(name);
}
}
else
{
assert(value == "enum");
std::map<std::string, std::string> attributes = getAttributes(child);
checkAttributes(attributes, child->GetLineNum(), { { "name",{} } }, { { "extends",{} },{ "offset",{} },{ "value",{} } });
}
}
}
void VulkanHppGenerator::readEnums(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "comment",{} },{ "type",{ "bitmask", "enum" } } });
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "comment", "enum", "unused" });
std::string name = strip(attributes.find("name")->second, "Vk");
if (name == "API Constants")
{
for (auto child : children)
{
assert(strcmp(child->Value(), "enum") == 0);
readEnumsConstant(child);
}
}
else
{
checkAttributes(attributes, element->GetLineNum(), { { "name",{} },{ "type",{ "bitmask", "enum" } } }, { { "comment",{} } }); // re-check with type as required
// add an empty DependencyData on this name into the dependencies list
m_dependencies.push_back(DependencyData(DependencyData::Category::ENUM, name));
// ad an empty EnumData on this name into the enums map
std::map<std::string, EnumData>::iterator it = m_enums.insert(std::make_pair(name, EnumData(name))).first;
if (name == "Result")
{
// special handling for VKResult, as its enums just have VK_ in common
it->second.prefix = "VK_";
}
else
{
std::string type = attributes.find("type")->second;
it->second.bitmask = (type == "bitmask");
if (it->second.bitmask)
{
// for a bitmask enum, start with "VK", cut off the trailing "FlagBits", and convert that name to upper case
// end that with "Bit"
size_t pos = name.find("FlagBits");
assert(pos != std::string::npos);
it->second.prefix = "VK" + toUpperCase(name.substr(0, pos)) + "_";
}
else
{
// for a non-bitmask enum, start with "VK", and convert the name to upper case
it->second.prefix = "VK" + toUpperCase(name) + "_";
}
// if the enum name contains a tag move it from the prefix to the postfix to generate correct enum value names.
for (std::set<std::string>::const_iterator tit = m_tags.begin(); tit != m_tags.end(); ++tit)
{
if ((tit->length() < it->second.prefix.length()) && (it->second.prefix.substr(it->second.prefix.length() - tit->length() - 1) == (*tit + "_")))
{
it->second.prefix.erase(it->second.prefix.length() - tit->length() - 1);
it->second.postfix = "_" + *tit;
break;
}
else if ((tit->length() < it->second.name.length()) && (it->second.name.substr(it->second.name.length() - tit->length()) == *tit))
{
it->second.postfix = "_" + *tit;
break;
}
}
}
// read the names of the enum values
for (auto child : children)
{
std::string value = child->Value();
if (value == "enum")
{
readEnumsEnum(child, it->second, "");
}
#if !defined(NDEBUG)
else
{
assert((value == "comment") || (value == "unused"));
}
#endif
}
// add this enum to the set of Vulkan data types
assert(m_vkTypes.find(name) == m_vkTypes.end());
m_vkTypes.insert(name);
}
}
void VulkanHppGenerator::readEnumsEnum(tinyxml2::XMLElement const* element, EnumData & enumData, std::string const& tag)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "bitpos",{} },{ "comment",{} },{ "value",{} } });
assert((attributes.find("bitpos") != attributes.end()) + (attributes.find("value") != attributes.end()) == 1);
checkElements(getChildElements(element), {});
enumData.addEnumValue(attributes.find("name")->second, tag, m_nameMap);
}
void VulkanHppGenerator::readEnumsConstant(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "alias", {}}, { "comment",{} }, { "value",{} } });
checkElements(getChildElements(element), {});
std::string name = attributes.find("name")->second;
assert(m_constants.find(name) == m_constants.end());
auto aliasIt = attributes.find("alias");
if (aliasIt != attributes.end())
{
checkAttributes(attributes, element->GetLineNum(), { {"alias", {}}, { "name", {}} }, {}); // re-check on alias type
checkAlias(m_constants, aliasIt->second, element->GetLineNum());
m_constants[name] = m_constants.find(aliasIt->second)->second;
}
else
{
checkAttributes(attributes, element->GetLineNum(), { { "name",{} }, { "value", {}} }, { {"comment", {} } }); // re-check on non-alias type
m_constants[name] = attributes.find("value")->second;
}
}
void VulkanHppGenerator::readExtensionCommand(tinyxml2::XMLElement const* element, std::string const& protect)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {});
checkElements(getChildElements(element), {});
// just add the protect string to the CommandData
if (!protect.empty())
{
std::string name = startLowerCase(strip(attributes.find("name")->second, "vk"));
std::map<std::string, CommandData>::iterator cit = m_commands.find(name);
assert(cit != m_commands.end());
cit->second.protect = protect;
}
}
void VulkanHppGenerator::readExtensionEnum(tinyxml2::XMLElement const* element, std::string const& tag)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(),
{
{ "name", {} }
},
{
{ "alias", {} },
{ "bitpos", {} },
{ "comment", {} },
{ "dir", { "-" } },
{ "extends", {} },
{ "extnumber", {} },
{ "offset", {} },
{ "value", {} }
});
checkElements(getChildElements(element), {});
// TODO process enums which don't extend existing enums
auto extendsIt = attributes.find("extends");
if (extendsIt != attributes.end())
{
std::string extends = strip(extendsIt->second, "Vk");
auto enumIt = m_enums.find(extends);
assert(enumIt != m_enums.end());
auto aliasIt = attributes.find("alias");
if (aliasIt != attributes.end())
{
checkAttributes(attributes, element->GetLineNum(), { { "alias", {} }, { "extends", {} }, { "name", {} } }, {});
std::string alias = createEnumValueName(aliasIt->second, enumIt->second.prefix, enumIt->second.postfix, enumIt->second.bitmask, tag);
auto evdIt = std::find_if(enumIt->second.values.begin(), enumIt->second.values.end(), [&alias](EnumValueData const& evd) { return evd.name == alias; });
assert(evdIt != enumIt->second.values.end());
evdIt->alias = createEnumValueName(attributes.find("name")->second, enumIt->second.prefix, enumIt->second.postfix, enumIt->second.bitmask, tag);
}
else
{
assert((attributes.find("bitpos") != attributes.end()) + (attributes.find("offset") != attributes.end()) + (attributes.find("value") != attributes.end()) == 1);
enumIt->second.addEnumValue(attributes.find("name")->second, tag, m_nameMap);
}
}
}
void VulkanHppGenerator::readExtensionRequire(tinyxml2::XMLElement const* element, std::string const& protect, std::string const& tag)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), {}, { { "extension",{} },{ "feature",{} } });
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "command", "comment", "enum", "type" });
for (auto child : children)
{
std::string value = child->Value();
if (value == "command")
{
readExtensionCommand(child, protect);
}
else if (value == "enum")
{
readExtensionEnum(child, tag);
}
else if (value == "type")
{
readExtensionType(child, protect);
}
#if !defined(NDEBUG)
else
{
assert(value == "comment");
checkEmptyElement(child);
}
#endif
}
}
void VulkanHppGenerator::readExtensions(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "comment",{} } }, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "extension" });
for (auto child : children)
{
readExtensionsExtension(child);
}
}
void VulkanHppGenerator::readExtensionsExtension(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(),
{
{ "name",{} },
{ "number",{} },
{ "supported",{ "disabled", "vulkan" } }
},
{
{ "author",{} },
{ "comment", {} },
{ "contact",{} },
{ "platform",{} },
{ "protect",{} },
{ "requires",{} },
{ "type",{ "device", "instance" } }
});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "require" });
if (attributes.find("supported")->second == "disabled")
{
// kick out all the disabled stuff we've read before !!
for (tinyxml2::XMLElement const* child = element->FirstChildElement(); child; child = child->NextSiblingElement())
{
assert(strcmp(child->Value(), "require") == 0);
readDisabledExtensionRequire(child);
}
}
else
{
std::string name = attributes.find("name")->second;
std::string tag = extractTag(name);
assert(m_tags.find(tag) != m_tags.end());
auto protectAttribute = attributes.find("protect");
auto platformAttribute = attributes.find("platform");
std::string protect;
if (protectAttribute != attributes.end())
{
protect = protectAttribute->second;
}
else if (platformAttribute != attributes.end())
{
auto authorAttribute = attributes.find("author");
assert(authorAttribute != attributes.end());
protect = "VK_USE_PLATFORM_" + toUpperCase(platformAttribute->second) + "_" + authorAttribute->second;
}
#if !defined(NDEBUG)
assert(m_extensions.find(name) == m_extensions.end());
ExtensionData & extension = m_extensions.insert(std::make_pair(name, ExtensionData())).first->second;
extension.protect = protect;
auto requiresAttribute = attributes.find("requires");
if (requiresAttribute != attributes.end())
{
extension.requires = tokenize(requiresAttribute->second, ',');
}
#endif
for (auto child : children)
{
readExtensionRequire(child, protect, tag);
}
}
}
void VulkanHppGenerator::readExtensionType(tinyxml2::XMLElement const* element, std::string const& protect)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {});
checkElements(getChildElements(element), {});
// add the protect-string to the appropriate type: enum, flag, handle, scalar, or struct
if (!protect.empty())
{
std::string name = strip(attributes.find("name")->second, "Vk");
std::map<std::string, BitmaskData>::iterator bitmasksIt = m_bitmasks.find(name);
if (bitmasksIt != m_bitmasks.end())
{
bitmasksIt->second.protect = protect;
// if the enum of this flags is auto-generated, protect it as well
std::string enumName = generateEnumNameForFlags(name);
std::map<std::string, EnumData>::iterator enumsIt = m_enums.find(enumName);
assert(enumsIt != m_enums.end());
if (enumsIt->second.values.empty())
{
enumsIt->second.protect = protect;
}
}
else
{
std::map<std::string, EnumData>::iterator eit = m_enums.find(name);
if (eit != m_enums.end())
{
eit->second.protect = protect;
}
else
{
std::map<std::string, HandleData>::iterator hait = m_handles.find(name);
if (hait != m_handles.end())
{
hait->second.protect = protect;
}
else
{
std::map<std::string, ScalarData>::iterator scit = m_scalars.find(name);
if (scit != m_scalars.end())
{
scit->second.protect = protect;
}
else
{
std::map<std::string, StructData>::iterator stit = m_structs.find(name);
if (stit != m_structs.end())
{
stit->second.protect = protect;
}
else
{
assert(m_defines.find(name) != m_defines.end());
}
}
}
}
}
}
}
void VulkanHppGenerator::readFeature(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "api",{ "vulkan" } },{ "comment",{} },{ "name",{} },{ "number",{} } }, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "require" });
for (auto child : children)
{
readFeatureRequire(child);
}
}
void VulkanHppGenerator::readFeatureRequire(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), {}, { { "comment",{} } });
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "command", "comment", "enum", "type" });
for (auto child : children)
{
std::string value = child->Value();
if (value == "enum")
{
readFeatureRequireEnum(child);
}
#if !defined(NDEBUG)
else
{
assert((value == "command") || (value == "comment") || (value == "type"));
skipFeatureRequire(child);
}
#endif
}
}
void VulkanHppGenerator::readFeatureRequireEnum(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(),
{
{ "name",{} }
},
{
{ "bitpos",{} },
{ "comment",{} },
{ "dir", { "-" } },
{ "extends",{} },
{ "extnumber", {} },
{ "offset", {} },
{ "value",{} }
});
checkElements(getChildElements(element), {});
auto extendsAttribute = attributes.find("extends");
if (extendsAttribute != attributes.end())
{
assert(strncmp(extendsAttribute->second.c_str(), "Vk", 2) == 0);
std::string extends = strip(extendsAttribute->second, "Vk");
auto enumIt = m_enums.find(extends);
assert(enumIt != m_enums.end());
enumIt->second.addEnumValue(attributes.find("name")->second, "", m_nameMap);
}
}
void VulkanHppGenerator::readTags(tinyxml2::XMLElement const* element)
{
checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "tag" });
for (auto child : children)
{
std::string value = child->Value();
assert(value == "tag");
readTag(child);
}
}
void VulkanHppGenerator::readTag(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "author",{} },{ "contact",{} },{ "name",{} } }, {});
checkElements(getChildElements(element), {});
for (auto const& attribute : attributes)
{
std::string name = attribute.first;
if (name == "name")
{
std::string value = attribute.second;
m_tags.insert(value);
}
else
{
assert((name == "author") || (name == "contact"));
}
}
}
void VulkanHppGenerator::readType(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
auto categoryIt = attributes.find("category");
if (categoryIt != attributes.end())
{
if (categoryIt->second == "basetype")
{
readTypeBasetype(element, attributes);
}
else if (categoryIt->second == "bitmask")
{
readTypeBitmask(element, attributes);
}
else if (categoryIt->second == "define")
{
readTypeDefine(element, attributes);
}
else if (categoryIt->second == "funcpointer")
{
readTypeFuncpointer(element, attributes);
}
else if (categoryIt->second == "handle")
{
readTypeHandle(element, attributes);
}
else if (categoryIt->second == "struct")
{
readTypeStruct(element, false, attributes);
}
else if (categoryIt->second == "union")
{
readTypeStruct(element, true, attributes);
}
#if !defined(NDEBUG)
else if (categoryIt->second == "enum")
{
skipTypeEnum(element, attributes);
}
else if (categoryIt->second == "include")
{
skipTypeInclude(element, attributes);
}
else
#else
else if ((categoryIt->second != "enum") && (categoryIt->second != "include"))
#endif
{
std::stringstream ss;
ss << element->GetLineNum();
std::string lineNumber = ss.str();
assert(false);
throw std::runtime_error("Spec error on line " + lineNumber + ": unknown category <" + categoryIt->second + ">");
}
}
else
{
assert(attributes.find("name") != attributes.end());
readTypeName(element, attributes);
}
}
void VulkanHppGenerator::readTypeBasetype(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes)
{
checkAttributes(attributes, element->GetLineNum(), { { "category",{ "basetype" } } }, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkOrderedElements(children, { "type", "name" });
checkEmptyElement(children[0]);
checkEmptyElement(children[1]);
std::string type = children[0]->GetText();
assert((type == "uint32_t") || (type == "uint64_t"));
std::string name = strip(children[1]->GetText(), "Vk");
// skip "Flags",
if (name != "Flags")
{
m_dependencies.push_back(DependencyData(DependencyData::Category::SCALAR, name));
m_dependencies.back().dependencies.insert(type);
}
else
{
assert(type == "uint32_t");
}
}
void VulkanHppGenerator::readTypeBitmask(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes)
{
checkAttributes(attributes, element->GetLineNum(), { { "category", { "bitmask" } } }, { { "alias", {} }, { "name", {}}, { "requires", {} } });
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
auto aliasIt = attributes.find("alias");
if (aliasIt != attributes.end())
{
checkAttributes(attributes, element->GetLineNum(), { { "alias", {} }, { "category", {"bitmask"} }, { "name", {} } }, {}); // re-check on alias type!
checkElements(children, {});
std::string alias = strip(aliasIt->second, "Vk");
checkAlias(m_bitmasks, alias, element->GetLineNum());
std::string name = strip(attributes.find("name")->second, "Vk");
auto bitmasksIt = m_bitmasks.find(alias);
assert((bitmasksIt != m_bitmasks.end()) && bitmasksIt->second.alias.empty());
bitmasksIt->second.alias = name;
}
else
{
checkOrderedElements(children, { "type", "name" });
checkEmptyElement(children[0]);
checkEmptyElement(children[1]);
assert(strcmp(children[0]->GetText(), "VkFlags") == 0);
std::string name = strip(children[1]->GetText(), "Vk");
std::string requires;
auto requiresIt = attributes.find("requires");
if (requiresIt != attributes.end())
{
requires = strip(requiresIt->second, "Vk");
}
else
{
// Generate FlagBits name, add a DependencyData for that name, and add it to the list of enums and vulkan types
requires = generateEnumNameForFlags(name);
m_dependencies.push_back(DependencyData(DependencyData::Category::ENUM, requires));
m_enums.insert(std::make_pair(requires, EnumData(requires, true)));
m_vkTypes.insert(requires);
}
// add a DependencyData for the bitmask name, with the required type as its first dependency
m_dependencies.push_back(DependencyData(DependencyData::Category::BITMASK, name));
m_dependencies.back().dependencies.insert(requires);
m_bitmasks.insert(std::make_pair(name, BitmaskData()));
assert(m_vkTypes.find(name) == m_vkTypes.end());
m_vkTypes.insert(name);
}
}
void VulkanHppGenerator::readTypeDefine(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes)
{
checkAttributes(attributes, element->GetLineNum(), { { "category",{ "define" } } }, { { "name",{} } });
auto nameIt = attributes.find("name");
if (nameIt != attributes.end())
{
assert(!element->FirstChildElement());
assert(nameIt->second == "VK_DEFINE_NON_DISPATCHABLE_HANDLE");
// filter out the check for the different types of VK_DEFINE_NON_DISPATCHABLE_HANDLE
std::string text = element->LastChild()->ToText()->Value();
size_t start = text.find("#if defined(__LP64__)");
size_t end = text.find_first_of("\r\n", start + 1);
m_typesafeCheck = text.substr(start, end - start);
}
else if (element->GetText() && (trim(element->GetText()) == "struct"))
{
tinyxml2::XMLElement const* child = element->FirstChildElement();
assert(child && (strcmp(child->Value(), "name") == 0) && child->GetText());
m_defines.insert(child->GetText());
m_dependencies.push_back(DependencyData(DependencyData::Category::REQUIRED, child->GetText()));
}
else
{
tinyxml2::XMLElement const* child = element->FirstChildElement();
assert(child && !child->FirstAttribute() && (strcmp(child->Value(), "name") == 0) && child->GetText());
std::string text = trim(child->GetText());
if (text == "VK_HEADER_VERSION")
{
m_version = element->LastChild()->ToText()->Value();
}
// ignore all the other defines
assert(!child->NextSiblingElement() || (child->NextSiblingElement() && !child->NextSiblingElement()->FirstAttribute() && (strcmp(child->NextSiblingElement()->Value(), "type") == 0) && !child->NextSiblingElement()->NextSiblingElement()));
}
}
void VulkanHppGenerator::readTypeFuncpointer(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes)
{
checkAttributes(attributes, element->GetLineNum(), { { "category",{ "funcpointer" } } }, { { "requires",{} } });
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "name", "type" });
assert(!children.empty());
checkEmptyElement(children[0]);
assert((strcmp(children[0]->Value(), "name") == 0) && children[0]->GetText());
m_dependencies.push_back(DependencyData(DependencyData::Category::FUNC_POINTER, children[0]->GetText()));
#if !defined(NDEBUG)
for (size_t i = 1; i < children.size(); i++)
{
checkEmptyElement(children[i]);
}
#endif
}
void VulkanHppGenerator::readTypeHandle(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes)
{
checkAttributes(attributes, element->GetLineNum(), { { "category",{ "handle" } } }, { { "alias",{} }, { "name",{} }, { "parent",{} } });
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
auto aliasIt = attributes.find("alias");
if (aliasIt != attributes.end())
{
checkAttributes(attributes, element->GetLineNum(), { { "alias",{} },{ "category",{ "handle" } },{ "name",{} } }, {}); // re-check on alias type!
checkElements(children, {});
std::string alias = strip(aliasIt->second, "Vk");
checkAlias(m_handles, alias, element->GetLineNum());
std::string name = strip(attributes.find("name")->second, "Vk");
auto handlesIt = m_handles.find(alias);
assert((handlesIt != m_handles.end()) && handlesIt->second.alias.empty());
handlesIt->second.alias = name;
}
else
{
checkOrderedElements(children, { "type", "name" });
checkEmptyElement(children[0]);
checkEmptyElement(children[1]);
#if !defined(NDEBUG)
std::string type = children[0]->GetText();
assert((type.find("VK_DEFINE_HANDLE") == 0) || (type.find("VK_DEFINE_NON_DISPATCHABLE_HANDLE") == 0));
#endif
std::string name = strip(children[1]->GetText(), "Vk");
m_dependencies.push_back(DependencyData(DependencyData::Category::HANDLE, name));
assert(m_vkTypes.find(name) == m_vkTypes.end());
m_vkTypes.insert(name);
assert(m_handles.find(name) == m_handles.end());
m_handles.insert(std::make_pair(name, HandleData()));
}
}
void VulkanHppGenerator::readTypeName(tinyxml2::XMLElement const* element, std::map<std::string, std::string> const& attributes)
{
checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "requires",{} } });
checkElements(getChildElements(element), {});
auto nameIt = attributes.find("name");
assert(nameIt != attributes.end());
m_dependencies.push_back(DependencyData(DependencyData::Category::REQUIRED, nameIt->second));
}
void VulkanHppGenerator::readTypes(tinyxml2::XMLElement const* element)
{
checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "comment", "type" });
for (auto child : children)
{
std::string value = child->Value();
if (value == "type")
{
readType(child);
}
#if !defined(NDEBUG)
else
{
assert(value == "comment");
checkEmptyElement(child);
}
#endif
}
}
void VulkanHppGenerator::readTypeStruct(tinyxml2::XMLElement const* element, bool isUnion, std::map<std::string, std::string> const& attributes)
{
checkAttributes(attributes, element->GetLineNum(),
{
{ "category",{ isUnion ? "union" : "struct" } },
{ "name",{} }
},
{
{ "alias", {} },
{ "comment",{} },
{ "returnedonly",{ "true" } },
{ "structextends",{} }
});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "comment", "member" });
auto aliasIt = attributes.find("alias");
if (aliasIt != attributes.end())
{
checkAttributes(attributes, element->GetLineNum(), { { "alias", {}}, {"category", {"struct"}}, { "name", {}} }, {}); // re-check on alias type!
std::string alias = strip(aliasIt->second, "Vk");
checkAlias(m_structs, alias, element->GetLineNum());
std::string name = strip(attributes.find("name")->second, "Vk");
auto structsIt = m_structs.find(alias);
assert((structsIt != m_structs.end()) && structsIt->second.alias.empty());
structsIt->second.alias = name;
}
else
{
std::string name = strip(attributes.find("name")->second, "Vk");
m_dependencies.push_back(DependencyData(isUnion ? DependencyData::Category::UNION : DependencyData::Category::STRUCT, name));
assert(m_structs.find(name) == m_structs.end());
std::map<std::string, StructData>::iterator it = m_structs.insert(std::make_pair(name, StructData())).first;
it->second.returnedOnly = (attributes.find("returnedonly") != attributes.end());
it->second.isUnion = isUnion;
auto attributesIt = attributes.find("structextends");
if (attributesIt != attributes.end())
{
std::vector<std::string> structExtends = tokenize(attributesIt->second, ',');
for (auto const& s : structExtends)
{
assert(s.substr(0, 2) == "Vk");
std::string strippedName = s.substr(2);
it->second.structExtends.push_back(strippedName);
m_extendedStructs.insert(strippedName);
}
assert(!it->second.structExtends.empty());
}
for (auto child : children)
{
assert(child->Value());
std::string value = child->Value();
if (value == "member")
{
readTypeStructMember(child, it->second);
}
#if !defined(NDEBUG)
else
{
assert(value == "comment");
checkEmptyElement(child);
}
#endif
}
assert(m_vkTypes.find(name) == m_vkTypes.end());
m_vkTypes.insert(name);
}
}
void VulkanHppGenerator::readTypeStructMember(tinyxml2::XMLElement const* element, StructData & structData)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), {},
{
{ "altlen",{} },
{ "externsync",{ "true" } },
{ "len",{} },
{ "noautovalidity",{ "true" } },
{ "optional",{ "false", "true" } },
{ "values",{} }
});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "comment", "enum", "name", "type" });
for (auto child : children)
{
checkEmptyElement(child);
}
structData.members.push_back(MemberData());
MemberData & member = structData.members.back();
auto valuesAttribute = attributes.find("values");
if (valuesAttribute != attributes.end())
{
member.values = valuesAttribute->second;
}
tinyxml2::XMLNode const* child = element->FirstChild();
assert(child);
if (child->ToText())
{
std::string value = trim(child->Value());
assert((value == "const") || (value == "struct"));
member.type = value + " ";
child = child->NextSibling();
assert(child);
}
assert(child->ToElement());
tinyxml2::XMLElement const* typeElement = child->ToElement();
assert((strcmp(typeElement->Value(), "type") == 0) && typeElement->GetText());
member.pureType = strip(typeElement->GetText(), "Vk");
member.type += member.pureType;
child = typeElement->NextSibling();
assert(child);
if (child->ToText())
{
std::string value = trimEnd(child->Value());
assert((value == "*") || (value == "**") || (value == "* const*"));
member.type += value;
child = child->NextSibling();
}
m_dependencies.back().dependencies.insert(member.pureType);
assert(child->ToElement());
tinyxml2::XMLElement const* nameElement = child->ToElement();
assert((strcmp(nameElement->Value(), "name") == 0) && nameElement->GetText());
member.name = nameElement->GetText();
member.arraySize = readArraySize(nameElement, member.name);
}
void VulkanHppGenerator::registerDeleter(CommandData const& commandData)
{
if ((commandData.fullName.substr(0, 7) == "destroy") || (commandData.fullName.substr(0, 4) == "free"))
{
std::string key;
size_t valueIndex;
switch (commandData.params.size())
{
case 2:
case 3:
assert(commandData.params.back().pureType == "AllocationCallbacks");
key = (commandData.params.size() == 2) ? "" : commandData.params[0].pureType;
valueIndex = commandData.params.size() - 2;
break;
case 4:
key = commandData.params[0].pureType;
valueIndex = 3;
assert(m_deleters.find(commandData.params[valueIndex].pureType) == m_deleters.end());
m_deleters[commandData.params[valueIndex].pureType].pool = commandData.params[1].pureType;
break;
default:
assert(false);
}
if (commandData.fullName == "destroyDevice")
{
key = "PhysicalDevice";
}
assert(m_deleterTypes[key].find(commandData.params[valueIndex].pureType) == m_deleterTypes[key].end());
m_deleterTypes[key].insert(commandData.params[valueIndex].pureType);
m_deleters[commandData.params[valueIndex].pureType].call = commandData.reducedName;
}
}
void VulkanHppGenerator::setDefault(std::string const& name, std::map<std::string, std::string> & defaultValues, EnumData const& enumData)
{
defaultValues[name] = name + (enumData.values.empty() ? "()" : ("::" + enumData.values.front().name));
}
void VulkanHppGenerator::sortDependencies()
{
std::set<std::string> listedTypes = { "VkFlags" };
std::list<DependencyData> sortedDependencies;
while (!m_dependencies.empty())
{
bool found = false;
for (std::list<DependencyData>::iterator it = m_dependencies.begin(); it != m_dependencies.end(); ++it)
{
if (std::find_if(it->dependencies.begin(), it->dependencies.end(), [&listedTypes](std::string const& d) { return listedTypes.find(d) == listedTypes.end(); }) == it->dependencies.end())
{
sortedDependencies.push_back(*it);
listedTypes.insert(it->name);
m_dependencies.erase(it);
found = true;
break;
}
}
if (!found)
{
// resolve direct circular dependencies
for (std::list<DependencyData>::iterator it = m_dependencies.begin(); !found && it != m_dependencies.end(); ++it)
{
for (std::set<std::string>::const_iterator dit = it->dependencies.begin(); dit != it->dependencies.end(); ++dit)
{
std::list<DependencyData>::const_iterator depIt = std::find_if(m_dependencies.begin(), m_dependencies.end(), [&dit](DependencyData const& dd) { return(dd.name == *dit); });
if (depIt != m_dependencies.end())
{
if (depIt->dependencies.find(it->name) != depIt->dependencies.end())
{
// we only have just one case, for now!
assert((it->category == DependencyData::Category::HANDLE) && (depIt->category == DependencyData::Category::STRUCT));
it->forwardDependencies.insert(*dit);
it->dependencies.erase(*dit);
found = true;
break;
}
}
#if !defined(NDEBUG)
else
{
assert(std::find_if(sortedDependencies.begin(), sortedDependencies.end(), [&dit](DependencyData const& dd) { return(dd.name == *dit); }) != sortedDependencies.end());
}
#endif
}
}
}
assert(found);
}
m_dependencies.swap(sortedDependencies);
}
void VulkanHppGenerator::writeArguments(std::ostream & os, CommandData const& commandData, bool firstCall, bool singular, size_t from, size_t to)
{
assert(from <= to);
// get the parameter indices of the counter for vector parameters
std::map<size_t, size_t> countIndices;
for (std::map<size_t, size_t>::const_iterator it = commandData.vectorParams.begin(); it != commandData.vectorParams.end(); ++it)
{
countIndices.insert(std::make_pair(it->second, it->first));
}
bool encounteredArgument = false;
for (size_t i = from; i < to; i++)
{
if (encounteredArgument)
{
os << ", ";
}
std::map<size_t, size_t>::const_iterator it = countIndices.find(i);
if (it != countIndices.end())
{
writeCallCountParameter(os, commandData, singular, it);
}
else if ((it = commandData.vectorParams.find(i)) != commandData.vectorParams.end())
{
writeCallVectorParameter(os, commandData, firstCall, singular, it);
}
else if (m_vkTypes.find(commandData.params[i].pureType) != m_vkTypes.end())
{
writeCallVulkanTypeParameter(os, commandData.params[i]);
}
else
{
writeCallPlainTypeParameter(os, commandData.params[i]);
}
encounteredArgument = true;
}
}
void VulkanHppGenerator::writeBitmaskToString(std::ostream & os, std::string const& bitmaskName, EnumData const &enumData)
{
// the helper functions to make strings out of flag values
enterProtect(os, enumData.protect);
os << " VULKAN_HPP_INLINE std::string to_string(" << bitmaskName << (enumData.values.empty() ? ")" : " value)") << std::endl
<< " {" << std::endl;
if (enumData.values.empty())
{
// no flags values in this enum -> return "{}"
os << " return \"{}\";" << std::endl;
}
else
{
os << " if (!value) return \"{}\";" << std::endl
<< " std::string result;" << std::endl;
// 'or' together all the bits in the value
for (auto valuesIt = enumData.values.begin(); valuesIt != enumData.values.end(); ++valuesIt)
{
os << " if (value & " << enumData.name << "::" << valuesIt->name << ") result += \"" << valuesIt->name.substr(1) << " | \";" << std::endl;
}
// cut off the last three characters from the result (being " | ")
os << " return \"{\" + result.substr(0, result.size() - 3) + \"}\";" << std::endl;
}
os << " }" << std::endl;
leaveProtect(os, enumData.protect);
os << std::endl;
}
void VulkanHppGenerator::writeCall(std::ostream & os, CommandData const& commandData, bool firstCall, bool singular)
{
// the original function call
os << "d.vk" << startUpperCase(commandData.fullName) << "( ";
if (!commandData.className.empty())
{
// if it's member of a class -> add the first parameter with "m_" as prefix
os << "m_" << commandData.params[0].name;
if (1 < commandData.params.size())
{
os << ", ";
}
}
writeArguments(os, commandData, firstCall, singular, commandData.className.empty() ? 0 : 1, commandData.params.size());
os << " )";
}
void VulkanHppGenerator::writeCallCountParameter(std::ostream & os, CommandData const& commandData, bool singular, std::map<size_t, size_t>::const_iterator it)
{
// this parameter is a count parameter for a vector parameter
if ((commandData.returnParam == it->second) && commandData.twoStep)
{
// the corresponding vector parameter is the return parameter and it's a two-step algorithm
// -> use the pointer to a local variable named like the counter parameter without leading 'p'
os << "&" << startLowerCase(strip(commandData.params[it->first].name, "p"));
}
else
{
// the corresponding vector parameter is not the return parameter, or it's not a two-step algorithm
if (singular)
{
// for the singular version, the count is just 1.
os << "1 ";
}
else
{
// for the non-singular version, the count is the size of the vector parameter
// -> use the vector parameter name without leading 'p' to get the size (in number of elements, not in bytes)
os << startLowerCase(strip(commandData.params[it->second].name, "p")) << ".size() ";
}
if (commandData.templateParam == it->second)
{
// if the vector parameter is templatized -> multiply by the size of that type to get the size in bytes
os << "* sizeof( T ) ";
}
}
}
void VulkanHppGenerator::writeCallPlainTypeParameter(std::ostream & os, ParamData const& paramData)
{
// this parameter is just a plain type
if (paramData.type.back() == '*')
{
// it's a pointer
std::string parameterName = startLowerCase(strip(paramData.name, "p"));
if (paramData.type.find("const") != std::string::npos)
{
// it's a const pointer
if (paramData.pureType == "char")
{
// it's a const pointer to char -> it's a string -> get the data via c_str()
os << parameterName;
if (paramData.optional)
{
// it's optional -> might use nullptr
os << " ? " << parameterName << "->c_str() : nullptr";
}
else
{
os << ".c_str()";
}
}
else
{
// it's const pointer to void (only other type that occurs) -> just use the name
assert((paramData.pureType == "void") && !paramData.optional);
os << paramData.name;
}
}
else
{
// it's a non-const pointer, and char is the only type that occurs -> use the address of the parameter
assert(paramData.type.find("char") == std::string::npos);
os << "&" << parameterName;
}
}
else
{
// it's a plain parameter -> just use its name
os << paramData.name;
}
}
void VulkanHppGenerator::writeCallVectorParameter(std::ostream & os, CommandData const& commandData, bool firstCall, bool singular, std::map<size_t, size_t>::const_iterator it)
{
// this parameter is a vector parameter
assert(commandData.params[it->first].type.back() == '*');
if ((commandData.returnParam == it->first) && commandData.twoStep && firstCall)
{
// this parameter is the return parameter, and it's the first call of a two-step algorithm -> just just nullptr
os << "nullptr";
}
else
{
std::string parameterName = startLowerCase(strip(commandData.params[it->first].name, "p"));
std::set<std::string>::const_iterator vkit = m_vkTypes.find(commandData.params[it->first].pureType);
if ((vkit != m_vkTypes.end()) || (it->first == commandData.templateParam))
{
// CHECK for !commandData.params[it->first].optional
// this parameter is a vulkan type or a templated type -> need to reinterpret cast
writeReinterpretCast(os, commandData.params[it->first].type.find("const") == 0, vkit != m_vkTypes.end(), commandData.params[it->first].pureType, commandData.params[it->first].type.rfind("* const") != std::string::npos);
os << "( ";
if (singular)
{
// in singular case, strip the plural-S from the name, and use the pointer to that thing
os << "&" << stripPluralS(parameterName);
}
else
{
// in plural case, get the pointer to the data
os << parameterName << ".data()";
}
os << " )";
}
else if (commandData.params[it->first].pureType == "char")
{
// the parameter is a vector to char -> it might be optional
// besides that, the parameter now is a std::string -> get the pointer via c_str()
os << parameterName;
if (commandData.params[it->first].optional)
{
os << " ? " << parameterName << "->c_str() : nullptr";
}
else
{
os << ".c_str()";
}
}
else
{
// this parameter is just a vetor -> get the pointer to its data
os << parameterName << ".data()";
}
}
}
void VulkanHppGenerator::writeCallVulkanTypeParameter(std::ostream & os, ParamData const& paramData)
{
// this parameter is a vulkan type
if (paramData.type.back() == '*')
{
// it's a pointer -> needs a reinterpret cast to the vulkan type
std::string parameterName = startLowerCase(strip(paramData.name, "p"));
writeReinterpretCast(os, paramData.type.find("const") != std::string::npos, true, paramData.pureType, false);
os << "( ";
if (paramData.optional)
{
// for an optional parameter, we need also a static_cast from optional type to const-pointer to pure type
os << "static_cast<const " << paramData.pureType << "*>( " << parameterName << " )";
}
else
{
// other parameters can just use the pointer
os << "&" << parameterName;
}
os << " )";
}
else
{
// a non-pointer parameter needs a static_cast from vk::-type to vulkan type
os << "static_cast<Vk" << paramData.pureType << ">( " << paramData.name << " )";
}
}
void VulkanHppGenerator::writeEnumsToString(std::ostream & os, EnumData const& enumData)
{
// the helper functions to make strings out of enum values
enterProtect(os, enumData.protect);
os << " VULKAN_HPP_INLINE std::string to_string(" << enumData.name << (enumData.values.empty() ? ")" : " value)") << std::endl
<< " {" << std::endl;
if (enumData.values.empty())
{
// no enum values in this enum -> return "(void)"
os << " return \"(void)\";" << std::endl;
}
else
{
// otherwise switch over the value and return the a stringized version of that value (without leading 'e')
os << " switch (value)" << std::endl
<< " {" << std::endl;
for (auto const& value : enumData.values)
{
os << " case " << enumData.name << "::" << value.name << ": return \"" << value.name.substr(1) << "\";" << std::endl;
}
os << " default: return \"invalid\";" << std::endl
<< " }" << std::endl;
}
os << " }" << std::endl;
leaveProtect(os, enumData.protect);
os << std::endl;
}
// Intended only for `enum class Result`!
void VulkanHppGenerator::writeExceptionsForEnum(std::ostream & os, EnumData const& enumData)
{
std::string templateString =
R"( class ${className} : public SystemError
{
public:
${className}( std::string const& message )
: SystemError( make_error_code( ${enumName}::${enumMemberName} ), message ) {}
${className}( char const * message )
: SystemError( make_error_code( ${enumName}::${enumMemberName} ), message ) {}
};
)";
enterProtect(os, enumData.protect);
for (size_t i = 0; i < enumData.values.size(); i++)
{
if (!isErrorEnum(enumData.values[i].name))
{
continue;
}
os << replaceWithMap(templateString,
{ { "className", stripErrorEnumPrefix(enumData.values[i].name) + "Error" },
{ "enumName", enumData.name },
{ "enumMemberName", enumData.values[i].name }
});
}
leaveProtect(os, enumData.protect);
os << std::endl;
}
void VulkanHppGenerator::writeFunction(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool definition, bool enhanced, bool singular, bool unique, bool isStructureChain)
{
writeFunctionHeaderTemplate(os, indentation, commandData, enhanced, unique, !definition, isStructureChain);
os << indentation << (definition ? "VULKAN_HPP_INLINE " : "");
writeFunctionHeaderReturnType(os, indentation, commandData, enhanced, singular, unique, isStructureChain);
if (definition && !commandData.className.empty())
{
os << commandData.className << "::";
}
writeFunctionHeaderName(os, commandData.reducedName, singular, unique);
writeFunctionHeaderArguments(os, commandData, enhanced, singular, !definition);
os << (definition ? "" : ";") << std::endl;
if (definition)
{
// write the function body
os << indentation << "{" << std::endl;
if (enhanced)
{
writeFunctionBodyEnhanced(os, indentation, commandData, singular, unique, isStructureChain);
}
else
{
writeFunctionBodyStandard(os, indentation, commandData);
}
os << indentation << "}" << std::endl;
}
}
void VulkanHppGenerator::writeFunctionBodyEnhanced(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool singular, bool unique, bool isStructureChain)
{
if (unique && !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end())) // returns a vector of UniqueStuff
{
std::string const stringTemplate =
R"(${i} static_assert( sizeof( ${type} ) <= sizeof( Unique${type} ), "${type} is greater than Unique${type}!" );
${i} std::vector<Unique${type}, Allocator> ${typeVariable}s;
${i} ${typeVariable}s.reserve( ${vectorSize} );
${i} ${type}* buffer = reinterpret_cast<${type}*>( reinterpret_cast<char*>( ${typeVariable}s.data() ) + ${vectorSize} * ( sizeof( Unique${type} ) - sizeof( ${type} ) ) );
${i} Result result = static_cast<Result>(d.vk${command}( m_device, ${arguments}, reinterpret_cast<Vk${type}*>( buffer ) ) );
${i} ${Deleter}<${DeleterTemplate}> deleter( *this, ${deleterArg} );
${i} for ( size_t i=0 ; i<${vectorSize} ; i++ )
${i} {
${i} ${typeVariable}s.push_back( Unique${type}( buffer[i], deleter ) );
${i} }
${i} return createResultValue( result, ${typeVariable}s, VULKAN_HPP_NAMESPACE_STRING "::${class}::${function}Unique" );
)";
std::string type = (commandData.returnParam != ~0) ? commandData.params[commandData.returnParam].pureType : "";
std::string typeVariable = startLowerCase(type);
std::ostringstream arguments;
writeArguments(arguments, commandData, true, singular, 1, commandData.params.size() - 1);
std::map<std::string, DeleterData>::const_iterator ddit = m_deleters.find(type);
assert(ddit != m_deleters.end());
bool isCreateFunction = (commandData.fullName.substr(0, 6) == "create");
os << replaceWithMap(stringTemplate, std::map<std::string, std::string>
{
{ "i", indentation },
{ "type", type },
{ "typeVariable", typeVariable },
{ "vectorSize", isCreateFunction ? "createInfos.size()" : "allocateInfo." + typeVariable + "Count" },
{ "command", startUpperCase(commandData.fullName) },
{ "arguments", arguments.str() },
{ "Deleter", ddit->second.pool.empty() ? "ObjectDeleter" : "PoolDeleter" },
{ "DeleterTemplate", ddit->second.pool.empty() ? commandData.className : commandData.className + "," + ddit->second.pool },
{ "deleterArg", ddit->second.pool.empty() ? "allocator" : "allocateInfo." + startLowerCase(ddit->second.pool) },
{ "class", commandData.className },
{ "function", commandData.reducedName }
});
}
else
{
if (1 < commandData.vectorParams.size())
{
writeFunctionBodyEnhancedMultiVectorSizeCheck(os, indentation, commandData);
}
std::string returnName;
if (commandData.returnParam != ~0)
{
returnName = writeFunctionBodyEnhancedLocalReturnVariable(os, indentation, commandData, singular, isStructureChain);
}
if (commandData.twoStep)
{
assert(!singular);
writeFunctionBodyEnhancedLocalCountVariable(os, indentation, commandData);
// we now might have to check the result, resize the returned vector accordingly, and call the function again
std::map<size_t, size_t>::const_iterator returnit = commandData.vectorParams.find(commandData.returnParam);
assert(returnit != commandData.vectorParams.end() && (returnit->second != ~0));
std::string sizeName = startLowerCase(strip(commandData.params[returnit->second].name, "p"));
if (commandData.returnType == "Result")
{
if (1 < commandData.successCodes.size())
{
writeFunctionBodyEnhancedCallTwoStepIterate(os, indentation, returnName, sizeName, commandData);
}
else
{
writeFunctionBodyEnhancedCallTwoStepChecked(os, indentation, returnName, sizeName, commandData);
}
}
else
{
writeFunctionBodyEnhancedCallTwoStep(os, indentation, returnName, sizeName, commandData);
}
}
else
{
if (commandData.returnType == "Result")
{
writeFunctionBodyEnhancedCallResult(os, indentation, commandData, singular);
}
else
{
writeFunctionBodyEnhancedCall(os, indentation, commandData, singular);
}
}
if ((commandData.returnType == "Result") || !commandData.successCodes.empty())
{
writeFunctionBodyEnhancedReturnResultValue(os, indentation, returnName, commandData, singular, unique);
}
else if ((commandData.returnParam != ~0) && (commandData.returnType != commandData.enhancedReturnType))
{
// for the other returning cases, when the return type is somhow enhanced, just return the local returnVariable
os << indentation << " return " << returnName << ";" << std::endl;
}
}
}
void VulkanHppGenerator::writeFunctionBodyEnhanced(std::ostream &os, std::string const& templateString, std::string const& indentation, CommandData const& commandData, bool singular)
{
os << replaceWithMap(templateString, {
{ "call", generateCall(commandData, true, singular) },
{ "i", indentation }
});
}
void VulkanHppGenerator::writeFunctionBodyTwoStep(std::ostream & os, std::string const &templateString, std::string const& indentation, std::string const& returnName, std::string const& sizeName, CommandData const& commandData)
{
std::map<std::string, std::string> replacements = {
{ "sizeName", sizeName },
{ "returnName", returnName },
{ "call1", generateCall(commandData, true, false) },
{ "call2", generateCall(commandData, false, false) },
{ "i", indentation }
};
os << replaceWithMap(templateString, replacements);
}
std::string VulkanHppGenerator::writeFunctionBodyEnhancedLocalReturnVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool singular, bool isStructureChain)
{
std::string returnName = startLowerCase(strip(commandData.params[commandData.returnParam].name, "p"));
// there is a returned parameter -> we need a local variable to hold that value
if (commandData.returnType != commandData.enhancedReturnType)
{
// the returned parameter is somehow enhanced by us
os << indentation << " ";
if (singular)
{
if (isStructureChain)
{
std::string const &pureType = commandData.params[commandData.returnParam].pureType;
// For StructureChains use the template parameters
os << "StructureChain<T...> structureChain;" << std::endl;
returnName = stripPluralS(returnName);
os << indentation << " " << pureType << "& " << returnName << " = structureChain.template get<" << pureType << ">()";
returnName = "structureChain";
}
else
{
// in singular case, just use the return parameters pure type for the return variable
returnName = stripPluralS(returnName);
os << commandData.params[commandData.returnParam].pureType << " " << returnName;
}
}
else
{
// in non-singular case, use the enhanced type for the return variable (like vector<...>)
if (isStructureChain)
{
std::string const &returnType = commandData.enhancedReturnType;
// For StructureChains use the template parameters
os << "StructureChain<T...> structureChain;" << std::endl;
os << indentation << " " << returnType << "& " << returnName << " = structureChain.template get<" << returnType << ">()";
returnName = "structureChain";
}
else
{
os << commandData.enhancedReturnType << " " << returnName;
}
std::map<size_t, size_t>::const_iterator it = commandData.vectorParams.find(commandData.returnParam);
if (it != commandData.vectorParams.end() && !commandData.twoStep)
{
// if the return parameter is a vector parameter, and not part of a two-step algorithm, initialize its size
std::string size;
if (it->second == ~0)
{
assert(!commandData.params[commandData.returnParam].len.empty());
// the size of the vector is not given by an other parameter, but by some member of a parameter, described as 'parameter::member'
// -> replace the '::' by '.' and filter out the leading 'p' to access that value
size = startLowerCase(strip(commandData.params[commandData.returnParam].len, "p"));
size_t pos = size.find("::");
assert(pos != std::string::npos);
size.replace(pos, 2, ".");
}
else
{
// the size of the vector is given by an other parameter
// that means (as this is not a two-step algorithm) it's size is determined by some other vector parameter!
// -> look for it and get it's actual size
for (auto const& vectorParam : commandData.vectorParams)
{
if ((vectorParam.first != commandData.returnParam) && (vectorParam.second == it->second))
{
size = startLowerCase(strip(commandData.params[vectorParam.first].name, "p")) + ".size()";
break;
}
}
}
assert(!size.empty());
os << "( " << size << " )";
}
}
os << ";" << std::endl;
}
else
{
// the return parameter is not enhanced -> the type is supposed to be a Result and there are more than one success codes!
assert((commandData.returnType == "Result") && (1 < commandData.successCodes.size()));
os << indentation << " " << commandData.params[commandData.returnParam].pureType << " " << returnName << ";" << std::endl;
}
return returnName;
}
void VulkanHppGenerator::writeFunctionBodyEnhancedCall(std::ostream &os, std::string const& indentation, CommandData const& commandData, bool singular)
{
std::string const templateString = "${i} return ${call};\n";
std::string const templateStringVoid = "${i} ${call};\n";
writeFunctionBodyEnhanced(os, commandData.returnType == "void" ? templateStringVoid : templateString, indentation, commandData, singular);
}
void VulkanHppGenerator::writeFunctionBodyEnhancedCallResult(std::ostream &os, std::string const& indentation, CommandData const& commandData, bool singular)
{
std::string const templateString = "${i} Result result = static_cast<Result>( ${call} );\n";
writeFunctionBodyEnhanced(os, templateString, indentation, commandData, singular);
}
void VulkanHppGenerator::writeFunctionBodyEnhancedCallTwoStep(std::ostream & os, std::string const& indentation, std::string const& returnName, std::string const& sizeName, CommandData const& commandData)
{
std::string const templateString =
R"(${i} ${call1};
${i} ${returnName}.resize( ${sizeName} );
${i} ${call2};
)";
writeFunctionBodyTwoStep(os, templateString, indentation, returnName, sizeName, commandData);
}
void VulkanHppGenerator::writeFunctionBodyEnhancedCallTwoStepIterate(std::ostream & os, std::string const& indentation, std::string const& returnName, std::string const& sizeName, CommandData const& commandData)
{
std::string const templateString =
R"(${i} Result result;
${i} do
${i} {
${i} result = static_cast<Result>( ${call1} );
${i} if ( ( result == Result::eSuccess ) && ${sizeName} )
${i} {
${i} ${returnName}.resize( ${sizeName} );
${i} result = static_cast<Result>( ${call2} );
${i} }
${i} } while ( result == Result::eIncomplete );
${i} VULKAN_HPP_ASSERT( ${sizeName} <= ${returnName}.size() );
${i} ${returnName}.resize( ${sizeName} );
)";
writeFunctionBodyTwoStep(os, templateString, indentation, returnName, sizeName, commandData);
}
void VulkanHppGenerator::writeFunctionBodyEnhancedCallTwoStepChecked(std::ostream & os, std::string const& indentation, std::string const& returnName, std::string const& sizeName, CommandData const& commandData)
{
std::string const templateString =
R"(${i} Result result = static_cast<Result>( ${call1} );
${i} if ( ( result == Result::eSuccess ) && ${sizeName} )
${i} {
${i} ${returnName}.resize( ${sizeName} );
${i} result = static_cast<Result>( ${call2} );
${i} }
)";
writeFunctionBodyTwoStep(os, templateString, indentation, returnName, sizeName, commandData);
}
void VulkanHppGenerator::writeFunctionBodyEnhancedLocalCountVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData)
{
// local count variable to hold the size of the vector to fill
assert(commandData.returnParam != ~0);
std::map<size_t, size_t>::const_iterator returnit = commandData.vectorParams.find(commandData.returnParam);
assert(returnit != commandData.vectorParams.end() && (returnit->second != ~0));
assert((commandData.returnType == "Result") || (commandData.returnType == "void"));
// take the pure type of the size parameter; strip the leading 'p' from its name for its local name
os << indentation << " " << commandData.params[returnit->second].pureType << " " << startLowerCase(strip(commandData.params[returnit->second].name, "p")) << ";" << std::endl;
}
void VulkanHppGenerator::writeFunctionBodyEnhancedMultiVectorSizeCheck(std::ostream & os, std::string const& indentation, CommandData const& commandData)
{
std::string const templateString =
R"#(#ifdef VULKAN_HPP_NO_EXCEPTIONS
${i} VULKAN_HPP_ASSERT( ${firstVectorName}.size() == ${secondVectorName}.size() );
#else
${i} if ( ${firstVectorName}.size() != ${secondVectorName}.size() )
${i} {
${i} throw LogicError( VULKAN_HPP_NAMESPACE_STRING "::${className}::${reducedName}: ${firstVectorName}.size() != ${secondVectorName}.size()" );
${i} }
#endif // VULKAN_HPP_NO_EXCEPTIONS
)#";
// add some error checks if multiple vectors need to have the same size
for (std::map<size_t, size_t>::const_iterator it0 = commandData.vectorParams.begin(); it0 != commandData.vectorParams.end(); ++it0)
{
if (it0->first != commandData.returnParam)
{
for (std::map<size_t, size_t>::const_iterator it1 = std::next(it0); it1 != commandData.vectorParams.end(); ++it1)
{
if ((it1->first != commandData.returnParam) && (it0->second == it1->second))
{
os << replaceWithMap(templateString, std::map<std::string, std::string>({
{ "firstVectorName", startLowerCase(strip(commandData.params[it0->first].name, "p")) },
{ "secondVectorName", startLowerCase(strip(commandData.params[it1->first].name, "p")) },
{ "className", commandData.className },
{ "reducedName", commandData.reducedName },
{ "i", indentation }
}));
}
}
}
}
}
void VulkanHppGenerator::writeFunctionBodyEnhancedReturnResultValue(std::ostream & os, std::string const& indentation, std::string const& returnName, CommandData const& commandData, bool singular, bool unique)
{
std::string type = (commandData.returnParam != ~0) ? commandData.params[commandData.returnParam].pureType : "";
std::string returnVectorName = (commandData.returnParam != ~0) ? strip(commandData.params[commandData.returnParam].name, "p", "s") : "";
if (unique)
{
// the unique version needs a Deleter object for destruction of the newly created stuff
// get the DeleterData corresponding to the returned type
std::map<std::string, DeleterData>::const_iterator ddit = m_deleters.find(type);
assert(ddit != m_deleters.end() && ddit->second.pool.empty());
os << std::endl
<< indentation << " ObjectDeleter<" << (commandData.className.empty() ? "NoParent" : commandData.className) << "> deleter( " << (commandData.className.empty() ? "" : "*this, ") << "allocator );" << std::endl;
}
// if the return type is "Result" or there is at least one success code, create the Result/Value construct to return
os << indentation << " return createResultValue( result, ";
if (commandData.returnParam != ~0)
{
// if there's a return parameter, list it in the Result/Value constructor
os << returnName << ", ";
}
// now the function name (with full namespace) as a string
os << "VULKAN_HPP_NAMESPACE_STRING\"::" << (commandData.className.empty() ? "" : commandData.className + "::") << (singular ? stripPluralS(commandData.reducedName) : commandData.reducedName) << (unique ? "Unique" : "") << "\"";
if (!commandData.twoStep && (1 < commandData.successCodes.size()))
{
// and for the single-step algorithms with more than one success code list them all
os << ", { Result::" << commandData.successCodes[0];
for (size_t i = 1; i < commandData.successCodes.size(); i++)
{
os << ", Result::" << commandData.successCodes[i];
}
os << " }";
}
if (unique)
{
os << ", deleter";
}
os << " );" << std::endl;
}
void VulkanHppGenerator::writeFunctionBodyStandard(std::ostream & os, std::string const& indentation, CommandData const& commandData)
{
os << indentation << " ";
bool castReturn = false;
if (commandData.returnType != "void")
{
// there's something to return...
os << "return ";
castReturn = (m_vkTypes.find(commandData.returnType) != m_vkTypes.end());
if (castReturn)
{
// the return-type is a vulkan type -> need to cast to vk::-type
os << "static_cast<" << commandData.returnType << ">( ";
}
}
// call the original function
os << "d.vk" << startUpperCase(commandData.fullName) << "( ";
if (!commandData.className.empty())
{
// the command is part of a class -> the first argument is the member variable, starting with "m_"
os << "m_" << commandData.params[0].name;
}
// list all the arguments
for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++)
{
if (0 < i)
{
os << ", ";
}
if (m_vkTypes.find(commandData.params[i].pureType) != m_vkTypes.end())
{
// the parameter is a vulkan type
if (commandData.params[i].type.back() == '*')
{
// it's a pointer -> need to reinterpret_cast it
writeReinterpretCast(os, commandData.params[i].type.find("const") == 0, true, commandData.params[i].pureType, commandData.params[i].type.find("* const") != std::string::npos);
}
else
{
// it's a value -> need to static_cast ist
os << "static_cast<Vk" << commandData.params[i].pureType << ">";
}
os << "( " << commandData.params[i].name << " )";
}
else
{
// it's a non-vulkan type -> just use it
os << commandData.params[i].name;
}
}
os << " )";
if (castReturn)
{
// if we cast the return -> close the static_cast
os << " )";
}
os << ";" << std::endl;
}
void VulkanHppGenerator::writeFunctionHeaderArguments(std::ostream & os, CommandData const& commandData, bool enhanced, bool singular, bool withDefaults)
{
os << "(";
if (enhanced)
{
writeFunctionHeaderArgumentsEnhanced(os, commandData, singular, withDefaults);
}
else
{
writeFunctionHeaderArgumentsStandard(os, commandData, withDefaults);
}
os << ")";
if (!commandData.className.empty())
{
os << " const";
}
}
void VulkanHppGenerator::writeFunctionHeaderArgumentsEnhanced(std::ostream & os, CommandData const& commandData, bool singular, bool withDefaults)
{
// check if there's at least one argument left to put in here
if (commandData.skippedParams.size() + (commandData.className.empty() ? 0 : 1) < commandData.params.size())
{
// determine the last argument, where we might provide some default for
size_t lastArgument = ~0;
for (size_t i = commandData.params.size() - 1; i < commandData.params.size(); i--)
{
if (commandData.skippedParams.find(i) == commandData.skippedParams.end())
{
lastArgument = i;
break;
}
}
os << " ";
bool argEncountered = false;
for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++)
{
if (commandData.skippedParams.find(i) == commandData.skippedParams.end())
{
if (argEncountered)
{
os << ", ";
}
std::string strippedParameterName = startLowerCase(strip(commandData.params[i].name, "p"));
std::map<size_t, size_t>::const_iterator it = commandData.vectorParams.find(i);
size_t rightStarPos = commandData.params[i].type.rfind('*');
if (it == commandData.vectorParams.end())
{
// the argument ist not a vector
if (rightStarPos == std::string::npos)
{
// and its not a pointer -> just use its type and name here
os << commandData.params[i].type << " " << commandData.params[i].name;
if (!commandData.params[i].arraySize.empty())
{
os << "[" << commandData.params[i].arraySize << "]";
}
if (withDefaults && (lastArgument == i))
{
// check if the very last argument is a flag without any bits -> provide some empty default for it
std::map<std::string, BitmaskData>::const_iterator bitmasksIt = m_bitmasks.find(commandData.params[i].pureType);
if (bitmasksIt != m_bitmasks.end())
{
// get the enum corresponding to this flag, to check if it's empty
std::list<DependencyData>::const_iterator depIt = std::find_if(m_dependencies.begin(), m_dependencies.end(), [&bitmasksIt](DependencyData const& dd) { return(dd.name == bitmasksIt->first); });
assert((depIt != m_dependencies.end()) && (depIt->dependencies.size() == 1));
std::map<std::string, EnumData>::const_iterator enumIt = m_enums.find(*depIt->dependencies.begin());
assert(enumIt != m_enums.end());
if (enumIt->second.values.empty())
{
// there are no bits in this flag -> provide the default
os << " = " << commandData.params[i].pureType << "()";
}
}
}
}
else
{
// the argument is not a vector, but a pointer
assert(commandData.params[i].type[rightStarPos] == '*');
if (commandData.params[i].optional)
{
// for an optional argument, trim the trailing '*' from the type, and the leading 'p' from the name
os << "Optional<" << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << "> " << strippedParameterName;
if (withDefaults)
{
os << " = nullptr";
}
}
else if (commandData.params[i].pureType == "void")
{
// for void-pointer, just use type and name
os << commandData.params[i].type << " " << commandData.params[i].name;
}
else if (commandData.params[i].pureType != "char")
{
// for non-char-pointer, change to reference
os << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << " & " << strippedParameterName;
}
else
{
// for char-pointer, change to const reference to std::string
os << "const std::string & " << strippedParameterName;
}
}
}
else
{
// the argument is a vector
// it's optional, if it's marked as optional and there's no size specified
bool optional = commandData.params[i].optional && (it->second == ~0);
assert((rightStarPos != std::string::npos) && (commandData.params[i].type[rightStarPos] == '*'));
if (commandData.params[i].type.find("char") != std::string::npos)
{
// it's a char-vector -> use a std::string (either optional or a const-reference
if (optional)
{
os << "Optional<const std::string> " << strippedParameterName;
if (withDefaults)
{
os << " = nullptr";
}
}
else
{
os << "const std::string & " << strippedParameterName;
}
}
else
{
// it's a non-char vector (they are never optional)
assert(!optional);
if (singular)
{
// in singular case, change from pointer to reference
os << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << " & " << stripPluralS(strippedParameterName);
}
else
{
// otherwise, use our ArrayProxy
bool isConst = (commandData.params[i].type.find("const") != std::string::npos);
os << "ArrayProxy<" << ((commandData.templateParam == i) ? (isConst ? "const T" : "T") : trimEnd(commandData.params[i].type.substr(0, rightStarPos))) << "> " << strippedParameterName;
}
}
}
argEncountered = true;
}
}
if (argEncountered)
{
os << ", ";
}
}
os << "Dispatch const &d";
if (withDefaults)
{
os << " = Dispatch()";
}
os << " ";
}
void VulkanHppGenerator::writeFunctionHeaderArgumentsStandard(std::ostream & os, CommandData const& commandData, bool withDefaults)
{
// for the standard case, just list all the arguments as we've got them
bool argEncountered = false;
// determine the last argument, where we might provide some default for
size_t lastArgument = commandData.params.size() - 1;
for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++)
{
if (argEncountered)
{
os << ",";
}
os << " " << commandData.params[i].type << " " << commandData.params[i].name;
if (!commandData.params[i].arraySize.empty())
{
os << "[" << commandData.params[i].arraySize << "]";
}
if (withDefaults && (lastArgument == i))
{
// check if the very last argument is a flag without any bits -> provide some empty default for it
std::map<std::string, BitmaskData>::const_iterator flagIt = m_bitmasks.find(commandData.params[i].pureType);
if (flagIt != m_bitmasks.end())
{
// get the enum corresponding to this flag, to check if it's empty
std::list<DependencyData>::const_iterator depIt = std::find_if(m_dependencies.begin(), m_dependencies.end(), [&flagIt](DependencyData const& dd) { return(dd.name == flagIt->first); });
assert((depIt != m_dependencies.end()) && (depIt->dependencies.size() == 1));
std::map<std::string, EnumData>::const_iterator enumIt = m_enums.find(*depIt->dependencies.begin());
assert(enumIt != m_enums.end());
if (enumIt->second.values.empty())
{
// there are no bits in this flag -> provide the default
os << " = " << commandData.params[i].pureType << "()";
}
}
}
argEncountered = true;
}
if (argEncountered)
{
os << ", ";
}
os << "Dispatch const &d";
if (withDefaults)
{
os << " = Dispatch() ";
}
}
void VulkanHppGenerator::writeFunctionHeaderReturnType(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool enhanced, bool singular, bool unique, bool isStructureChain)
{
std::string templateString;
std::string returnType;
if (enhanced)
{
// the enhanced function might return some pretty complex return stuff
if (isStructureChain || (!singular && (commandData.enhancedReturnType.find("Allocator") != std::string::npos)))
{
// for the non-singular case with allocation, we need to prepend with 'typename' to keep compilers happy
templateString = "typename ";
}
if (unique)
{
// the unique version returns something prefixed with 'Unique'; potentially a vector of that stuff
// it's a vector, if it's not the singular version and the return parameter is a vector parameter
bool returnsVector = !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end());
templateString += returnsVector ? "ResultValueType<std::vector<Unique${returnType},Allocator>>::type " : "ResultValueType<Unique${returnType}>::type ";
returnType = isStructureChain ? "StructureChain<T...>" : commandData.params[commandData.returnParam].pureType;
}
else if ((commandData.enhancedReturnType != commandData.returnType) && (commandData.returnType != "void"))
{
// if the enhanced return type differs from the original return type, and it's not void, we return a ResultValueType<...>::type
templateString += "ResultValueType<${returnType}>::type ";
assert(commandData.returnType == "Result");
// in singular case, we create the ResultValueType from the pure return type, otherwise from the enhanced return type
if (isStructureChain)
{
returnType = "StructureChain<T...>";
}
else
{
returnType = singular ? commandData.params[commandData.returnParam].pureType : commandData.enhancedReturnType;
}
}
else if ((commandData.returnParam != ~0) && (1 < commandData.successCodes.size()))
{
// if there is a return parameter at all, and there are multiple success codes, we return a ResultValue<...> with the pure return type
assert(commandData.returnType == "Result");
templateString = "ResultValue<${returnType}> ";
returnType = isStructureChain ? "StructureChain<T...>" : commandData.params[commandData.returnParam].pureType;
}
else
{
// and in every other case, we just return the enhanced return type.
templateString = "${returnType} ";
returnType = isStructureChain ? "StructureChain<T...>" : commandData.enhancedReturnType;
}
}
else
{
// the non-enhanced function just uses the return type
templateString = "${returnType} ";
returnType = commandData.returnType;
}
os << replaceWithMap(templateString, { { "returnType", returnType } });
}
void VulkanHppGenerator::writeFunctionHeaderTemplate(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool enhanced, bool unique, bool withDefault, bool isStructureChain)
{
std::string dispatch = withDefault ? std::string("typename Dispatch = DispatchLoaderStatic") : std::string("typename Dispatch");
if (enhanced && isStructureChain)
{
os << indentation << "template <typename ...T, " << dispatch << ">" << std::endl;
}
else if (enhanced && (commandData.templateParam != ~0) && ((commandData.templateParam != commandData.returnParam) || (commandData.enhancedReturnType == "Result")))
{
// if there's a template parameter, not being the return parameter or where the enhanced return type is 'Result' -> templatize on type 'T'
assert(commandData.enhancedReturnType.find("Allocator") == std::string::npos);
os << indentation << "template <typename T, " << dispatch << ">" << std::endl;
}
else if (enhanced && (commandData.enhancedReturnType.find("Allocator") != std::string::npos))
{
// otherwise, if there's an Allocator used in the enhanced return type, we templatize on that Allocator
assert((commandData.enhancedReturnType.substr(0, 12) == "std::vector<") && (commandData.enhancedReturnType.find(',') != std::string::npos) && (12 < commandData.enhancedReturnType.find(',')));
os << indentation << "template <typename Allocator";
if (withDefault)
{
// for the default type get the type from the enhancedReturnType, which is of the form 'std::vector<Type,Allocator>'
os << " = std::allocator<" << (unique ? "Unique" : "") << commandData.enhancedReturnType.substr(12, commandData.enhancedReturnType.find(',') - 12) << ">";
}
os << ", " << dispatch;
os << "> " << std::endl;
}
else
{
os << indentation << "template<" << dispatch << ">" << std::endl;
}
}
void VulkanHppGenerator::writeResultEnum(std::ostream & os)
{
std::list<DependencyData>::const_iterator it = std::find_if(m_dependencies.begin(), m_dependencies.end(), [](DependencyData const& dp) { return dp.name == "Result"; });
assert(it != m_dependencies.end());
writeTypeEnum(os, m_enums.find(it->name)->second);
writeEnumsToString(os, m_enums.find(it->name)->second);
os << "#ifndef VULKAN_HPP_NO_EXCEPTIONS";
os << exceptionHeader;
os << exceptionClassesHeader;
writeExceptionsForEnum(os, m_enums.find(it->name)->second);
writeThrowExceptions(os, m_enums.find(it->name)->second);
os << "#endif" << std::endl;
m_dependencies.erase(it);
}
void VulkanHppGenerator::writeStructConstructor(std::ostream & os, std::string const& name, StructData const& structData, std::map<std::string, std::string> const& defaultValues)
{
// the constructor with all the elements as arguments, with defaults
os << " " << name << "( ";
bool listedArgument = false;
for (size_t i = 0; i < structData.members.size(); i++)
{
if (listedArgument)
{
os << ", ";
}
// skip members 'pNext' and 'sType', as they are never explicitly set
if ((structData.members[i].name != "pNext") && (structData.members[i].name != "sType"))
{
// find a default value for the given pure type
std::map<std::string, std::string>::const_iterator defaultIt = defaultValues.find(structData.members[i].pureType);
assert(defaultIt != defaultValues.end());
if (structData.members[i].arraySize.empty())
{
// the arguments name get a trailing '_', to distinguish them from the actual struct members
// pointer arguments get a nullptr as default
os << structData.members[i].type << " " << structData.members[i].name << "_ = " << (structData.members[i].type.back() == '*' ? "nullptr" : defaultIt->second);
}
else
{
// array members are provided as const reference to a std::array
// the arguments name get a trailing '_', to distinguish them from the actual struct members
// list as many default values as there are elements in the array
os << "std::array<" << structData.members[i].type << "," << structData.members[i].arraySize << "> const& " << structData.members[i].name << "_ = { { " << defaultIt->second;
size_t n = atoi(structData.members[i].arraySize.c_str());
assert(0 < n);
for (size_t j = 1; j < n; j++)
{
os << ", " << defaultIt->second;
}
os << " } }";
}
listedArgument = true;
}
}
os << " )" << std::endl;
// copy over the simple arguments
bool firstArgument = true;
for (size_t i = 0; i < structData.members.size(); i++)
{
// skip members 'pNext' and 'sType' are directly set by initializers
if ((structData.members[i].name != "pNext") && (structData.members[i].name != "sType") && (structData.members[i].arraySize.empty()))
{
// here, we can only handle non-array arguments
std::string templateString = " ${sep} ${member}( ${value} )\n";
std::string sep = firstArgument ? ":" : ",";
std::string member = structData.members[i].name;
std::string value = structData.members[i].name + "_"; // the elements are initialized by the corresponding argument (with trailing '_', as mentioned above)
os << replaceWithMap(templateString, { { "sep", sep },{ "member", member },{ "value", value } });
firstArgument = false;
}
}
// the body of the constructor, copying over data from argument list into wrapped struct
os << " {" << std::endl;
for (size_t i = 0; i < structData.members.size(); i++)
{
if (!structData.members[i].arraySize.empty())
{
// here we can handle the arrays, copying over from argument (with trailing '_') to member
// size is arraySize times sizeof type
std::string member = structData.members[i].name;
std::string arraySize = structData.members[i].arraySize;
std::string type = structData.members[i].type;
os << replaceWithMap(" memcpy( &${member}, ${member}_.data(), ${arraySize} * sizeof( ${type} ) );\n",
{ { "member", member },{ "arraySize", arraySize },{ "type", type } });
}
}
os << " }\n\n";
std::string templateString =
R"( ${name}( Vk${name} const & rhs )
{
memcpy( this, &rhs, sizeof( ${name} ) );
}
${name}& operator=( Vk${name} const & rhs )
{
memcpy( this, &rhs, sizeof( ${name} ) );
return *this;
}
)";
os << replaceWithMap(templateString, { { "name", name } });
}
void VulkanHppGenerator::writeStructSetter(std::ostream & os, std::string const& structureName, MemberData const& memberData)
{
if (memberData.type != "StructureType") // filter out StructureType, which is supposed to be immutable !
{
// the setters return a reference to the structure
os << " " << structureName << "& set" << startUpperCase(memberData.name) << "( ";
if (memberData.arraySize.empty())
{
os << memberData.type << " ";
}
else
{
os << "std::array<" << memberData.type << "," << memberData.arraySize << "> ";
}
// add a trailing '_' to the argument to distinguish it from the structure member
os << memberData.name << "_ )" << std::endl
<< " {" << std::endl;
// copy over the argument, either by assigning simple data, or by memcpy array data
if (memberData.arraySize.empty())
{
os << " " << memberData.name << " = " << memberData.name << "_";
}
else
{
os << " memcpy( &" << memberData.name << ", " << memberData.name << "_.data(), " << memberData.arraySize << " * sizeof( " << memberData.type << " ) )";
}
os << ";" << std::endl
<< " return *this;" << std::endl
<< " }" << std::endl
<< std::endl;
}
}
void VulkanHppGenerator::writeStructureChainValidation(std::ostream & os)
{
// write all template functions for the structure pointer chain validation
for (auto it = m_dependencies.begin(); it != m_dependencies.end(); ++it)
{
switch (it->category)
{
case DependencyData::Category::STRUCT:
writeStructureChainValidation(os, *it);
break;
}
}
}
void VulkanHppGenerator::writeStructureChainValidation(std::ostream & os, DependencyData const& dependencyData)
{
std::map<std::string, StructData>::const_iterator it = m_structs.find(dependencyData.name);
assert(it != m_structs.end());
if (!it->second.structExtends.empty()) {
enterProtect(os, it->second.protect);
// write out allowed structure chains
for (auto extendName : it->second.structExtends)
{
std::map<std::string, StructData>::const_iterator itExtend = m_structs.find(extendName);
assert(itExtend != m_structs.end());
enterProtect(os, itExtend->second.protect);
os << " template <> struct isStructureChainValid<" << extendName << ", " << dependencyData.name << ">{ enum { value = true }; };" << std::endl;
leaveProtect(os, itExtend->second.protect);
}
leaveProtect(os, it->second.protect);
}
}
void VulkanHppGenerator::writeThrowExceptions(std::ostream & os, EnumData const& enumData)
{
enterProtect(os, enumData.protect);
os <<
R"( VULKAN_HPP_INLINE void throwResultException( Result result, char const * message )
{
switch ( result )
{
)";
for (size_t i = 0; i<enumData.values.size(); i++)
{
if (!isErrorEnum(enumData.values[i].name))
{
continue;
}
const std::string strippedExceptionName = stripErrorEnumPrefix(enumData.values[i].name);
os << " case " << enumData.name << "::" << enumData.values[i].name << ": "
<< "throw " << strippedExceptionName << "Error ( message );" << std::endl;
}
os <<
R"( default: throw SystemError( make_error_code( result ) );
}
}
)";
leaveProtect(os, enumData.protect);
}
void VulkanHppGenerator::writeToStringFunctions(std::ostream & os)
{
// write all the to_string functions for enums and flags
for (auto it = m_dependencies.begin(); it != m_dependencies.end(); ++it)
{
switch (it->category)
{
case DependencyData::Category::BITMASK:
writeBitmaskToString(os, it->name, m_enums.find(*it->dependencies.begin())->second);
break;
case DependencyData::Category::ENUM:
assert(m_enums.find(it->name) != m_enums.end());
writeEnumsToString(os, m_enums.find(it->name)->second);
break;
}
}
}
void VulkanHppGenerator::writeTypeBitmask(std::ostream & os, std::string const& bitmaskName, BitmaskData const& bitmaskData, EnumData const& enumData)
{
enterProtect(os, bitmaskData.protect);
// each Flags class is using on the class 'Flags' with the corresponding FlagBits enum as the template parameter
os << " using " << bitmaskName << " = Flags<" << enumData.name << ", Vk" << bitmaskName << ">;" << std::endl;
std::stringstream allFlags;
for (size_t i = 0; i < enumData.values.size(); i++)
{
if (i != 0)
{
allFlags << " | ";
}
allFlags << "VkFlags(" << enumData.name << "::" << enumData.values[i].name << ")";
}
if (!enumData.values.empty())
{
const std::string templateString = R"(
VULKAN_HPP_INLINE ${bitmaskName} operator|( ${enumName} bit0, ${enumName} bit1 )
{
return ${bitmaskName}( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ${bitmaskName} operator~( ${enumName} bits )
{
return ~( ${bitmaskName}( bits ) );
}
template <> struct FlagTraits<${enumName}>
{
enum
{
allFlags = ${allFlags}
};
};
)";
os << replaceWithMap(templateString, { { "bitmaskName", bitmaskName },{ "enumName", enumData.name },{ "allFlags", allFlags.str() } });
}
if (!bitmaskData.alias.empty())
{
os << std::endl
<< " using " << bitmaskData.alias << " = " << bitmaskName << ";" << std::endl;
}
leaveProtect(os, bitmaskData.protect);
os << std::endl;
}
void VulkanHppGenerator::writeTypeCommand(std::ostream & os, DependencyData const& dependencyData)
{
assert(m_commands.find(dependencyData.name) != m_commands.end());
CommandData const& commandData = m_commands.find(dependencyData.name)->second;
if (commandData.className.empty())
{
if (commandData.fullName == "createInstance")
{
// special handling for createInstance, as we need to explicitly place the forward declarations and the deleter classes here
auto deleterTypesIt = m_deleterTypes.find("");
assert((deleterTypesIt != m_deleterTypes.end()) && (deleterTypesIt->second.size() == 1));
writeUniqueTypes(os, *deleterTypesIt);
writeTypeCommand(os, " ", commandData, false);
}
else
{
writeTypeCommand(os, " ", commandData, false);
}
writeTypeCommand(os, " ", commandData, true);
os << std::endl;
}
}
void VulkanHppGenerator::writeTypeCommand(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool definition)
{
enterProtect(os, commandData.protect);
bool isStructureChain = m_extendedStructs.find(commandData.enhancedReturnType) != m_extendedStructs.end();
// first create the standard version of the function
std::ostringstream standard;
writeFunction(standard, indentation, commandData, definition, false, false, false, false);
// then the enhanced version, composed by up to five parts
std::ostringstream enhanced;
writeFunction(enhanced, indentation, commandData, definition, true, false, false, false);
if (isStructureChain)
{
writeFunction(enhanced, indentation, commandData, definition, true, false, false, true);
}
// then a singular version, if a sized vector would be returned
std::map<size_t, size_t>::const_iterator returnVector = commandData.vectorParams.find(commandData.returnParam);
bool singular = (returnVector != commandData.vectorParams.end()) && (returnVector->second != ~0) && (commandData.params[returnVector->second].type.back() != '*');
if (singular)
{
writeFunction(enhanced, indentation, commandData, definition, true, true, false, false);
}
// special handling for createDevice and createInstance !
bool specialWriteUnique = (commandData.reducedName == "createDevice") || (commandData.reducedName == "createInstance");
// and then the same for the Unique* versions (a Deleter is available for the commandData's class, and the function starts with 'allocate' or 'create')
if (((m_deleters.find(commandData.className) != m_deleters.end()) || specialWriteUnique) && ((commandData.reducedName.substr(0, 8) == "allocate") || (commandData.reducedName.substr(0, 6) == "create")))
{
enhanced << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl;
writeFunction(enhanced, indentation, commandData, definition, true, false, true, false);
if (singular)
{
writeFunction(enhanced, indentation, commandData, definition, true, true, true, false);
}
enhanced << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl;
}
// and write one or both of them
writeStandardOrEnhanced(os, standard.str(), enhanced.str());
leaveProtect(os, commandData.protect);
os << std::endl;
}
void VulkanHppGenerator::writeTypeEnum(std::ostream & os, EnumData const& enumData)
{
// a named enum per enum, listing all its values by setting them to the original Vulkan names
enterProtect(os, enumData.protect);
os << " enum class " << enumData.name << std::endl
<< " {" << std::endl;
for (size_t i = 0; i<enumData.values.size(); i++)
{
os << " " << enumData.values[i].name << " = " << enumData.values[i].value;
if (!enumData.values[i].alias.empty())
{
os << "," << std::endl
<< " " << enumData.values[i].alias << " = " << enumData.values[i].value;
}
if (i < enumData.values.size() - 1)
{
os << ",";
}
os << std::endl;
}
os << " };" << std::endl;
leaveProtect(os, enumData.protect);
os << std::endl;
}
void VulkanHppGenerator::writeTypeHandle(std::ostream & os, DependencyData const& dependencyData, HandleData const& handleData)
{
enterProtect(os, handleData.protect);
// check if there are any forward dependenices for this handle -> list them first
if (!dependencyData.forwardDependencies.empty())
{
os << " // forward declarations" << std::endl;
for (std::set<std::string>::const_iterator it = dependencyData.forwardDependencies.begin(); it != dependencyData.forwardDependencies.end(); ++it)
{
assert(m_structs.find(*it) != m_structs.end());
os << " struct " << *it << ";" << std::endl;
}
os << std::endl;
}
// then write any forward declaration of Deleters used by this handle
std::map<std::string, std::set<std::string>>::const_iterator deleterTypesIt = m_deleterTypes.find(dependencyData.name);
if (deleterTypesIt != m_deleterTypes.end())
{
writeUniqueTypes(os, *deleterTypesIt);
}
const std::string memberName = startLowerCase(dependencyData.name);
const std::string templateString =
R"( class ${className}
{
public:
${className}()
: m_${memberName}(VK_NULL_HANDLE)
{}
${className}( std::nullptr_t )
: m_${memberName}(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT ${className}( Vk${className} ${memberName} )
: m_${memberName}( ${memberName} )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
${className} & operator=(Vk${className} ${memberName})
{
m_${memberName} = ${memberName};
return *this;
}
#endif
${className} & operator=( std::nullptr_t )
{
m_${memberName} = VK_NULL_HANDLE;
return *this;
}
bool operator==( ${className} const & rhs ) const
{
return m_${memberName} == rhs.m_${memberName};
}
bool operator!=(${className} const & rhs ) const
{
return m_${memberName} != rhs.m_${memberName};
}
bool operator<(${className} const & rhs ) const
{
return m_${memberName} < rhs.m_${memberName};
}
${commands}
VULKAN_HPP_TYPESAFE_EXPLICIT operator Vk${className}() const
{
return m_${memberName};
}
explicit operator bool() const
{
return m_${memberName} != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_${memberName} == VK_NULL_HANDLE;
}
private:
Vk${className} m_${memberName};
};
static_assert( sizeof( ${className} ) == sizeof( Vk${className} ), "handle and wrapper have different size!" );
)";
std::ostringstream commands;
// now list all the commands that are mapped to members of this class
for (size_t i = 0; i < handleData.commands.size(); i++)
{
std::map<std::string, CommandData>::const_iterator cit = m_commands.find(handleData.commands[i]);
assert((cit != m_commands.end()) && !cit->second.className.empty());
writeTypeCommand(commands, " ", cit->second, false);
// special handling for destroy functions
if (((cit->second.fullName.substr(0, 7) == "destroy") && (cit->second.reducedName != "destroy")) || (cit->second.fullName.substr(0, 4) == "free"))
{
CommandData shortenedCommand = cit->second;
shortenedCommand.reducedName = (cit->second.fullName.substr(0, 7) == "destroy") ? "destroy" : "free";
writeTypeCommand(commands, " ", shortenedCommand, false);
}
}
os << replaceWithMap(templateString, {
{ "className", dependencyData.name },
{ "memberName", memberName },
{ "commands", commands.str() }
});
// and finally the commands, that are member functions of this handle
for (size_t i = 0; i < handleData.commands.size(); i++)
{
std::string commandName = handleData.commands[i];
std::map<std::string, CommandData>::const_iterator cit = m_commands.find(commandName);
assert((cit != m_commands.end()) && !cit->second.className.empty());
std::list<DependencyData>::const_iterator dep = std::find_if(m_dependencies.begin(), m_dependencies.end(), [commandName](DependencyData const& dd) { return dd.name == commandName; });
assert(dep != m_dependencies.end() && (dep->name == cit->second.fullName));
writeTypeCommand(os, " ", cit->second, true);
// special handling for destroy functions
if (((cit->second.fullName.substr(0, 7) == "destroy") && (cit->second.reducedName != "destroy")) || (cit->second.fullName.substr(0, 4) == "free"))
{
CommandData shortenedCommand = cit->second;
shortenedCommand.reducedName = (cit->second.fullName.substr(0, 7) == "destroy") ? "destroy" : "free";
writeTypeCommand(os, " ", shortenedCommand, true);
}
}
if (!handleData.alias.empty())
{
os << " using " << handleData.alias << " = " << dependencyData.name << ";" << std::endl
<< std::endl;
}
leaveProtect(os, handleData.protect);
}
void VulkanHppGenerator::writeTypes(std::ostream & os, std::map<std::string, std::string> const& defaultValues)
{
assert(m_deleterTypes.find("") != m_deleterTypes.end());
for (std::list<DependencyData>::const_iterator it = m_dependencies.begin(); it != m_dependencies.end(); ++it)
{
switch (it->category)
{
case DependencyData::Category::BITMASK:
assert(m_bitmasks.find(it->name) != m_bitmasks.end());
writeTypeBitmask(os, it->name, m_bitmasks.find(it->name)->second, m_enums.find(generateEnumNameForFlags(it->name))->second);
break;
case DependencyData::Category::COMMAND:
writeTypeCommand(os, *it);
break;
case DependencyData::Category::ENUM:
assert(m_enums.find(it->name) != m_enums.end());
writeTypeEnum(os, m_enums.find(it->name)->second);
break;
case DependencyData::Category::FUNC_POINTER:
case DependencyData::Category::REQUIRED:
// skip FUNC_POINTER and REQUIRED, they just needed to be in the dependencies list to resolve dependencies
break;
case DependencyData::Category::HANDLE:
assert(m_handles.find(it->name) != m_handles.end());
writeTypeHandle(os, *it, m_handles.find(it->name)->second);
break;
case DependencyData::Category::SCALAR:
writeTypeScalar(os, *it);
break;
case DependencyData::Category::STRUCT:
writeTypeStruct(os, *it, defaultValues);
break;
case DependencyData::Category::UNION:
assert(m_structs.find(it->name) != m_structs.end());
writeTypeUnion(os, *it, defaultValues);
break;
default:
assert(false);
break;
}
}
}
void VulkanHppGenerator::writeTypeScalar(std::ostream & os, DependencyData const& dependencyData)
{
assert(dependencyData.dependencies.size() == 1);
os << " using " << dependencyData.name << " = " << *dependencyData.dependencies.begin() << ";" << std::endl
<< std::endl;
}
void VulkanHppGenerator::writeTypeStruct(std::ostream & os, DependencyData const& dependencyData, std::map<std::string, std::string> const& defaultValues)
{
std::map<std::string, StructData>::const_iterator it = m_structs.find(dependencyData.name);
assert(it != m_structs.end());
enterProtect(os, it->second.protect);
os << " struct " << dependencyData.name << std::endl
<< " {" << std::endl;
// only structs that are not returnedOnly get a constructor!
if (!it->second.returnedOnly)
{
writeStructConstructor(os, dependencyData.name, it->second, defaultValues);
}
// create the setters
if (!it->second.returnedOnly)
{
for (size_t i = 0; i<it->second.members.size(); i++)
{
writeStructSetter(os, dependencyData.name, it->second.members[i]);
}
}
// the cast-operator to the wrapped struct
os << " operator const Vk" << dependencyData.name << "&() const" << std::endl
<< " {" << std::endl
<< " return *reinterpret_cast<const Vk" << dependencyData.name << "*>(this);" << std::endl
<< " }" << std::endl
<< std::endl;
// operator==() and operator!=()
// only structs without a union as a member can have a meaningfull == and != operation; we filter them out
if (!containsUnion(dependencyData.name, m_structs))
{
// two structs are compared by comparing each of the elements
os << " bool operator==( " << dependencyData.name << " const& rhs ) const" << std::endl
<< " {" << std::endl
<< " return ";
for (size_t i = 0; i < it->second.members.size(); i++)
{
if (i != 0)
{
os << std::endl << " && ";
}
if (!it->second.members[i].arraySize.empty())
{
os << "( memcmp( " << it->second.members[i].name << ", rhs." << it->second.members[i].name << ", " << it->second.members[i].arraySize << " * sizeof( " << it->second.members[i].type << " ) ) == 0 )";
}
else
{
os << "( " << it->second.members[i].name << " == rhs." << it->second.members[i].name << " )";
}
}
os << ";" << std::endl
<< " }" << std::endl
<< std::endl
<< " bool operator!=( " << dependencyData.name << " const& rhs ) const" << std::endl
<< " {" << std::endl
<< " return !operator==( rhs );" << std::endl
<< " }" << std::endl
<< std::endl;
}
// the member variables
for (size_t i = 0; i < it->second.members.size(); i++)
{
if (it->second.members[i].type == "StructureType")
{
assert((i == 0) && (it->second.members[i].name == "sType"));
assert(!it->second.members[i].values.empty());
auto nameIt = m_nameMap.find(it->second.members[i].values);
assert(nameIt != m_nameMap.end());
os << " private:" << std::endl
<< " StructureType sType = " << nameIt->second << ";" << std::endl
<< std::endl
<< " public:" << std::endl;
}
else
{
os << " " << it->second.members[i].type << " " << it->second.members[i].name;
if (it->second.members[i].name == "pNext")
{
os << " = nullptr";
}
else if (!it->second.members[i].arraySize.empty())
{
os << "[" << it->second.members[i].arraySize << "]";
}
os << ";" << std::endl;
}
}
os << " };" << std::endl
<< " static_assert( sizeof( " << dependencyData.name << " ) == sizeof( Vk" << dependencyData.name << " ), \"struct and wrapper have different size!\" );" << std::endl;
if (!it->second.alias.empty())
{
os << std::endl
<< " using " << it->second.alias << " = " << dependencyData.name << ";" << std::endl;
}
leaveProtect(os, it->second.protect);
os << std::endl;
}
void VulkanHppGenerator::writeUniqueTypes(std::ostream &os, std::pair<std::string, std::set<std::string>> const& deleterTypes)
{
os << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl;
if (!deleterTypes.first.empty())
{
os << " class " << deleterTypes.first << ";" << std::endl;
}
os << std::endl;
bool first = true;
for (auto const& dt : deleterTypes.second)
{
auto ddit = m_deleters.find(dt);
assert(ddit != m_deleters.end());
os << " template <> class UniqueHandleTraits<" << dt << "> {public: using deleter = " << (ddit->second.pool.empty() ? "Object" : "Pool") << "Deleter<" << (deleterTypes.first.empty() ? "NoParent" : deleterTypes.first) << (ddit->second.pool.empty() ? "" : ", " + ddit->second.pool) << ">; };\n";
os << " using Unique" << dt << " = UniqueHandle<" << dt << ">;" << std::endl;
}
os << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl
<< std::endl;
}
void VulkanHppGenerator::writeTypeUnion(std::ostream & os, DependencyData const& dependencyData, std::map<std::string, std::string> const& defaultValues)
{
std::map<std::string, StructData>::const_iterator it = m_structs.find(dependencyData.name);
assert(it != m_structs.end());
std::ostringstream oss;
os << " union " << dependencyData.name << std::endl
<< " {" << std::endl;
for (size_t i = 0; i<it->second.members.size(); i++)
{
// one constructor per union element
os << " " << dependencyData.name << "( ";
if (it->second.members[i].arraySize.empty())
{
os << it->second.members[i].type << " ";
}
else
{
os << "const std::array<" << it->second.members[i].type << "," << it->second.members[i].arraySize << ">& ";
}
os << it->second.members[i].name << "_";
// just the very first constructor gets default arguments
if (i == 0)
{
std::map<std::string, std::string>::const_iterator defaultIt = defaultValues.find(it->second.members[i].pureType);
assert(defaultIt != defaultValues.end());
if (it->second.members[i].arraySize.empty())
{
os << " = " << defaultIt->second;
}
else
{
os << " = { {" << defaultIt->second << "} }";
}
}
os << " )" << std::endl
<< " {" << std::endl
<< " ";
if (it->second.members[i].arraySize.empty())
{
os << it->second.members[i].name << " = " << it->second.members[i].name << "_";
}
else
{
os << "memcpy( &" << it->second.members[i].name << ", " << it->second.members[i].name << "_.data(), " << it->second.members[i].arraySize << " * sizeof( " << it->second.members[i].type << " ) )";
}
os << ";" << std::endl
<< " }" << std::endl
<< std::endl;
}
for (size_t i = 0; i<it->second.members.size(); i++)
{
// one setter per union element
assert(!it->second.returnedOnly);
writeStructSetter(os, dependencyData.name, it->second.members[i]);
}
// the implicit cast operator to the native type
os << " operator Vk" << dependencyData.name << " const& () const" << std::endl
<< " {" << std::endl
<< " return *reinterpret_cast<const Vk" << dependencyData.name << "*>(this);" << std::endl
<< " }" << std::endl
<< std::endl;
// the union member variables
// if there's at least one Vk... type in this union, check for unrestricted unions support
bool needsUnrestrictedUnions = false;
for (size_t i = 0; i < it->second.members.size() && !needsUnrestrictedUnions; i++)
{
needsUnrestrictedUnions = (m_vkTypes.find(it->second.members[i].type) != m_vkTypes.end());
}
if (needsUnrestrictedUnions)
{
os << "#ifdef VULKAN_HPP_HAS_UNRESTRICTED_UNIONS" << std::endl;
for (size_t i = 0; i < it->second.members.size(); i++)
{
os << " " << it->second.members[i].type << " " << it->second.members[i].name;
if (!it->second.members[i].arraySize.empty())
{
os << "[" << it->second.members[i].arraySize << "]";
}
os << ";" << std::endl;
}
os << "#else" << std::endl;
}
for (size_t i = 0; i < it->second.members.size(); i++)
{
os << " ";
if (m_vkTypes.find(it->second.members[i].type) != m_vkTypes.end())
{
os << "Vk";
}
os << it->second.members[i].type << " " << it->second.members[i].name;
if (!it->second.members[i].arraySize.empty())
{
os << "[" << it->second.members[i].arraySize << "]";
}
os << ";" << std::endl;
}
if (needsUnrestrictedUnions)
{
os << "#endif // VULKAN_HPP_HAS_UNRESTRICTED_UNIONS" << std::endl;
}
os << " };" << std::endl
<< std::endl;
}
#if !defined(NDEBUG)
void VulkanHppGenerator::checkExtensionRequirements()
{
for (auto const& ext : m_extensions)
{
for (auto const& req : ext.second.requires)
{
auto reqExt = m_extensions.find(req);
assert(reqExt != m_extensions.end());
assert(reqExt->second.protect.empty() || (reqExt->second.protect == ext.second.protect));
}
}
}
void VulkanHppGenerator::skipVendorID(tinyxml2::XMLElement const* element)
{
std::map<std::string, std::string> attributes = getAttributes(element);
checkAttributes(attributes, element->GetLineNum(), { { "comment",{} },{ "id",{} },{ "name",{} } }, {});
checkElements(getChildElements(element), {});
VendorIDData vendorID;
for (auto const& attribute : attributes)
{
std::string name = attribute.first;
if (name == "comment")
{
vendorID.comment = attribute.second;
}
else if (name == "id")
{
vendorID.id = attribute.second;
}
else
{
assert(name == "name");
vendorID.name = attribute.second;
}
}
m_vendorIDs.push_back(vendorID);
}
void VulkanHppGenerator::skipVendorIDs(tinyxml2::XMLElement const* element)
{
checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {});
std::vector<tinyxml2::XMLElement const*> children = getChildElements(element);
checkElements(children, { "vendorid" });
for (auto child : children)
{
skipVendorID(child);
}
}
#endif
void VulkanHppGenerator::EnumData::addEnumValue(std::string const &name, std::string const& tag, std::map<std::string, std::string> & nameMap)
{
EnumValueData evd;
evd.name = createEnumValueName(name, prefix, postfix, bitmask, tag);
evd.value = name;
auto it = std::find_if(values.begin(), values.end(), [&evd](EnumValueData const& _evd) { return _evd.name == evd.name; });
if (it == values.end())
{
values.push_back(evd);
assert(nameMap.find(name) == nameMap.end());
nameMap[name] = this->name + "::" + evd.name;
}
else
{
assert(it->value == evd.value);
}
}
void VulkanHppGenerator::writeDelegationClassStatic(std::ostream &os)
{
os << "class DispatchLoaderStatic" << std::endl
<< "{" << std::endl
<< "public:\n";
for (auto command : m_commands)
{
enterProtect(os, command.second.protect);
os << " " << command.second.unchangedReturnType << " vk" << startUpperCase(command.second.fullName) << "( ";
bool first = true;
for (auto param : command.second.params)
{
if (!first) {
os << ", ";
}
os << param.unchangedType << " " << param.name;
if (!param.arraySize.empty())
{
os << "[" << param.arraySize << "]";
}
first = false;
}
os << " ) const\n"
<< " {\n"
<< " return ::vk" << startUpperCase(command.second.fullName) << "( ";
first = true;
for (auto param : command.second.params)
{
if (!first) {
os << ", ";
}
os << param.name;
first = false;
}
os << ");\n";
os << " }\n";
leaveProtect(os, command.second.protect);
}
os << "};\n";
}
void VulkanHppGenerator::writeDelegationClassDynamic(std::ostream &os)
{
os << " class DispatchLoaderDynamic" << std::endl
<< " {" << std::endl
<< " public:" << std::endl;
for (auto command : m_commands)
{
enterProtect(os, command.second.protect);
os << " PFN_vk" << startUpperCase(command.second.fullName) << " vk" << startUpperCase(command.second.fullName) << " = 0;" << std::endl;
leaveProtect(os, command.second.protect);
}
// write initialization function to fetch function pointers
os << " public:" << std::endl
<< " DispatchLoaderDynamic(Instance instance = Instance(), Device device = Device())" << std::endl
<< " {" << std::endl
<< " if (instance)" << std::endl
<< " {" << std::endl
<< " init(instance, device);" << std::endl
<< " }" << std::endl
<< " }" << std::endl << std::endl
<< " void init(Instance instance, Device device = Device())" << std::endl
<< " {" << std::endl;
for (auto command : m_commands)
{
enterProtect(os, command.second.protect);
if (!command.second.params.empty()
&& m_handles.find(command.second.params[0].type) != m_handles.end()
&& command.second.params[0].type != "Instance")
{
os << " vk" << startUpperCase(command.second.fullName) << " = PFN_vk" << startUpperCase(command.second.fullName)
<< "(device ? device.getProcAddr( \"vk" << startUpperCase(command.second.fullName) << "\") : instance.getProcAddr( \"vk" << startUpperCase(command.second.fullName) << "\"));" << std::endl;
}
else {
os << " vk" << startUpperCase(command.second.fullName) << " = PFN_vk" << startUpperCase(command.second.fullName) << "(instance.getProcAddr( \"vk" << startUpperCase(command.second.fullName) << "\"));" << std::endl;
}
leaveProtect(os, command.second.protect);
}
os << " }" << std::endl;
os << " };\n";
}
int main( int argc, char **argv )
{
try {
tinyxml2::XMLDocument doc;
std::string filename = (argc == 1) ? VK_SPEC : argv[1];
std::cout << "Loading vk.xml from " << filename << std::endl;
std::cout << "Writing vulkan.hpp to " << VULKAN_HPP << std::endl;
tinyxml2::XMLError error = doc.LoadFile(filename.c_str());
if (error != tinyxml2::XML_SUCCESS)
{
std::cout << "VkGenerate: failed to load file " << filename << " . Error code: " << error << std::endl;
return -1;
}
VulkanHppGenerator generator;
tinyxml2::XMLElement const* registryElement = doc.FirstChildElement();
checkAttributes(getAttributes(registryElement), registryElement->GetLineNum(), {}, {});
assert(strcmp(registryElement->Value(), "registry") == 0);
assert(!registryElement->NextSiblingElement());
std::vector<tinyxml2::XMLElement const*> children = getChildElements(registryElement);
checkElements(children, { "commands", "comment", "enums", "extensions", "feature", "tags", "types", "vendorids" });
for (auto child : children)
{
const std::string value = child->Value();
if (value == "commands")
{
generator.readCommands(child);
}
else if (value == "comment")
{
// get the vulkan license header and skip any leading spaces
generator.readComment(child);
}
else if (value == "enums")
{
generator.readEnums(child);
}
else if (value == "extensions")
{
generator.readExtensions(child);
}
else if (value == "feature")
{
generator.readFeature(child);
}
else if (value == "tags")
{
generator.readTags(child);
}
else if (value == "types")
{
generator.readTypes(child);
}
else
{
assert(value == "vendorids");
#if !defined(NDEBUG)
generator.skipVendorIDs(child);
#endif
}
}
generator.sortDependencies();
#if !defined(NDEBUG)
generator.checkExtensionRequirements();
#endif
std::map<std::string, std::string> defaultValues = generator.createDefaults();
std::ofstream ofs(VULKAN_HPP);
ofs << generator.getVulkanLicenseHeader() << std::endl
<< R"(
#ifndef VULKAN_HPP
#define VULKAN_HPP
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <string>
#include <system_error>
#include <tuple>
#include <type_traits>
#include <vulkan/vulkan.h>
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
# include <memory>
# include <vector>
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#if !defined(VULKAN_HPP_ASSERT)
# include <cassert>
# define VULKAN_HPP_ASSERT assert
#endif
)";
writeVersionCheck(ofs, generator.getVersion());
writeTypesafeCheck(ofs, generator.getTypesafeCheck());
ofs << versionCheckHeader
<< inlineHeader
<< explicitHeader
<< std::endl
<< vkNamespace
<< flagsHeader
<< optionalClassHeader
<< arrayProxyHeader
<< uniqueHandleHeader
<< structureChainHeader;
// first of all, write out vk::Result and the exception handling stuff
generator.writeResultEnum(ofs);
ofs << "} // namespace VULKAN_HPP_NAMESPACE" << std::endl
<< std::endl
<< "namespace std" << std::endl
<< "{" << std::endl
<< " template <>" << std::endl
<< " struct is_error_code_enum<VULKAN_HPP_NAMESPACE::Result> : public true_type" << std::endl
<< " {};" << std::endl
<< "}" << std::endl
<< std::endl
<< "namespace VULKAN_HPP_NAMESPACE" << std::endl
<< "{" << std::endl
<< resultValueHeader
<< createResultValueHeader
<< deleterClassString;
generator.writeDelegationClassStatic(ofs);
generator.writeTypes(ofs, defaultValues);
generator.writeStructureChainValidation(ofs);
generator.writeToStringFunctions(ofs);
generator.writeDelegationClassDynamic(ofs);
ofs << "} // namespace VULKAN_HPP_NAMESPACE" << std::endl
<< std::endl
<< "#endif" << std::endl;
}
catch (std::exception const& e)
{
std::cout << "caught exception: " << e.what() << std::endl;
return -1;
}
catch (...)
{
std::cout << "caught unknown exception" << std::endl;
return -1;
}
}