Fix in defragmentation versus mapping

by @medranSolus

Added TestDefragmentationVsMapping.
This commit is contained in:
Adam Sawicki 2022-03-09 13:24:06 +01:00
parent e4dd120c2f
commit 31910c8b08
2 changed files with 133 additions and 3 deletions

View File

@ -12049,10 +12049,8 @@ uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocat
VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK); VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK);
m_MapCount = allocation->m_MapCount;
if (m_MapCount != 0) if (m_MapCount != 0)
m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount); m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount);
allocation->m_MapCount = 0;
m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation); m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation);
VMA_SWAP(m_BlockAllocation, allocation->m_BlockAllocation); VMA_SWAP(m_BlockAllocation, allocation->m_BlockAllocation);

View File

@ -31,6 +31,7 @@
#ifdef _WIN32 #ifdef _WIN32
static const char* CODE_DESCRIPTION = "Foo"; static const char* CODE_DESCRIPTION = "Foo";
static constexpr VkDeviceSize KILOBYTE = 1024;
static constexpr VkDeviceSize MEGABYTE = 1024 * 1024; static constexpr VkDeviceSize MEGABYTE = 1024 * 1024;
extern VkCommandBuffer g_hTemporaryCommandBuffer; extern VkCommandBuffer g_hTemporaryCommandBuffer;
@ -1923,6 +1924,136 @@ void TestDefragmentationSimple()
vmaDestroyPool(g_hAllocator, pool); vmaDestroyPool(g_hAllocator, pool);
} }
void TestDefragmentationVsMapping()
{
wprintf(L"Test defragmentation vs mapping\n");
VkBufferCreateInfo bufCreateInfo = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
bufCreateInfo.size = 64 * KILOBYTE;
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
VmaAllocationCreateInfo dummyAllocCreateInfo = {};
dummyAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
dummyAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
VmaPoolCreateInfo poolCreateInfo = {};
poolCreateInfo.flags = VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT;
poolCreateInfo.blockSize = 1 * MEGABYTE;
TEST(vmaFindMemoryTypeIndexForBufferInfo(g_hAllocator, &bufCreateInfo, &dummyAllocCreateInfo, &poolCreateInfo.memoryTypeIndex)
== VK_SUCCESS);
VmaPool pool = VK_NULL_HANDLE;
TEST(vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool) == VK_SUCCESS);
RandomNumberGenerator rand{2355762};
// 16 * 64 KB allocations fit into a single 1 MB block. Create 10 such blocks.
constexpr uint32_t START_ALLOC_COUNT = 160;
std::vector<AllocInfo> allocs{START_ALLOC_COUNT};
constexpr uint32_t RAND_NUM_PERSISTENTLY_MAPPED_BIT = 0x1000;
constexpr uint32_t RAND_NUM_MANUAL_MAP_COUNT_MASK = 0x3;
// Create all the allocations, map what's needed.
{
VmaAllocationCreateInfo allocCreateInfo = {};
allocCreateInfo.pool = pool;
for(size_t allocIndex = 0; allocIndex < START_ALLOC_COUNT; ++allocIndex)
{
const uint32_t randNum = rand.Generate();
if(randNum & RAND_NUM_PERSISTENTLY_MAPPED_BIT)
allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
else
allocCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
allocs[allocIndex].CreateBuffer(bufCreateInfo, allocCreateInfo);
vmaSetAllocationUserData(g_hAllocator, allocs[allocIndex].m_Allocation, (void*)(uintptr_t)randNum);
}
}
// Destroy 2/3 of them.
for(uint32_t i = 0; i < START_ALLOC_COUNT * 2 / 3; ++i)
{
const uint32_t allocIndexToRemove = rand.Generate() % allocs.size();
allocs[allocIndexToRemove].Destroy();
allocs.erase(allocs.begin() + allocIndexToRemove);
}
// Map the remaining allocations the right number of times.
for(size_t allocIndex = 0, allocCount = allocs.size(); allocIndex < allocCount; ++allocIndex)
{
VmaAllocationInfo allocInfo;
vmaGetAllocationInfo(g_hAllocator, allocs[allocIndex].m_Allocation, &allocInfo);
const uint32_t randNum = (uint32_t)(uintptr_t)allocInfo.pUserData;
const uint32_t mapCount = randNum & RAND_NUM_MANUAL_MAP_COUNT_MASK;
for(uint32_t mapIndex = 0; mapIndex < mapCount; ++mapIndex)
{
void* ptr;
TEST(vmaMapMemory(g_hAllocator, allocs[allocIndex].m_Allocation, &ptr) == VK_SUCCESS);
TEST(ptr != nullptr);
}
}
// Defragment!
{
VmaDefragmentationInfo defragInfo = {};
defragInfo.pool = pool;
defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT;
VmaDefragmentationContext defragCtx;
TEST(vmaBeginDefragmentation(g_hAllocator, &defragInfo, &defragCtx) == VK_SUCCESS);
for(uint32_t passIndex = 0; ; ++passIndex)
{
VmaDefragmentationPassMoveInfo passInfo = {};
VkResult res = vmaBeginDefragmentationPass(g_hAllocator, defragCtx, &passInfo);
if(res == VK_SUCCESS)
break;
TEST(res == VK_INCOMPLETE);
wprintf(L" Pass %u moving %u allocations\n", passIndex, passInfo.moveCount);
for(uint32_t moveIndex = 0; moveIndex < passInfo.moveCount; ++moveIndex)
{
if(rand.Generate() % 5 == 0)
passInfo.pMoves[moveIndex].operation = VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE;
}
res = vmaEndDefragmentationPass(g_hAllocator, defragCtx, &passInfo);
if(res == VK_SUCCESS)
break;
TEST(res == VK_INCOMPLETE);
}
VmaDefragmentationStats defragStats = {};
vmaEndDefragmentation(g_hAllocator, defragCtx, &defragStats);
wprintf(L" Defragmentation: moved %u allocations, %llu B, freed %u memory blocks, %llu B\n",
defragStats.allocationsMoved, defragStats.bytesMoved,
defragStats.deviceMemoryBlocksFreed, defragStats.bytesFreed);
TEST(defragStats.allocationsMoved > 0 && defragStats.bytesMoved > 0);
TEST(defragStats.deviceMemoryBlocksFreed > 0 && defragStats.bytesFreed > 0);
}
// Test mapping and unmap
for(size_t allocIndex = allocs.size(); allocIndex--; )
{
VmaAllocationInfo allocInfo;
vmaGetAllocationInfo(g_hAllocator, allocs[allocIndex].m_Allocation, &allocInfo);
const uint32_t randNum = (uint32_t)(uintptr_t)allocInfo.pUserData;
const bool isMapped = (randNum & (RAND_NUM_PERSISTENTLY_MAPPED_BIT | RAND_NUM_MANUAL_MAP_COUNT_MASK)) != 0;
TEST(isMapped == (allocInfo.pMappedData != nullptr));
const uint32_t mapCount = randNum & RAND_NUM_MANUAL_MAP_COUNT_MASK;
for(uint32_t mapIndex = 0; mapIndex < mapCount; ++mapIndex)
vmaUnmapMemory(g_hAllocator, allocs[allocIndex].m_Allocation);
}
// Destroy all the remaining allocations.
for(size_t i = allocs.size(); i--; )
allocs[i].Destroy();
vmaDestroyPool(g_hAllocator, pool);
}
void TestDefragmentationAlgorithms() void TestDefragmentationAlgorithms()
{ {
wprintf(L"Test defragmentation simple\n"); wprintf(L"Test defragmentation simple\n");
@ -7708,9 +7839,10 @@ void Test()
fclose(file); fclose(file);
} }
TestDefragmentationSimple();
TestDefragmentationVsMapping();
if (ConfigType >= CONFIG_TYPE_AVERAGE) if (ConfigType >= CONFIG_TYPE_AVERAGE)
{ {
TestDefragmentationSimple();
TestDefragmentationAlgorithms(); TestDefragmentationAlgorithms();
TestDefragmentationFull(); TestDefragmentationFull();
TestDefragmentationGpu(); TestDefragmentationGpu();