mirror of
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
synced 2025-01-13 19:00:06 +00:00
Added support for multiple Vulkan memory blocks in custom pools with VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT. Works with free-at-once and stack, doesn't work with double stack or ring buffer.
Added new structure members VmaPoolStats::blockCount.
This commit is contained in:
parent
ee79c63d61
commit
70a683e53f
150
src/Tests.cpp
150
src/Tests.cpp
@ -1839,14 +1839,139 @@ static void TestLinearAllocator()
|
||||
bufInfo.clear();
|
||||
}
|
||||
|
||||
// Try to create pool with maxBlockCount higher than 1. It should fail.
|
||||
{
|
||||
VmaPoolCreateInfo altPoolCreateInfo = poolCreateInfo;
|
||||
altPoolCreateInfo.maxBlockCount = 2;
|
||||
vmaDestroyPool(g_hAllocator, pool);
|
||||
}
|
||||
|
||||
VmaPool altPool = nullptr;
|
||||
res = vmaCreatePool(g_hAllocator, &altPoolCreateInfo, &altPool);
|
||||
assert(res != VK_SUCCESS);
|
||||
static void TestLinearAllocatorMultiBlock()
|
||||
{
|
||||
wprintf(L"Test linear allocator multi block\n");
|
||||
|
||||
RandomNumberGenerator rand{345673};
|
||||
|
||||
VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
||||
sampleBufCreateInfo.size = 1024 * 1024;
|
||||
sampleBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
||||
|
||||
VmaAllocationCreateInfo sampleAllocCreateInfo = {};
|
||||
sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
||||
|
||||
VmaPoolCreateInfo poolCreateInfo = {};
|
||||
poolCreateInfo.flags = VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT;
|
||||
VkResult res = vmaFindMemoryTypeIndexForBufferInfo(g_hAllocator, &sampleBufCreateInfo, &sampleAllocCreateInfo, &poolCreateInfo.memoryTypeIndex);
|
||||
assert(res == VK_SUCCESS);
|
||||
|
||||
VmaPool pool = nullptr;
|
||||
res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool);
|
||||
assert(res == VK_SUCCESS);
|
||||
|
||||
VkBufferCreateInfo bufCreateInfo = sampleBufCreateInfo;
|
||||
|
||||
VmaAllocationCreateInfo allocCreateInfo = {};
|
||||
allocCreateInfo.pool = pool;
|
||||
|
||||
std::vector<BufferInfo> bufInfo;
|
||||
VmaAllocationInfo allocInfo;
|
||||
|
||||
// Test one-time free.
|
||||
{
|
||||
// Allocate buffers until we move to a second block.
|
||||
VkDeviceMemory lastMem = VK_NULL_HANDLE;
|
||||
for(uint32_t i = 0; ; ++i)
|
||||
{
|
||||
BufferInfo newBufInfo;
|
||||
res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
||||
&newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
||||
assert(res == VK_SUCCESS);
|
||||
bufInfo.push_back(newBufInfo);
|
||||
if(lastMem && allocInfo.deviceMemory != lastMem)
|
||||
{
|
||||
break;
|
||||
}
|
||||
lastMem = allocInfo.deviceMemory;
|
||||
}
|
||||
|
||||
assert(bufInfo.size() > 2);
|
||||
|
||||
// Make sure that pool has now two blocks.
|
||||
VmaPoolStats poolStats = {};
|
||||
vmaGetPoolStats(g_hAllocator, pool, &poolStats);
|
||||
assert(poolStats.blockCount == 2);
|
||||
|
||||
// Destroy all the buffers in random order.
|
||||
while(!bufInfo.empty())
|
||||
{
|
||||
const size_t indexToDestroy = rand.Generate() % bufInfo.size();
|
||||
const BufferInfo& currBufInfo = bufInfo[indexToDestroy];
|
||||
vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
||||
bufInfo.erase(bufInfo.begin() + indexToDestroy);
|
||||
}
|
||||
|
||||
// Make sure that pool has now at most one block.
|
||||
vmaGetPoolStats(g_hAllocator, pool, &poolStats);
|
||||
assert(poolStats.blockCount <= 1);
|
||||
}
|
||||
|
||||
// Test stack.
|
||||
{
|
||||
// Allocate buffers until we move to a second block.
|
||||
VkDeviceMemory lastMem = VK_NULL_HANDLE;
|
||||
for(uint32_t i = 0; ; ++i)
|
||||
{
|
||||
BufferInfo newBufInfo;
|
||||
res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
||||
&newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
||||
assert(res == VK_SUCCESS);
|
||||
bufInfo.push_back(newBufInfo);
|
||||
if(lastMem && allocInfo.deviceMemory != lastMem)
|
||||
{
|
||||
break;
|
||||
}
|
||||
lastMem = allocInfo.deviceMemory;
|
||||
}
|
||||
|
||||
assert(bufInfo.size() > 2);
|
||||
|
||||
// Add few more buffers.
|
||||
for(uint32_t i = 0; i < 5; ++i)
|
||||
{
|
||||
BufferInfo newBufInfo;
|
||||
res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
||||
&newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
||||
assert(res == VK_SUCCESS);
|
||||
bufInfo.push_back(newBufInfo);
|
||||
}
|
||||
|
||||
// Make sure that pool has now two blocks.
|
||||
VmaPoolStats poolStats = {};
|
||||
vmaGetPoolStats(g_hAllocator, pool, &poolStats);
|
||||
assert(poolStats.blockCount == 2);
|
||||
|
||||
// Delete half of buffers, LIFO.
|
||||
for(size_t i = 0, countToDelete = bufInfo.size() / 2; i < countToDelete; ++i)
|
||||
{
|
||||
const BufferInfo& currBufInfo = bufInfo.back();
|
||||
vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
||||
bufInfo.pop_back();
|
||||
}
|
||||
|
||||
// Add one more buffer.
|
||||
BufferInfo newBufInfo;
|
||||
res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo,
|
||||
&newBufInfo.Buffer, &newBufInfo.Allocation, &allocInfo);
|
||||
assert(res == VK_SUCCESS);
|
||||
bufInfo.push_back(newBufInfo);
|
||||
|
||||
// Make sure that pool has now one block.
|
||||
vmaGetPoolStats(g_hAllocator, pool, &poolStats);
|
||||
assert(poolStats.blockCount == 1);
|
||||
|
||||
// Delete all the remaining buffers, LIFO.
|
||||
while(!bufInfo.empty())
|
||||
{
|
||||
const BufferInfo& currBufInfo = bufInfo.back();
|
||||
vmaDestroyBuffer(g_hAllocator, currBufInfo.Buffer, currBufInfo.Allocation);
|
||||
bufInfo.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
vmaDestroyPool(g_hAllocator, pool);
|
||||
@ -3841,6 +3966,16 @@ void Test()
|
||||
{
|
||||
wprintf(L"TESTING:\n");
|
||||
|
||||
if(false)
|
||||
{
|
||||
// # Temporarily insert custom tests here
|
||||
TestLinearAllocator();
|
||||
ManuallyTestLinearAllocator();
|
||||
TestLinearAllocatorMultiBlock();
|
||||
BenchmarkLinearAllocator();
|
||||
return;
|
||||
}
|
||||
|
||||
// # Simple tests
|
||||
|
||||
TestBasics();
|
||||
@ -3857,6 +3992,7 @@ void Test()
|
||||
TestMappingMultithreaded();
|
||||
TestLinearAllocator();
|
||||
ManuallyTestLinearAllocator();
|
||||
TestLinearAllocatorMultiBlock();
|
||||
BenchmarkLinearAllocator();
|
||||
TestDefragmentationSimple();
|
||||
TestDefragmentationFull();
|
||||
|
@ -592,9 +592,6 @@ less memory consumed by metadata.
|
||||
With this one flag, you can create a custom pool that can be used in many ways:
|
||||
free-at-once, stack, double stack, and ring buffer. See below for details.
|
||||
|
||||
Pools with linear algorithm must have only one memory block -
|
||||
VmaPoolCreateInfo::maxBlockCount must be 1.
|
||||
|
||||
\subsection linear_algorithm_free_at_once Free-at-once
|
||||
|
||||
In a pool that uses linear algorithm, you still need to free all the allocations
|
||||
@ -607,6 +604,9 @@ to release all at once.
|
||||
|
||||
![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)
|
||||
|
||||
This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
|
||||
value that allows multiple memory blocks.
|
||||
|
||||
\subsection linear_algorithm_stack Stack
|
||||
|
||||
When you free an allocation that was created last, its space can be reused.
|
||||
@ -615,6 +615,9 @@ creation (LIFO - Last In First Out), you can achieve behavior of a stack.
|
||||
|
||||
![Stack](../gfx/Linear_allocator_4_stack.png)
|
||||
|
||||
This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
|
||||
value that allows multiple memory blocks.
|
||||
|
||||
\subsection linear_algorithm_double_stack Double stack
|
||||
|
||||
The space reserved by a custom pool with linear algorithm may be used by two
|
||||
@ -626,12 +629,15 @@ stacks:
|
||||
To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
|
||||
to VmaAllocationCreateInfo::flags.
|
||||
|
||||
![Double stack](../gfx/Linear_allocator_7_double_stack.png)
|
||||
|
||||
Double stack is available only in pools with one memory block -
|
||||
VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
|
||||
|
||||
When the two stacks' ends meet so there is not enough space between them for a
|
||||
new allocation, such allocation fails with usual
|
||||
`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
|
||||
|
||||
![Double stack](../gfx/Linear_allocator_7_double_stack.png)
|
||||
|
||||
\subsection linear_algorithm_ring_buffer Ring buffer
|
||||
|
||||
When you free some allocations from the beginning and there is not enough free space
|
||||
@ -649,6 +655,9 @@ succeeds.
|
||||
|
||||
![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png)
|
||||
|
||||
Ring buffer is available only in pools with one memory block -
|
||||
VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
|
||||
|
||||
|
||||
\page defragmentation Defragmentation
|
||||
|
||||
@ -1968,7 +1977,6 @@ typedef struct VmaPoolCreateInfo {
|
||||
/** \brief Maximum number of blocks that can be allocated in this pool. Optional.
|
||||
|
||||
Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
|
||||
When #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT is used, default is 1.
|
||||
|
||||
Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
|
||||
throughout whole lifetime of this pool.
|
||||
@ -2005,13 +2013,16 @@ typedef struct VmaPoolStats {
|
||||
/** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.
|
||||
*/
|
||||
size_t unusedRangeCount;
|
||||
/** \brief Size of the largest continuous free memory region.
|
||||
/** \brief Size of the largest continuous free memory region available for new allocation.
|
||||
|
||||
Making a new allocation of that size is not guaranteed to succeed because of
|
||||
possible additional margin required to respect alignment and buffer/image
|
||||
granularity.
|
||||
*/
|
||||
VkDeviceSize unusedRangeSizeMax;
|
||||
/** \brief Number of `VkDeviceMemory` blocks allocated for this pool.
|
||||
*/
|
||||
size_t blockCount;
|
||||
} VmaPoolStats;
|
||||
|
||||
/** \brief Allocates Vulkan device memory and creates #VmaPool object.
|
||||
@ -4506,6 +4517,7 @@ public:
|
||||
virtual bool IsEmpty() const = 0;
|
||||
|
||||
virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0;
|
||||
// Shouldn't modify blockCount.
|
||||
virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0;
|
||||
|
||||
#if VMA_STATS_STRING_ENABLED
|
||||
@ -5014,6 +5026,18 @@ private:
|
||||
// after this call.
|
||||
void IncrementallySortBlocks();
|
||||
|
||||
// To be used only without CAN_MAKE_OTHER_LOST flag.
|
||||
VkResult AllocateFromBlock(
|
||||
VmaDeviceMemoryBlock* pBlock,
|
||||
VmaPool hCurrentPool,
|
||||
uint32_t currentFrameIndex,
|
||||
VkDeviceSize size,
|
||||
VkDeviceSize alignment,
|
||||
VmaAllocationCreateFlags allocFlags,
|
||||
void* pUserData,
|
||||
VmaSuballocationType suballocType,
|
||||
VmaAllocation* pAllocation);
|
||||
|
||||
VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
|
||||
};
|
||||
|
||||
@ -9374,15 +9398,18 @@ VkResult VmaBlockVector::CreateMinBlocks()
|
||||
|
||||
void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
|
||||
{
|
||||
VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
||||
|
||||
const size_t blockCount = m_Blocks.size();
|
||||
|
||||
pStats->size = 0;
|
||||
pStats->unusedSize = 0;
|
||||
pStats->allocationCount = 0;
|
||||
pStats->unusedRangeCount = 0;
|
||||
pStats->unusedRangeSizeMax = 0;
|
||||
pStats->blockCount = blockCount;
|
||||
|
||||
VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
||||
|
||||
for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
||||
for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
||||
{
|
||||
const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
||||
VMA_ASSERT(pBlock);
|
||||
@ -9411,15 +9438,23 @@ VkResult VmaBlockVector::Allocate(
|
||||
VmaAllocation* pAllocation)
|
||||
{
|
||||
const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
|
||||
const bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
|
||||
bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
|
||||
const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
|
||||
const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
|
||||
const bool canCreateNewBlock =
|
||||
((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
|
||||
(m_Blocks.size() < m_MaxBlockCount);
|
||||
|
||||
// Upper address can only be used with linear allocator.
|
||||
if(isUpperAddress && !m_LinearAlgorithm)
|
||||
// If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer.
|
||||
// Which in turn is available only when maxBlockCount = 1.
|
||||
if(m_LinearAlgorithm && m_MaxBlockCount > 1)
|
||||
{
|
||||
canMakeOtherLost = false;
|
||||
}
|
||||
|
||||
// Upper address can only be used with linear allocator and within single memory block.
|
||||
if(isUpperAddress &&
|
||||
(!m_LinearAlgorithm || m_MaxBlockCount > 1))
|
||||
{
|
||||
return VK_ERROR_FEATURE_NOT_PRESENT;
|
||||
}
|
||||
@ -9440,65 +9475,55 @@ VkResult VmaBlockVector::Allocate(
|
||||
if(!canMakeOtherLost || canCreateNewBlock)
|
||||
{
|
||||
// 1. Search existing allocations. Try to allocate without making other allocations lost.
|
||||
// Forward order in m_Blocks - prefer blocks with smallest amount of free space.
|
||||
for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
|
||||
{
|
||||
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
||||
VMA_ASSERT(pCurrBlock);
|
||||
VmaAllocationRequest currRequest = {};
|
||||
if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
|
||||
currentFrameIndex,
|
||||
m_FrameInUseCount,
|
||||
m_BufferImageGranularity,
|
||||
size,
|
||||
alignment,
|
||||
isUpperAddress,
|
||||
suballocType,
|
||||
false, // canMakeOtherLost
|
||||
&currRequest))
|
||||
{
|
||||
// Allocate from pCurrBlock.
|
||||
VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
|
||||
VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags;
|
||||
allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
||||
|
||||
if(mapped)
|
||||
{
|
||||
VkResult res = pCurrBlock->Map(m_hAllocator, 1, VMA_NULL);
|
||||
if(res != VK_SUCCESS)
|
||||
{
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
// We no longer have an empty Allocation.
|
||||
if(pCurrBlock->m_pMetadata->IsEmpty())
|
||||
{
|
||||
m_HasEmptyBlock = false;
|
||||
}
|
||||
|
||||
*pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
|
||||
pCurrBlock->m_pMetadata->Alloc(currRequest, suballocType, size, isUpperAddress, *pAllocation);
|
||||
(*pAllocation)->InitBlockAllocation(
|
||||
hCurrentPool,
|
||||
if(m_LinearAlgorithm)
|
||||
{
|
||||
// Use only last block.
|
||||
if(!m_Blocks.empty())
|
||||
{
|
||||
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
|
||||
VMA_ASSERT(pCurrBlock);
|
||||
VkResult res = AllocateFromBlock(
|
||||
pCurrBlock,
|
||||
currRequest.offset,
|
||||
alignment,
|
||||
hCurrentPool,
|
||||
currentFrameIndex,
|
||||
size,
|
||||
alignment,
|
||||
allocFlagsCopy,
|
||||
createInfo.pUserData,
|
||||
suballocType,
|
||||
mapped,
|
||||
(createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
|
||||
VMA_HEAVY_ASSERT(pCurrBlock->Validate());
|
||||
VMA_DEBUG_LOG(" Returned from existing allocation #%u", (uint32_t)blockIndex);
|
||||
(*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
|
||||
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
||||
pAllocation);
|
||||
if(res == VK_SUCCESS)
|
||||
{
|
||||
m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
|
||||
VMA_DEBUG_LOG(" Returned from last block #%u", (uint32_t)(m_Blocks.size() - 1));
|
||||
return VK_SUCCESS;
|
||||
}
|
||||
if(IsCorruptionDetectionEnabled())
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Forward order in m_Blocks - prefer blocks with smallest amount of free space.
|
||||
for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
|
||||
{
|
||||
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
||||
VMA_ASSERT(pCurrBlock);
|
||||
VkResult res = AllocateFromBlock(
|
||||
pCurrBlock,
|
||||
hCurrentPool,
|
||||
currentFrameIndex,
|
||||
size,
|
||||
alignment,
|
||||
allocFlagsCopy,
|
||||
createInfo.pUserData,
|
||||
suballocType,
|
||||
pAllocation);
|
||||
if(res == VK_SUCCESS)
|
||||
{
|
||||
VkResult res = pCurrBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size);
|
||||
VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
|
||||
VMA_DEBUG_LOG(" Returned from existing block #%u", (uint32_t)blockIndex);
|
||||
return VK_SUCCESS;
|
||||
}
|
||||
return VK_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
@ -9555,56 +9580,24 @@ VkResult VmaBlockVector::Allocate(
|
||||
VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
|
||||
VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
|
||||
|
||||
if(mapped)
|
||||
{
|
||||
res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
|
||||
if(res != VK_SUCCESS)
|
||||
{
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
// Allocate from pBlock. Because it is empty, dstAllocRequest can be trivially filled.
|
||||
VmaAllocationRequest allocRequest;
|
||||
if(pBlock->m_pMetadata->CreateAllocationRequest(
|
||||
res = AllocateFromBlock(
|
||||
pBlock,
|
||||
hCurrentPool,
|
||||
currentFrameIndex,
|
||||
m_FrameInUseCount,
|
||||
m_BufferImageGranularity,
|
||||
size,
|
||||
alignment,
|
||||
isUpperAddress,
|
||||
allocFlagsCopy,
|
||||
createInfo.pUserData,
|
||||
suballocType,
|
||||
false, // canMakeOtherLost
|
||||
&allocRequest))
|
||||
pAllocation);
|
||||
if(res == VK_SUCCESS)
|
||||
{
|
||||
*pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
|
||||
pBlock->m_pMetadata->Alloc(allocRequest, suballocType, size, isUpperAddress, *pAllocation);
|
||||
(*pAllocation)->InitBlockAllocation(
|
||||
hCurrentPool,
|
||||
pBlock,
|
||||
allocRequest.offset,
|
||||
alignment,
|
||||
size,
|
||||
suballocType,
|
||||
mapped,
|
||||
(createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
|
||||
VMA_HEAVY_ASSERT(pBlock->Validate());
|
||||
VMA_DEBUG_LOG(" Created new allocation Size=%llu", allocInfo.allocationSize);
|
||||
(*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
|
||||
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
||||
{
|
||||
m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
|
||||
}
|
||||
if(IsCorruptionDetectionEnabled())
|
||||
{
|
||||
res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, allocRequest.offset, size);
|
||||
VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
|
||||
}
|
||||
VMA_DEBUG_LOG(" Created new block Size=%llu", newBlockSize);
|
||||
return VK_SUCCESS;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Allocation from empty block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
|
||||
// Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
|
||||
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
||||
}
|
||||
}
|
||||
@ -9819,17 +9812,93 @@ void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
|
||||
|
||||
void VmaBlockVector::IncrementallySortBlocks()
|
||||
{
|
||||
// Bubble sort only until first swap.
|
||||
for(size_t i = 1; i < m_Blocks.size(); ++i)
|
||||
if(!m_LinearAlgorithm)
|
||||
{
|
||||
if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
|
||||
// Bubble sort only until first swap.
|
||||
for(size_t i = 1; i < m_Blocks.size(); ++i)
|
||||
{
|
||||
VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
|
||||
return;
|
||||
if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
|
||||
{
|
||||
VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
VkResult VmaBlockVector::AllocateFromBlock(
|
||||
VmaDeviceMemoryBlock* pBlock,
|
||||
VmaPool hCurrentPool,
|
||||
uint32_t currentFrameIndex,
|
||||
VkDeviceSize size,
|
||||
VkDeviceSize alignment,
|
||||
VmaAllocationCreateFlags allocFlags,
|
||||
void* pUserData,
|
||||
VmaSuballocationType suballocType,
|
||||
VmaAllocation* pAllocation)
|
||||
{
|
||||
VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0);
|
||||
const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
|
||||
const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
|
||||
const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
|
||||
|
||||
VmaAllocationRequest currRequest = {};
|
||||
if(pBlock->m_pMetadata->CreateAllocationRequest(
|
||||
currentFrameIndex,
|
||||
m_FrameInUseCount,
|
||||
m_BufferImageGranularity,
|
||||
size,
|
||||
alignment,
|
||||
isUpperAddress,
|
||||
suballocType,
|
||||
false, // canMakeOtherLost
|
||||
&currRequest))
|
||||
{
|
||||
// Allocate from pCurrBlock.
|
||||
VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
|
||||
|
||||
if(mapped)
|
||||
{
|
||||
VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
|
||||
if(res != VK_SUCCESS)
|
||||
{
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
// We no longer have an empty Allocation.
|
||||
if(pBlock->m_pMetadata->IsEmpty())
|
||||
{
|
||||
m_HasEmptyBlock = false;
|
||||
}
|
||||
|
||||
*pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
|
||||
pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, isUpperAddress, *pAllocation);
|
||||
(*pAllocation)->InitBlockAllocation(
|
||||
hCurrentPool,
|
||||
pBlock,
|
||||
currRequest.offset,
|
||||
alignment,
|
||||
size,
|
||||
suballocType,
|
||||
mapped,
|
||||
(allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
|
||||
VMA_HEAVY_ASSERT(pBlock->Validate());
|
||||
(*pAllocation)->SetUserData(m_hAllocator, pUserData);
|
||||
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
||||
{
|
||||
m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
|
||||
}
|
||||
if(IsCorruptionDetectionEnabled())
|
||||
{
|
||||
VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size);
|
||||
VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
|
||||
}
|
||||
return VK_SUCCESS;
|
||||
}
|
||||
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
||||
}
|
||||
|
||||
VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
|
||||
{
|
||||
VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
||||
@ -11812,10 +11881,9 @@ VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPoo
|
||||
|
||||
if(newCreateInfo.maxBlockCount == 0)
|
||||
{
|
||||
newCreateInfo.maxBlockCount = isLinearAlgorithm ? 1 : SIZE_MAX;
|
||||
newCreateInfo.maxBlockCount = SIZE_MAX;
|
||||
}
|
||||
if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount ||
|
||||
isLinearAlgorithm && newCreateInfo.maxBlockCount > 1)
|
||||
if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
|
||||
{
|
||||
return VK_ERROR_INITIALIZATION_FAILED;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user