diff --git a/include/vk_mem_alloc.h b/include/vk_mem_alloc.h
index 52fb947..ab25be5 100644
--- a/include/vk_mem_alloc.h
+++ b/include/vk_mem_alloc.h
@@ -1,19558 +1,19558 @@
-//
-// Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved.
-//
-// Permission is hereby granted, free of charge, to any person obtaining a copy
-// of this software and associated documentation files (the "Software"), to deal
-// in the Software without restriction, including without limitation the rights
-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-// copies of the Software, and to permit persons to whom the Software is
-// furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in
-// all copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-// THE SOFTWARE.
-//
-
-#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
-#define AMD_VULKAN_MEMORY_ALLOCATOR_H
-
-/** \mainpage Vulkan Memory Allocator
-
-Version 3.0.1 (2022-05-26)
-
-Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. \n
-License: MIT
-
-API documentation divided into groups: [Modules](modules.html)
-
-\section main_table_of_contents Table of contents
-
-- User guide
- - \subpage quick_start
- - [Project setup](@ref quick_start_project_setup)
- - [Initialization](@ref quick_start_initialization)
- - [Resource allocation](@ref quick_start_resource_allocation)
- - \subpage choosing_memory_type
- - [Usage](@ref choosing_memory_type_usage)
- - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
- - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
- - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
- - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
- - \subpage memory_mapping
- - [Mapping functions](@ref memory_mapping_mapping_functions)
- - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
- - [Cache flush and invalidate](@ref memory_mapping_cache_control)
- - \subpage staying_within_budget
- - [Querying for budget](@ref staying_within_budget_querying_for_budget)
- - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
- - \subpage resource_aliasing
- - \subpage custom_memory_pools
- - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
- - [Linear allocation algorithm](@ref linear_algorithm)
- - [Free-at-once](@ref linear_algorithm_free_at_once)
- - [Stack](@ref linear_algorithm_stack)
- - [Double stack](@ref linear_algorithm_double_stack)
- - [Ring buffer](@ref linear_algorithm_ring_buffer)
- - \subpage defragmentation
- - \subpage statistics
- - [Numeric statistics](@ref statistics_numeric_statistics)
- - [JSON dump](@ref statistics_json_dump)
- - \subpage allocation_annotation
- - [Allocation user data](@ref allocation_user_data)
- - [Allocation names](@ref allocation_names)
- - \subpage virtual_allocator
- - \subpage debugging_memory_usage
- - [Memory initialization](@ref debugging_memory_usage_initialization)
- - [Margins](@ref debugging_memory_usage_margins)
- - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
- - \subpage opengl_interop
-- \subpage usage_patterns
- - [GPU-only resource](@ref usage_patterns_gpu_only)
- - [Staging copy for upload](@ref usage_patterns_staging_copy_upload)
- - [Readback](@ref usage_patterns_readback)
- - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading)
- - [Other use cases](@ref usage_patterns_other_use_cases)
-- \subpage configuration
- - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
- - [Custom host memory allocator](@ref custom_memory_allocator)
- - [Device memory allocation callbacks](@ref allocation_callbacks)
- - [Device heap memory limit](@ref heap_memory_limit)
-- Extension support
- - \subpage vk_khr_dedicated_allocation
- - \subpage enabling_buffer_device_address
- - \subpage vk_ext_memory_priority
- - \subpage vk_amd_device_coherent_memory
-- \subpage general_considerations
- - [Thread safety](@ref general_considerations_thread_safety)
- - [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility)
- - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
- - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
- - [Features not supported](@ref general_considerations_features_not_supported)
-
-\section main_see_also See also
-
-- [**Product page on GPUOpen**](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
-- [**Source repository on GitHub**](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
-
-\defgroup group_init Library initialization
-
-\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object.
-
-\defgroup group_alloc Memory allocation
-
-\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images.
-Most basic ones being: vmaCreateBuffer(), vmaCreateImage().
-
-\defgroup group_virtual Virtual allocator
-
-\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm
-for user-defined purpose without allocating any real GPU memory.
-
-\defgroup group_stats Statistics
-
-\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format.
-See documentation chapter: \ref statistics.
-*/
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifndef VULKAN_H_
- #include
-#endif
-
-// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC,
-// where AAA = major, BBB = minor, CCC = patch.
-// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion.
-#if !defined(VMA_VULKAN_VERSION)
- #if defined(VK_VERSION_1_3)
- #define VMA_VULKAN_VERSION 1003000
- #elif defined(VK_VERSION_1_2)
- #define VMA_VULKAN_VERSION 1002000
- #elif defined(VK_VERSION_1_1)
- #define VMA_VULKAN_VERSION 1001000
- #else
- #define VMA_VULKAN_VERSION 1000000
- #endif
-#endif
-
-#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS
- extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
- extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;
- extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
- extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
- extern PFN_vkAllocateMemory vkAllocateMemory;
- extern PFN_vkFreeMemory vkFreeMemory;
- extern PFN_vkMapMemory vkMapMemory;
- extern PFN_vkUnmapMemory vkUnmapMemory;
- extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
- extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
- extern PFN_vkBindBufferMemory vkBindBufferMemory;
- extern PFN_vkBindImageMemory vkBindImageMemory;
- extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
- extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
- extern PFN_vkCreateBuffer vkCreateBuffer;
- extern PFN_vkDestroyBuffer vkDestroyBuffer;
- extern PFN_vkCreateImage vkCreateImage;
- extern PFN_vkDestroyImage vkDestroyImage;
- extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
- #if VMA_VULKAN_VERSION >= 1001000
- extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;
- extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;
- extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;
- extern PFN_vkBindImageMemory2 vkBindImageMemory2;
- extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;
- #endif // #if VMA_VULKAN_VERSION >= 1001000
-#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES
-
-#if !defined(VMA_DEDICATED_ALLOCATION)
- #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
- #define VMA_DEDICATED_ALLOCATION 1
- #else
- #define VMA_DEDICATED_ALLOCATION 0
- #endif
-#endif
-
-#if !defined(VMA_BIND_MEMORY2)
- #if VK_KHR_bind_memory2
- #define VMA_BIND_MEMORY2 1
- #else
- #define VMA_BIND_MEMORY2 0
- #endif
-#endif
-
-#if !defined(VMA_MEMORY_BUDGET)
- #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
- #define VMA_MEMORY_BUDGET 1
- #else
- #define VMA_MEMORY_BUDGET 0
- #endif
-#endif
-
-// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.
-#if !defined(VMA_BUFFER_DEVICE_ADDRESS)
- #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000
- #define VMA_BUFFER_DEVICE_ADDRESS 1
- #else
- #define VMA_BUFFER_DEVICE_ADDRESS 0
- #endif
-#endif
-
-// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers.
-#if !defined(VMA_MEMORY_PRIORITY)
- #if VK_EXT_memory_priority
- #define VMA_MEMORY_PRIORITY 1
- #else
- #define VMA_MEMORY_PRIORITY 0
- #endif
-#endif
-
-// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers.
-#if !defined(VMA_EXTERNAL_MEMORY)
- #if VK_KHR_external_memory
- #define VMA_EXTERNAL_MEMORY 1
- #else
- #define VMA_EXTERNAL_MEMORY 0
- #endif
-#endif
-
-// Define these macros to decorate all public functions with additional code,
-// before and after returned type, appropriately. This may be useful for
-// exporting the functions when compiling VMA as a separate library. Example:
-// #define VMA_CALL_PRE __declspec(dllexport)
-// #define VMA_CALL_POST __cdecl
-#ifndef VMA_CALL_PRE
- #define VMA_CALL_PRE
-#endif
-#ifndef VMA_CALL_POST
- #define VMA_CALL_POST
-#endif
-
-// Define this macro to decorate pointers with an attribute specifying the
-// length of the array they point to if they are not null.
-//
-// The length may be one of
-// - The name of another parameter in the argument list where the pointer is declared
-// - The name of another member in the struct where the pointer is declared
-// - The name of a member of a struct type, meaning the value of that member in
-// the context of the call. For example
-// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),
-// this means the number of memory heaps available in the device associated
-// with the VmaAllocator being dealt with.
-#ifndef VMA_LEN_IF_NOT_NULL
- #define VMA_LEN_IF_NOT_NULL(len)
-#endif
-
-// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.
-// see: https://clang.llvm.org/docs/AttributeReference.html#nullable
-#ifndef VMA_NULLABLE
- #ifdef __clang__
- #define VMA_NULLABLE _Nullable
- #else
- #define VMA_NULLABLE
- #endif
-#endif
-
-// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.
-// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull
-#ifndef VMA_NOT_NULL
- #ifdef __clang__
- #define VMA_NOT_NULL _Nonnull
- #else
- #define VMA_NOT_NULL
- #endif
-#endif
-
-// If non-dispatchable handles are represented as pointers then we can give
-// then nullability annotations
-#ifndef VMA_NOT_NULL_NON_DISPATCHABLE
- #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
- #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL
- #else
- #define VMA_NOT_NULL_NON_DISPATCHABLE
- #endif
-#endif
-
-#ifndef VMA_NULLABLE_NON_DISPATCHABLE
- #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
- #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE
- #else
- #define VMA_NULLABLE_NON_DISPATCHABLE
- #endif
-#endif
-
-#ifndef VMA_STATS_STRING_ENABLED
- #define VMA_STATS_STRING_ENABLED 1
-#endif
-
-////////////////////////////////////////////////////////////////////////////////
-////////////////////////////////////////////////////////////////////////////////
-//
-// INTERFACE
-//
-////////////////////////////////////////////////////////////////////////////////
-////////////////////////////////////////////////////////////////////////////////
-
-// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE.
-#ifndef _VMA_ENUM_DECLARATIONS
-
-/**
-\addtogroup group_init
-@{
-*/
-
-/// Flags for created #VmaAllocator.
-typedef enum VmaAllocatorCreateFlagBits
-{
- /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
-
- Using this flag may increase performance because internal mutexes are not used.
- */
- VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
- /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
-
- The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
- When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
-
- Using this extension will automatically allocate dedicated blocks of memory for
- some buffers and images instead of suballocating place for them out of bigger
- memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
- flag) when it is recommended by the driver. It may improve performance on some
- GPUs.
-
- You may set this flag only if you found out that following device extensions are
- supported, you enabled them while creating Vulkan device passed as
- VmaAllocatorCreateInfo::device, and you want them to be used internally by this
- library:
-
- - VK_KHR_get_memory_requirements2 (device extension)
- - VK_KHR_dedicated_allocation (device extension)
-
- When this flag is set, you can experience following warnings reported by Vulkan
- validation layer. You can ignore them.
-
- > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
- */
- VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
- /**
- Enables usage of VK_KHR_bind_memory2 extension.
-
- The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
- When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
-
- You may set this flag only if you found out that this device extension is supported,
- you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
- and you want it to be used internally by this library.
-
- The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
- which allow to pass a chain of `pNext` structures while binding.
- This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
- */
- VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
- /**
- Enables usage of VK_EXT_memory_budget extension.
-
- You may set this flag only if you found out that this device extension is supported,
- you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
- and you want it to be used internally by this library, along with another instance extension
- VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
-
- The extension provides query for current memory usage and budget, which will probably
- be more accurate than an estimation used by the library otherwise.
- */
- VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
- /**
- Enables usage of VK_AMD_device_coherent_memory extension.
-
- You may set this flag only if you:
-
- - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
- - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,
- - want it to be used internally by this library.
-
- The extension and accompanying device feature provide access to memory types with
- `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.
- They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.
-
- When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.
- To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,
- returning `VK_ERROR_FEATURE_NOT_PRESENT`.
- */
- VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,
- /**
- Enables usage of "buffer device address" feature, which allows you to use function
- `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.
-
- You may set this flag only if you:
-
- 1. (For Vulkan version < 1.2) Found as available and enabled device extension
- VK_KHR_buffer_device_address.
- This extension is promoted to core Vulkan 1.2.
- 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`.
-
- When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA.
- The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to
- allocated memory blocks wherever it might be needed.
-
- For more information, see documentation chapter \ref enabling_buffer_device_address.
- */
- VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,
- /**
- Enables usage of VK_EXT_memory_priority extension in the library.
-
- You may set this flag only if you found available and enabled this device extension,
- along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`,
- while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
-
- When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority
- are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored.
-
- A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
- Larger values are higher priority. The granularity of the priorities is implementation-dependent.
- It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`.
- The value to be used for default priority is 0.5.
- For more details, see the documentation of the VK_EXT_memory_priority extension.
- */
- VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040,
-
- VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaAllocatorCreateFlagBits;
-/// See #VmaAllocatorCreateFlagBits.
-typedef VkFlags VmaAllocatorCreateFlags;
-
-/** @} */
-
-/**
-\addtogroup group_alloc
-@{
-*/
-
-/// \brief Intended usage of the allocated memory.
-typedef enum VmaMemoryUsage
-{
- /** No intended memory usage specified.
- Use other members of VmaAllocationCreateInfo to specify your requirements.
- */
- VMA_MEMORY_USAGE_UNKNOWN = 0,
- /**
- \deprecated Obsolete, preserved for backward compatibility.
- Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
- */
- VMA_MEMORY_USAGE_GPU_ONLY = 1,
- /**
- \deprecated Obsolete, preserved for backward compatibility.
- Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`.
- */
- VMA_MEMORY_USAGE_CPU_ONLY = 2,
- /**
- \deprecated Obsolete, preserved for backward compatibility.
- Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
- */
- VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
- /**
- \deprecated Obsolete, preserved for backward compatibility.
- Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
- */
- VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
- /**
- \deprecated Obsolete, preserved for backward compatibility.
- Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
- */
- VMA_MEMORY_USAGE_CPU_COPY = 5,
- /**
- Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
- Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
-
- Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
-
- Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
- */
- VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
- /**
- Selects best memory type automatically.
- This flag is recommended for most common use cases.
-
- When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
- you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
- in VmaAllocationCreateInfo::flags.
-
- It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
- vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
- and not with generic memory allocation functions.
- */
- VMA_MEMORY_USAGE_AUTO = 7,
- /**
- Selects best memory type automatically with preference for GPU (device) memory.
-
- When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
- you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
- in VmaAllocationCreateInfo::flags.
-
- It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
- vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
- and not with generic memory allocation functions.
- */
- VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8,
- /**
- Selects best memory type automatically with preference for CPU (host) memory.
-
- When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
- you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
- in VmaAllocationCreateInfo::flags.
-
- It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
- vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
- and not with generic memory allocation functions.
- */
- VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9,
-
- VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
-} VmaMemoryUsage;
-
-/// Flags to be passed as VmaAllocationCreateInfo::flags.
-typedef enum VmaAllocationCreateFlagBits
-{
- /** \brief Set this flag if the allocation should have its own memory block.
-
- Use it for special, big resources, like fullscreen images used as attachments.
- */
- VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
-
- /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
-
- If new allocation cannot be placed in any of the existing blocks, allocation
- fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
-
- You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
- #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
- */
- VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
- /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
-
- Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
-
- It is valid to use this flag for allocation made from memory type that is not
- `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
- useful if you need an allocation that is efficient to use on GPU
- (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
- support it (e.g. Intel GPU).
- */
- VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
- /** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead.
-
- Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
- null-terminated string. Instead of copying pointer value, a local copy of the
- string is made and stored in allocation's `pName`. The string is automatically
- freed together with the allocation. It is also used in vmaBuildStatsString().
- */
- VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
- /** Allocation will be created from upper stack in a double stack pool.
-
- This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
- */
- VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
- /** Create both buffer/image and allocation, but don't bind them together.
- It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
- The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
- Otherwise it is ignored.
-
- If you want to make sure the new buffer/image is not tied to the new memory allocation
- through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block,
- use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT.
- */
- VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
- /** Create allocation only if additional device memory required for it, if any, won't exceed
- memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
- */
- VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
- /** \brief Set this flag if the allocated memory will have aliasing resources.
-
- Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified.
- Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors.
- */
- VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200,
- /**
- Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
-
- - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
- you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
- - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
- This includes allocations created in \ref custom_memory_pools.
-
- Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number,
- never read or accessed randomly, so a memory type can be selected that is uncached and write-combined.
-
- \warning Violating this declaration may work correctly, but will likely be very slow.
- Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;`
- Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once.
- */
- VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400,
- /**
- Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
-
- - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
- you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
- - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
- This includes allocations created in \ref custom_memory_pools.
-
- Declares that mapped memory can be read, written, and accessed in random order,
- so a `HOST_CACHED` memory type is required.
- */
- VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800,
- /**
- Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT,
- it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected
- if it may improve performance.
-
- By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type
- (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and
- issue an explicit transfer to write/read your data.
- To prepare for this possibility, don't forget to add appropriate flags like
- `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image.
- */
- VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000,
- /** Allocation strategy that chooses smallest possible free range for the allocation
- to minimize memory usage and fragmentation, possibly at the expense of allocation time.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000,
- /** Allocation strategy that chooses first suitable free range for the allocation -
- not necessarily in terms of the smallest offset but the one that is easiest and fastest to find
- to minimize allocation time, possibly at the expense of allocation quality.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000,
- /** Allocation strategy that chooses always the lowest offset in available space.
- This is not the most efficient strategy but achieves highly packed data.
- Used internally by defragmentation, not recomended in typical usage.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = 0x00040000,
- /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
- /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
- /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_MASK =
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT |
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT |
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
-
- VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaAllocationCreateFlagBits;
-/// See #VmaAllocationCreateFlagBits.
-typedef VkFlags VmaAllocationCreateFlags;
-
-/// Flags to be passed as VmaPoolCreateInfo::flags.
-typedef enum VmaPoolCreateFlagBits
-{
- /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
-
- This is an optional optimization flag.
-
- If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
- vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
- knows exact type of your allocations so it can handle Buffer-Image Granularity
- in the optimal way.
-
- If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
- exact type of such allocations is not known, so allocator must be conservative
- in handling Buffer-Image Granularity, which can lead to suboptimal allocation
- (wasted memory). In that case, if you can make sure you always allocate only
- buffers and linear images or only optimal images out of this pool, use this flag
- to make allocator disregard Buffer-Image Granularity and so make allocations
- faster and more optimal.
- */
- VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
-
- /** \brief Enables alternative, linear allocation algorithm in this pool.
-
- Specify this flag to enable linear allocation algorithm, which always creates
- new allocations after last one and doesn't reuse space from allocations freed in
- between. It trades memory consumption for simplified algorithm and data
- structure, which has better performance and uses less memory for metadata.
-
- By using this flag, you can achieve behavior of free-at-once, stack,
- ring buffer, and double stack.
- For details, see documentation chapter \ref linear_algorithm.
- */
- VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
-
- /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
- */
- VMA_POOL_CREATE_ALGORITHM_MASK =
- VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT,
-
- VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaPoolCreateFlagBits;
-/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits.
-typedef VkFlags VmaPoolCreateFlags;
-
-/// Flags to be passed as VmaDefragmentationInfo::flags.
-typedef enum VmaDefragmentationFlagBits
-{
- /* \brief Use simple but fast algorithm for defragmentation.
- May not achieve best results but will require least time to compute and least allocations to copy.
- */
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1,
- /* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified.
- Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved.
- */
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2,
- /* \brief Perform full defragmentation of memory.
- Can result in notably more time to compute and allocations to copy, but will achieve best memory packing.
- */
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4,
- /** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make.
- Only available when bufferImageGranularity is greater than 1, since it aims to reduce
- alignment issues between different types of resources.
- Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT.
- */
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8,
-
- /// A bit mask to extract only `ALGORITHM` bits from entire set of flags.
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK =
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT |
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT |
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT |
- VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT,
-
- VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaDefragmentationFlagBits;
-/// See #VmaDefragmentationFlagBits.
-typedef VkFlags VmaDefragmentationFlags;
-
-/// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove.
-typedef enum VmaDefragmentationMoveOperation
-{
- /// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass().
- VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0,
- /// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged.
- VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1,
- /// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed.
- VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2,
-} VmaDefragmentationMoveOperation;
-
-/** @} */
-
-/**
-\addtogroup group_virtual
-@{
-*/
-
-/// Flags to be passed as VmaVirtualBlockCreateInfo::flags.
-typedef enum VmaVirtualBlockCreateFlagBits
-{
- /** \brief Enables alternative, linear allocation algorithm in this virtual block.
-
- Specify this flag to enable linear allocation algorithm, which always creates
- new allocations after last one and doesn't reuse space from allocations freed in
- between. It trades memory consumption for simplified algorithm and data
- structure, which has better performance and uses less memory for metadata.
-
- By using this flag, you can achieve behavior of free-at-once, stack,
- ring buffer, and double stack.
- For details, see documentation chapter \ref linear_algorithm.
- */
- VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001,
-
- /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags.
- */
- VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK =
- VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT,
-
- VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaVirtualBlockCreateFlagBits;
-/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits.
-typedef VkFlags VmaVirtualBlockCreateFlags;
-
-/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags.
-typedef enum VmaVirtualAllocationCreateFlagBits
-{
- /** \brief Allocation will be created from upper stack in a double stack pool.
-
- This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag.
- */
- VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT,
- /** \brief Allocation strategy that tries to minimize memory usage.
- */
- VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
- /** \brief Allocation strategy that tries to minimize allocation time.
- */
- VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
- /** Allocation strategy that chooses always the lowest offset in available space.
- This is not the most efficient strategy but achieves highly packed data.
- */
- VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
- /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags.
-
- These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits.
- */
- VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK,
-
- VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaVirtualAllocationCreateFlagBits;
-/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits.
-typedef VkFlags VmaVirtualAllocationCreateFlags;
-
-/** @} */
-
-#endif // _VMA_ENUM_DECLARATIONS
-
-#ifndef _VMA_DATA_TYPES_DECLARATIONS
-
-/**
-\addtogroup group_init
-@{ */
-
-/** \struct VmaAllocator
-\brief Represents main object of this library initialized.
-
-Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
-Call function vmaDestroyAllocator() to destroy it.
-
-It is recommended to create just one object of this type per `VkDevice` object,
-right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
-*/
-VK_DEFINE_HANDLE(VmaAllocator)
-
-/** @} */
-
-/**
-\addtogroup group_alloc
-@{
-*/
-
-/** \struct VmaPool
-\brief Represents custom memory pool
-
-Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
-Call function vmaDestroyPool() to destroy it.
-
-For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
-*/
-VK_DEFINE_HANDLE(VmaPool)
-
-/** \struct VmaAllocation
-\brief Represents single memory allocation.
-
-It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
-plus unique offset.
-
-There are multiple ways to create such object.
-You need to fill structure VmaAllocationCreateInfo.
-For more information see [Choosing memory type](@ref choosing_memory_type).
-
-Although the library provides convenience functions that create Vulkan buffer or image,
-allocate memory for it and bind them together,
-binding of the allocation to a buffer or an image is out of scope of the allocation itself.
-Allocation object can exist without buffer/image bound,
-binding can be done manually by the user, and destruction of it can be done
-independently of destruction of the allocation.
-
-The object also remembers its size and some other information.
-To retrieve this information, use function vmaGetAllocationInfo() and inspect
-returned structure VmaAllocationInfo.
-*/
-VK_DEFINE_HANDLE(VmaAllocation)
-
-/** \struct VmaDefragmentationContext
-\brief An opaque object that represents started defragmentation process.
-
-Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it.
-Call function vmaEndDefragmentation() to destroy it.
-*/
-VK_DEFINE_HANDLE(VmaDefragmentationContext)
-
-/** @} */
-
-/**
-\addtogroup group_virtual
-@{
-*/
-
-/** \struct VmaVirtualAllocation
-\brief Represents single memory allocation done inside VmaVirtualBlock.
-
-Use it as a unique identifier to virtual allocation within the single block.
-
-Use value `VK_NULL_HANDLE` to represent a null/invalid allocation.
-*/
-VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation);
-
-/** @} */
-
-/**
-\addtogroup group_virtual
-@{
-*/
-
-/** \struct VmaVirtualBlock
-\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory.
-
-Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it.
-For more information, see documentation chapter \ref virtual_allocator.
-
-This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally.
-*/
-VK_DEFINE_HANDLE(VmaVirtualBlock)
-
-/** @} */
-
-/**
-\addtogroup group_init
-@{
-*/
-
-/// Callback function called after successful vkAllocateMemory.
-typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)(
- VmaAllocator VMA_NOT_NULL allocator,
- uint32_t memoryType,
- VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
- VkDeviceSize size,
- void* VMA_NULLABLE pUserData);
-
-/// Callback function called before vkFreeMemory.
-typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)(
- VmaAllocator VMA_NOT_NULL allocator,
- uint32_t memoryType,
- VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
- VkDeviceSize size,
- void* VMA_NULLABLE pUserData);
-
-/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
-
-Provided for informative purpose, e.g. to gather statistics about number of
-allocations or total amount of memory allocated in Vulkan.
-
-Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
-*/
-typedef struct VmaDeviceMemoryCallbacks
-{
- /// Optional, can be null.
- PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;
- /// Optional, can be null.
- PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;
- /// Optional, can be null.
- void* VMA_NULLABLE pUserData;
-} VmaDeviceMemoryCallbacks;
-
-/** \brief Pointers to some Vulkan functions - a subset used by the library.
-
-Used in VmaAllocatorCreateInfo::pVulkanFunctions.
-*/
-typedef struct VmaVulkanFunctions
-{
- /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
- PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr;
- /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
- PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr;
- PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;
- PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;
- PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;
- PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;
- PFN_vkMapMemory VMA_NULLABLE vkMapMemory;
- PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;
- PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;
- PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;
- PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;
- PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;
- PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;
- PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;
- PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;
- PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;
- PFN_vkCreateImage VMA_NULLABLE vkCreateImage;
- PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;
- PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;
-#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
- /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
- PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;
- /// Fetch "vkGetImageMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
- PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;
-#endif
-#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
- /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension.
- PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;
- /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension.
- PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;
-#endif
-#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
- PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;
-#endif
-#if VMA_VULKAN_VERSION >= 1003000
- /// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
- PFN_vkGetDeviceBufferMemoryRequirements VMA_NULLABLE vkGetDeviceBufferMemoryRequirements;
- /// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
- PFN_vkGetDeviceImageMemoryRequirements VMA_NULLABLE vkGetDeviceImageMemoryRequirements;
-#endif
-} VmaVulkanFunctions;
-
-/// Description of a Allocator to be created.
-typedef struct VmaAllocatorCreateInfo
-{
- /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
- VmaAllocatorCreateFlags flags;
- /// Vulkan physical device.
- /** It must be valid throughout whole lifetime of created allocator. */
- VkPhysicalDevice VMA_NOT_NULL physicalDevice;
- /// Vulkan device.
- /** It must be valid throughout whole lifetime of created allocator. */
- VkDevice VMA_NOT_NULL device;
- /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
- /** Set to 0 to use default, which is currently 256 MiB. */
- VkDeviceSize preferredLargeHeapBlockSize;
- /// Custom CPU memory allocation callbacks. Optional.
- /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
- const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
- /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
- /** Optional, can be null. */
- const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;
- /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
-
- If not NULL, it must be a pointer to an array of
- `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
- maximum number of bytes that can be allocated out of particular Vulkan memory
- heap.
-
- Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
- heap. This is also the default in case of `pHeapSizeLimit` = NULL.
-
- If there is a limit defined for a heap:
-
- - If user tries to allocate more memory from that heap using this allocator,
- the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
- - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
- value of this limit will be reported instead when using vmaGetMemoryProperties().
-
- Warning! Using this feature may not be equivalent to installing a GPU with
- smaller amount of memory, because graphics driver doesn't necessary fail new
- allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
- exceeded. It may return success and just silently migrate some device memory
- blocks to system RAM. This driver behavior can also be controlled using
- VK_AMD_memory_overallocation_behavior extension.
- */
- const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;
-
- /** \brief Pointers to Vulkan functions. Can be null.
-
- For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).
- */
- const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;
- /** \brief Handle to Vulkan instance object.
-
- Starting from version 3.0.0 this member is no longer optional, it must be set!
- */
- VkInstance VMA_NOT_NULL instance;
- /** \brief Optional. The highest version of Vulkan that the application is designed to use.
-
- It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
- The patch version number specified is ignored. Only the major and minor versions are considered.
- It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`.
- Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation.
- Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
- */
- uint32_t vulkanApiVersion;
-#if VMA_EXTERNAL_MEMORY
- /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type.
-
- If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount`
- elements, defining external memory handle types of particular Vulkan memory type,
- to be passed using `VkExportMemoryAllocateInfoKHR`.
-
- Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type.
- This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL.
- */
- const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes;
-#endif // #if VMA_EXTERNAL_MEMORY
-} VmaAllocatorCreateInfo;
-
-/// Information about existing #VmaAllocator object.
-typedef struct VmaAllocatorInfo
-{
- /** \brief Handle to Vulkan instance object.
-
- This is the same value as has been passed through VmaAllocatorCreateInfo::instance.
- */
- VkInstance VMA_NOT_NULL instance;
- /** \brief Handle to Vulkan physical device object.
-
- This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.
- */
- VkPhysicalDevice VMA_NOT_NULL physicalDevice;
- /** \brief Handle to Vulkan device object.
-
- This is the same value as has been passed through VmaAllocatorCreateInfo::device.
- */
- VkDevice VMA_NOT_NULL device;
-} VmaAllocatorInfo;
-
-/** @} */
-
-/**
-\addtogroup group_stats
-@{
-*/
-
-/** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total.
-
-These are fast to calculate.
-See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics().
-*/
-typedef struct VmaStatistics
-{
- /** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated.
- */
- uint32_t blockCount;
- /** \brief Number of #VmaAllocation objects allocated.
-
- Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`.
- */
- uint32_t allocationCount;
- /** \brief Number of bytes allocated in `VkDeviceMemory` blocks.
-
- \note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object
- (e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls
- "allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image.
- */
- VkDeviceSize blockBytes;
- /** \brief Total number of bytes occupied by all #VmaAllocation objects.
-
- Always less or equal than `blockBytes`.
- Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan
- but unused by any #VmaAllocation.
- */
- VkDeviceSize allocationBytes;
-} VmaStatistics;
-
-/** \brief More detailed statistics than #VmaStatistics.
-
-These are slower to calculate. Use for debugging purposes.
-See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics().
-
-Previous version of the statistics API provided averages, but they have been removed
-because they can be easily calculated as:
-
-\code
-VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount;
-VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes;
-VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount;
-\endcode
-*/
-typedef struct VmaDetailedStatistics
-{
- /// Basic statistics.
- VmaStatistics statistics;
- /// Number of free ranges of memory between allocations.
- uint32_t unusedRangeCount;
- /// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations.
- VkDeviceSize allocationSizeMin;
- /// Largest allocation size. 0 if there are 0 allocations.
- VkDeviceSize allocationSizeMax;
- /// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges.
- VkDeviceSize unusedRangeSizeMin;
- /// Largest empty range size. 0 if there are 0 empty ranges.
- VkDeviceSize unusedRangeSizeMax;
-} VmaDetailedStatistics;
-
-/** \brief General statistics from current state of the Allocator -
-total memory usage across all memory heaps and types.
-
-These are slower to calculate. Use for debugging purposes.
-See function vmaCalculateStatistics().
-*/
-typedef struct VmaTotalStatistics
-{
- VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES];
- VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS];
- VmaDetailedStatistics total;
-} VmaTotalStatistics;
-
-/** \brief Statistics of current memory usage and available budget for a specific memory heap.
-
-These are fast to calculate.
-See function vmaGetHeapBudgets().
-*/
-typedef struct VmaBudget
-{
- /** \brief Statistics fetched from the library.
- */
- VmaStatistics statistics;
- /** \brief Estimated current memory usage of the program, in bytes.
-
- Fetched from system using VK_EXT_memory_budget extension if enabled.
-
- It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects
- also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
- `VkDeviceMemory` blocks allocated outside of this library, if any.
- */
- VkDeviceSize usage;
- /** \brief Estimated amount of memory available to the program, in bytes.
-
- Fetched from system using VK_EXT_memory_budget extension if enabled.
-
- It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
- external to the program, decided by the operating system.
- Difference `budget - usage` is the amount of additional memory that can probably
- be allocated without problems. Exceeding the budget may result in various problems.
- */
- VkDeviceSize budget;
-} VmaBudget;
-
-/** @} */
-
-/**
-\addtogroup group_alloc
-@{
-*/
-
-/** \brief Parameters of new #VmaAllocation.
-
-To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others.
-*/
-typedef struct VmaAllocationCreateInfo
-{
- /// Use #VmaAllocationCreateFlagBits enum.
- VmaAllocationCreateFlags flags;
- /** \brief Intended usage of memory.
-
- You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
- If `pool` is not null, this member is ignored.
- */
- VmaMemoryUsage usage;
- /** \brief Flags that must be set in a Memory Type chosen for an allocation.
-
- Leave 0 if you specify memory requirements in other way. \n
- If `pool` is not null, this member is ignored.*/
- VkMemoryPropertyFlags requiredFlags;
- /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
-
- Set to 0 if no additional flags are preferred. \n
- If `pool` is not null, this member is ignored. */
- VkMemoryPropertyFlags preferredFlags;
- /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
-
- Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
- it meets other requirements specified by this structure, with no further
- restrictions on memory type index. \n
- If `pool` is not null, this member is ignored.
- */
- uint32_t memoryTypeBits;
- /** \brief Pool that this allocation should be created in.
-
- Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
- `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
- */
- VmaPool VMA_NULLABLE pool;
- /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
-
- If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
- null or pointer to a null-terminated string. The string will be then copied to
- internal buffer, so it doesn't need to be valid after allocation call.
- */
- void* VMA_NULLABLE pUserData;
- /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
-
- It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object
- and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
- Otherwise, it has the priority of a memory block where it is placed and this variable is ignored.
- */
- float priority;
-} VmaAllocationCreateInfo;
-
-/// Describes parameter of created #VmaPool.
-typedef struct VmaPoolCreateInfo
-{
- /** \brief Vulkan memory type index to allocate this pool from.
- */
- uint32_t memoryTypeIndex;
- /** \brief Use combination of #VmaPoolCreateFlagBits.
- */
- VmaPoolCreateFlags flags;
- /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
-
- Specify nonzero to set explicit, constant size of memory blocks used by this
- pool.
-
- Leave 0 to use default and let the library manage block sizes automatically.
- Sizes of particular blocks may vary.
- In this case, the pool will also support dedicated allocations.
- */
- VkDeviceSize blockSize;
- /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
-
- Set to 0 to have no preallocated blocks and allow the pool be completely empty.
- */
- size_t minBlockCount;
- /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
-
- Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
-
- Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
- throughout whole lifetime of this pool.
- */
- size_t maxBlockCount;
- /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations.
-
- It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object.
- Otherwise, this variable is ignored.
- */
- float priority;
- /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0.
-
- Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two.
- It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough,
- e.g. when doing interop with OpenGL.
- */
- VkDeviceSize minAllocationAlignment;
- /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional.
-
- Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`.
- It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`.
- Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool.
-
- Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`,
- can be attached automatically by this library when using other, more convenient of its features.
- */
- void* VMA_NULLABLE pMemoryAllocateNext;
-} VmaPoolCreateInfo;
-
-/** @} */
-
-/**
-\addtogroup group_alloc
-@{
-*/
-
-/// Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
-typedef struct VmaAllocationInfo
-{
- /** \brief Memory type index that this allocation was allocated from.
-
- It never changes.
- */
- uint32_t memoryType;
- /** \brief Handle to Vulkan memory object.
-
- Same memory object can be shared by multiple allocations.
-
- It can change after the allocation is moved during \ref defragmentation.
- */
- VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;
- /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation.
-
- You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function
- vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image,
- not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation
- and apply this offset automatically.
-
- It can change after the allocation is moved during \ref defragmentation.
- */
- VkDeviceSize offset;
- /** \brief Size of this allocation, in bytes.
-
- It never changes.
-
- \note Allocation size returned in this variable may be greater than the size
- requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the
- allocation is accessible for operations on memory e.g. using a pointer after
- mapping with vmaMapMemory(), but operations on the resource e.g. using
- `vkCmdCopyBuffer` must be limited to the size of the resource.
- */
- VkDeviceSize size;
- /** \brief Pointer to the beginning of this allocation as mapped data.
-
- If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
- created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.
-
- It can change after call to vmaMapMemory(), vmaUnmapMemory().
- It can also change after the allocation is moved during \ref defragmentation.
- */
- void* VMA_NULLABLE pMappedData;
- /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
-
- It can change after call to vmaSetAllocationUserData() for this allocation.
- */
- void* VMA_NULLABLE pUserData;
- /** \brief Custom allocation name that was set with vmaSetAllocationName().
-
- It can change after call to vmaSetAllocationName() for this allocation.
-
- Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with
- additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED].
- */
- const char* VMA_NULLABLE pName;
-} VmaAllocationInfo;
-
-/** \brief Parameters for defragmentation.
-
-To be used with function vmaBeginDefragmentation().
-*/
-typedef struct VmaDefragmentationInfo
-{
- /// \brief Use combination of #VmaDefragmentationFlagBits.
- VmaDefragmentationFlags flags;
- /** \brief Custom pool to be defragmented.
-
- If null then default pools will undergo defragmentation process.
- */
- VmaPool VMA_NULLABLE pool;
- /** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places.
-
- `0` means no limit.
- */
- VkDeviceSize maxBytesPerPass;
- /** \brief Maximum number of allocations that can be moved during single pass to a different place.
-
- `0` means no limit.
- */
- uint32_t maxAllocationsPerPass;
-} VmaDefragmentationInfo;
-
-/// Single move of an allocation to be done for defragmentation.
-typedef struct VmaDefragmentationMove
-{
- /// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it.
- VmaDefragmentationMoveOperation operation;
- /// Allocation that should be moved.
- VmaAllocation VMA_NOT_NULL srcAllocation;
- /** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`.
-
- \warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass,
- to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory().
- vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory.
- */
- VmaAllocation VMA_NOT_NULL dstTmpAllocation;
-} VmaDefragmentationMove;
-
-/** \brief Parameters for incremental defragmentation steps.
-
-To be used with function vmaBeginDefragmentationPass().
-*/
-typedef struct VmaDefragmentationPassMoveInfo
-{
- /// Number of elements in the `pMoves` array.
- uint32_t moveCount;
- /** \brief Array of moves to be performed by the user in the current defragmentation pass.
-
- Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass().
-
- For each element, you should:
-
- 1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset.
- 2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`.
- 3. Make sure these commands finished executing on the GPU.
- 4. Destroy the old buffer/image.
-
- Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass().
- After this call, the allocation will point to the new place in memory.
-
- Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
-
- Alternatively, if you decide you want to completely remove the allocation:
-
- 1. Destroy its buffer/image.
- 2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
-
- Then, after vmaEndDefragmentationPass() the allocation will be freed.
- */
- VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves;
-} VmaDefragmentationPassMoveInfo;
-
-/// Statistics returned for defragmentation process in function vmaEndDefragmentation().
-typedef struct VmaDefragmentationStats
-{
- /// Total number of bytes that have been copied while moving allocations to different places.
- VkDeviceSize bytesMoved;
- /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
- VkDeviceSize bytesFreed;
- /// Number of allocations that have been moved to different places.
- uint32_t allocationsMoved;
- /// Number of empty `VkDeviceMemory` objects that have been released to the system.
- uint32_t deviceMemoryBlocksFreed;
-} VmaDefragmentationStats;
-
-/** @} */
-
-/**
-\addtogroup group_virtual
-@{
-*/
-
-/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock().
-typedef struct VmaVirtualBlockCreateInfo
-{
- /** \brief Total size of the virtual block.
-
- Sizes can be expressed in bytes or any units you want as long as you are consistent in using them.
- For example, if you allocate from some array of structures, 1 can mean single instance of entire structure.
- */
- VkDeviceSize size;
-
- /** \brief Use combination of #VmaVirtualBlockCreateFlagBits.
- */
- VmaVirtualBlockCreateFlags flags;
-
- /** \brief Custom CPU memory allocation callbacks. Optional.
-
- Optional, can be null. When specified, they will be used for all CPU-side memory allocations.
- */
- const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
-} VmaVirtualBlockCreateInfo;
-
-/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate().
-typedef struct VmaVirtualAllocationCreateInfo
-{
- /** \brief Size of the allocation.
-
- Cannot be zero.
- */
- VkDeviceSize size;
- /** \brief Required alignment of the allocation. Optional.
-
- Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset.
- */
- VkDeviceSize alignment;
- /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits.
- */
- VmaVirtualAllocationCreateFlags flags;
- /** \brief Custom pointer to be associated with the allocation. Optional.
-
- It can be any value and can be used for user-defined purposes. It can be fetched or changed later.
- */
- void* VMA_NULLABLE pUserData;
-} VmaVirtualAllocationCreateInfo;
-
-/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo().
-typedef struct VmaVirtualAllocationInfo
-{
- /** \brief Offset of the allocation.
-
- Offset at which the allocation was made.
- */
- VkDeviceSize offset;
- /** \brief Size of the allocation.
-
- Same value as passed in VmaVirtualAllocationCreateInfo::size.
- */
- VkDeviceSize size;
- /** \brief Custom pointer associated with the allocation.
-
- Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData().
- */
- void* VMA_NULLABLE pUserData;
-} VmaVirtualAllocationInfo;
-
-/** @} */
-
-#endif // _VMA_DATA_TYPES_DECLARATIONS
-
-#ifndef _VMA_FUNCTION_HEADERS
-
-/**
-\addtogroup group_init
-@{
-*/
-
-/// Creates #VmaAllocator object.
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
- const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,
- VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator);
-
-/// Destroys allocator object.
-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
- VmaAllocator VMA_NULLABLE allocator);
-
-/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.
-
-It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to
-`VkPhysicalDevice`, `VkDevice` etc. every time using this function.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);
-
-/**
-PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
-You can access it here, without fetching it again on your own.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties);
-
-/**
-PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
-You can access it here, without fetching it again on your own.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);
-
-/**
-\brief Given Memory Type Index, returns Property Flags of this memory type.
-
-This is just a convenience function. Same information can be obtained using
-vmaGetMemoryProperties().
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
- VmaAllocator VMA_NOT_NULL allocator,
- uint32_t memoryTypeIndex,
- VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
-
-/** \brief Sets index of the current frame.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
- VmaAllocator VMA_NOT_NULL allocator,
- uint32_t frameIndex);
-
-/** @} */
-
-/**
-\addtogroup group_stats
-@{
-*/
-
-/** \brief Retrieves statistics from current state of the Allocator.
-
-This function is called "calculate" not "get" because it has to traverse all
-internal data structures, so it may be quite slow. Use it for debugging purposes.
-For faster but more brief statistics suitable to be called every frame or every allocation,
-use vmaGetHeapBudgets().
-
-Note that when using allocator from multiple threads, returned information may immediately
-become outdated.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaTotalStatistics* VMA_NOT_NULL pStats);
-
-/** \brief Retrieves information about current memory usage and budget for all memory heaps.
-
-\param allocator
-\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used.
-
-This function is called "get" not "calculate" because it is very fast, suitable to be called
-every frame or every allocation. For more detailed statistics use vmaCalculateStatistics().
-
-Note that when using allocator from multiple threads, returned information may immediately
-become outdated.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets);
-
-/** @} */
-
-/**
-\addtogroup group_alloc
-@{
-*/
-
-/**
-\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
-
-This algorithm tries to find a memory type that:
-
-- Is allowed by memoryTypeBits.
-- Contains all the flags from pAllocationCreateInfo->requiredFlags.
-- Matches intended usage.
-- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
-
-\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
-from this function or any other allocating function probably means that your
-device doesn't support any memory type with requested features for the specific
-type of resource you want to use it for. Please check parameters of your
-resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
- VmaAllocator VMA_NOT_NULL allocator,
- uint32_t memoryTypeBits,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
- uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
-
-/**
-\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
-
-It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
-It internally creates a temporary, dummy buffer that never has memory bound.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
- uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
-
-/**
-\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
-
-It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
-It internally creates a temporary, dummy image that never has memory bound.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
- uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
-
-/** \brief Allocates Vulkan device memory and creates #VmaPool object.
-
-\param allocator Allocator object.
-\param pCreateInfo Parameters of pool to create.
-\param[out] pPool Handle to created pool.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
- VmaAllocator VMA_NOT_NULL allocator,
- const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,
- VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool);
-
-/** \brief Destroys #VmaPool object and frees Vulkan device memory.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaPool VMA_NULLABLE pool);
-
-/** @} */
-
-/**
-\addtogroup group_stats
-@{
-*/
-
-/** \brief Retrieves statistics of existing #VmaPool object.
-
-\param allocator Allocator object.
-\param pool Pool object.
-\param[out] pPoolStats Statistics of specified pool.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaPool VMA_NOT_NULL pool,
- VmaStatistics* VMA_NOT_NULL pPoolStats);
-
-/** \brief Retrieves detailed statistics of existing #VmaPool object.
-
-\param allocator Allocator object.
-\param pool Pool object.
-\param[out] pPoolStats Statistics of specified pool.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaPool VMA_NOT_NULL pool,
- VmaDetailedStatistics* VMA_NOT_NULL pPoolStats);
-
-/** @} */
-
-/**
-\addtogroup group_alloc
-@{
-*/
-
-/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
-
-Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
-`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
-`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
-
-Possible return values:
-
-- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
-- `VK_SUCCESS` - corruption detection has been performed and succeeded.
-- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
- `VMA_ASSERT` is also fired in that case.
-- Other value: Error returned by Vulkan, e.g. memory mapping failure.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaPool VMA_NOT_NULL pool);
-
-/** \brief Retrieves name of a custom pool.
-
-After the call `ppName` is either null or points to an internally-owned null-terminated string
-containing name of the pool that was previously set. The pointer becomes invalid when the pool is
-destroyed or its name is changed using vmaSetPoolName().
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaPool VMA_NOT_NULL pool,
- const char* VMA_NULLABLE* VMA_NOT_NULL ppName);
-
-/** \brief Sets name of a custom pool.
-
-`pName` can be either null or pointer to a null-terminated string with new name for the pool.
-Function makes internal copy of the string, so it can be changed or freed immediately after this call.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaPool VMA_NOT_NULL pool,
- const char* VMA_NULLABLE pName);
-
-/** \brief General purpose memory allocation.
-
-\param allocator
-\param pVkMemoryRequirements
-\param pCreateInfo
-\param[out] pAllocation Handle to allocated memory.
-\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
-
-You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
-
-It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
-vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
- VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
- VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
-
-/** \brief General purpose memory allocation for multiple allocation objects at once.
-
-\param allocator Allocator object.
-\param pVkMemoryRequirements Memory requirements for each allocation.
-\param pCreateInfo Creation parameters for each allocation.
-\param allocationCount Number of allocations to make.
-\param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
-\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
-
-You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
-
-Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
-It is just a general purpose allocation function able to make multiple allocations at once.
-It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
-
-All allocations are made using same parameters. All of them are created out of the same memory pool and type.
-If any allocation fails, all allocations already made within this function call are also freed, so that when
-returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements,
- const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo,
- size_t allocationCount,
- VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
- VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);
-
-/** \brief Allocates memory suitable for given `VkBuffer`.
-
-\param allocator
-\param buffer
-\param pCreateInfo
-\param[out] pAllocation Handle to allocated memory.
-\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
-
-It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory().
-
-This is a special-purpose function. In most cases you should use vmaCreateBuffer().
-
-You must free the allocation using vmaFreeMemory() when no longer needed.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
- VmaAllocator VMA_NOT_NULL allocator,
- VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
- VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
- VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
-
-/** \brief Allocates memory suitable for given `VkImage`.
-
-\param allocator
-\param image
-\param pCreateInfo
-\param[out] pAllocation Handle to allocated memory.
-\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
-
-It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory().
-
-This is a special-purpose function. In most cases you should use vmaCreateImage().
-
-You must free the allocation using vmaFreeMemory() when no longer needed.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
- VmaAllocator VMA_NOT_NULL allocator,
- VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
- VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
- VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
-
-/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
-
-Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
- VmaAllocator VMA_NOT_NULL allocator,
- const VmaAllocation VMA_NULLABLE allocation);
-
-/** \brief Frees memory and destroys multiple allocations.
-
-Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
-It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
-vmaAllocateMemoryPages() and other functions.
-It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
-
-Allocations in `pAllocations` array can come from any memory pools and types.
-Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
- VmaAllocator VMA_NOT_NULL allocator,
- size_t allocationCount,
- const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);
-
-/** \brief Returns current information about specified allocation.
-
-Current paramteres of given allocation are returned in `pAllocationInfo`.
-
-Although this function doesn't lock any mutex, so it should be quite efficient,
-you should avoid calling it too often.
-You can retrieve same VmaAllocationInfo structure while creating your resource, from function
-vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
-(e.g. due to defragmentation).
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);
-
-/** \brief Sets pUserData in given allocation to new value.
-
-The value of pointer `pUserData` is copied to allocation's `pUserData`.
-It is opaque, so you can use it however you want - e.g.
-as a pointer, ordinal number or some handle to you own data.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- void* VMA_NULLABLE pUserData);
-
-/** \brief Sets pName in given allocation to new value.
-
-`pName` must be either null, or pointer to a null-terminated string. The function
-makes local copy of the string and sets it as allocation's `pName`. String
-passed as pName doesn't need to be valid for whole lifetime of the allocation -
-you can free it after this call. String previously pointed by allocation's
-`pName` is freed from memory.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- const char* VMA_NULLABLE pName);
-
-/**
-\brief Given an allocation, returns Property Flags of its memory type.
-
-This is just a convenience function. Same information can be obtained using
-vmaGetAllocationInfo() + vmaGetMemoryProperties().
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
-
-/** \brief Maps memory represented by given allocation and returns pointer to it.
-
-Maps memory represented by given allocation to make it accessible to CPU code.
-When succeeded, `*ppData` contains pointer to first byte of this memory.
-
-\warning
-If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is
-correctly offsetted to the beginning of region assigned to this particular allocation.
-Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block.
-You should not add VmaAllocationInfo::offset to it!
-
-Mapping is internally reference-counted and synchronized, so despite raw Vulkan
-function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
-multiple times simultaneously, it is safe to call this function on allocations
-assigned to the same memory block. Actual Vulkan memory will be mapped on first
-mapping and unmapped on last unmapping.
-
-If the function succeeded, you must call vmaUnmapMemory() to unmap the
-allocation when mapping is no longer needed or before freeing the allocation, at
-the latest.
-
-It also safe to call this function multiple times on the same allocation. You
-must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
-
-It is also safe to call this function on allocation created with
-#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
-You must still call vmaUnmapMemory() same number of times as you called
-vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
-"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
-
-This function fails when used on allocation made in memory type that is not
-`HOST_VISIBLE`.
-
-This function doesn't automatically flush or invalidate caches.
-If the allocation is made from a memory types that is not `HOST_COHERENT`,
-you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- void* VMA_NULLABLE* VMA_NOT_NULL ppData);
-
-/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
-
-For details, see description of vmaMapMemory().
-
-This function doesn't automatically flush or invalidate caches.
-If the allocation is made from a memory types that is not `HOST_COHERENT`,
-you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation);
-
-/** \brief Flushes memory of given allocation.
-
-Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
-It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
-Unmap operation doesn't do that automatically.
-
-- `offset` must be relative to the beginning of allocation.
-- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
-- `offset` and `size` don't have to be aligned.
- They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
-- If `size` is 0, this call is ignored.
-- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
- this call is ignored.
-
-Warning! `offset` and `size` are relative to the contents of given `allocation`.
-If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
-Do not pass allocation's offset as `offset`!!!
-
-This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
-called, otherwise `VK_SUCCESS`.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- VkDeviceSize offset,
- VkDeviceSize size);
-
-/** \brief Invalidates memory of given allocation.
-
-Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
-It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
-Map operation doesn't do that automatically.
-
-- `offset` must be relative to the beginning of allocation.
-- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
-- `offset` and `size` don't have to be aligned.
- They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
-- If `size` is 0, this call is ignored.
-- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
- this call is ignored.
-
-Warning! `offset` and `size` are relative to the contents of given `allocation`.
-If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
-Do not pass allocation's offset as `offset`!!!
-
-This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if
-it is called, otherwise `VK_SUCCESS`.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- VkDeviceSize offset,
- VkDeviceSize size);
-
-/** \brief Flushes memory of given set of allocations.
-
-Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations.
-For more information, see documentation of vmaFlushAllocation().
-
-\param allocator
-\param allocationCount
-\param allocations
-\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
-\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
-
-This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
-called, otherwise `VK_SUCCESS`.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
- VmaAllocator VMA_NOT_NULL allocator,
- uint32_t allocationCount,
- const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
- const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
- const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
-
-/** \brief Invalidates memory of given set of allocations.
-
-Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations.
-For more information, see documentation of vmaInvalidateAllocation().
-
-\param allocator
-\param allocationCount
-\param allocations
-\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
-\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
-
-This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is
-called, otherwise `VK_SUCCESS`.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
- VmaAllocator VMA_NOT_NULL allocator,
- uint32_t allocationCount,
- const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
- const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
- const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
-
-/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
-
-\param allocator
-\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
-
-Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
-`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
-`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
-
-Possible return values:
-
-- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
-- `VK_SUCCESS` - corruption detection has been performed and succeeded.
-- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
- `VMA_ASSERT` is also fired in that case.
-- Other value: Error returned by Vulkan, e.g. memory mapping failure.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
- VmaAllocator VMA_NOT_NULL allocator,
- uint32_t memoryTypeBits);
-
-/** \brief Begins defragmentation process.
-
-\param allocator Allocator object.
-\param pInfo Structure filled with parameters of defragmentation.
-\param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation.
-\returns
-- `VK_SUCCESS` if defragmentation can begin.
-- `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported.
-
-For more information about defragmentation, see documentation chapter:
-[Defragmentation](@ref defragmentation).
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
- VmaAllocator VMA_NOT_NULL allocator,
- const VmaDefragmentationInfo* VMA_NOT_NULL pInfo,
- VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext);
-
-/** \brief Ends defragmentation process.
-
-\param allocator Allocator object.
-\param context Context object that has been created by vmaBeginDefragmentation().
-\param[out] pStats Optional stats for the defragmentation. Can be null.
-
-Use this function to finish defragmentation started by vmaBeginDefragmentation().
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaDefragmentationContext VMA_NOT_NULL context,
- VmaDefragmentationStats* VMA_NULLABLE pStats);
-
-/** \brief Starts single defragmentation pass.
-
-\param allocator Allocator object.
-\param context Context object that has been created by vmaBeginDefragmentation().
-\param[out] pPassInfo Computed informations for current pass.
-\returns
-- `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation.
-- `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(),
- and then preferably try another pass with vmaBeginDefragmentationPass().
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaDefragmentationContext VMA_NOT_NULL context,
- VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
-
-/** \brief Ends single defragmentation pass.
-
-\param allocator Allocator object.
-\param context Context object that has been created by vmaBeginDefragmentation().
-\param pPassInfo Computed informations for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you.
-
-Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible.
-
-Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`.
-After this call:
-
-- Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY
- (which is the default) will be pointing to the new destination place.
-- Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY
- will be freed.
-
-If no more moves are possible you can end whole defragmentation.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaDefragmentationContext VMA_NOT_NULL context,
- VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
-
-/** \brief Binds buffer to allocation.
-
-Binds specified buffer to region of memory represented by specified allocation.
-Gets `VkDeviceMemory` handle and offset from the allocation.
-If you want to create a buffer, allocate memory for it and bind them together separately,
-you should use this function for binding instead of standard `vkBindBufferMemory()`,
-because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
-allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
-(which is illegal in Vulkan).
-
-It is recommended to use function vmaCreateBuffer() instead of this one.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);
-
-/** \brief Binds buffer to allocation with additional parameters.
-
-\param allocator
-\param allocation
-\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
-\param buffer
-\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
-
-This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
-
-If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
-or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- VkDeviceSize allocationLocalOffset,
- VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
- const void* VMA_NULLABLE pNext);
-
-/** \brief Binds image to allocation.
-
-Binds specified image to region of memory represented by specified allocation.
-Gets `VkDeviceMemory` handle and offset from the allocation.
-If you want to create an image, allocate memory for it and bind them together separately,
-you should use this function for binding instead of standard `vkBindImageMemory()`,
-because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
-allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
-(which is illegal in Vulkan).
-
-It is recommended to use function vmaCreateImage() instead of this one.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);
-
-/** \brief Binds image to allocation with additional parameters.
-
-\param allocator
-\param allocation
-\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
-\param image
-\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
-
-This function is similar to vmaBindImageMemory(), but it provides additional parameters.
-
-If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
-or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- VkDeviceSize allocationLocalOffset,
- VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
- const void* VMA_NULLABLE pNext);
-
-/** \brief Creates a new `VkBuffer`, allocates and binds memory for it.
-
-\param allocator
-\param pBufferCreateInfo
-\param pAllocationCreateInfo
-\param[out] pBuffer Buffer that was created.
-\param[out] pAllocation Allocation that was created.
-\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
-
-This function automatically:
-
--# Creates buffer.
--# Allocates appropriate memory for it.
--# Binds the buffer with the memory.
-
-If any of these operations fail, buffer and allocation are not created,
-returned value is negative error code, `*pBuffer` and `*pAllocation` are null.
-
-If the function succeeded, you must destroy both buffer and allocation when you
-no longer need them using either convenience function vmaDestroyBuffer() or
-separately, using `vkDestroyBuffer()` and vmaFreeMemory().
-
-If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
-VK_KHR_dedicated_allocation extension is used internally to query driver whether
-it requires or prefers the new buffer to have dedicated allocation. If yes,
-and if dedicated allocation is possible
-(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
-allocation for this buffer, just like when using
-#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
-
-\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer,
-although recommended as a good practice, is out of scope of this library and could be implemented
-by the user as a higher-level logic on top of VMA.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
- VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
- VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
- VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
-
-/** \brief Creates a buffer with additional minimum alignment.
-
-Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom,
-minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g.
-for interop with OpenGL.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
- VkDeviceSize minAlignment,
- VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
- VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
- VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
-
-/** \brief Creates a new `VkBuffer`, binds already created memory for it.
-
-\param allocator
-\param allocation Allocation that provides memory to be used for binding new buffer to it.
-\param pBufferCreateInfo
-\param[out] pBuffer Buffer that was created.
-
-This function automatically:
-
--# Creates buffer.
--# Binds the buffer with the supplied memory.
-
-If any of these operations fail, buffer is not created,
-returned value is negative error code and `*pBuffer` is null.
-
-If the function succeeded, you must destroy the buffer when you
-no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
-allocation you can use convenience function vmaDestroyBuffer().
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
- VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
-
-/** \brief Destroys Vulkan buffer and frees allocated memory.
-
-This is just a convenience function equivalent to:
-
-\code
-vkDestroyBuffer(device, buffer, allocationCallbacks);
-vmaFreeMemory(allocator, allocation);
-\endcode
-
-It is safe to pass null as buffer and/or allocation.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
- VmaAllocator VMA_NOT_NULL allocator,
- VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,
- VmaAllocation VMA_NULLABLE allocation);
-
-/// Function similar to vmaCreateBuffer().
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
- VmaAllocator VMA_NOT_NULL allocator,
- const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
- const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
- VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage,
- VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
- VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
-
-/// Function similar to vmaCreateAliasingBuffer().
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
- VmaAllocator VMA_NOT_NULL allocator,
- VmaAllocation VMA_NOT_NULL allocation,
- const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
- VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
-
-/** \brief Destroys Vulkan image and frees allocated memory.
-
-This is just a convenience function equivalent to:
-
-\code
-vkDestroyImage(device, image, allocationCallbacks);
-vmaFreeMemory(allocator, allocation);
-\endcode
-
-It is safe to pass null as image and/or allocation.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
- VmaAllocator VMA_NOT_NULL allocator,
- VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
- VmaAllocation VMA_NULLABLE allocation);
-
-/** @} */
-
-/**
-\addtogroup group_virtual
-@{
-*/
-
-/** \brief Creates new #VmaVirtualBlock object.
-
-\param pCreateInfo Parameters for creation.
-\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
- const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
- VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock);
-
-/** \brief Destroys #VmaVirtualBlock object.
-
-Please note that you should consciously handle virtual allocations that could remain unfreed in the block.
-You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock()
-if you are sure this is what you want. If you do neither, an assert is called.
-
-If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`,
-don't forget to free them.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(
- VmaVirtualBlock VMA_NULLABLE virtualBlock);
-
-/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations.
-*/
-VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock);
-
-/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock,
- VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo);
-
-/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock.
-
-If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned
-(despite the function doesn't ever allocate actual GPU memory).
-`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`.
-
-\param virtualBlock Virtual block
-\param pCreateInfo Parameters for the allocation
-\param[out] pAllocation Returned handle of the new allocation
-\param[out] pOffset Returned offset of the new allocation. Optional, can be null.
-*/
-VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock,
- const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
- VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
- VkDeviceSize* VMA_NULLABLE pOffset);
-
-/** \brief Frees virtual allocation inside given #VmaVirtualBlock.
-
-It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock,
- VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation);
-
-/** \brief Frees all virtual allocations inside given #VmaVirtualBlock.
-
-You must either call this function or free each virtual allocation individually with vmaVirtualFree()
-before destroying a virtual block. Otherwise, an assert is called.
-
-If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`,
-don't forget to free it as well.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock);
-
-/** \brief Changes custom pointer associated with given virtual allocation.
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock,
- VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation,
- void* VMA_NULLABLE pUserData);
-
-/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
-
-This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics().
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock,
- VmaStatistics* VMA_NOT_NULL pStats);
-
-/** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
-
-This function is slow to call. Use for debugging purposes.
-For less detailed statistics, see vmaGetVirtualBlockStatistics().
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock,
- VmaDetailedStatistics* VMA_NOT_NULL pStats);
-
-/** @} */
-
-#if VMA_STATS_STRING_ENABLED
-/**
-\addtogroup group_stats
-@{
-*/
-
-/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock.
-\param virtualBlock Virtual block.
-\param[out] ppStatsString Returned string.
-\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces.
-
-Returned string must be freed using vmaFreeVirtualBlockStatsString().
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock,
- char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
- VkBool32 detailedMap);
-
-/// Frees a string returned by vmaBuildVirtualBlockStatsString().
-VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(
- VmaVirtualBlock VMA_NOT_NULL virtualBlock,
- char* VMA_NULLABLE pStatsString);
-
-/** \brief Builds and returns statistics as a null-terminated string in JSON format.
-\param allocator
-\param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
-\param detailedMap
-*/
-VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
- VmaAllocator VMA_NOT_NULL allocator,
- char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
- VkBool32 detailedMap);
-
-VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
- VmaAllocator VMA_NOT_NULL allocator,
- char* VMA_NULLABLE pStatsString);
-
-/** @} */
-
-#endif // VMA_STATS_STRING_ENABLED
-
-#endif // _VMA_FUNCTION_HEADERS
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
-
-////////////////////////////////////////////////////////////////////////////////
-////////////////////////////////////////////////////////////////////////////////
-//
-// IMPLEMENTATION
-//
-////////////////////////////////////////////////////////////////////////////////
-////////////////////////////////////////////////////////////////////////////////
-
-// For Visual Studio IntelliSense.
-#if defined(__cplusplus) && defined(__INTELLISENSE__)
-#define VMA_IMPLEMENTATION
-#endif
-
-#ifdef VMA_IMPLEMENTATION
-#undef VMA_IMPLEMENTATION
-
-#include
-#include
-#include
-#include
-#include
-
-#ifdef _MSC_VER
- #include // For functions like __popcnt, _BitScanForward etc.
-#endif
-#if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20
- #include // For std::popcount
-#endif
-
-/*******************************************************************************
-CONFIGURATION SECTION
-
-Define some of these macros before each #include of this header or change them
-here if you need other then default behavior depending on your environment.
-*/
-#ifndef _VMA_CONFIGURATION
-
-/*
-Define this macro to 1 to make the library fetch pointers to Vulkan functions
-internally, like:
-
- vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
-*/
-#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
- #define VMA_STATIC_VULKAN_FUNCTIONS 1
-#endif
-
-/*
-Define this macro to 1 to make the library fetch pointers to Vulkan functions
-internally, like:
-
- vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory");
-
-To use this feature in new versions of VMA you now have to pass
-VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as
-VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null.
-*/
-#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)
- #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
-#endif
-
-#ifndef VMA_USE_STL_SHARED_MUTEX
- // Compiler conforms to C++17.
- #if __cplusplus >= 201703L
- #define VMA_USE_STL_SHARED_MUTEX 1
- // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
- // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
- #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
- #define VMA_USE_STL_SHARED_MUTEX 1
- #else
- #define VMA_USE_STL_SHARED_MUTEX 0
- #endif
-#endif
-
-/*
-Define this macro to include custom header files without having to edit this file directly, e.g.:
-
- // Inside of "my_vma_configuration_user_includes.h":
-
- #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT
- #include "my_custom_min.h" // for my_custom_min
- #include
- #include
-
- // Inside a different file, which includes "vk_mem_alloc.h":
-
- #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h"
- #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr)
- #define VMA_MIN(v1, v2) (my_custom_min(v1, v2))
- #include "vk_mem_alloc.h"
- ...
-
-The following headers are used in this CONFIGURATION section only, so feel free to
-remove them if not needed.
-*/
-#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H)
- #include // for assert
- #include // for min, max
- #include
-#else
- #include VMA_CONFIGURATION_USER_INCLUDES_H
-#endif
-
-#ifndef VMA_NULL
- // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
- #define VMA_NULL nullptr
-#endif
-
-#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
-#include
-static void* vma_aligned_alloc(size_t alignment, size_t size)
-{
- // alignment must be >= sizeof(void*)
- if(alignment < sizeof(void*))
- {
- alignment = sizeof(void*);
- }
-
- return memalign(alignment, size);
-}
-#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
-#include
-
-#if defined(__APPLE__)
-#include
-#endif
-
-static void* vma_aligned_alloc(size_t alignment, size_t size)
-{
- // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4)
- // Therefore, for now disable this specific exception until a proper solution is found.
- //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0))
- //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0
- // // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only
- // // with the MacOSX11.0 SDK in Xcode 12 (which is what adds
- // // MAC_OS_X_VERSION_10_16), even though the function is marked
- // // availabe for 10.15. That is why the preprocessor checks for 10.16 but
- // // the __builtin_available checks for 10.15.
- // // People who use C++17 could call aligned_alloc with the 10.15 SDK already.
- // if (__builtin_available(macOS 10.15, iOS 13, *))
- // return aligned_alloc(alignment, size);
- //#endif
- //#endif
-
- // alignment must be >= sizeof(void*)
- if(alignment < sizeof(void*))
- {
- alignment = sizeof(void*);
- }
-
- void *pointer;
- if(posix_memalign(&pointer, alignment, size) == 0)
- return pointer;
- return VMA_NULL;
-}
-#elif defined(_WIN32)
-static void* vma_aligned_alloc(size_t alignment, size_t size)
-{
- return _aligned_malloc(size, alignment);
-}
-#else
-static void* vma_aligned_alloc(size_t alignment, size_t size)
-{
- return aligned_alloc(alignment, size);
-}
-#endif
-
-#if defined(_WIN32)
-static void vma_aligned_free(void* ptr)
-{
- _aligned_free(ptr);
-}
-#else
-static void vma_aligned_free(void* VMA_NULLABLE ptr)
-{
- free(ptr);
-}
-#endif
-
-// If your compiler is not compatible with C++11 and definition of
-// aligned_alloc() function is missing, uncommeting following line may help:
-
-//#include
-
-// Normal assert to check for programmer's errors, especially in Debug configuration.
-#ifndef VMA_ASSERT
- #ifdef NDEBUG
- #define VMA_ASSERT(expr)
- #else
- #define VMA_ASSERT(expr) assert(expr)
- #endif
-#endif
-
-// Assert that will be called very often, like inside data structures e.g. operator[].
-// Making it non-empty can make program slow.
-#ifndef VMA_HEAVY_ASSERT
- #ifdef NDEBUG
- #define VMA_HEAVY_ASSERT(expr)
- #else
- #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
- #endif
-#endif
-
-#ifndef VMA_ALIGN_OF
- #define VMA_ALIGN_OF(type) (__alignof(type))
-#endif
-
-#ifndef VMA_SYSTEM_ALIGNED_MALLOC
- #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size))
-#endif
-
-#ifndef VMA_SYSTEM_ALIGNED_FREE
- // VMA_SYSTEM_FREE is the old name, but might have been defined by the user
- #if defined(VMA_SYSTEM_FREE)
- #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr)
- #else
- #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr)
- #endif
-#endif
-
-#ifndef VMA_COUNT_BITS_SET
- // Returns number of bits set to 1 in (v)
- #define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v)
-#endif
-
-#ifndef VMA_BITSCAN_LSB
- // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX
- #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask)
-#endif
-
-#ifndef VMA_BITSCAN_MSB
- // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX
- #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask)
-#endif
-
-#ifndef VMA_MIN
- #define VMA_MIN(v1, v2) ((std::min)((v1), (v2)))
-#endif
-
-#ifndef VMA_MAX
- #define VMA_MAX(v1, v2) ((std::max)((v1), (v2)))
-#endif
-
-#ifndef VMA_SWAP
- #define VMA_SWAP(v1, v2) std::swap((v1), (v2))
-#endif
-
-#ifndef VMA_SORT
- #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
-#endif
-
-#ifndef VMA_DEBUG_LOG
- #define VMA_DEBUG_LOG(format, ...)
- /*
- #define VMA_DEBUG_LOG(format, ...) do { \
- printf(format, __VA_ARGS__); \
- printf("\n"); \
- } while(false)
- */
-#endif
-
-// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
-#if VMA_STATS_STRING_ENABLED
- static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num)
- {
- snprintf(outStr, strLen, "%u", static_cast(num));
- }
- static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num)
- {
- snprintf(outStr, strLen, "%llu", static_cast(num));
- }
- static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr)
- {
- snprintf(outStr, strLen, "%p", ptr);
- }
-#endif
-
-#ifndef VMA_MUTEX
- class VmaMutex
- {
- public:
- void Lock() { m_Mutex.lock(); }
- void Unlock() { m_Mutex.unlock(); }
- bool TryLock() { return m_Mutex.try_lock(); }
- private:
- std::mutex m_Mutex;
- };
- #define VMA_MUTEX VmaMutex
-#endif
-
-// Read-write mutex, where "read" is shared access, "write" is exclusive access.
-#ifndef VMA_RW_MUTEX
- #if VMA_USE_STL_SHARED_MUTEX
- // Use std::shared_mutex from C++17.
- #include
- class VmaRWMutex
- {
- public:
- void LockRead() { m_Mutex.lock_shared(); }
- void UnlockRead() { m_Mutex.unlock_shared(); }
- bool TryLockRead() { return m_Mutex.try_lock_shared(); }
- void LockWrite() { m_Mutex.lock(); }
- void UnlockWrite() { m_Mutex.unlock(); }
- bool TryLockWrite() { return m_Mutex.try_lock(); }
- private:
- std::shared_mutex m_Mutex;
- };
- #define VMA_RW_MUTEX VmaRWMutex
- #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
- // Use SRWLOCK from WinAPI.
- // Minimum supported client = Windows Vista, server = Windows Server 2008.
- class VmaRWMutex
- {
- public:
- VmaRWMutex() { InitializeSRWLock(&m_Lock); }
- void LockRead() { AcquireSRWLockShared(&m_Lock); }
- void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
- bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }
- void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
- void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
- bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }
- private:
- SRWLOCK m_Lock;
- };
- #define VMA_RW_MUTEX VmaRWMutex
- #else
- // Less efficient fallback: Use normal mutex.
- class VmaRWMutex
- {
- public:
- void LockRead() { m_Mutex.Lock(); }
- void UnlockRead() { m_Mutex.Unlock(); }
- bool TryLockRead() { return m_Mutex.TryLock(); }
- void LockWrite() { m_Mutex.Lock(); }
- void UnlockWrite() { m_Mutex.Unlock(); }
- bool TryLockWrite() { return m_Mutex.TryLock(); }
- private:
- VMA_MUTEX m_Mutex;
- };
- #define VMA_RW_MUTEX VmaRWMutex
- #endif // #if VMA_USE_STL_SHARED_MUTEX
-#endif // #ifndef VMA_RW_MUTEX
-
-/*
-If providing your own implementation, you need to implement a subset of std::atomic.
-*/
-#ifndef VMA_ATOMIC_UINT32
- #include
- #define VMA_ATOMIC_UINT32 std::atomic
-#endif
-
-#ifndef VMA_ATOMIC_UINT64
- #include
- #define VMA_ATOMIC_UINT64 std::atomic
-#endif
-
-#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
- /**
- Every allocation will have its own memory block.
- Define to 1 for debugging purposes only.
- */
- #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
-#endif
-
-#ifndef VMA_MIN_ALIGNMENT
- /**
- Minimum alignment of all allocations, in bytes.
- Set to more than 1 for debugging purposes. Must be power of two.
- */
- #ifdef VMA_DEBUG_ALIGNMENT // Old name
- #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT
- #else
- #define VMA_MIN_ALIGNMENT (1)
- #endif
-#endif
-
-#ifndef VMA_DEBUG_MARGIN
- /**
- Minimum margin after every allocation, in bytes.
- Set nonzero for debugging purposes only.
- */
- #define VMA_DEBUG_MARGIN (0)
-#endif
-
-#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
- /**
- Define this macro to 1 to automatically fill new allocations and destroyed
- allocations with some bit pattern.
- */
- #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
-#endif
-
-#ifndef VMA_DEBUG_DETECT_CORRUPTION
- /**
- Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
- enable writing magic value to the margin after every allocation and
- validating it, so that memory corruptions (out-of-bounds writes) are detected.
- */
- #define VMA_DEBUG_DETECT_CORRUPTION (0)
-#endif
-
-#ifndef VMA_DEBUG_GLOBAL_MUTEX
- /**
- Set this to 1 for debugging purposes only, to enable single mutex protecting all
- entry calls to the library. Can be useful for debugging multithreading issues.
- */
- #define VMA_DEBUG_GLOBAL_MUTEX (0)
-#endif
-
-#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
- /**
- Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
- Set to more than 1 for debugging purposes only. Must be power of two.
- */
- #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
-#endif
-
-#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
- /*
- Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount
- and return error instead of leaving up to Vulkan implementation what to do in such cases.
- */
- #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0)
-#endif
-
-#ifndef VMA_SMALL_HEAP_MAX_SIZE
- /// Maximum size of a memory heap in Vulkan to consider it "small".
- #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
-#endif
-
-#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
- /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
- #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
-#endif
-
-/*
-Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called
-or a persistently mapped allocation is created and destroyed several times in a row.
-It keeps additional +1 mapping of a device memory block to prevent calling actual
-vkMapMemory/vkUnmapMemory too many times, which may improve performance and help
-tools like RenderDOc.
-*/
-#ifndef VMA_MAPPING_HYSTERESIS_ENABLED
- #define VMA_MAPPING_HYSTERESIS_ENABLED 1
-#endif
-
-#ifndef VMA_CLASS_NO_COPY
- #define VMA_CLASS_NO_COPY(className) \
- private: \
- className(const className&) = delete; \
- className& operator=(const className&) = delete;
-#endif
-
-#define VMA_VALIDATE(cond) do { if(!(cond)) { \
- VMA_ASSERT(0 && "Validation failed: " #cond); \
- return false; \
- } } while(false)
-
-/*******************************************************************************
-END OF CONFIGURATION
-*/
-#endif // _VMA_CONFIGURATION
-
-
-static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
-static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
-// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
-static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
-
-// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.
-static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;
-static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;
-static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;
-static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200;
-static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000;
-static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
-static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
-static const uint32_t VMA_VENDOR_ID_AMD = 4098;
-
-// This one is tricky. Vulkan specification defines this code as available since
-// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131.
-// See pull request #207.
-#define VK_ERROR_UNKNOWN_COPY ((VkResult)-13)
-
-
-#if VMA_STATS_STRING_ENABLED
-// Correspond to values of enum VmaSuballocationType.
-static const char* VMA_SUBALLOCATION_TYPE_NAMES[] =
-{
- "FREE",
- "UNKNOWN",
- "BUFFER",
- "IMAGE_UNKNOWN",
- "IMAGE_LINEAR",
- "IMAGE_OPTIMAL",
-};
-#endif
-
-static VkAllocationCallbacks VmaEmptyAllocationCallbacks =
- { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
-
-
-#ifndef _VMA_ENUM_DECLARATIONS
-
-enum VmaSuballocationType
-{
- VMA_SUBALLOCATION_TYPE_FREE = 0,
- VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
- VMA_SUBALLOCATION_TYPE_BUFFER = 2,
- VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
- VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
- VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
- VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
-};
-
-enum VMA_CACHE_OPERATION
-{
- VMA_CACHE_FLUSH,
- VMA_CACHE_INVALIDATE
-};
-
-enum class VmaAllocationRequestType
-{
- Normal,
- TLSF,
- // Used by "Linear" algorithm.
- UpperAddress,
- EndOf1st,
- EndOf2nd,
-};
-
-#endif // _VMA_ENUM_DECLARATIONS
-
-#ifndef _VMA_FORWARD_DECLARATIONS
-// Opaque handle used by allocation algorithms to identify single allocation in any conforming way.
-VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle);
-
-struct VmaMutexLock;
-struct VmaMutexLockRead;
-struct VmaMutexLockWrite;
-
-template
-struct AtomicTransactionalIncrement;
-
-template
-struct VmaStlAllocator;
-
-template
-class VmaVector;
-
-template
-class VmaSmallVector;
-
-template
-class VmaPoolAllocator;
-
-template
-struct VmaListItem;
-
-template
-class VmaRawList;
-
-template
-class VmaList;
-
-template
-class VmaIntrusiveLinkedList;
-
-// Unused in this version
-#if 0
-template
-struct VmaPair;
-template
-struct VmaPairFirstLess;
-
-template
-class VmaMap;
-#endif
-
-#if VMA_STATS_STRING_ENABLED
-class VmaStringBuilder;
-class VmaJsonWriter;
-#endif
-
-class VmaDeviceMemoryBlock;
-
-struct VmaDedicatedAllocationListItemTraits;
-class VmaDedicatedAllocationList;
-
-struct VmaSuballocation;
-struct VmaSuballocationOffsetLess;
-struct VmaSuballocationOffsetGreater;
-struct VmaSuballocationItemSizeLess;
-
-typedef VmaList> VmaSuballocationList;
-
-struct VmaAllocationRequest;
-
-class VmaBlockMetadata;
-class VmaBlockMetadata_Linear;
-class VmaBlockMetadata_TLSF;
-
-class VmaBlockVector;
-
-struct VmaPoolListItemTraits;
-
-struct VmaCurrentBudgetData;
-
-class VmaAllocationObjectAllocator;
-
-#endif // _VMA_FORWARD_DECLARATIONS
-
-
-#ifndef _VMA_FUNCTIONS
-
-/*
-Returns number of bits set to 1 in (v).
-
-On specific platforms and compilers you can use instrinsics like:
-
-Visual Studio:
- return __popcnt(v);
-GCC, Clang:
- return static_cast(__builtin_popcount(v));
-
-Define macro VMA_COUNT_BITS_SET to provide your optimized implementation.
-But you need to check in runtime whether user's CPU supports these, as some old processors don't.
-*/
-static inline uint32_t VmaCountBitsSet(uint32_t v)
-{
-#if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20
- return std::popcount(v);
-#else
- uint32_t c = v - ((v >> 1) & 0x55555555);
- c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
- c = ((c >> 4) + c) & 0x0F0F0F0F;
- c = ((c >> 8) + c) & 0x00FF00FF;
- c = ((c >> 16) + c) & 0x0000FFFF;
- return c;
-#endif
-}
-
-static inline uint8_t VmaBitScanLSB(uint64_t mask)
-{
-#if defined(_MSC_VER) && defined(_WIN64)
- unsigned long pos;
- if (_BitScanForward64(&pos, mask))
- return static_cast(pos);
- return UINT8_MAX;
-#elif defined __GNUC__ || defined __clang__
- return static_cast(__builtin_ffsll(mask)) - 1U;
-#else
- uint8_t pos = 0;
- uint64_t bit = 1;
- do
- {
- if (mask & bit)
- return pos;
- bit <<= 1;
- } while (pos++ < 63);
- return UINT8_MAX;
-#endif
-}
-
-static inline uint8_t VmaBitScanLSB(uint32_t mask)
-{
-#ifdef _MSC_VER
- unsigned long pos;
- if (_BitScanForward(&pos, mask))
- return static_cast(pos);
- return UINT8_MAX;
-#elif defined __GNUC__ || defined __clang__
- return static_cast(__builtin_ffs(mask)) - 1U;
-#else
- uint8_t pos = 0;
- uint32_t bit = 1;
- do
- {
- if (mask & bit)
- return pos;
- bit <<= 1;
- } while (pos++ < 31);
- return UINT8_MAX;
-#endif
-}
-
-static inline uint8_t VmaBitScanMSB(uint64_t mask)
-{
-#if defined(_MSC_VER) && defined(_WIN64)
- unsigned long pos;
- if (_BitScanReverse64(&pos, mask))
- return static_cast(pos);
-#elif defined __GNUC__ || defined __clang__
- if (mask)
- return 63 - static_cast(__builtin_clzll(mask));
-#else
- uint8_t pos = 63;
- uint64_t bit = 1ULL << 63;
- do
- {
- if (mask & bit)
- return pos;
- bit >>= 1;
- } while (pos-- > 0);
-#endif
- return UINT8_MAX;
-}
-
-static inline uint8_t VmaBitScanMSB(uint32_t mask)
-{
-#ifdef _MSC_VER
- unsigned long pos;
- if (_BitScanReverse(&pos, mask))
- return static_cast(pos);
-#elif defined __GNUC__ || defined __clang__
- if (mask)
- return 31 - static_cast(__builtin_clz(mask));
-#else
- uint8_t pos = 31;
- uint32_t bit = 1UL << 31;
- do
- {
- if (mask & bit)
- return pos;
- bit >>= 1;
- } while (pos-- > 0);
-#endif
- return UINT8_MAX;
-}
-
-/*
-Returns true if given number is a power of two.
-T must be unsigned integer number or signed integer but always nonnegative.
-For 0 returns true.
-*/
-template
-inline bool VmaIsPow2(T x)
-{
- return (x & (x - 1)) == 0;
-}
-
-// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
-// Use types like uint32_t, uint64_t as T.
-template
-static inline T VmaAlignUp(T val, T alignment)
-{
- VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
- return (val + alignment - 1) & ~(alignment - 1);
-}
-
-// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8.
-// Use types like uint32_t, uint64_t as T.
-template
-static inline T VmaAlignDown(T val, T alignment)
-{
- VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
- return val & ~(alignment - 1);
-}
-
-// Division with mathematical rounding to nearest number.
-template
-static inline T VmaRoundDiv(T x, T y)
-{
- return (x + (y / (T)2)) / y;
-}
-
-// Divide by 'y' and round up to nearest integer.
-template
-static inline T VmaDivideRoundingUp(T x, T y)
-{
- return (x + y - (T)1) / y;
-}
-
-// Returns smallest power of 2 greater or equal to v.
-static inline uint32_t VmaNextPow2(uint32_t v)
-{
- v--;
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v++;
- return v;
-}
-
-static inline uint64_t VmaNextPow2(uint64_t v)
-{
- v--;
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v |= v >> 32;
- v++;
- return v;
-}
-
-// Returns largest power of 2 less or equal to v.
-static inline uint32_t VmaPrevPow2(uint32_t v)
-{
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v = v ^ (v >> 1);
- return v;
-}
-
-static inline uint64_t VmaPrevPow2(uint64_t v)
-{
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v |= v >> 32;
- v = v ^ (v >> 1);
- return v;
-}
-
-static inline bool VmaStrIsEmpty(const char* pStr)
-{
- return pStr == VMA_NULL || *pStr == '\0';
-}
-
-/*
-Returns true if two memory blocks occupy overlapping pages.
-ResourceA must be in less memory offset than ResourceB.
-
-Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
-chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
-*/
-static inline bool VmaBlocksOnSamePage(
- VkDeviceSize resourceAOffset,
- VkDeviceSize resourceASize,
- VkDeviceSize resourceBOffset,
- VkDeviceSize pageSize)
-{
- VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
- VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
- VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
- VkDeviceSize resourceBStart = resourceBOffset;
- VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
- return resourceAEndPage == resourceBStartPage;
-}
-
-/*
-Returns true if given suballocation types could conflict and must respect
-VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
-or linear image and another one is optimal image. If type is unknown, behave
-conservatively.
-*/
-static inline bool VmaIsBufferImageGranularityConflict(
- VmaSuballocationType suballocType1,
- VmaSuballocationType suballocType2)
-{
- if (suballocType1 > suballocType2)
- {
- VMA_SWAP(suballocType1, suballocType2);
- }
-
- switch (suballocType1)
- {
- case VMA_SUBALLOCATION_TYPE_FREE:
- return false;
- case VMA_SUBALLOCATION_TYPE_UNKNOWN:
- return true;
- case VMA_SUBALLOCATION_TYPE_BUFFER:
- return
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
- case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
- return
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
- case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
- return
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
- case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
- return false;
- default:
- VMA_ASSERT(0);
- return true;
- }
-}
-
-static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
-{
-#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
- uint32_t* pDst = (uint32_t*)((char*)pData + offset);
- const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
- for (size_t i = 0; i < numberCount; ++i, ++pDst)
- {
- *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
- }
-#else
- // no-op
-#endif
-}
-
-static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
-{
-#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
- const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
- const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
- for (size_t i = 0; i < numberCount; ++i, ++pSrc)
- {
- if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
- {
- return false;
- }
- }
-#endif
- return true;
-}
-
-/*
-Fills structure with parameters of an example buffer to be used for transfers
-during GPU memory defragmentation.
-*/
-static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
-{
- memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
- outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
- outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
- outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
-}
-
-
-/*
-Performs binary search and returns iterator to first element that is greater or
-equal to (key), according to comparison (cmp).
-
-Cmp should return true if first argument is less than second argument.
-
-Returned value is the found element, if present in the collection or place where
-new element with value (key) should be inserted.
-*/
-template
-static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp)
-{
- size_t down = 0, up = (end - beg);
- while (down < up)
- {
- const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation
- if (cmp(*(beg + mid), key))
- {
- down = mid + 1;
- }
- else
- {
- up = mid;
- }
- }
- return beg + down;
-}
-
-template
-IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
-{
- IterT it = VmaBinaryFindFirstNotLess(
- beg, end, value, cmp);
- if (it == end ||
- (!cmp(*it, value) && !cmp(value, *it)))
- {
- return it;
- }
- return end;
-}
-
-/*
-Returns true if all pointers in the array are not-null and unique.
-Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
-T must be pointer type, e.g. VmaAllocation, VmaPool.
-*/
-template
-static bool VmaValidatePointerArray(uint32_t count, const T* arr)
-{
- for (uint32_t i = 0; i < count; ++i)
- {
- const T iPtr = arr[i];
- if (iPtr == VMA_NULL)
- {
- return false;
- }
- for (uint32_t j = i + 1; j < count; ++j)
- {
- if (iPtr == arr[j])
- {
- return false;
- }
- }
- }
- return true;
-}
-
-template
-static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)
-{
- newStruct->pNext = mainStruct->pNext;
- mainStruct->pNext = newStruct;
-}
-
-// This is the main algorithm that guides the selection of a memory type best for an allocation -
-// converts usage to required/preferred/not preferred flags.
-static bool FindMemoryPreferences(
- bool isIntegratedGPU,
- const VmaAllocationCreateInfo& allocCreateInfo,
- VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown.
- VkMemoryPropertyFlags& outRequiredFlags,
- VkMemoryPropertyFlags& outPreferredFlags,
- VkMemoryPropertyFlags& outNotPreferredFlags)
-{
- outRequiredFlags = allocCreateInfo.requiredFlags;
- outPreferredFlags = allocCreateInfo.preferredFlags;
- outNotPreferredFlags = 0;
-
- switch(allocCreateInfo.usage)
- {
- case VMA_MEMORY_USAGE_UNKNOWN:
- break;
- case VMA_MEMORY_USAGE_GPU_ONLY:
- if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
- {
- outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- }
- break;
- case VMA_MEMORY_USAGE_CPU_ONLY:
- outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
- break;
- case VMA_MEMORY_USAGE_CPU_TO_GPU:
- outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
- if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
- {
- outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- }
- break;
- case VMA_MEMORY_USAGE_GPU_TO_CPU:
- outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
- outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
- break;
- case VMA_MEMORY_USAGE_CPU_COPY:
- outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- break;
- case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
- outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
- break;
- case VMA_MEMORY_USAGE_AUTO:
- case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE:
- case VMA_MEMORY_USAGE_AUTO_PREFER_HOST:
- {
- if(bufImgUsage == UINT32_MAX)
- {
- VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known.");
- return false;
- }
- // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same VK_BUFFER_IMAGE_TRANSFER*.
- const bool deviceAccess = (bufImgUsage & ~(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0;
- const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0;
- const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0;
- const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0;
- const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
- const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST;
-
- // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU.
- if(hostAccessRandom)
- {
- if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
- {
- // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL.
- // Omitting HOST_VISIBLE here is intentional.
- // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one.
- // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list.
- outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
- }
- else
- {
- // Always CPU memory, cached.
- outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
- }
- }
- // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined.
- else if(hostAccessSequentialWrite)
- {
- // Want uncached and write-combined.
- outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
-
- if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
- {
- outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
- }
- else
- {
- outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
- // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame)
- if(deviceAccess)
- {
- // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory.
- if(preferHost)
- outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- else
- outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- }
- // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU)
- else
- {
- // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory.
- if(preferDevice)
- outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- else
- outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- }
- }
- }
- // No CPU access
- else
- {
- // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory
- if(deviceAccess)
- {
- // ...unless there is a clear preference from the user not to do so.
- if(preferHost)
- outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- else
- outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- }
- // No direct GPU access, no CPU access, just transfers.
- // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or
- // a "swap file" copy to free some GPU memory (then better CPU memory).
- // Up to the user to decide. If no preferece, assume the former and choose GPU memory.
- if(preferHost)
- outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- else
- outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- }
- break;
- }
- default:
- VMA_ASSERT(0);
- }
-
- // Avoid DEVICE_COHERENT unless explicitly requested.
- if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) &
- (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)
- {
- outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY;
- }
-
- return true;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// Memory allocation
-
-static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
-{
- void* result = VMA_NULL;
- if ((pAllocationCallbacks != VMA_NULL) &&
- (pAllocationCallbacks->pfnAllocation != VMA_NULL))
- {
- result = (*pAllocationCallbacks->pfnAllocation)(
- pAllocationCallbacks->pUserData,
- size,
- alignment,
- VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
- }
- else
- {
- result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
- }
- VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed.");
- return result;
-}
-
-static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
-{
- if ((pAllocationCallbacks != VMA_NULL) &&
- (pAllocationCallbacks->pfnFree != VMA_NULL))
- {
- (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
- }
- else
- {
- VMA_SYSTEM_ALIGNED_FREE(ptr);
- }
-}
-
-template
-static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
-{
- return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
-}
-
-template
-static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
-{
- return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
-}
-
-#define vma_new(allocator, type) new(VmaAllocate(allocator))(type)
-
-#define vma_new_array(allocator, type, count) new(VmaAllocateArray((allocator), (count)))(type)
-
-template
-static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
-{
- ptr->~T();
- VmaFree(pAllocationCallbacks, ptr);
-}
-
-template
-static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
-{
- if (ptr != VMA_NULL)
- {
- for (size_t i = count; i--; )
- {
- ptr[i].~T();
- }
- VmaFree(pAllocationCallbacks, ptr);
- }
-}
-
-static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
-{
- if (srcStr != VMA_NULL)
- {
- const size_t len = strlen(srcStr);
- char* const result = vma_new_array(allocs, char, len + 1);
- memcpy(result, srcStr, len + 1);
- return result;
- }
- return VMA_NULL;
-}
-
-#if VMA_STATS_STRING_ENABLED
-static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen)
-{
- if (srcStr != VMA_NULL)
- {
- char* const result = vma_new_array(allocs, char, strLen + 1);
- memcpy(result, srcStr, strLen);
- result[strLen] = '\0';
- return result;
- }
- return VMA_NULL;
-}
-#endif // VMA_STATS_STRING_ENABLED
-
-static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
-{
- if (str != VMA_NULL)
- {
- const size_t len = strlen(str);
- vma_delete_array(allocs, str, len + 1);
- }
-}
-
-template
-size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
-{
- const size_t indexToInsert = VmaBinaryFindFirstNotLess(
- vector.data(),
- vector.data() + vector.size(),
- value,
- CmpLess()) - vector.data();
- VmaVectorInsert(vector, indexToInsert, value);
- return indexToInsert;
-}
-
-template
-bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
-{
- CmpLess comparator;
- typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
- vector.begin(),
- vector.end(),
- value,
- comparator);
- if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
- {
- size_t indexToRemove = it - vector.begin();
- VmaVectorRemove(vector, indexToRemove);
- return true;
- }
- return false;
-}
-#endif // _VMA_FUNCTIONS
-
-#ifndef _VMA_STATISTICS_FUNCTIONS
-
-static void VmaClearStatistics(VmaStatistics& outStats)
-{
- outStats.blockCount = 0;
- outStats.allocationCount = 0;
- outStats.blockBytes = 0;
- outStats.allocationBytes = 0;
-}
-
-static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src)
-{
- inoutStats.blockCount += src.blockCount;
- inoutStats.allocationCount += src.allocationCount;
- inoutStats.blockBytes += src.blockBytes;
- inoutStats.allocationBytes += src.allocationBytes;
-}
-
-static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats)
-{
- VmaClearStatistics(outStats.statistics);
- outStats.unusedRangeCount = 0;
- outStats.allocationSizeMin = VK_WHOLE_SIZE;
- outStats.allocationSizeMax = 0;
- outStats.unusedRangeSizeMin = VK_WHOLE_SIZE;
- outStats.unusedRangeSizeMax = 0;
-}
-
-static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
-{
- inoutStats.statistics.allocationCount++;
- inoutStats.statistics.allocationBytes += size;
- inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size);
- inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size);
-}
-
-static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
-{
- inoutStats.unusedRangeCount++;
- inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size);
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size);
-}
-
-static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src)
-{
- VmaAddStatistics(inoutStats.statistics, src.statistics);
- inoutStats.unusedRangeCount += src.unusedRangeCount;
- inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin);
- inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax);
- inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin);
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax);
-}
-
-#endif // _VMA_STATISTICS_FUNCTIONS
-
-#ifndef _VMA_MUTEX_LOCK
-// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
-struct VmaMutexLock
-{
- VMA_CLASS_NO_COPY(VmaMutexLock)
-public:
- VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
- m_pMutex(useMutex ? &mutex : VMA_NULL)
- {
- if (m_pMutex) { m_pMutex->Lock(); }
- }
- ~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } }
-
-private:
- VMA_MUTEX* m_pMutex;
-};
-
-// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
-struct VmaMutexLockRead
-{
- VMA_CLASS_NO_COPY(VmaMutexLockRead)
-public:
- VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
- m_pMutex(useMutex ? &mutex : VMA_NULL)
- {
- if (m_pMutex) { m_pMutex->LockRead(); }
- }
- ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } }
-
-private:
- VMA_RW_MUTEX* m_pMutex;
-};
-
-// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
-struct VmaMutexLockWrite
-{
- VMA_CLASS_NO_COPY(VmaMutexLockWrite)
-public:
- VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex)
- : m_pMutex(useMutex ? &mutex : VMA_NULL)
- {
- if (m_pMutex) { m_pMutex->LockWrite(); }
- }
- ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } }
-
-private:
- VMA_RW_MUTEX* m_pMutex;
-};
-
-#if VMA_DEBUG_GLOBAL_MUTEX
- static VMA_MUTEX gDebugGlobalMutex;
- #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
-#else
- #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
-#endif
-#endif // _VMA_MUTEX_LOCK
-
-#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
-// An object that increments given atomic but decrements it back in the destructor unless Commit() is called.
-template
-struct AtomicTransactionalIncrement
-{
-public:
- typedef std::atomic AtomicT;
-
- ~AtomicTransactionalIncrement()
- {
- if(m_Atomic)
- --(*m_Atomic);
- }
-
- void Commit() { m_Atomic = nullptr; }
- T Increment(AtomicT* atomic)
- {
- m_Atomic = atomic;
- return m_Atomic->fetch_add(1);
- }
-
-private:
- AtomicT* m_Atomic = nullptr;
-};
-#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
-
-#ifndef _VMA_STL_ALLOCATOR
-// STL-compatible allocator.
-template
-struct VmaStlAllocator
-{
- const VkAllocationCallbacks* const m_pCallbacks;
- typedef T value_type;
-
- VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {}
- template
- VmaStlAllocator(const VmaStlAllocator& src) : m_pCallbacks(src.m_pCallbacks) {}
- VmaStlAllocator(const VmaStlAllocator&) = default;
- VmaStlAllocator& operator=(const VmaStlAllocator&) = delete;
-
- T* allocate(size_t n) { return VmaAllocateArray(m_pCallbacks, n); }
- void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
-
- template
- bool operator==(const VmaStlAllocator& rhs) const
- {
- return m_pCallbacks == rhs.m_pCallbacks;
- }
- template
- bool operator!=(const VmaStlAllocator& rhs) const
- {
- return m_pCallbacks != rhs.m_pCallbacks;
- }
-};
-#endif // _VMA_STL_ALLOCATOR
-
-#ifndef _VMA_VECTOR
-/* Class with interface compatible with subset of std::vector.
-T must be POD because constructors and destructors are not called and memcpy is
-used for these objects. */
-template
-class VmaVector
-{
-public:
- typedef T value_type;
- typedef T* iterator;
- typedef const T* const_iterator;
-
- VmaVector(const AllocatorT& allocator);
- VmaVector(size_t count, const AllocatorT& allocator);
- // This version of the constructor is here for compatibility with pre-C++14 std::vector.
- // value is unused.
- VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {}
- VmaVector(const VmaVector& src);
- VmaVector& operator=(const VmaVector& rhs);
- ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); }
-
- bool empty() const { return m_Count == 0; }
- size_t size() const { return m_Count; }
- T* data() { return m_pArray; }
- T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
- T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
- const T* data() const { return m_pArray; }
- const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
- const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
-
- iterator begin() { return m_pArray; }
- iterator end() { return m_pArray + m_Count; }
- const_iterator cbegin() const { return m_pArray; }
- const_iterator cend() const { return m_pArray + m_Count; }
- const_iterator begin() const { return cbegin(); }
- const_iterator end() const { return cend(); }
-
- void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
- void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
- void push_front(const T& src) { insert(0, src); }
-
- void push_back(const T& src);
- void reserve(size_t newCapacity, bool freeMemory = false);
- void resize(size_t newCount);
- void clear() { resize(0); }
- void shrink_to_fit();
- void insert(size_t index, const T& src);
- void remove(size_t index);
-
- T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
- const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
-
-private:
- AllocatorT m_Allocator;
- T* m_pArray;
- size_t m_Count;
- size_t m_Capacity;
-};
-
-#ifndef _VMA_VECTOR_FUNCTIONS
-template
-VmaVector::VmaVector(const AllocatorT& allocator)
- : m_Allocator(allocator),
- m_pArray(VMA_NULL),
- m_Count(0),
- m_Capacity(0) {}
-
-template
-VmaVector::VmaVector(size_t count, const AllocatorT& allocator)
- : m_Allocator(allocator),
- m_pArray(count ? (T*)VmaAllocateArray(allocator.m_pCallbacks, count) : VMA_NULL),
- m_Count(count),
- m_Capacity(count) {}
-
-template
-VmaVector::VmaVector(const VmaVector& src)
- : m_Allocator(src.m_Allocator),
- m_pArray(src.m_Count ? (T*)VmaAllocateArray(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
- m_Count(src.m_Count),
- m_Capacity(src.m_Count)
-{
- if (m_Count != 0)
- {
- memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
- }
-}
-
-template
-VmaVector& VmaVector::operator=(const VmaVector& rhs)
-{
- if (&rhs != this)
- {
- resize(rhs.m_Count);
- if (m_Count != 0)
- {
- memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
- }
- }
- return *this;
-}
-
-template
-void VmaVector::push_back(const T& src)
-{
- const size_t newIndex = size();
- resize(newIndex + 1);
- m_pArray[newIndex] = src;
-}
-
-template
-void VmaVector::reserve(size_t newCapacity, bool freeMemory)
-{
- newCapacity = VMA_MAX(newCapacity, m_Count);
-
- if ((newCapacity < m_Capacity) && !freeMemory)
- {
- newCapacity = m_Capacity;
- }
-
- if (newCapacity != m_Capacity)
- {
- T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator, newCapacity) : VMA_NULL;
- if (m_Count != 0)
- {
- memcpy(newArray, m_pArray, m_Count * sizeof(T));
- }
- VmaFree(m_Allocator.m_pCallbacks, m_pArray);
- m_Capacity = newCapacity;
- m_pArray = newArray;
- }
-}
-
-template
-void VmaVector::resize(size_t newCount)
-{
- size_t newCapacity = m_Capacity;
- if (newCount > m_Capacity)
- {
- newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
- }
-
- if (newCapacity != m_Capacity)
- {
- T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
- const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
- if (elementsToCopy != 0)
- {
- memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
- }
- VmaFree(m_Allocator.m_pCallbacks, m_pArray);
- m_Capacity = newCapacity;
- m_pArray = newArray;
- }
-
- m_Count = newCount;
-}
-
-template
-void VmaVector::shrink_to_fit()
-{
- if (m_Capacity > m_Count)
- {
- T* newArray = VMA_NULL;
- if (m_Count > 0)
- {
- newArray = VmaAllocateArray(m_Allocator.m_pCallbacks, m_Count);
- memcpy(newArray, m_pArray, m_Count * sizeof(T));
- }
- VmaFree(m_Allocator.m_pCallbacks, m_pArray);
- m_Capacity = m_Count;
- m_pArray = newArray;
- }
-}
-
-template
-void VmaVector::insert(size_t index, const T& src)
-{
- VMA_HEAVY_ASSERT(index <= m_Count);
- const size_t oldCount = size();
- resize(oldCount + 1);
- if (index < oldCount)
- {
- memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
- }
- m_pArray[index] = src;
-}
-
-template
-void VmaVector::remove(size_t index)
-{
- VMA_HEAVY_ASSERT(index < m_Count);
- const size_t oldCount = size();
- if (index < oldCount - 1)
- {
- memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
- }
- resize(oldCount - 1);
-}
-#endif // _VMA_VECTOR_FUNCTIONS
-
-template
-static void VmaVectorInsert(VmaVector& vec, size_t index, const T& item)
-{
- vec.insert(index, item);
-}
-
-template
-static void VmaVectorRemove(VmaVector& vec, size_t index)
-{
- vec.remove(index);
-}
-#endif // _VMA_VECTOR
-
-#ifndef _VMA_SMALL_VECTOR
-/*
-This is a vector (a variable-sized array), optimized for the case when the array is small.
-
-It contains some number of elements in-place, which allows it to avoid heap allocation
-when the actual number of elements is below that threshold. This allows normal "small"
-cases to be fast without losing generality for large inputs.
-*/
-template
-class VmaSmallVector
-{
-public:
- typedef T value_type;
- typedef T* iterator;
-
- VmaSmallVector(const AllocatorT& allocator);
- VmaSmallVector(size_t count, const AllocatorT& allocator);
- template
- VmaSmallVector(const VmaSmallVector&) = delete;
- template
- VmaSmallVector& operator=(const VmaSmallVector&) = delete;
- ~VmaSmallVector() = default;
-
- bool empty() const { return m_Count == 0; }
- size_t size() const { return m_Count; }
- T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
- T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
- T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
- const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
- const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
- const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
-
- iterator begin() { return data(); }
- iterator end() { return data() + m_Count; }
-
- void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
- void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
- void push_front(const T& src) { insert(0, src); }
-
- void push_back(const T& src);
- void resize(size_t newCount, bool freeMemory = false);
- void clear(bool freeMemory = false);
- void insert(size_t index, const T& src);
- void remove(size_t index);
-
- T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
- const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
-
-private:
- size_t m_Count;
- T m_StaticArray[N]; // Used when m_Size <= N
- VmaVector m_DynamicArray; // Used when m_Size > N
-};
-
-#ifndef _VMA_SMALL_VECTOR_FUNCTIONS
-template
-VmaSmallVector::VmaSmallVector(const AllocatorT& allocator)
- : m_Count(0),
- m_DynamicArray(allocator) {}
-
-template
-VmaSmallVector::VmaSmallVector(size_t count, const AllocatorT& allocator)
- : m_Count(count),
- m_DynamicArray(count > N ? count : 0, allocator) {}
-
-template
-void VmaSmallVector::push_back(const T& src)
-{
- const size_t newIndex = size();
- resize(newIndex + 1);
- data()[newIndex] = src;
-}
-
-template
-void VmaSmallVector::resize(size_t newCount, bool freeMemory)
-{
- if (newCount > N && m_Count > N)
- {
- // Any direction, staying in m_DynamicArray
- m_DynamicArray.resize(newCount);
- if (freeMemory)
- {
- m_DynamicArray.shrink_to_fit();
- }
- }
- else if (newCount > N && m_Count <= N)
- {
- // Growing, moving from m_StaticArray to m_DynamicArray
- m_DynamicArray.resize(newCount);
- if (m_Count > 0)
- {
- memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T));
- }
- }
- else if (newCount <= N && m_Count > N)
- {
- // Shrinking, moving from m_DynamicArray to m_StaticArray
- if (newCount > 0)
- {
- memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T));
- }
- m_DynamicArray.resize(0);
- if (freeMemory)
- {
- m_DynamicArray.shrink_to_fit();
- }
- }
- else
- {
- // Any direction, staying in m_StaticArray - nothing to do here
- }
- m_Count = newCount;
-}
-
-template
-void VmaSmallVector::clear(bool freeMemory)
-{
- m_DynamicArray.clear();
- if (freeMemory)
- {
- m_DynamicArray.shrink_to_fit();
- }
- m_Count = 0;
-}
-
-template
-void VmaSmallVector::insert(size_t index, const T& src)
-{
- VMA_HEAVY_ASSERT(index <= m_Count);
- const size_t oldCount = size();
- resize(oldCount + 1);
- T* const dataPtr = data();
- if (index < oldCount)
- {
- // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray.
- memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T));
- }
- dataPtr[index] = src;
-}
-
-template
-void VmaSmallVector::remove(size_t index)
-{
- VMA_HEAVY_ASSERT(index < m_Count);
- const size_t oldCount = size();
- if (index < oldCount - 1)
- {
- // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray.
- T* const dataPtr = data();
- memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T));
- }
- resize(oldCount - 1);
-}
-#endif // _VMA_SMALL_VECTOR_FUNCTIONS
-#endif // _VMA_SMALL_VECTOR
-
-#ifndef _VMA_POOL_ALLOCATOR
-/*
-Allocator for objects of type T using a list of arrays (pools) to speed up
-allocation. Number of elements that can be allocated is not bounded because
-allocator can create multiple blocks.
-*/
-template
-class VmaPoolAllocator
-{
- VMA_CLASS_NO_COPY(VmaPoolAllocator)
-public:
- VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
- ~VmaPoolAllocator();
- template T* Alloc(Types&&... args);
- void Free(T* ptr);
-
-private:
- union Item
- {
- uint32_t NextFreeIndex;
- alignas(T) char Value[sizeof(T)];
- };
- struct ItemBlock
- {
- Item* pItems;
- uint32_t Capacity;
- uint32_t FirstFreeIndex;
- };
-
- const VkAllocationCallbacks* m_pAllocationCallbacks;
- const uint32_t m_FirstBlockCapacity;
- VmaVector> m_ItemBlocks;
-
- ItemBlock& CreateNewBlock();
-};
-
-#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS
-template
-VmaPoolAllocator::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity)
- : m_pAllocationCallbacks(pAllocationCallbacks),
- m_FirstBlockCapacity(firstBlockCapacity),
- m_ItemBlocks(VmaStlAllocator(pAllocationCallbacks))
-{
- VMA_ASSERT(m_FirstBlockCapacity > 1);
-}
-
-template
-VmaPoolAllocator::~VmaPoolAllocator()
-{
- for (size_t i = m_ItemBlocks.size(); i--;)
- vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
- m_ItemBlocks.clear();
-}
-
-template
-template T* VmaPoolAllocator::Alloc(Types&&... args)
-{
- for (size_t i = m_ItemBlocks.size(); i--; )
- {
- ItemBlock& block = m_ItemBlocks[i];
- // This block has some free items: Use first one.
- if (block.FirstFreeIndex != UINT32_MAX)
- {
- Item* const pItem = &block.pItems[block.FirstFreeIndex];
- block.FirstFreeIndex = pItem->NextFreeIndex;
- T* result = (T*)&pItem->Value;
- new(result)T(std::forward(args)...); // Explicit constructor call.
- return result;
- }
- }
-
- // No block has free item: Create new one and use it.
- ItemBlock& newBlock = CreateNewBlock();
- Item* const pItem = &newBlock.pItems[0];
- newBlock.FirstFreeIndex = pItem->NextFreeIndex;
- T* result = (T*)&pItem->Value;
- new(result) T(std::forward(args)...); // Explicit constructor call.
- return result;
-}
-
-template
-void VmaPoolAllocator::Free(T* ptr)
-{
- // Search all memory blocks to find ptr.
- for (size_t i = m_ItemBlocks.size(); i--; )
- {
- ItemBlock& block = m_ItemBlocks[i];
-
- // Casting to union.
- Item* pItemPtr;
- memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
-
- // Check if pItemPtr is in address range of this block.
- if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
- {
- ptr->~T(); // Explicit destructor call.
- const uint32_t index = static_cast(pItemPtr - block.pItems);
- pItemPtr->NextFreeIndex = block.FirstFreeIndex;
- block.FirstFreeIndex = index;
- return;
- }
- }
- VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
-}
-
-template
-typename VmaPoolAllocator::ItemBlock& VmaPoolAllocator::CreateNewBlock()
-{
- const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
- m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
-
- const ItemBlock newBlock =
- {
- vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
- newBlockCapacity,
- 0
- };
-
- m_ItemBlocks.push_back(newBlock);
-
- // Setup singly-linked list of all free items in this block.
- for (uint32_t i = 0; i < newBlockCapacity - 1; ++i)
- newBlock.pItems[i].NextFreeIndex = i + 1;
- newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
- return m_ItemBlocks.back();
-}
-#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS
-#endif // _VMA_POOL_ALLOCATOR
-
-#ifndef _VMA_RAW_LIST
-template
-struct VmaListItem
-{
- VmaListItem* pPrev;
- VmaListItem* pNext;
- T Value;
-};
-
-// Doubly linked list.
-template
-class VmaRawList
-{
- VMA_CLASS_NO_COPY(VmaRawList)
-public:
- typedef VmaListItem ItemType;
-
- VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
- // Intentionally not calling Clear, because that would be unnecessary
- // computations to return all items to m_ItemAllocator as free.
- ~VmaRawList() = default;
-
- size_t GetCount() const { return m_Count; }
- bool IsEmpty() const { return m_Count == 0; }
-
- ItemType* Front() { return m_pFront; }
- ItemType* Back() { return m_pBack; }
- const ItemType* Front() const { return m_pFront; }
- const ItemType* Back() const { return m_pBack; }
-
- ItemType* PushFront();
- ItemType* PushBack();
- ItemType* PushFront(const T& value);
- ItemType* PushBack(const T& value);
- void PopFront();
- void PopBack();
-
- // Item can be null - it means PushBack.
- ItemType* InsertBefore(ItemType* pItem);
- // Item can be null - it means PushFront.
- ItemType* InsertAfter(ItemType* pItem);
- ItemType* InsertBefore(ItemType* pItem, const T& value);
- ItemType* InsertAfter(ItemType* pItem, const T& value);
-
- void Clear();
- void Remove(ItemType* pItem);
-
-private:
- const VkAllocationCallbacks* const m_pAllocationCallbacks;
- VmaPoolAllocator m_ItemAllocator;
- ItemType* m_pFront;
- ItemType* m_pBack;
- size_t m_Count;
-};
-
-#ifndef _VMA_RAW_LIST_FUNCTIONS
-template
-VmaRawList::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks)
- : m_pAllocationCallbacks(pAllocationCallbacks),
- m_ItemAllocator(pAllocationCallbacks, 128),
- m_pFront(VMA_NULL),
- m_pBack(VMA_NULL),
- m_Count(0) {}
-
-template
-VmaListItem* VmaRawList::PushFront()
-{
- ItemType* const pNewItem = m_ItemAllocator.Alloc();
- pNewItem->pPrev = VMA_NULL;
- if (IsEmpty())
- {
- pNewItem->pNext = VMA_NULL;
- m_pFront = pNewItem;
- m_pBack = pNewItem;
- m_Count = 1;
- }
- else
- {
- pNewItem->pNext = m_pFront;
- m_pFront->pPrev = pNewItem;
- m_pFront = pNewItem;
- ++m_Count;
- }
- return pNewItem;
-}
-
-template
-VmaListItem* VmaRawList::PushBack()
-{
- ItemType* const pNewItem = m_ItemAllocator.Alloc();
- pNewItem->pNext = VMA_NULL;
- if(IsEmpty())
- {
- pNewItem->pPrev = VMA_NULL;
- m_pFront = pNewItem;
- m_pBack = pNewItem;
- m_Count = 1;
- }
- else
- {
- pNewItem->pPrev = m_pBack;
- m_pBack->pNext = pNewItem;
- m_pBack = pNewItem;
- ++m_Count;
- }
- return pNewItem;
-}
-
-template
-VmaListItem* VmaRawList::PushFront(const T& value)
-{
- ItemType* const pNewItem = PushFront();
- pNewItem->Value = value;
- return pNewItem;
-}
-
-template
-VmaListItem* VmaRawList::PushBack(const T& value)
-{
- ItemType* const pNewItem = PushBack();
- pNewItem->Value = value;
- return pNewItem;
-}
-
-template
-void VmaRawList::PopFront()
-{
- VMA_HEAVY_ASSERT(m_Count > 0);
- ItemType* const pFrontItem = m_pFront;
- ItemType* const pNextItem = pFrontItem->pNext;
- if (pNextItem != VMA_NULL)
- {
- pNextItem->pPrev = VMA_NULL;
- }
- m_pFront = pNextItem;
- m_ItemAllocator.Free(pFrontItem);
- --m_Count;
-}
-
-template
-void VmaRawList::PopBack()
-{
- VMA_HEAVY_ASSERT(m_Count > 0);
- ItemType* const pBackItem = m_pBack;
- ItemType* const pPrevItem = pBackItem->pPrev;
- if(pPrevItem != VMA_NULL)
- {
- pPrevItem->pNext = VMA_NULL;
- }
- m_pBack = pPrevItem;
- m_ItemAllocator.Free(pBackItem);
- --m_Count;
-}
-
-template
-void VmaRawList::Clear()
-{
- if (IsEmpty() == false)
- {
- ItemType* pItem = m_pBack;
- while (pItem != VMA_NULL)
- {
- ItemType* const pPrevItem = pItem->pPrev;
- m_ItemAllocator.Free(pItem);
- pItem = pPrevItem;
- }
- m_pFront = VMA_NULL;
- m_pBack = VMA_NULL;
- m_Count = 0;
- }
-}
-
-template
-void VmaRawList::Remove(ItemType* pItem)
-{
- VMA_HEAVY_ASSERT(pItem != VMA_NULL);
- VMA_HEAVY_ASSERT(m_Count > 0);
-
- if(pItem->pPrev != VMA_NULL)
- {
- pItem->pPrev->pNext = pItem->pNext;
- }
- else
- {
- VMA_HEAVY_ASSERT(m_pFront == pItem);
- m_pFront = pItem->pNext;
- }
-
- if(pItem->pNext != VMA_NULL)
- {
- pItem->pNext->pPrev = pItem->pPrev;
- }
- else
- {
- VMA_HEAVY_ASSERT(m_pBack == pItem);
- m_pBack = pItem->pPrev;
- }
-
- m_ItemAllocator.Free(pItem);
- --m_Count;
-}
-
-template
-VmaListItem* VmaRawList::InsertBefore(ItemType* pItem)
-{
- if(pItem != VMA_NULL)
- {
- ItemType* const prevItem = pItem->pPrev;
- ItemType* const newItem = m_ItemAllocator.Alloc();
- newItem->pPrev = prevItem;
- newItem->pNext = pItem;
- pItem->pPrev = newItem;
- if(prevItem != VMA_NULL)
- {
- prevItem->pNext = newItem;
- }
- else
- {
- VMA_HEAVY_ASSERT(m_pFront == pItem);
- m_pFront = newItem;
- }
- ++m_Count;
- return newItem;
- }
- else
- return PushBack();
-}
-
-template
-VmaListItem* VmaRawList::InsertAfter(ItemType* pItem)
-{
- if(pItem != VMA_NULL)
- {
- ItemType* const nextItem = pItem->pNext;
- ItemType* const newItem = m_ItemAllocator.Alloc();
- newItem->pNext = nextItem;
- newItem->pPrev = pItem;
- pItem->pNext = newItem;
- if(nextItem != VMA_NULL)
- {
- nextItem->pPrev = newItem;
- }
- else
- {
- VMA_HEAVY_ASSERT(m_pBack == pItem);
- m_pBack = newItem;
- }
- ++m_Count;
- return newItem;
- }
- else
- return PushFront();
-}
-
-template
-VmaListItem* VmaRawList::InsertBefore(ItemType* pItem, const T& value)
-{
- ItemType* const newItem = InsertBefore(pItem);
- newItem->Value = value;
- return newItem;
-}
-
-template
-VmaListItem* VmaRawList::InsertAfter(ItemType* pItem, const T& value)
-{
- ItemType* const newItem = InsertAfter(pItem);
- newItem->Value = value;
- return newItem;
-}
-#endif // _VMA_RAW_LIST_FUNCTIONS
-#endif // _VMA_RAW_LIST
-
-#ifndef _VMA_LIST
-template
-class VmaList
-{
- VMA_CLASS_NO_COPY(VmaList)
-public:
- class reverse_iterator;
- class const_iterator;
- class const_reverse_iterator;
-
- class iterator
- {
- friend class const_iterator;
- friend class VmaList;
- public:
- iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
- iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
-
- T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
- T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
-
- bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
- bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
-
- iterator operator++(int) { iterator result = *this; ++*this; return result; }
- iterator operator--(int) { iterator result = *this; --*this; return result; }
-
- iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
- iterator& operator--();
-
- private:
- VmaRawList* m_pList;
- VmaListItem* m_pItem;
-
- iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {}
- };
- class reverse_iterator
- {
- friend class const_reverse_iterator;
- friend class VmaList;
- public:
- reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
- reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
-
- T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
- T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
-
- bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
- bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
-
- reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; }
- reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; }
-
- reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
- reverse_iterator& operator--();
-
- private:
- VmaRawList* m_pList;
- VmaListItem* m_pItem;
-
- reverse_iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {}
- };
- class const_iterator
- {
- friend class VmaList;
- public:
- const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
- const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
- const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
-
- iterator drop_const() { return { const_cast*>(m_pList), const_cast*>(m_pItem) }; }
-
- const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
- const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
-
- bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
- bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
-
- const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; }
- const_iterator operator--(int) { const_iterator result = *this; --* this; return result; }
-
- const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
- const_iterator& operator--();
-
- private:
- const VmaRawList* m_pList;
- const VmaListItem* m_pItem;
-
- const_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {}
- };
- class const_reverse_iterator
- {
- friend class VmaList;
- public:
- const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
- const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
- const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
-
- reverse_iterator drop_const() { return { const_cast*>(m_pList), const_cast*>(m_pItem) }; }
-
- const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
- const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
-
- bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
- bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
-
- const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; }
- const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; }
-
- const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
- const_reverse_iterator& operator--();
-
- private:
- const VmaRawList* m_pList;
- const VmaListItem* m_pItem;
-
- const_reverse_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {}
- };
-
- VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {}
-
- bool empty() const { return m_RawList.IsEmpty(); }
- size_t size() const { return m_RawList.GetCount(); }
-
- iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
- iterator end() { return iterator(&m_RawList, VMA_NULL); }
-
- const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
- const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
-
- const_iterator begin() const { return cbegin(); }
- const_iterator end() const { return cend(); }
-
- reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); }
- reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); }
-
- const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); }
- const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); }
-
- const_reverse_iterator rbegin() const { return crbegin(); }
- const_reverse_iterator rend() const { return crend(); }
-
- void push_back(const T& value) { m_RawList.PushBack(value); }
- iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
-
- void clear() { m_RawList.Clear(); }
- void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
-
-private:
- VmaRawList m_RawList;
-};
-
-#ifndef _VMA_LIST_FUNCTIONS
-template
-typename VmaList::iterator& VmaList::iterator::operator--()
-{
- if (m_pItem != VMA_NULL)
- {
- m_pItem = m_pItem->pPrev;
- }
- else
- {
- VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
- m_pItem = m_pList->Back();
- }
- return *this;
-}
-
-template
-typename VmaList::reverse_iterator& VmaList::reverse_iterator::operator--()
-{
- if (m_pItem != VMA_NULL)
- {
- m_pItem = m_pItem->pNext;
- }
- else
- {
- VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
- m_pItem = m_pList->Front();
- }
- return *this;
-}
-
-template
-typename VmaList::const_iterator& VmaList::const_iterator::operator--()
-{
- if (m_pItem != VMA_NULL)
- {
- m_pItem = m_pItem->pPrev;
- }
- else
- {
- VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
- m_pItem = m_pList->Back();
- }
- return *this;
-}
-
-template
-typename VmaList::const_reverse_iterator& VmaList::const_reverse_iterator::operator--()
-{
- if (m_pItem != VMA_NULL)
- {
- m_pItem = m_pItem->pNext;
- }
- else
- {
- VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
- m_pItem = m_pList->Back();
- }
- return *this;
-}
-#endif // _VMA_LIST_FUNCTIONS
-#endif // _VMA_LIST
-
-#ifndef _VMA_INTRUSIVE_LINKED_LIST
-/*
-Expected interface of ItemTypeTraits:
-struct MyItemTypeTraits
-{
- typedef MyItem ItemType;
- static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; }
- static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; }
- static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; }
- static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; }
-};
-*/
-template
-class VmaIntrusiveLinkedList
-{
-public:
- typedef typename ItemTypeTraits::ItemType ItemType;
- static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); }
- static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); }
-
- // Movable, not copyable.
- VmaIntrusiveLinkedList() = default;
- VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src);
- VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete;
- VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src);
- VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete;
- ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); }
-
- size_t GetCount() const { return m_Count; }
- bool IsEmpty() const { return m_Count == 0; }
- ItemType* Front() { return m_Front; }
- ItemType* Back() { return m_Back; }
- const ItemType* Front() const { return m_Front; }
- const ItemType* Back() const { return m_Back; }
-
- void PushBack(ItemType* item);
- void PushFront(ItemType* item);
- ItemType* PopBack();
- ItemType* PopFront();
-
- // MyItem can be null - it means PushBack.
- void InsertBefore(ItemType* existingItem, ItemType* newItem);
- // MyItem can be null - it means PushFront.
- void InsertAfter(ItemType* existingItem, ItemType* newItem);
- void Remove(ItemType* item);
- void RemoveAll();
-
-private:
- ItemType* m_Front = VMA_NULL;
- ItemType* m_Back = VMA_NULL;
- size_t m_Count = 0;
-};
-
-#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
-template
-VmaIntrusiveLinkedList::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src)
- : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count)
-{
- src.m_Front = src.m_Back = VMA_NULL;
- src.m_Count = 0;
-}
-
-template
-VmaIntrusiveLinkedList& VmaIntrusiveLinkedList::operator=(VmaIntrusiveLinkedList&& src)
-{
- if (&src != this)
- {
- VMA_HEAVY_ASSERT(IsEmpty());
- m_Front = src.m_Front;
- m_Back = src.m_Back;
- m_Count = src.m_Count;
- src.m_Front = src.m_Back = VMA_NULL;
- src.m_Count = 0;
- }
- return *this;
-}
-
-template
-void VmaIntrusiveLinkedList::PushBack(ItemType* item)
-{
- VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
- if (IsEmpty())
- {
- m_Front = item;
- m_Back = item;
- m_Count = 1;
- }
- else
- {
- ItemTypeTraits::AccessPrev(item) = m_Back;
- ItemTypeTraits::AccessNext(m_Back) = item;
- m_Back = item;
- ++m_Count;
- }
-}
-
-template
-void VmaIntrusiveLinkedList::PushFront(ItemType* item)
-{
- VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
- if (IsEmpty())
- {
- m_Front = item;
- m_Back = item;
- m_Count = 1;
- }
- else
- {
- ItemTypeTraits::AccessNext(item) = m_Front;
- ItemTypeTraits::AccessPrev(m_Front) = item;
- m_Front = item;
- ++m_Count;
- }
-}
-
-template
-typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopBack()
-{
- VMA_HEAVY_ASSERT(m_Count > 0);
- ItemType* const backItem = m_Back;
- ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem);
- if (prevItem != VMA_NULL)
- {
- ItemTypeTraits::AccessNext(prevItem) = VMA_NULL;
- }
- m_Back = prevItem;
- --m_Count;
- ItemTypeTraits::AccessPrev(backItem) = VMA_NULL;
- ItemTypeTraits::AccessNext(backItem) = VMA_NULL;
- return backItem;
-}
-
-template
-typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopFront()
-{
- VMA_HEAVY_ASSERT(m_Count > 0);
- ItemType* const frontItem = m_Front;
- ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem);
- if (nextItem != VMA_NULL)
- {
- ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL;
- }
- m_Front = nextItem;
- --m_Count;
- ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL;
- ItemTypeTraits::AccessNext(frontItem) = VMA_NULL;
- return frontItem;
-}
-
-template
-void VmaIntrusiveLinkedList::InsertBefore(ItemType* existingItem, ItemType* newItem)
-{
- VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
- if (existingItem != VMA_NULL)
- {
- ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem);
- ItemTypeTraits::AccessPrev(newItem) = prevItem;
- ItemTypeTraits::AccessNext(newItem) = existingItem;
- ItemTypeTraits::AccessPrev(existingItem) = newItem;
- if (prevItem != VMA_NULL)
- {
- ItemTypeTraits::AccessNext(prevItem) = newItem;
- }
- else
- {
- VMA_HEAVY_ASSERT(m_Front == existingItem);
- m_Front = newItem;
- }
- ++m_Count;
- }
- else
- PushBack(newItem);
-}
-
-template
-void VmaIntrusiveLinkedList::InsertAfter(ItemType* existingItem, ItemType* newItem)
-{
- VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
- if (existingItem != VMA_NULL)
- {
- ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem);
- ItemTypeTraits::AccessNext(newItem) = nextItem;
- ItemTypeTraits::AccessPrev(newItem) = existingItem;
- ItemTypeTraits::AccessNext(existingItem) = newItem;
- if (nextItem != VMA_NULL)
- {
- ItemTypeTraits::AccessPrev(nextItem) = newItem;
- }
- else
- {
- VMA_HEAVY_ASSERT(m_Back == existingItem);
- m_Back = newItem;
- }
- ++m_Count;
- }
- else
- return PushFront(newItem);
-}
-
-template
-void VmaIntrusiveLinkedList::Remove(ItemType* item)
-{
- VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0);
- if (ItemTypeTraits::GetPrev(item) != VMA_NULL)
- {
- ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item);
- }
- else
- {
- VMA_HEAVY_ASSERT(m_Front == item);
- m_Front = ItemTypeTraits::GetNext(item);
- }
-
- if (ItemTypeTraits::GetNext(item) != VMA_NULL)
- {
- ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item);
- }
- else
- {
- VMA_HEAVY_ASSERT(m_Back == item);
- m_Back = ItemTypeTraits::GetPrev(item);
- }
- ItemTypeTraits::AccessPrev(item) = VMA_NULL;
- ItemTypeTraits::AccessNext(item) = VMA_NULL;
- --m_Count;
-}
-
-template
-void VmaIntrusiveLinkedList::RemoveAll()
-{
- if (!IsEmpty())
- {
- ItemType* item = m_Back;
- while (item != VMA_NULL)
- {
- ItemType* const prevItem = ItemTypeTraits::AccessPrev(item);
- ItemTypeTraits::AccessPrev(item) = VMA_NULL;
- ItemTypeTraits::AccessNext(item) = VMA_NULL;
- item = prevItem;
- }
- m_Front = VMA_NULL;
- m_Back = VMA_NULL;
- m_Count = 0;
- }
-}
-#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
-#endif // _VMA_INTRUSIVE_LINKED_LIST
-
-// Unused in this version.
-#if 0
-
-#ifndef _VMA_PAIR
-template
-struct VmaPair
-{
- T1 first;
- T2 second;
-
- VmaPair() : first(), second() {}
- VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) {}
-};
-
-template
-struct VmaPairFirstLess
-{
- bool operator()(const VmaPair& lhs, const VmaPair& rhs) const
- {
- return lhs.first < rhs.first;
- }
- bool operator()(const VmaPair& lhs, const FirstT& rhsFirst) const
- {
- return lhs.first < rhsFirst;
- }
-};
-#endif // _VMA_PAIR
-
-#ifndef _VMA_MAP
-/* Class compatible with subset of interface of std::unordered_map.
-KeyT, ValueT must be POD because they will be stored in VmaVector.
-*/
-template
-class VmaMap
-{
-public:
- typedef VmaPair PairType;
- typedef PairType* iterator;
-
- VmaMap(const VmaStlAllocator& allocator) : m_Vector(allocator) {}
-
- iterator begin() { return m_Vector.begin(); }
- iterator end() { return m_Vector.end(); }
- size_t size() { return m_Vector.size(); }
-
- void insert(const PairType& pair);
- iterator find(const KeyT& key);
- void erase(iterator it);
-
-private:
- VmaVector< PairType, VmaStlAllocator