// // Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #ifdef _WIN32 #include "SparseBindingTest.h" #include "Tests.h" #include "VmaUsage.h" #include "Common.h" #include #include #pragma comment(lib, "shlwapi.lib") static const char* const SHADER_PATH1 = "./"; static const char* const SHADER_PATH2 = "../bin/"; static const wchar_t* const WINDOW_CLASS_NAME = L"VULKAN_MEMORY_ALLOCATOR_SAMPLE"; static const char* const VALIDATION_LAYER_NAME = "VK_LAYER_KHRONOS_validation"; static const char* const APP_TITLE_A = "Vulkan Memory Allocator Sample 2.4.0"; static const wchar_t* const APP_TITLE_W = L"Vulkan Memory Allocator Sample 2.4.0"; static const bool VSYNC = true; static const uint32_t COMMAND_BUFFER_COUNT = 2; static void* const CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA = (void*)(intptr_t)43564544; static const bool USE_CUSTOM_CPU_ALLOCATION_CALLBACKS = true; enum class ExitCode : int { GPUList = 2, Help = 1, Success = 0, RuntimeError = -1, CommandLineError = -2, }; VkPhysicalDevice g_hPhysicalDevice; VkDevice g_hDevice; VmaAllocator g_hAllocator; VkInstance g_hVulkanInstance; bool g_EnableValidationLayer = true; bool VK_KHR_get_memory_requirements2_enabled = false; bool VK_KHR_get_physical_device_properties2_enabled = false; bool VK_KHR_dedicated_allocation_enabled = false; bool VK_KHR_bind_memory2_enabled = false; bool VK_EXT_memory_budget_enabled = false; bool VK_AMD_device_coherent_memory_enabled = false; bool VK_KHR_buffer_device_address_enabled = false; bool VK_EXT_memory_priority_enabled = false; bool VK_EXT_debug_utils_enabled = false; bool g_SparseBindingEnabled = false; // # Pointers to functions from extensions PFN_vkGetBufferDeviceAddressKHR g_vkGetBufferDeviceAddressKHR; static HINSTANCE g_hAppInstance; static HWND g_hWnd; static LONG g_SizeX = 1280, g_SizeY = 720; static VkSurfaceKHR g_hSurface; static VkQueue g_hPresentQueue; static VkSurfaceFormatKHR g_SurfaceFormat; static VkExtent2D g_Extent; static VkSwapchainKHR g_hSwapchain; static std::vector g_SwapchainImages; static std::vector g_SwapchainImageViews; static std::vector g_Framebuffers; static VkCommandPool g_hCommandPool; static VkCommandBuffer g_MainCommandBuffers[COMMAND_BUFFER_COUNT]; static VkFence g_MainCommandBufferExecutedFances[COMMAND_BUFFER_COUNT]; VkFence g_ImmediateFence; static uint32_t g_NextCommandBufferIndex; static VkSemaphore g_hImageAvailableSemaphore; static VkSemaphore g_hRenderFinishedSemaphore; static uint32_t g_GraphicsQueueFamilyIndex = UINT_MAX; static uint32_t g_PresentQueueFamilyIndex = UINT_MAX; static uint32_t g_SparseBindingQueueFamilyIndex = UINT_MAX; static VkDescriptorSetLayout g_hDescriptorSetLayout; static VkDescriptorPool g_hDescriptorPool; static VkDescriptorSet g_hDescriptorSet; // Automatically destroyed with m_DescriptorPool. static VkSampler g_hSampler; static VkFormat g_DepthFormat; static VkImage g_hDepthImage; static VmaAllocation g_hDepthImageAlloc; static VkImageView g_hDepthImageView; static VkSurfaceCapabilitiesKHR g_SurfaceCapabilities; static std::vector g_SurfaceFormats; static std::vector g_PresentModes; static const VkDebugUtilsMessageSeverityFlagsEXT DEBUG_UTILS_MESSENGER_MESSAGE_SEVERITY = //VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | //VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; static const VkDebugUtilsMessageTypeFlagsEXT DEBUG_UTILS_MESSENGER_MESSAGE_TYPE = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; static PFN_vkCreateDebugUtilsMessengerEXT vkCreateDebugUtilsMessengerEXT_Func; static PFN_vkDestroyDebugUtilsMessengerEXT vkDestroyDebugUtilsMessengerEXT_Func; static PFN_vkSetDebugUtilsObjectNameEXT vkSetDebugUtilsObjectNameEXT_Func; static VkQueue g_hGraphicsQueue; VkQueue g_hSparseBindingQueue; VkCommandBuffer g_hTemporaryCommandBuffer; static VkPipelineLayout g_hPipelineLayout; static VkRenderPass g_hRenderPass; static VkPipeline g_hPipeline; static VkBuffer g_hVertexBuffer; static VmaAllocation g_hVertexBufferAlloc; static VkBuffer g_hIndexBuffer; static VmaAllocation g_hIndexBufferAlloc; static uint32_t g_VertexCount; static uint32_t g_IndexCount; static VkImage g_hTextureImage; static VmaAllocation g_hTextureImageAlloc; static VkImageView g_hTextureImageView; static std::atomic_uint32_t g_CpuAllocCount; static void* CustomCpuAllocation( void* pUserData, size_t size, size_t alignment, VkSystemAllocationScope allocationScope) { assert(pUserData == CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA); void* const result = _aligned_malloc(size, alignment); if(result) { ++g_CpuAllocCount; } return result; } static void* CustomCpuReallocation( void* pUserData, void* pOriginal, size_t size, size_t alignment, VkSystemAllocationScope allocationScope) { assert(pUserData == CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA); void* const result = _aligned_realloc(pOriginal, size, alignment); if(pOriginal && !result) { --g_CpuAllocCount; } else if(!pOriginal && result) { ++g_CpuAllocCount; } return result; } static void CustomCpuFree(void* pUserData, void* pMemory) { assert(pUserData == CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA); if(pMemory) { const uint32_t oldAllocCount = g_CpuAllocCount.fetch_sub(1); TEST(oldAllocCount > 0); _aligned_free(pMemory); } } static const VkAllocationCallbacks g_CpuAllocationCallbacks = { CUSTOM_CPU_ALLOCATION_CALLBACK_USER_DATA, // pUserData &CustomCpuAllocation, // pfnAllocation &CustomCpuReallocation, // pfnReallocation &CustomCpuFree // pfnFree }; const VkAllocationCallbacks* g_Allocs; struct GPUSelection { uint32_t Index = UINT32_MAX; std::wstring Substring; }; class VulkanUsage { public: void Init(); ~VulkanUsage(); void PrintPhysicalDeviceList() const; // If failed, returns VK_NULL_HANDLE. VkPhysicalDevice SelectPhysicalDevice(const GPUSelection& GPUSelection) const; private: VkDebugUtilsMessengerEXT m_DebugUtilsMessenger = VK_NULL_HANDLE; void RegisterDebugCallbacks(); static bool IsLayerSupported(const VkLayerProperties* pProps, size_t propCount, const char* pLayerName); }; struct CommandLineParameters { bool m_Help = false; bool m_List = false; bool m_Test = false; bool m_TestSparseBinding = false; GPUSelection m_GPUSelection; bool Parse(int argc, wchar_t** argv) { for(int i = 1; i < argc; ++i) { if(_wcsicmp(argv[i], L"-h") == 0 || _wcsicmp(argv[i], L"--Help") == 0) { m_Help = true; } else if(_wcsicmp(argv[i], L"-l") == 0 || _wcsicmp(argv[i], L"--List") == 0) { m_List = true; } else if((_wcsicmp(argv[i], L"-g") == 0 || _wcsicmp(argv[i], L"--GPU") == 0) && i + 1 < argc) { m_GPUSelection.Substring = argv[i + 1]; ++i; } else if((_wcsicmp(argv[i], L"-i") == 0 || _wcsicmp(argv[i], L"--GPUIndex") == 0) && i + 1 < argc) { m_GPUSelection.Index = _wtoi(argv[i + 1]); ++i; } else if (_wcsicmp(argv[i], L"-t") == 0 || _wcsicmp(argv[i], L"--Test") == 0) { m_Test = true; } else if (_wcsicmp(argv[i], L"-s") == 0 || _wcsicmp(argv[i], L"--TestSparseBinding") == 0) { m_TestSparseBinding = true; } else return false; } return true; } } g_CommandLineParameters; void SetDebugUtilsObjectName(VkObjectType type, uint64_t handle, const char* name) { if(vkSetDebugUtilsObjectNameEXT_Func == nullptr) return; VkDebugUtilsObjectNameInfoEXT info = { VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT }; info.objectType = type; info.objectHandle = handle; info.pObjectName = name; vkSetDebugUtilsObjectNameEXT_Func(g_hDevice, &info); } void BeginSingleTimeCommands() { VkCommandBufferBeginInfo cmdBufBeginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO }; cmdBufBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; ERR_GUARD_VULKAN( vkBeginCommandBuffer(g_hTemporaryCommandBuffer, &cmdBufBeginInfo) ); } void EndSingleTimeCommands() { ERR_GUARD_VULKAN( vkEndCommandBuffer(g_hTemporaryCommandBuffer) ); VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO }; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &g_hTemporaryCommandBuffer; ERR_GUARD_VULKAN( vkQueueSubmit(g_hGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE) ); ERR_GUARD_VULKAN( vkQueueWaitIdle(g_hGraphicsQueue) ); } void LoadShader(std::vector& out, const char* fileName) { std::ifstream file(std::string(SHADER_PATH1) + fileName, std::ios::ate | std::ios::binary); if(file.is_open() == false) file.open(std::string(SHADER_PATH2) + fileName, std::ios::ate | std::ios::binary); assert(file.is_open()); size_t fileSize = (size_t)file.tellg(); if(fileSize > 0) { out.resize(fileSize); file.seekg(0); file.read(out.data(), fileSize); file.close(); } else out.clear(); } static VkBool32 VKAPI_PTR MyDebugReportCallback( VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageTypes, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) { assert(pCallbackData && pCallbackData->pMessageIdName && pCallbackData->pMessage); switch(messageSeverity) { case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT: SetConsoleColor(CONSOLE_COLOR::WARNING); break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT: SetConsoleColor(CONSOLE_COLOR::ERROR_); break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT: SetConsoleColor(CONSOLE_COLOR::NORMAL); break; default: // VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT SetConsoleColor(CONSOLE_COLOR::INFO); } printf("%s \xBA %s\n", pCallbackData->pMessageIdName, pCallbackData->pMessage); SetConsoleColor(CONSOLE_COLOR::NORMAL); if(messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT || messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) { OutputDebugStringA(pCallbackData->pMessage); OutputDebugStringA("\n"); } return VK_FALSE; } static VkSurfaceFormatKHR ChooseSurfaceFormat() { assert(!g_SurfaceFormats.empty()); if((g_SurfaceFormats.size() == 1) && (g_SurfaceFormats[0].format == VK_FORMAT_UNDEFINED)) { VkSurfaceFormatKHR result = { VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR }; return result; } for(const auto& format : g_SurfaceFormats) { if((format.format == VK_FORMAT_B8G8R8A8_UNORM) && (format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR)) { return format; } } return g_SurfaceFormats[0]; } VkPresentModeKHR ChooseSwapPresentMode() { VkPresentModeKHR preferredMode = VSYNC ? VK_PRESENT_MODE_MAILBOX_KHR : VK_PRESENT_MODE_IMMEDIATE_KHR; if(std::find(g_PresentModes.begin(), g_PresentModes.end(), preferredMode) != g_PresentModes.end()) { return preferredMode; } return VK_PRESENT_MODE_FIFO_KHR; } static VkExtent2D ChooseSwapExtent() { if(g_SurfaceCapabilities.currentExtent.width != UINT_MAX) return g_SurfaceCapabilities.currentExtent; VkExtent2D result = { std::max(g_SurfaceCapabilities.minImageExtent.width, std::min(g_SurfaceCapabilities.maxImageExtent.width, (uint32_t)g_SizeX)), std::max(g_SurfaceCapabilities.minImageExtent.height, std::min(g_SurfaceCapabilities.maxImageExtent.height, (uint32_t)g_SizeY)) }; return result; } static constexpr uint32_t GetVulkanApiVersion() { #if VMA_VULKAN_VERSION == 1002000 return VK_API_VERSION_1_2; #elif VMA_VULKAN_VERSION == 1001000 return VK_API_VERSION_1_1; #elif VMA_VULKAN_VERSION == 1000000 return VK_API_VERSION_1_0; #else #error Invalid VMA_VULKAN_VERSION. return UINT32_MAX; #endif } void VulkanUsage::Init() { g_hAppInstance = (HINSTANCE)GetModuleHandle(NULL); if(USE_CUSTOM_CPU_ALLOCATION_CALLBACKS) { g_Allocs = &g_CpuAllocationCallbacks; } uint32_t instanceLayerPropCount = 0; ERR_GUARD_VULKAN( vkEnumerateInstanceLayerProperties(&instanceLayerPropCount, nullptr) ); std::vector instanceLayerProps(instanceLayerPropCount); if(instanceLayerPropCount > 0) { ERR_GUARD_VULKAN( vkEnumerateInstanceLayerProperties(&instanceLayerPropCount, instanceLayerProps.data()) ); } if(g_EnableValidationLayer) { if(IsLayerSupported(instanceLayerProps.data(), instanceLayerProps.size(), VALIDATION_LAYER_NAME) == false) { wprintf(L"Layer \"%hs\" not supported.", VALIDATION_LAYER_NAME); g_EnableValidationLayer = false; } } uint32_t availableInstanceExtensionCount = 0; ERR_GUARD_VULKAN( vkEnumerateInstanceExtensionProperties(nullptr, &availableInstanceExtensionCount, nullptr) ); std::vector availableInstanceExtensions(availableInstanceExtensionCount); if(availableInstanceExtensionCount > 0) { ERR_GUARD_VULKAN( vkEnumerateInstanceExtensionProperties(nullptr, &availableInstanceExtensionCount, availableInstanceExtensions.data()) ); } std::vector enabledInstanceExtensions; enabledInstanceExtensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME); enabledInstanceExtensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); std::vector instanceLayers; if(g_EnableValidationLayer) { instanceLayers.push_back(VALIDATION_LAYER_NAME); } for(const auto& extensionProperties : availableInstanceExtensions) { if(strcmp(extensionProperties.extensionName, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME) == 0) { if(GetVulkanApiVersion() == VK_API_VERSION_1_0) { enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); VK_KHR_get_physical_device_properties2_enabled = true; } } else if(strcmp(extensionProperties.extensionName, VK_EXT_DEBUG_UTILS_EXTENSION_NAME) == 0) { enabledInstanceExtensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME); VK_EXT_debug_utils_enabled = true; } } VkApplicationInfo appInfo = { VK_STRUCTURE_TYPE_APPLICATION_INFO }; appInfo.pApplicationName = APP_TITLE_A; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "Adam Sawicki Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = GetVulkanApiVersion(); VkInstanceCreateInfo instInfo = { VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO }; instInfo.pApplicationInfo = &appInfo; instInfo.enabledExtensionCount = static_cast(enabledInstanceExtensions.size()); instInfo.ppEnabledExtensionNames = enabledInstanceExtensions.data(); instInfo.enabledLayerCount = static_cast(instanceLayers.size()); instInfo.ppEnabledLayerNames = instanceLayers.data(); wprintf(L"Vulkan API version used: "); switch(appInfo.apiVersion) { case VK_API_VERSION_1_0: wprintf(L"1.0\n"); break; case VK_API_VERSION_1_1: wprintf(L"1.1\n"); break; case VK_API_VERSION_1_2: wprintf(L"1.2\n"); break; default: assert(0); } ERR_GUARD_VULKAN( vkCreateInstance(&instInfo, g_Allocs, &g_hVulkanInstance) ); if(VK_EXT_debug_utils_enabled) { RegisterDebugCallbacks(); } } VulkanUsage::~VulkanUsage() { if(m_DebugUtilsMessenger) { vkDestroyDebugUtilsMessengerEXT_Func(g_hVulkanInstance, m_DebugUtilsMessenger, g_Allocs); } if(g_hVulkanInstance) { vkDestroyInstance(g_hVulkanInstance, g_Allocs); g_hVulkanInstance = VK_NULL_HANDLE; } } void VulkanUsage::PrintPhysicalDeviceList() const { uint32_t deviceCount = 0; ERR_GUARD_VULKAN(vkEnumeratePhysicalDevices(g_hVulkanInstance, &deviceCount, nullptr)); std::vector physicalDevices(deviceCount); if(deviceCount > 0) { ERR_GUARD_VULKAN(vkEnumeratePhysicalDevices(g_hVulkanInstance, &deviceCount, physicalDevices.data())); } for(size_t i = 0; i < deviceCount; ++i) { VkPhysicalDeviceProperties props = {}; vkGetPhysicalDeviceProperties(physicalDevices[i], &props); wprintf(L"Physical device %zu: %hs\n", i, props.deviceName); } } VkPhysicalDevice VulkanUsage::SelectPhysicalDevice(const GPUSelection& GPUSelection) const { uint32_t deviceCount = 0; ERR_GUARD_VULKAN(vkEnumeratePhysicalDevices(g_hVulkanInstance, &deviceCount, nullptr)); std::vector physicalDevices(deviceCount); if(deviceCount > 0) { ERR_GUARD_VULKAN(vkEnumeratePhysicalDevices(g_hVulkanInstance, &deviceCount, physicalDevices.data())); } if(GPUSelection.Index != UINT32_MAX) { // Cannot specify both index and name. if(!GPUSelection.Substring.empty()) { return VK_NULL_HANDLE; } return GPUSelection.Index < deviceCount ? physicalDevices[GPUSelection.Index] : VK_NULL_HANDLE; } if(!GPUSelection.Substring.empty()) { VkPhysicalDevice result = VK_NULL_HANDLE; std::wstring name; for(uint32_t i = 0; i < deviceCount; ++i) { VkPhysicalDeviceProperties props = {}; vkGetPhysicalDeviceProperties(physicalDevices[i], &props); if(ConvertCharsToUnicode(&name, props.deviceName, strlen(props.deviceName), CP_UTF8) && StrStrI(name.c_str(), GPUSelection.Substring.c_str())) { // Second matching device found - error. if(result != VK_NULL_HANDLE) { return VK_NULL_HANDLE; } // First matching device found. result = physicalDevices[i]; } } // Found or not, return it. return result; } // Select first one. return deviceCount > 0 ? physicalDevices[0] : VK_NULL_HANDLE; } void VulkanUsage::RegisterDebugCallbacks() { vkCreateDebugUtilsMessengerEXT_Func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr( g_hVulkanInstance, "vkCreateDebugUtilsMessengerEXT"); vkDestroyDebugUtilsMessengerEXT_Func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr( g_hVulkanInstance, "vkDestroyDebugUtilsMessengerEXT"); vkSetDebugUtilsObjectNameEXT_Func = (PFN_vkSetDebugUtilsObjectNameEXT)vkGetInstanceProcAddr( g_hVulkanInstance, "vkSetDebugUtilsObjectNameEXT"); assert(vkCreateDebugUtilsMessengerEXT_Func); assert(vkDestroyDebugUtilsMessengerEXT_Func); assert(vkSetDebugUtilsObjectNameEXT_Func); VkDebugUtilsMessengerCreateInfoEXT messengerCreateInfo = { VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT }; messengerCreateInfo.messageSeverity = DEBUG_UTILS_MESSENGER_MESSAGE_SEVERITY; messengerCreateInfo.messageType = DEBUG_UTILS_MESSENGER_MESSAGE_TYPE; messengerCreateInfo.pfnUserCallback = MyDebugReportCallback; ERR_GUARD_VULKAN( vkCreateDebugUtilsMessengerEXT_Func(g_hVulkanInstance, &messengerCreateInfo, g_Allocs, &m_DebugUtilsMessenger) ); } bool VulkanUsage::IsLayerSupported(const VkLayerProperties* pProps, size_t propCount, const char* pLayerName) { const VkLayerProperties* propsEnd = pProps + propCount; return std::find_if( pProps, propsEnd, [pLayerName](const VkLayerProperties& prop) -> bool { return strcmp(pLayerName, prop.layerName) == 0; }) != propsEnd; } struct Vertex { float pos[3]; float color[3]; float texCoord[2]; }; static void CreateMesh() { assert(g_hAllocator); static Vertex vertices[] = { // -X { { -1.f, -1.f, -1.f}, {1.0f, 0.0f, 0.0f}, {0.f, 0.f} }, { { -1.f, -1.f, 1.f}, {1.0f, 0.0f, 0.0f}, {1.f, 0.f} }, { { -1.f, 1.f, -1.f}, {1.0f, 0.0f, 0.0f}, {0.f, 1.f} }, { { -1.f, 1.f, 1.f}, {1.0f, 0.0f, 0.0f}, {1.f, 1.f} }, // +X { { 1.f, -1.f, 1.f}, {0.0f, 1.0f, 0.0f}, {0.f, 0.f} }, { { 1.f, -1.f, -1.f}, {0.0f, 1.0f, 0.0f}, {1.f, 0.f} }, { { 1.f, 1.f, 1.f}, {0.0f, 1.0f, 0.0f}, {0.f, 1.f} }, { { 1.f, 1.f, -1.f}, {0.0f, 1.0f, 0.0f}, {1.f, 1.f} }, // -Z { { 1.f, -1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {0.f, 0.f} }, { {-1.f, -1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {1.f, 0.f} }, { { 1.f, 1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {0.f, 1.f} }, { {-1.f, 1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {1.f, 1.f} }, // +Z { {-1.f, -1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {0.f, 0.f} }, { { 1.f, -1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {1.f, 0.f} }, { {-1.f, 1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {0.f, 1.f} }, { { 1.f, 1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {1.f, 1.f} }, // -Y { {-1.f, -1.f, -1.f}, {0.0f, 1.0f, 1.0f}, {0.f, 0.f} }, { { 1.f, -1.f, -1.f}, {0.0f, 1.0f, 1.0f}, {1.f, 0.f} }, { {-1.f, -1.f, 1.f}, {0.0f, 1.0f, 1.0f}, {0.f, 1.f} }, { { 1.f, -1.f, 1.f}, {0.0f, 1.0f, 1.0f}, {1.f, 1.f} }, // +Y { { 1.f, 1.f, -1.f}, {1.0f, 0.0f, 1.0f}, {0.f, 0.f} }, { {-1.f, 1.f, -1.f}, {1.0f, 0.0f, 1.0f}, {1.f, 0.f} }, { { 1.f, 1.f, 1.f}, {1.0f, 0.0f, 1.0f}, {0.f, 1.f} }, { {-1.f, 1.f, 1.f}, {1.0f, 0.0f, 1.0f}, {1.f, 1.f} }, }; static uint16_t indices[] = { 0, 1, 2, 3, USHRT_MAX, 4, 5, 6, 7, USHRT_MAX, 8, 9, 10, 11, USHRT_MAX, 12, 13, 14, 15, USHRT_MAX, 16, 17, 18, 19, USHRT_MAX, 20, 21, 22, 23, USHRT_MAX, }; size_t vertexBufferSize = sizeof(Vertex) * _countof(vertices); size_t indexBufferSize = sizeof(uint16_t) * _countof(indices); g_IndexCount = (uint32_t)_countof(indices); // Create vertex buffer VkBufferCreateInfo vbInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; vbInfo.size = vertexBufferSize; vbInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; vbInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VmaAllocationCreateInfo vbAllocCreateInfo = {}; vbAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; vbAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer stagingVertexBuffer = VK_NULL_HANDLE; VmaAllocation stagingVertexBufferAlloc = VK_NULL_HANDLE; VmaAllocationInfo stagingVertexBufferAllocInfo = {}; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &vbInfo, &vbAllocCreateInfo, &stagingVertexBuffer, &stagingVertexBufferAlloc, &stagingVertexBufferAllocInfo) ); memcpy(stagingVertexBufferAllocInfo.pMappedData, vertices, vertexBufferSize); // No need to flush stagingVertexBuffer memory because CPU_ONLY memory is always HOST_COHERENT. vbInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT; vbAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; vbAllocCreateInfo.flags = 0; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &vbInfo, &vbAllocCreateInfo, &g_hVertexBuffer, &g_hVertexBufferAlloc, nullptr) ); // Create index buffer VkBufferCreateInfo ibInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; ibInfo.size = indexBufferSize; ibInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; ibInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VmaAllocationCreateInfo ibAllocCreateInfo = {}; ibAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; ibAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer stagingIndexBuffer = VK_NULL_HANDLE; VmaAllocation stagingIndexBufferAlloc = VK_NULL_HANDLE; VmaAllocationInfo stagingIndexBufferAllocInfo = {}; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &ibInfo, &ibAllocCreateInfo, &stagingIndexBuffer, &stagingIndexBufferAlloc, &stagingIndexBufferAllocInfo) ); memcpy(stagingIndexBufferAllocInfo.pMappedData, indices, indexBufferSize); // No need to flush stagingIndexBuffer memory because CPU_ONLY memory is always HOST_COHERENT. ibInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT; ibAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; ibAllocCreateInfo.flags = 0; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &ibInfo, &ibAllocCreateInfo, &g_hIndexBuffer, &g_hIndexBufferAlloc, nullptr) ); // Copy buffers BeginSingleTimeCommands(); VkBufferCopy vbCopyRegion = {}; vbCopyRegion.srcOffset = 0; vbCopyRegion.dstOffset = 0; vbCopyRegion.size = vbInfo.size; vkCmdCopyBuffer(g_hTemporaryCommandBuffer, stagingVertexBuffer, g_hVertexBuffer, 1, &vbCopyRegion); VkBufferCopy ibCopyRegion = {}; ibCopyRegion.srcOffset = 0; ibCopyRegion.dstOffset = 0; ibCopyRegion.size = ibInfo.size; vkCmdCopyBuffer(g_hTemporaryCommandBuffer, stagingIndexBuffer, g_hIndexBuffer, 1, &ibCopyRegion); EndSingleTimeCommands(); vmaDestroyBuffer(g_hAllocator, stagingIndexBuffer, stagingIndexBufferAlloc); vmaDestroyBuffer(g_hAllocator, stagingVertexBuffer, stagingVertexBufferAlloc); } static void CreateTexture(uint32_t sizeX, uint32_t sizeY) { // Create staging buffer. const VkDeviceSize imageSize = sizeX * sizeY * 4; VkBufferCreateInfo stagingBufInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; stagingBufInfo.size = imageSize; stagingBufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; VmaAllocationCreateInfo stagingBufAllocCreateInfo = {}; stagingBufAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; stagingBufAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer stagingBuf = VK_NULL_HANDLE; VmaAllocation stagingBufAlloc = VK_NULL_HANDLE; VmaAllocationInfo stagingBufAllocInfo = {}; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &stagingBufInfo, &stagingBufAllocCreateInfo, &stagingBuf, &stagingBufAlloc, &stagingBufAllocInfo) ); char* const pImageData = (char*)stagingBufAllocInfo.pMappedData; uint8_t* pRowData = (uint8_t*)pImageData; for(uint32_t y = 0; y < sizeY; ++y) { uint32_t* pPixelData = (uint32_t*)pRowData; for(uint32_t x = 0; x < sizeY; ++x) { *pPixelData = ((x & 0x18) == 0x08 ? 0x000000FF : 0x00000000) | ((x & 0x18) == 0x10 ? 0x0000FFFF : 0x00000000) | ((y & 0x18) == 0x08 ? 0x0000FF00 : 0x00000000) | ((y & 0x18) == 0x10 ? 0x00FF0000 : 0x00000000); ++pPixelData; } pRowData += sizeX * 4; } // No need to flush stagingImage memory because CPU_ONLY memory is always HOST_COHERENT. // Create g_hTextureImage in GPU memory. VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; imageInfo.imageType = VK_IMAGE_TYPE_2D; imageInfo.extent.width = sizeX; imageInfo.extent.height = sizeY; imageInfo.extent.depth = 1; imageInfo.mipLevels = 1; imageInfo.arrayLayers = 1; imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM; imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageInfo.flags = 0; VmaAllocationCreateInfo imageAllocCreateInfo = {}; imageAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; ERR_GUARD_VULKAN( vmaCreateImage(g_hAllocator, &imageInfo, &imageAllocCreateInfo, &g_hTextureImage, &g_hTextureImageAlloc, nullptr) ); // Transition image layouts, copy image. BeginSingleTimeCommands(); VkImageMemoryBarrier imgMemBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER }; imgMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgMemBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgMemBarrier.subresourceRange.baseMipLevel = 0; imgMemBarrier.subresourceRange.levelCount = 1; imgMemBarrier.subresourceRange.baseArrayLayer = 0; imgMemBarrier.subresourceRange.layerCount = 1; imgMemBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgMemBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgMemBarrier.image = g_hTextureImage; imgMemBarrier.srcAccessMask = 0; imgMemBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; vkCmdPipelineBarrier( g_hTemporaryCommandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imgMemBarrier); VkBufferImageCopy region = {}; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.layerCount = 1; region.imageExtent.width = sizeX; region.imageExtent.height = sizeY; region.imageExtent.depth = 1; vkCmdCopyBufferToImage(g_hTemporaryCommandBuffer, stagingBuf, g_hTextureImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); imgMemBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgMemBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imgMemBarrier.image = g_hTextureImage; imgMemBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; imgMemBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; vkCmdPipelineBarrier( g_hTemporaryCommandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imgMemBarrier); EndSingleTimeCommands(); vmaDestroyBuffer(g_hAllocator, stagingBuf, stagingBufAlloc); // Create ImageView VkImageViewCreateInfo textureImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO }; textureImageViewInfo.image = g_hTextureImage; textureImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; textureImageViewInfo.format = VK_FORMAT_R8G8B8A8_UNORM; textureImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; textureImageViewInfo.subresourceRange.baseMipLevel = 0; textureImageViewInfo.subresourceRange.levelCount = 1; textureImageViewInfo.subresourceRange.baseArrayLayer = 0; textureImageViewInfo.subresourceRange.layerCount = 1; ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &textureImageViewInfo, g_Allocs, &g_hTextureImageView) ); } struct UniformBufferObject { mat4 ModelViewProj; }; static VkFormat FindSupportedFormat( const std::vector& candidates, VkImageTiling tiling, VkFormatFeatureFlags features) { for (VkFormat format : candidates) { VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(g_hPhysicalDevice, format, &props); if ((tiling == VK_IMAGE_TILING_LINEAR) && ((props.linearTilingFeatures & features) == features)) { return format; } else if ((tiling == VK_IMAGE_TILING_OPTIMAL) && ((props.optimalTilingFeatures & features) == features)) { return format; } } return VK_FORMAT_UNDEFINED; } static VkFormat FindDepthFormat() { std::vector formats; formats.push_back(VK_FORMAT_D32_SFLOAT); formats.push_back(VK_FORMAT_D32_SFLOAT_S8_UINT); formats.push_back(VK_FORMAT_D24_UNORM_S8_UINT); return FindSupportedFormat( formats, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); } static void CreateSwapchain() { // Query surface formats. ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceCapabilitiesKHR(g_hPhysicalDevice, g_hSurface, &g_SurfaceCapabilities) ); uint32_t formatCount = 0; ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceFormatsKHR(g_hPhysicalDevice, g_hSurface, &formatCount, nullptr) ); g_SurfaceFormats.resize(formatCount); ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceFormatsKHR(g_hPhysicalDevice, g_hSurface, &formatCount, g_SurfaceFormats.data()) ); uint32_t presentModeCount = 0; ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfacePresentModesKHR(g_hPhysicalDevice, g_hSurface, &presentModeCount, nullptr) ); g_PresentModes.resize(presentModeCount); ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfacePresentModesKHR(g_hPhysicalDevice, g_hSurface, &presentModeCount, g_PresentModes.data()) ); // Create swap chain g_SurfaceFormat = ChooseSurfaceFormat(); VkPresentModeKHR presentMode = ChooseSwapPresentMode(); g_Extent = ChooseSwapExtent(); uint32_t imageCount = g_SurfaceCapabilities.minImageCount + 1; if((g_SurfaceCapabilities.maxImageCount > 0) && (imageCount > g_SurfaceCapabilities.maxImageCount)) { imageCount = g_SurfaceCapabilities.maxImageCount; } VkSwapchainCreateInfoKHR swapChainInfo = { VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR }; swapChainInfo.surface = g_hSurface; swapChainInfo.minImageCount = imageCount; swapChainInfo.imageFormat = g_SurfaceFormat.format; swapChainInfo.imageColorSpace = g_SurfaceFormat.colorSpace; swapChainInfo.imageExtent = g_Extent; swapChainInfo.imageArrayLayers = 1; swapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; swapChainInfo.preTransform = g_SurfaceCapabilities.currentTransform; swapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; swapChainInfo.presentMode = presentMode; swapChainInfo.clipped = VK_TRUE; swapChainInfo.oldSwapchain = g_hSwapchain; uint32_t queueFamilyIndices[] = { g_GraphicsQueueFamilyIndex, g_PresentQueueFamilyIndex }; if(g_PresentQueueFamilyIndex != g_GraphicsQueueFamilyIndex) { swapChainInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; swapChainInfo.queueFamilyIndexCount = 2; swapChainInfo.pQueueFamilyIndices = queueFamilyIndices; } else { swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; } VkSwapchainKHR hNewSwapchain = VK_NULL_HANDLE; ERR_GUARD_VULKAN( vkCreateSwapchainKHR(g_hDevice, &swapChainInfo, g_Allocs, &hNewSwapchain) ); if(g_hSwapchain != VK_NULL_HANDLE) vkDestroySwapchainKHR(g_hDevice, g_hSwapchain, g_Allocs); g_hSwapchain = hNewSwapchain; // Retrieve swapchain images. uint32_t swapchainImageCount = 0; ERR_GUARD_VULKAN( vkGetSwapchainImagesKHR(g_hDevice, g_hSwapchain, &swapchainImageCount, nullptr) ); g_SwapchainImages.resize(swapchainImageCount); ERR_GUARD_VULKAN( vkGetSwapchainImagesKHR(g_hDevice, g_hSwapchain, &swapchainImageCount, g_SwapchainImages.data()) ); // Create swapchain image views. for(size_t i = g_SwapchainImageViews.size(); i--; ) vkDestroyImageView(g_hDevice, g_SwapchainImageViews[i], g_Allocs); g_SwapchainImageViews.clear(); VkImageViewCreateInfo swapchainImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO }; g_SwapchainImageViews.resize(swapchainImageCount); for(uint32_t i = 0; i < swapchainImageCount; ++i) { swapchainImageViewInfo.image = g_SwapchainImages[i]; swapchainImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; swapchainImageViewInfo.format = g_SurfaceFormat.format; swapchainImageViewInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; swapchainImageViewInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; swapchainImageViewInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; swapchainImageViewInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; swapchainImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; swapchainImageViewInfo.subresourceRange.baseMipLevel = 0; swapchainImageViewInfo.subresourceRange.levelCount = 1; swapchainImageViewInfo.subresourceRange.baseArrayLayer = 0; swapchainImageViewInfo.subresourceRange.layerCount = 1; ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &swapchainImageViewInfo, g_Allocs, &g_SwapchainImageViews[i]) ); } // Create depth buffer g_DepthFormat = FindDepthFormat(); assert(g_DepthFormat != VK_FORMAT_UNDEFINED); VkImageCreateInfo depthImageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; depthImageInfo.imageType = VK_IMAGE_TYPE_2D; depthImageInfo.extent.width = g_Extent.width; depthImageInfo.extent.height = g_Extent.height; depthImageInfo.extent.depth = 1; depthImageInfo.mipLevels = 1; depthImageInfo.arrayLayers = 1; depthImageInfo.format = g_DepthFormat; depthImageInfo.tiling = VK_IMAGE_TILING_OPTIMAL; depthImageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; depthImageInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; depthImageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; depthImageInfo.samples = VK_SAMPLE_COUNT_1_BIT; depthImageInfo.flags = 0; VmaAllocationCreateInfo depthImageAllocCreateInfo = {}; depthImageAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; ERR_GUARD_VULKAN( vmaCreateImage(g_hAllocator, &depthImageInfo, &depthImageAllocCreateInfo, &g_hDepthImage, &g_hDepthImageAlloc, nullptr) ); VkImageViewCreateInfo depthImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO }; depthImageViewInfo.image = g_hDepthImage; depthImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; depthImageViewInfo.format = g_DepthFormat; depthImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; depthImageViewInfo.subresourceRange.baseMipLevel = 0; depthImageViewInfo.subresourceRange.levelCount = 1; depthImageViewInfo.subresourceRange.baseArrayLayer = 0; depthImageViewInfo.subresourceRange.layerCount = 1; ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &depthImageViewInfo, g_Allocs, &g_hDepthImageView) ); // Create pipeline layout { if(g_hPipelineLayout != VK_NULL_HANDLE) { vkDestroyPipelineLayout(g_hDevice, g_hPipelineLayout, g_Allocs); g_hPipelineLayout = VK_NULL_HANDLE; } VkPushConstantRange pushConstantRanges[1]; ZeroMemory(&pushConstantRanges, sizeof pushConstantRanges); pushConstantRanges[0].offset = 0; pushConstantRanges[0].size = sizeof(UniformBufferObject); pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; VkDescriptorSetLayout descriptorSetLayouts[] = { g_hDescriptorSetLayout }; VkPipelineLayoutCreateInfo pipelineLayoutInfo = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; pipelineLayoutInfo.setLayoutCount = 1; pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts; pipelineLayoutInfo.pushConstantRangeCount = 1; pipelineLayoutInfo.pPushConstantRanges = pushConstantRanges; ERR_GUARD_VULKAN( vkCreatePipelineLayout(g_hDevice, &pipelineLayoutInfo, g_Allocs, &g_hPipelineLayout) ); } // Create render pass { if(g_hRenderPass != VK_NULL_HANDLE) { vkDestroyRenderPass(g_hDevice, g_hRenderPass, g_Allocs); g_hRenderPass = VK_NULL_HANDLE; } VkAttachmentDescription attachments[2]; ZeroMemory(attachments, sizeof(attachments)); attachments[0].format = g_SurfaceFormat.format; attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; attachments[1].format = g_DepthFormat; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorAttachmentRef = {}; colorAttachmentRef.attachment = 0; colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthStencilAttachmentRef = {}; depthStencilAttachmentRef.attachment = 1; depthStencilAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpassDesc = {}; subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDesc.colorAttachmentCount = 1; subpassDesc.pColorAttachments = &colorAttachmentRef; subpassDesc.pDepthStencilAttachment = &depthStencilAttachmentRef; VkRenderPassCreateInfo renderPassInfo = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO }; renderPassInfo.attachmentCount = (uint32_t)_countof(attachments); renderPassInfo.pAttachments = attachments; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpassDesc; renderPassInfo.dependencyCount = 0; ERR_GUARD_VULKAN( vkCreateRenderPass(g_hDevice, &renderPassInfo, g_Allocs, &g_hRenderPass) ); } // Create pipeline { std::vector vertShaderCode; LoadShader(vertShaderCode, "Shader.vert.spv"); VkShaderModuleCreateInfo shaderModuleInfo = { VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO }; shaderModuleInfo.codeSize = vertShaderCode.size(); shaderModuleInfo.pCode = (const uint32_t*)vertShaderCode.data(); VkShaderModule hVertShaderModule = VK_NULL_HANDLE; ERR_GUARD_VULKAN( vkCreateShaderModule(g_hDevice, &shaderModuleInfo, g_Allocs, &hVertShaderModule) ); std::vector hFragShaderCode; LoadShader(hFragShaderCode, "Shader.frag.spv"); shaderModuleInfo.codeSize = hFragShaderCode.size(); shaderModuleInfo.pCode = (const uint32_t*)hFragShaderCode.data(); VkShaderModule fragShaderModule = VK_NULL_HANDLE; ERR_GUARD_VULKAN( vkCreateShaderModule(g_hDevice, &shaderModuleInfo, g_Allocs, &fragShaderModule) ); VkPipelineShaderStageCreateInfo vertPipelineShaderStageInfo = { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO }; vertPipelineShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; vertPipelineShaderStageInfo.module = hVertShaderModule; vertPipelineShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo fragPipelineShaderStageInfo = { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO }; fragPipelineShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; fragPipelineShaderStageInfo.module = fragShaderModule; fragPipelineShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo pipelineShaderStageInfos[] = { vertPipelineShaderStageInfo, fragPipelineShaderStageInfo }; VkVertexInputBindingDescription bindingDescription = {}; bindingDescription.binding = 0; bindingDescription.stride = sizeof(Vertex); bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; VkVertexInputAttributeDescription attributeDescriptions[3]; ZeroMemory(attributeDescriptions, sizeof(attributeDescriptions)); attributeDescriptions[0].binding = 0; attributeDescriptions[0].location = 0; attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT; attributeDescriptions[0].offset = offsetof(Vertex, pos); attributeDescriptions[1].binding = 0; attributeDescriptions[1].location = 1; attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT; attributeDescriptions[1].offset = offsetof(Vertex, color); attributeDescriptions[2].binding = 0; attributeDescriptions[2].location = 2; attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT; attributeDescriptions[2].offset = offsetof(Vertex, texCoord); VkPipelineVertexInputStateCreateInfo pipelineVertexInputStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO }; pipelineVertexInputStateInfo.vertexBindingDescriptionCount = 1; pipelineVertexInputStateInfo.pVertexBindingDescriptions = &bindingDescription; pipelineVertexInputStateInfo.vertexAttributeDescriptionCount = _countof(attributeDescriptions); pipelineVertexInputStateInfo.pVertexAttributeDescriptions = attributeDescriptions; VkPipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO }; pipelineInputAssemblyStateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; pipelineInputAssemblyStateInfo.primitiveRestartEnable = VK_TRUE; VkViewport viewport = {}; viewport.x = 0.f; viewport.y = 0.f; viewport.width = (float)g_Extent.width; viewport.height = (float)g_Extent.height; viewport.minDepth = 0.f; viewport.maxDepth = 1.f; VkRect2D scissor = {}; scissor.offset.x = 0; scissor.offset.y = 0; scissor.extent = g_Extent; VkPipelineViewportStateCreateInfo pipelineViewportStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO }; pipelineViewportStateInfo.viewportCount = 1; pipelineViewportStateInfo.pViewports = &viewport; pipelineViewportStateInfo.scissorCount = 1; pipelineViewportStateInfo.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO }; pipelineRasterizationStateInfo.depthClampEnable = VK_FALSE; pipelineRasterizationStateInfo.rasterizerDiscardEnable = VK_FALSE; pipelineRasterizationStateInfo.polygonMode = VK_POLYGON_MODE_FILL; pipelineRasterizationStateInfo.lineWidth = 1.f; pipelineRasterizationStateInfo.cullMode = VK_CULL_MODE_BACK_BIT; pipelineRasterizationStateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; pipelineRasterizationStateInfo.depthBiasEnable = VK_FALSE; pipelineRasterizationStateInfo.depthBiasConstantFactor = 0.f; pipelineRasterizationStateInfo.depthBiasClamp = 0.f; pipelineRasterizationStateInfo.depthBiasSlopeFactor = 0.f; VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO }; pipelineMultisampleStateInfo.sampleShadingEnable = VK_FALSE; pipelineMultisampleStateInfo.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; pipelineMultisampleStateInfo.minSampleShading = 1.f; pipelineMultisampleStateInfo.pSampleMask = nullptr; pipelineMultisampleStateInfo.alphaToCoverageEnable = VK_FALSE; pipelineMultisampleStateInfo.alphaToOneEnable = VK_FALSE; VkPipelineColorBlendAttachmentState pipelineColorBlendAttachmentState = {}; pipelineColorBlendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; pipelineColorBlendAttachmentState.blendEnable = VK_FALSE; pipelineColorBlendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional pipelineColorBlendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional pipelineColorBlendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; // Optional pipelineColorBlendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional pipelineColorBlendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional pipelineColorBlendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; // Optional VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO }; pipelineColorBlendStateInfo.logicOpEnable = VK_FALSE; pipelineColorBlendStateInfo.logicOp = VK_LOGIC_OP_COPY; pipelineColorBlendStateInfo.attachmentCount = 1; pipelineColorBlendStateInfo.pAttachments = &pipelineColorBlendAttachmentState; VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO }; depthStencilStateInfo.depthTestEnable = VK_TRUE; depthStencilStateInfo.depthWriteEnable = VK_TRUE; depthStencilStateInfo.depthCompareOp = VK_COMPARE_OP_LESS; depthStencilStateInfo.depthBoundsTestEnable = VK_FALSE; depthStencilStateInfo.stencilTestEnable = VK_FALSE; VkGraphicsPipelineCreateInfo pipelineInfo = { VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO }; pipelineInfo.stageCount = 2; pipelineInfo.pStages = pipelineShaderStageInfos; pipelineInfo.pVertexInputState = &pipelineVertexInputStateInfo; pipelineInfo.pInputAssemblyState = &pipelineInputAssemblyStateInfo; pipelineInfo.pViewportState = &pipelineViewportStateInfo; pipelineInfo.pRasterizationState = &pipelineRasterizationStateInfo; pipelineInfo.pMultisampleState = &pipelineMultisampleStateInfo; pipelineInfo.pDepthStencilState = &depthStencilStateInfo; pipelineInfo.pColorBlendState = &pipelineColorBlendStateInfo; pipelineInfo.pDynamicState = nullptr; pipelineInfo.layout = g_hPipelineLayout; pipelineInfo.renderPass = g_hRenderPass; pipelineInfo.subpass = 0; pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; pipelineInfo.basePipelineIndex = -1; ERR_GUARD_VULKAN( vkCreateGraphicsPipelines( g_hDevice, VK_NULL_HANDLE, 1, &pipelineInfo, g_Allocs, &g_hPipeline) ); vkDestroyShaderModule(g_hDevice, fragShaderModule, g_Allocs); vkDestroyShaderModule(g_hDevice, hVertShaderModule, g_Allocs); } // Create frambuffers for(size_t i = g_Framebuffers.size(); i--; ) vkDestroyFramebuffer(g_hDevice, g_Framebuffers[i], g_Allocs); g_Framebuffers.clear(); g_Framebuffers.resize(g_SwapchainImageViews.size()); for(size_t i = 0; i < g_SwapchainImages.size(); ++i) { VkImageView attachments[] = { g_SwapchainImageViews[i], g_hDepthImageView }; VkFramebufferCreateInfo framebufferInfo = { VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO }; framebufferInfo.renderPass = g_hRenderPass; framebufferInfo.attachmentCount = (uint32_t)_countof(attachments); framebufferInfo.pAttachments = attachments; framebufferInfo.width = g_Extent.width; framebufferInfo.height = g_Extent.height; framebufferInfo.layers = 1; ERR_GUARD_VULKAN( vkCreateFramebuffer(g_hDevice, &framebufferInfo, g_Allocs, &g_Framebuffers[i]) ); } // Create semaphores if(g_hImageAvailableSemaphore != VK_NULL_HANDLE) { vkDestroySemaphore(g_hDevice, g_hImageAvailableSemaphore, g_Allocs); g_hImageAvailableSemaphore = VK_NULL_HANDLE; } if(g_hRenderFinishedSemaphore != VK_NULL_HANDLE) { vkDestroySemaphore(g_hDevice, g_hRenderFinishedSemaphore, g_Allocs); g_hRenderFinishedSemaphore = VK_NULL_HANDLE; } VkSemaphoreCreateInfo semaphoreInfo = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO }; ERR_GUARD_VULKAN( vkCreateSemaphore(g_hDevice, &semaphoreInfo, g_Allocs, &g_hImageAvailableSemaphore) ); ERR_GUARD_VULKAN( vkCreateSemaphore(g_hDevice, &semaphoreInfo, g_Allocs, &g_hRenderFinishedSemaphore) ); } static void DestroySwapchain(bool destroyActualSwapchain) { if(g_hImageAvailableSemaphore != VK_NULL_HANDLE) { vkDestroySemaphore(g_hDevice, g_hImageAvailableSemaphore, g_Allocs); g_hImageAvailableSemaphore = VK_NULL_HANDLE; } if(g_hRenderFinishedSemaphore != VK_NULL_HANDLE) { vkDestroySemaphore(g_hDevice, g_hRenderFinishedSemaphore, g_Allocs); g_hRenderFinishedSemaphore = VK_NULL_HANDLE; } for(size_t i = g_Framebuffers.size(); i--; ) vkDestroyFramebuffer(g_hDevice, g_Framebuffers[i], g_Allocs); g_Framebuffers.clear(); if(g_hDepthImageView != VK_NULL_HANDLE) { vkDestroyImageView(g_hDevice, g_hDepthImageView, g_Allocs); g_hDepthImageView = VK_NULL_HANDLE; } if(g_hDepthImage != VK_NULL_HANDLE) { vmaDestroyImage(g_hAllocator, g_hDepthImage, g_hDepthImageAlloc); g_hDepthImage = VK_NULL_HANDLE; } if(g_hPipeline != VK_NULL_HANDLE) { vkDestroyPipeline(g_hDevice, g_hPipeline, g_Allocs); g_hPipeline = VK_NULL_HANDLE; } if(g_hRenderPass != VK_NULL_HANDLE) { vkDestroyRenderPass(g_hDevice, g_hRenderPass, g_Allocs); g_hRenderPass = VK_NULL_HANDLE; } if(g_hPipelineLayout != VK_NULL_HANDLE) { vkDestroyPipelineLayout(g_hDevice, g_hPipelineLayout, g_Allocs); g_hPipelineLayout = VK_NULL_HANDLE; } for(size_t i = g_SwapchainImageViews.size(); i--; ) vkDestroyImageView(g_hDevice, g_SwapchainImageViews[i], g_Allocs); g_SwapchainImageViews.clear(); if(destroyActualSwapchain && (g_hSwapchain != VK_NULL_HANDLE)) { vkDestroySwapchainKHR(g_hDevice, g_hSwapchain, g_Allocs); g_hSwapchain = VK_NULL_HANDLE; } } static void PrintEnabledFeatures() { wprintf(L"Enabled extensions and features:\n"); wprintf(L"Validation layer: %d\n", g_EnableValidationLayer ? 1 : 0); wprintf(L"Sparse binding: %d\n", g_SparseBindingEnabled ? 1 : 0); if(GetVulkanApiVersion() == VK_API_VERSION_1_0) { wprintf(L"VK_KHR_get_memory_requirements2: %d\n", VK_KHR_get_memory_requirements2_enabled ? 1 : 0); wprintf(L"VK_KHR_get_physical_device_properties2: %d\n", VK_KHR_get_physical_device_properties2_enabled ? 1 : 0); wprintf(L"VK_KHR_dedicated_allocation: %d\n", VK_KHR_dedicated_allocation_enabled ? 1 : 0); wprintf(L"VK_KHR_bind_memory2: %d\n", VK_KHR_bind_memory2_enabled ? 1 : 0); } wprintf(L"VK_EXT_memory_budget: %d\n", VK_EXT_memory_budget_enabled ? 1 : 0); wprintf(L"VK_AMD_device_coherent_memory: %d\n", VK_AMD_device_coherent_memory_enabled ? 1 : 0); if(GetVulkanApiVersion() < VK_API_VERSION_1_2) { wprintf(L"VK_KHR_buffer_device_address: %d\n", VK_KHR_buffer_device_address_enabled ? 1 : 0); } else { wprintf(L"bufferDeviceAddress: %d\n", VK_KHR_buffer_device_address_enabled ? 1 : 0); } wprintf(L"VK_EXT_memory_priority: %d\n", VK_EXT_memory_priority ? 1 : 0); } void SetAllocatorCreateInfo(VmaAllocatorCreateInfo& outInfo) { outInfo = {}; outInfo.physicalDevice = g_hPhysicalDevice; outInfo.device = g_hDevice; outInfo.instance = g_hVulkanInstance; outInfo.vulkanApiVersion = GetVulkanApiVersion(); if(VK_KHR_dedicated_allocation_enabled) { outInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; } if(VK_KHR_bind_memory2_enabled) { outInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT; } #if !defined(VMA_MEMORY_BUDGET) || VMA_MEMORY_BUDGET == 1 if(VK_EXT_memory_budget_enabled && ( GetVulkanApiVersion() >= VK_API_VERSION_1_1 || VK_KHR_get_physical_device_properties2_enabled)) { outInfo.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; } #endif if(VK_AMD_device_coherent_memory_enabled) { outInfo.flags |= VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT; } if(VK_KHR_buffer_device_address_enabled) { outInfo.flags |= VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT; } #if !defined(VMA_MEMORY_PRIORITY) || VMA_MEMORY_PRIORITY == 1 if(VK_EXT_memory_priority_enabled) { outInfo.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT; } #endif if(USE_CUSTOM_CPU_ALLOCATION_CALLBACKS) { outInfo.pAllocationCallbacks = &g_CpuAllocationCallbacks; } #if VMA_DYNAMIC_VULKAN_FUNCTIONS static VmaVulkanFunctions vulkanFunctions = {}; vulkanFunctions.vkGetInstanceProcAddr = vkGetInstanceProcAddr; vulkanFunctions.vkGetDeviceProcAddr = vkGetDeviceProcAddr; outInfo.pVulkanFunctions = &vulkanFunctions; #endif // Uncomment to enable recording to CSV file. /* static VmaRecordSettings recordSettings = {}; recordSettings.pFilePath = "VulkanSample.csv"; outInfo.pRecordSettings = &recordSettings; */ // Uncomment to enable HeapSizeLimit. /* static std::array heapSizeLimit; std::fill(heapSizeLimit.begin(), heapSizeLimit.end(), VK_WHOLE_SIZE); heapSizeLimit[0] = 512ull * 1024 * 1024; outInfo.pHeapSizeLimit = heapSizeLimit.data(); */ } static void PrintPhysicalDeviceProperties(const VkPhysicalDeviceProperties& properties) { wprintf(L"physicalDeviceProperties:\n"); wprintf(L" driverVersion: 0x%X\n", properties.driverVersion); wprintf(L" vendorID: 0x%X (%s)\n", properties.vendorID, VendorIDToStr(properties.vendorID)); wprintf(L" deviceID: 0x%X\n", properties.deviceID); wprintf(L" deviceType: %u (%s)\n", properties.deviceType, PhysicalDeviceTypeToStr(properties.deviceType)); wprintf(L" deviceName: %hs\n", properties.deviceName); wprintf(L" limits:\n"); wprintf(L" maxMemoryAllocationCount: %u\n", properties.limits.maxMemoryAllocationCount); wprintf(L" bufferImageGranularity: %llu B\n", properties.limits.bufferImageGranularity); wprintf(L" nonCoherentAtomSize: %llu B\n", properties.limits.nonCoherentAtomSize); } #if VMA_VULKAN_VERSION >= 1002000 static void PrintPhysicalDeviceVulkan11Properties(const VkPhysicalDeviceVulkan11Properties& properties) { wprintf(L"physicalDeviceVulkan11Properties:\n"); std::wstring sizeStr = SizeToStr(properties.maxMemoryAllocationSize); wprintf(L" maxMemoryAllocationSize: %llu B (%s)\n", properties.maxMemoryAllocationSize, sizeStr.c_str()); } static void PrintPhysicalDeviceVulkan12Properties(const VkPhysicalDeviceVulkan12Properties& properties) { wprintf(L"physicalDeviceVulkan12Properties:\n"); std::wstring str = DriverIDToStr(properties.driverID); wprintf(L" driverID: %u (%s)\n", properties.driverID, str.c_str()); wprintf(L" driverName: %hs\n", properties.driverName); wprintf(L" driverInfo: %hs\n", properties.driverInfo); } #endif // #if VMA_VULKAN_VERSION > 1002000 static void AddFlagToStr(std::wstring& inout, const wchar_t* flagStr) { if(!inout.empty()) inout += L", "; inout += flagStr; } static std::wstring HeapFlagsToStr(VkMemoryHeapFlags flags) { std::wstring result; if(flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) AddFlagToStr(result, L"DEVICE_LOCAL"); if(flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT) AddFlagToStr(result, L"MULTI_INSTANCE"); return result; } static std::wstring PropertyFlagsToStr(VkMemoryPropertyFlags flags) { std::wstring result; if(flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) AddFlagToStr(result, L"DEVICE_LOCAL"); if(flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) AddFlagToStr(result, L"HOST_VISIBLE"); if(flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) AddFlagToStr(result, L"HOST_COHERENT"); if(flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) AddFlagToStr(result, L"HOST_CACHED"); if(flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) AddFlagToStr(result, L"LAZILY_ALLOCATED"); #if VMA_VULKAN_VERSION >= 1001000 if(flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) AddFlagToStr(result, L"PROTECTED"); #endif #if VK_AMD_device_coherent_memory if(flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD) AddFlagToStr(result, L"DEVICE_COHERENT (AMD)"); if(flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD) AddFlagToStr(result, L"DEVICE_UNCACHED (AMD)"); #endif return result; } static void PrintMemoryTypes() { wprintf(L"MEMORY HEAPS:\n"); const VkPhysicalDeviceMemoryProperties* memProps = nullptr; vmaGetMemoryProperties(g_hAllocator, &memProps); wprintf(L"heapCount=%u, typeCount=%u\n", memProps->memoryHeapCount, memProps->memoryTypeCount); std::wstring sizeStr, flagsStr; for(uint32_t heapIndex = 0; heapIndex < memProps->memoryHeapCount; ++heapIndex) { const VkMemoryHeap& heap = memProps->memoryHeaps[heapIndex]; sizeStr = SizeToStr(heap.size); flagsStr = HeapFlagsToStr(heap.flags); wprintf(L"Heap %u: %llu B (%s) %s\n", heapIndex, heap.size, sizeStr.c_str(), flagsStr.c_str()); for(uint32_t typeIndex = 0; typeIndex < memProps->memoryTypeCount; ++typeIndex) { const VkMemoryType& type = memProps->memoryTypes[typeIndex]; if(type.heapIndex == heapIndex) { flagsStr = PropertyFlagsToStr(type.propertyFlags); wprintf(L" Type %u: %s\n", typeIndex, flagsStr.c_str()); } } } } #if 0 template inline VkDeviceSize MapSum(It beg, It end, MapFunc mapFunc) { VkDeviceSize result = 0; for(It it = beg; it != end; ++it) result += mapFunc(*it); return result; } #endif static bool CanCreateVertexBuffer(uint32_t allowedMemoryTypeBits) { VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; bufCreateInfo.size = 0x10000; bufCreateInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VkBuffer buf = VK_NULL_HANDLE; VkResult res = vkCreateBuffer(g_hDevice, &bufCreateInfo, g_Allocs, &buf); assert(res == VK_SUCCESS); VkMemoryRequirements memReq = {}; vkGetBufferMemoryRequirements(g_hDevice, buf, &memReq); vkDestroyBuffer(g_hDevice, buf, g_Allocs); return (memReq.memoryTypeBits & allowedMemoryTypeBits) != 0; } static bool CanCreateOptimalSampledImage(uint32_t allowedMemoryTypeBits) { VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; imgCreateInfo.imageType = VK_IMAGE_TYPE_2D; imgCreateInfo.extent.width = 256; imgCreateInfo.extent.height = 256; imgCreateInfo.extent.depth = 1; imgCreateInfo.mipLevels = 1; imgCreateInfo.arrayLayers = 1; imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; imgCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; VkImage img = VK_NULL_HANDLE; VkResult res = vkCreateImage(g_hDevice, &imgCreateInfo, g_Allocs, &img); assert(res == VK_SUCCESS); VkMemoryRequirements memReq = {}; vkGetImageMemoryRequirements(g_hDevice, img, &memReq); vkDestroyImage(g_hDevice, img, g_Allocs); return (memReq.memoryTypeBits & allowedMemoryTypeBits) != 0; } static void PrintMemoryConclusions() { wprintf(L"Conclusions:\n"); const VkPhysicalDeviceProperties* props = nullptr; const VkPhysicalDeviceMemoryProperties* memProps = nullptr; vmaGetPhysicalDeviceProperties(g_hAllocator, &props); vmaGetMemoryProperties(g_hAllocator, &memProps); const uint32_t heapCount = memProps->memoryHeapCount; uint32_t deviceLocalHeapCount = 0; uint32_t hostVisibleHeapCount = 0; uint32_t deviceLocalAndHostVisibleHeapCount = 0; VkDeviceSize deviceLocalHeapSumSize = 0; VkDeviceSize hostVisibleHeapSumSize = 0; VkDeviceSize deviceLocalAndHostVisibleHeapSumSize = 0; for(uint32_t heapIndex = 0; heapIndex < heapCount; ++heapIndex) { const VkMemoryHeap& heap = memProps->memoryHeaps[heapIndex]; const bool isDeviceLocal = (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0; bool isHostVisible = false; for(uint32_t typeIndex = 0; typeIndex < memProps->memoryTypeCount; ++typeIndex) { const VkMemoryType& type = memProps->memoryTypes[typeIndex]; if(type.heapIndex == heapIndex && (type.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) { isHostVisible = true; break; } } if(isDeviceLocal) { ++deviceLocalHeapCount; deviceLocalHeapSumSize += heap.size; } if(isHostVisible) { ++hostVisibleHeapCount; hostVisibleHeapSumSize += heap.size; if(isDeviceLocal) { ++deviceLocalAndHostVisibleHeapCount; deviceLocalAndHostVisibleHeapSumSize += heap.size; } } } uint32_t hostVisibleNotHostCoherentTypeCount = 0; uint32_t notDeviceLocalNotHostVisibleTypeCount = 0; uint32_t amdSpecificTypeCount = 0; uint32_t lazilyAllocatedTypeCount = 0; uint32_t allTypeBits = 0; uint32_t deviceLocalTypeBits = 0; for(uint32_t typeIndex = 0; typeIndex < memProps->memoryTypeCount; ++typeIndex) { const VkMemoryType& type = memProps->memoryTypes[typeIndex]; allTypeBits |= 1u << typeIndex; if(type.propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { deviceLocalTypeBits |= 1u << typeIndex; } if((type.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) && (type.propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0) { ++hostVisibleNotHostCoherentTypeCount; } if((type.propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) == 0 && (type.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) { ++notDeviceLocalNotHostVisibleTypeCount; } if(type.propertyFlags & (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD)) { ++amdSpecificTypeCount; } if(type.propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) { ++lazilyAllocatedTypeCount; } } assert(deviceLocalHeapCount > 0); if(deviceLocalHeapCount == heapCount) wprintf(L"- All heaps are DEVICE_LOCAL.\n"); else wprintf(L"- %u heaps are DEVICE_LOCAL, total %s.\n", deviceLocalHeapCount, SizeToStr(deviceLocalHeapSumSize).c_str()); assert(hostVisibleHeapCount > 0); if(hostVisibleHeapCount == heapCount) wprintf(L"- All heaps are HOST_VISIBLE.\n"); else wprintf(L"- %u heaps are HOST_VISIBLE, total %s.\n", deviceLocalHeapCount, SizeToStr(hostVisibleHeapSumSize).c_str()); if(deviceLocalHeapCount < heapCount && hostVisibleHeapCount < heapCount) { if(deviceLocalAndHostVisibleHeapCount == 0) wprintf(L"- No heaps are DEVICE_LOCAL and HOST_VISIBLE.\n"); if(deviceLocalAndHostVisibleHeapCount == heapCount) wprintf(L"- All heaps are DEVICE_LOCAL and HOST_VISIBLE.\n"); else wprintf(L"- %u heaps are DEVICE_LOCAL and HOST_VISIBLE, total %s.\n", deviceLocalAndHostVisibleHeapCount, SizeToStr(deviceLocalAndHostVisibleHeapSumSize).c_str()); } if(hostVisibleNotHostCoherentTypeCount == 0) wprintf(L"- No types are HOST_VISIBLE but not HOST_COHERENT.\n"); else wprintf(L"- %u types are HOST_VISIBLE but not HOST_COHERENT.\n", hostVisibleNotHostCoherentTypeCount); if(notDeviceLocalNotHostVisibleTypeCount == 0) wprintf(L"- No types are not DEVICE_LOCAL and not HOST_VISIBLE.\n"); else wprintf(L"- %u types are not DEVICE_LOCAL and not HOST_VISIBLE.\n", notDeviceLocalNotHostVisibleTypeCount); if(amdSpecificTypeCount == 0) wprintf(L"- No types are AMD-specific DEVICE_COHERENT or DEVICE_UNCACHED.\n"); else wprintf(L"- %u types are AMD-specific DEVICE_COHERENT or DEVICE_UNCACHED.\n", amdSpecificTypeCount); if(lazilyAllocatedTypeCount == 0) wprintf(L"- No types are LAZILY_ALLOCATED.\n"); else wprintf(L"- %u types are LAZILY_ALLOCATED.\n", lazilyAllocatedTypeCount); if(props->vendorID == VENDOR_ID_AMD && props->deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU && deviceLocalAndHostVisibleHeapSumSize > 256llu * 1024 * 1024) { wprintf(L"- AMD Smart Access Memory (SAM) is enabled!\n"); } if(deviceLocalHeapCount < heapCount) { const uint32_t nonDeviceLocalTypeBits = ~deviceLocalTypeBits & allTypeBits; if(CanCreateVertexBuffer(nonDeviceLocalTypeBits)) wprintf(L"- A buffer with VERTEX_BUFFER usage can be created in some non-DEVICE_LOCAL type.\n"); else wprintf(L"- A buffer with VERTEX_BUFFER usage cannot be created in some non-DEVICE_LOCAL type.\n"); if(CanCreateOptimalSampledImage(nonDeviceLocalTypeBits)) wprintf(L"- An image with OPTIMAL tiling and SAMPLED usage can be created in some non-DEVICE_LOCAL type.\n"); else wprintf(L"- An image with OPTIMAL tiling and SAMPLED usage cannot be created in some non-DEVICE_LOCAL type.\n"); } //wprintf(L"\n"); } static void InitializeApplication() { // Create VkSurfaceKHR. VkWin32SurfaceCreateInfoKHR surfaceInfo = { VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR }; surfaceInfo.hinstance = g_hAppInstance; surfaceInfo.hwnd = g_hWnd; VkResult result = vkCreateWin32SurfaceKHR(g_hVulkanInstance, &surfaceInfo, g_Allocs, &g_hSurface); assert(result == VK_SUCCESS); // Query for device extensions uint32_t physicalDeviceExtensionPropertyCount = 0; ERR_GUARD_VULKAN( vkEnumerateDeviceExtensionProperties(g_hPhysicalDevice, nullptr, &physicalDeviceExtensionPropertyCount, nullptr) ); std::vector physicalDeviceExtensionProperties{physicalDeviceExtensionPropertyCount}; if(physicalDeviceExtensionPropertyCount) { ERR_GUARD_VULKAN( vkEnumerateDeviceExtensionProperties( g_hPhysicalDevice, nullptr, &physicalDeviceExtensionPropertyCount, physicalDeviceExtensionProperties.data()) ); } for(uint32_t i = 0; i < physicalDeviceExtensionPropertyCount; ++i) { if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME) == 0) { if(GetVulkanApiVersion() == VK_API_VERSION_1_0) { VK_KHR_get_memory_requirements2_enabled = true; } } else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME) == 0) { if(GetVulkanApiVersion() == VK_API_VERSION_1_0) { VK_KHR_dedicated_allocation_enabled = true; } } else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME) == 0) { if(GetVulkanApiVersion() == VK_API_VERSION_1_0) { VK_KHR_bind_memory2_enabled = true; } } else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_EXT_MEMORY_BUDGET_EXTENSION_NAME) == 0) VK_EXT_memory_budget_enabled = true; else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_AMD_DEVICE_COHERENT_MEMORY_EXTENSION_NAME) == 0) VK_AMD_device_coherent_memory_enabled = true; else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME) == 0) { if(GetVulkanApiVersion() < VK_API_VERSION_1_2) { VK_KHR_buffer_device_address_enabled = true; } } else if(strcmp(physicalDeviceExtensionProperties[i].extensionName, VK_EXT_MEMORY_PRIORITY_EXTENSION_NAME) == 0) VK_EXT_memory_priority_enabled = true; } if(GetVulkanApiVersion() >= VK_API_VERSION_1_2) VK_KHR_buffer_device_address_enabled = true; // Promoted to core Vulkan 1.2. // Query for features #if VMA_VULKAN_VERSION >= 1001000 VkPhysicalDeviceProperties2 physicalDeviceProperties2 = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2 }; #if VMA_VULKAN_VERSION >= 1002000 // Vulkan spec says structure VkPhysicalDeviceVulkan11Properties is "Provided by VK_VERSION_1_2" - is this a mistake? Assuming not... VkPhysicalDeviceVulkan11Properties physicalDeviceVulkan11Properties = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES }; VkPhysicalDeviceVulkan12Properties physicalDeviceVulkan12Properties = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES }; PnextChainPushFront(&physicalDeviceProperties2, &physicalDeviceVulkan11Properties); PnextChainPushFront(&physicalDeviceProperties2, &physicalDeviceVulkan12Properties); #endif vkGetPhysicalDeviceProperties2(g_hPhysicalDevice, &physicalDeviceProperties2); PrintPhysicalDeviceProperties(physicalDeviceProperties2.properties); #if VMA_VULKAN_VERSION >= 1002000 PrintPhysicalDeviceVulkan11Properties(physicalDeviceVulkan11Properties); PrintPhysicalDeviceVulkan12Properties(physicalDeviceVulkan12Properties); #endif #else // #if VMA_VULKAN_VERSION >= 1001000 VkPhysicalDeviceProperties physicalDeviceProperties = {}; vkGetPhysicalDeviceProperties(g_hPhysicalDevice, &physicalDeviceProperties); PrintPhysicalDeviceProperties(physicalDeviceProperties); #endif // #if VMA_VULKAN_VERSION >= 1001000 wprintf(L"\n"); VkPhysicalDeviceFeatures2 physicalDeviceFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2 }; VkPhysicalDeviceCoherentMemoryFeaturesAMD physicalDeviceCoherentMemoryFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD }; if(VK_AMD_device_coherent_memory_enabled) { PnextChainPushFront(&physicalDeviceFeatures, &physicalDeviceCoherentMemoryFeatures); } VkPhysicalDeviceBufferDeviceAddressFeaturesKHR physicalDeviceBufferDeviceAddressFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR }; if(VK_KHR_buffer_device_address_enabled) { PnextChainPushFront(&physicalDeviceFeatures, &physicalDeviceBufferDeviceAddressFeatures); } VkPhysicalDeviceMemoryPriorityFeaturesEXT physicalDeviceMemoryPriorityFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT }; if(VK_EXT_memory_priority_enabled) { PnextChainPushFront(&physicalDeviceFeatures, &physicalDeviceMemoryPriorityFeatures); } vkGetPhysicalDeviceFeatures2(g_hPhysicalDevice, &physicalDeviceFeatures); g_SparseBindingEnabled = physicalDeviceFeatures.features.sparseBinding != 0; // The extension is supported as fake with no real support for this feature? Don't use it. if(VK_AMD_device_coherent_memory_enabled && !physicalDeviceCoherentMemoryFeatures.deviceCoherentMemory) VK_AMD_device_coherent_memory_enabled = false; if(VK_KHR_buffer_device_address_enabled && !physicalDeviceBufferDeviceAddressFeatures.bufferDeviceAddress) VK_KHR_buffer_device_address_enabled = false; if(VK_EXT_memory_priority_enabled && !physicalDeviceMemoryPriorityFeatures.memoryPriority) VK_EXT_memory_priority_enabled = false; // Find queue family index uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(g_hPhysicalDevice, &queueFamilyCount, nullptr); assert(queueFamilyCount > 0); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(g_hPhysicalDevice, &queueFamilyCount, queueFamilies.data()); for(uint32_t i = 0; (i < queueFamilyCount) && (g_GraphicsQueueFamilyIndex == UINT_MAX || g_PresentQueueFamilyIndex == UINT_MAX || (g_SparseBindingEnabled && g_SparseBindingQueueFamilyIndex == UINT_MAX)); ++i) { if(queueFamilies[i].queueCount > 0) { const uint32_t flagsForGraphicsQueue = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT; if((g_GraphicsQueueFamilyIndex != 0) && ((queueFamilies[i].queueFlags & flagsForGraphicsQueue) == flagsForGraphicsQueue)) { g_GraphicsQueueFamilyIndex = i; } VkBool32 surfaceSupported = 0; VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(g_hPhysicalDevice, i, g_hSurface, &surfaceSupported); if((res >= 0) && (surfaceSupported == VK_TRUE)) { g_PresentQueueFamilyIndex = i; } if(g_SparseBindingEnabled && g_SparseBindingQueueFamilyIndex == UINT32_MAX && (queueFamilies[i].queueFlags & VK_QUEUE_SPARSE_BINDING_BIT) != 0) { g_SparseBindingQueueFamilyIndex = i; } } } assert(g_GraphicsQueueFamilyIndex != UINT_MAX); g_SparseBindingEnabled = g_SparseBindingEnabled && g_SparseBindingQueueFamilyIndex != UINT32_MAX; // Create logical device const float queuePriority = 1.f; VkDeviceQueueCreateInfo queueCreateInfo[3] = {}; uint32_t queueCount = 1; queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo[0].queueFamilyIndex = g_GraphicsQueueFamilyIndex; queueCreateInfo[0].queueCount = 1; queueCreateInfo[0].pQueuePriorities = &queuePriority; if(g_PresentQueueFamilyIndex != g_GraphicsQueueFamilyIndex) { queueCreateInfo[queueCount].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo[queueCount].queueFamilyIndex = g_PresentQueueFamilyIndex; queueCreateInfo[queueCount].queueCount = 1; queueCreateInfo[queueCount].pQueuePriorities = &queuePriority; ++queueCount; } if(g_SparseBindingEnabled && g_SparseBindingQueueFamilyIndex != g_GraphicsQueueFamilyIndex && g_SparseBindingQueueFamilyIndex != g_PresentQueueFamilyIndex) { queueCreateInfo[queueCount].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo[queueCount].queueFamilyIndex = g_SparseBindingQueueFamilyIndex; queueCreateInfo[queueCount].queueCount = 1; queueCreateInfo[queueCount].pQueuePriorities = &queuePriority; ++queueCount; } std::vector enabledDeviceExtensions; enabledDeviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); if(VK_KHR_get_memory_requirements2_enabled) enabledDeviceExtensions.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME); if(VK_KHR_dedicated_allocation_enabled) enabledDeviceExtensions.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME); if(VK_KHR_bind_memory2_enabled) enabledDeviceExtensions.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME); if(VK_EXT_memory_budget_enabled) enabledDeviceExtensions.push_back(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME); if(VK_AMD_device_coherent_memory_enabled) enabledDeviceExtensions.push_back(VK_AMD_DEVICE_COHERENT_MEMORY_EXTENSION_NAME); if(VK_KHR_buffer_device_address_enabled && GetVulkanApiVersion() < VK_API_VERSION_1_2) enabledDeviceExtensions.push_back(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME); if(VK_EXT_memory_priority_enabled) enabledDeviceExtensions.push_back(VK_EXT_MEMORY_PRIORITY_EXTENSION_NAME); VkPhysicalDeviceFeatures2 deviceFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2 }; deviceFeatures.features.samplerAnisotropy = VK_TRUE; deviceFeatures.features.sparseBinding = g_SparseBindingEnabled ? VK_TRUE : VK_FALSE; if(VK_AMD_device_coherent_memory_enabled) { physicalDeviceCoherentMemoryFeatures.deviceCoherentMemory = VK_TRUE; PnextChainPushBack(&deviceFeatures, &physicalDeviceCoherentMemoryFeatures); } if(VK_KHR_buffer_device_address_enabled) { physicalDeviceBufferDeviceAddressFeatures = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR }; physicalDeviceBufferDeviceAddressFeatures.bufferDeviceAddress = VK_TRUE; PnextChainPushBack(&deviceFeatures, &physicalDeviceBufferDeviceAddressFeatures); } if(VK_EXT_memory_priority_enabled) { PnextChainPushBack(&deviceFeatures, &physicalDeviceMemoryPriorityFeatures); } VkDeviceCreateInfo deviceCreateInfo = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO }; deviceCreateInfo.pNext = &deviceFeatures; deviceCreateInfo.enabledLayerCount = 0; deviceCreateInfo.ppEnabledLayerNames = nullptr; deviceCreateInfo.enabledExtensionCount = (uint32_t)enabledDeviceExtensions.size(); deviceCreateInfo.ppEnabledExtensionNames = !enabledDeviceExtensions.empty() ? enabledDeviceExtensions.data() : nullptr; deviceCreateInfo.queueCreateInfoCount = queueCount; deviceCreateInfo.pQueueCreateInfos = queueCreateInfo; ERR_GUARD_VULKAN( vkCreateDevice(g_hPhysicalDevice, &deviceCreateInfo, g_Allocs, &g_hDevice) ); // Fetch pointers to extension functions if(VK_KHR_buffer_device_address_enabled) { if(GetVulkanApiVersion() >= VK_API_VERSION_1_2) { g_vkGetBufferDeviceAddressKHR = (PFN_vkGetBufferDeviceAddressEXT)vkGetDeviceProcAddr(g_hDevice, "vkGetBufferDeviceAddress"); } else if(VK_KHR_buffer_device_address_enabled) { g_vkGetBufferDeviceAddressKHR = (PFN_vkGetBufferDeviceAddressEXT)vkGetDeviceProcAddr(g_hDevice, "vkGetBufferDeviceAddressKHR"); } assert(g_vkGetBufferDeviceAddressKHR != nullptr); } // Create memory allocator VmaAllocatorCreateInfo allocatorInfo = {}; SetAllocatorCreateInfo(allocatorInfo); ERR_GUARD_VULKAN( vmaCreateAllocator(&allocatorInfo, &g_hAllocator) ); PrintMemoryTypes(); wprintf(L"\n"); PrintMemoryConclusions(); wprintf(L"\n"); PrintEnabledFeatures(); wprintf(L"\n"); // Retrieve queues (don't need to be destroyed). vkGetDeviceQueue(g_hDevice, g_GraphicsQueueFamilyIndex, 0, &g_hGraphicsQueue); vkGetDeviceQueue(g_hDevice, g_PresentQueueFamilyIndex, 0, &g_hPresentQueue); assert(g_hGraphicsQueue); assert(g_hPresentQueue); if(g_SparseBindingEnabled) { vkGetDeviceQueue(g_hDevice, g_SparseBindingQueueFamilyIndex, 0, &g_hSparseBindingQueue); assert(g_hSparseBindingQueue); } // Create command pool VkCommandPoolCreateInfo commandPoolInfo = { VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO }; commandPoolInfo.queueFamilyIndex = g_GraphicsQueueFamilyIndex; commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; ERR_GUARD_VULKAN( vkCreateCommandPool(g_hDevice, &commandPoolInfo, g_Allocs, &g_hCommandPool) ); VkCommandBufferAllocateInfo commandBufferInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO }; commandBufferInfo.commandPool = g_hCommandPool; commandBufferInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; commandBufferInfo.commandBufferCount = COMMAND_BUFFER_COUNT; ERR_GUARD_VULKAN( vkAllocateCommandBuffers(g_hDevice, &commandBufferInfo, g_MainCommandBuffers) ); VkFenceCreateInfo fenceInfo = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO }; fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; for(size_t i = 0; i < COMMAND_BUFFER_COUNT; ++i) { ERR_GUARD_VULKAN( vkCreateFence(g_hDevice, &fenceInfo, g_Allocs, &g_MainCommandBufferExecutedFances[i]) ); } ERR_GUARD_VULKAN( vkCreateFence(g_hDevice, &fenceInfo, g_Allocs, &g_ImmediateFence) ); commandBufferInfo.commandBufferCount = 1; ERR_GUARD_VULKAN( vkAllocateCommandBuffers(g_hDevice, &commandBufferInfo, &g_hTemporaryCommandBuffer) ); // Create texture sampler VkSamplerCreateInfo samplerInfo = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samplerInfo.magFilter = VK_FILTER_LINEAR; samplerInfo.minFilter = VK_FILTER_LINEAR; samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.anisotropyEnable = VK_TRUE; samplerInfo.maxAnisotropy = 16; samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK; samplerInfo.unnormalizedCoordinates = VK_FALSE; samplerInfo.compareEnable = VK_FALSE; samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS; samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerInfo.mipLodBias = 0.f; samplerInfo.minLod = 0.f; samplerInfo.maxLod = FLT_MAX; ERR_GUARD_VULKAN( vkCreateSampler(g_hDevice, &samplerInfo, g_Allocs, &g_hSampler) ); CreateTexture(128, 128); CreateMesh(); VkDescriptorSetLayoutBinding samplerLayoutBinding = {}; samplerLayoutBinding.binding = 1; samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; samplerLayoutBinding.descriptorCount = 1; samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; VkDescriptorSetLayoutCreateInfo descriptorSetLayoutInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO }; descriptorSetLayoutInfo.bindingCount = 1; descriptorSetLayoutInfo.pBindings = &samplerLayoutBinding; ERR_GUARD_VULKAN( vkCreateDescriptorSetLayout(g_hDevice, &descriptorSetLayoutInfo, g_Allocs, &g_hDescriptorSetLayout) ); // Create descriptor pool VkDescriptorPoolSize descriptorPoolSizes[2]; ZeroMemory(descriptorPoolSizes, sizeof(descriptorPoolSizes)); descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; descriptorPoolSizes[0].descriptorCount = 1; descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; descriptorPoolSizes[1].descriptorCount = 1; VkDescriptorPoolCreateInfo descriptorPoolInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO }; descriptorPoolInfo.poolSizeCount = (uint32_t)_countof(descriptorPoolSizes); descriptorPoolInfo.pPoolSizes = descriptorPoolSizes; descriptorPoolInfo.maxSets = 1; ERR_GUARD_VULKAN( vkCreateDescriptorPool(g_hDevice, &descriptorPoolInfo, g_Allocs, &g_hDescriptorPool) ); // Create descriptor set layout VkDescriptorSetLayout descriptorSetLayouts[] = { g_hDescriptorSetLayout }; VkDescriptorSetAllocateInfo descriptorSetInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO }; descriptorSetInfo.descriptorPool = g_hDescriptorPool; descriptorSetInfo.descriptorSetCount = 1; descriptorSetInfo.pSetLayouts = descriptorSetLayouts; ERR_GUARD_VULKAN( vkAllocateDescriptorSets(g_hDevice, &descriptorSetInfo, &g_hDescriptorSet) ); VkDescriptorImageInfo descriptorImageInfo = {}; descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; descriptorImageInfo.imageView = g_hTextureImageView; descriptorImageInfo.sampler = g_hSampler; VkWriteDescriptorSet writeDescriptorSet = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET }; writeDescriptorSet.dstSet = g_hDescriptorSet; writeDescriptorSet.dstBinding = 1; writeDescriptorSet.dstArrayElement = 0; writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writeDescriptorSet.descriptorCount = 1; writeDescriptorSet.pImageInfo = &descriptorImageInfo; vkUpdateDescriptorSets(g_hDevice, 1, &writeDescriptorSet, 0, nullptr); CreateSwapchain(); } static void FinalizeApplication() { vkDeviceWaitIdle(g_hDevice); DestroySwapchain(true); if(g_hDescriptorPool != VK_NULL_HANDLE) { vkDestroyDescriptorPool(g_hDevice, g_hDescriptorPool, g_Allocs); g_hDescriptorPool = VK_NULL_HANDLE; } if(g_hDescriptorSetLayout != VK_NULL_HANDLE) { vkDestroyDescriptorSetLayout(g_hDevice, g_hDescriptorSetLayout, g_Allocs); g_hDescriptorSetLayout = VK_NULL_HANDLE; } if(g_hTextureImageView != VK_NULL_HANDLE) { vkDestroyImageView(g_hDevice, g_hTextureImageView, g_Allocs); g_hTextureImageView = VK_NULL_HANDLE; } if(g_hTextureImage != VK_NULL_HANDLE) { vmaDestroyImage(g_hAllocator, g_hTextureImage, g_hTextureImageAlloc); g_hTextureImage = VK_NULL_HANDLE; } if(g_hIndexBuffer != VK_NULL_HANDLE) { vmaDestroyBuffer(g_hAllocator, g_hIndexBuffer, g_hIndexBufferAlloc); g_hIndexBuffer = VK_NULL_HANDLE; } if(g_hVertexBuffer != VK_NULL_HANDLE) { vmaDestroyBuffer(g_hAllocator, g_hVertexBuffer, g_hVertexBufferAlloc); g_hVertexBuffer = VK_NULL_HANDLE; } if(g_hSampler != VK_NULL_HANDLE) { vkDestroySampler(g_hDevice, g_hSampler, g_Allocs); g_hSampler = VK_NULL_HANDLE; } if(g_ImmediateFence) { vkDestroyFence(g_hDevice, g_ImmediateFence, g_Allocs); g_ImmediateFence = VK_NULL_HANDLE; } for(size_t i = COMMAND_BUFFER_COUNT; i--; ) { if(g_MainCommandBufferExecutedFances[i] != VK_NULL_HANDLE) { vkDestroyFence(g_hDevice, g_MainCommandBufferExecutedFances[i], g_Allocs); g_MainCommandBufferExecutedFances[i] = VK_NULL_HANDLE; } } if(g_MainCommandBuffers[0] != VK_NULL_HANDLE) { vkFreeCommandBuffers(g_hDevice, g_hCommandPool, COMMAND_BUFFER_COUNT, g_MainCommandBuffers); ZeroMemory(g_MainCommandBuffers, sizeof(g_MainCommandBuffers)); } if(g_hTemporaryCommandBuffer != VK_NULL_HANDLE) { vkFreeCommandBuffers(g_hDevice, g_hCommandPool, 1, &g_hTemporaryCommandBuffer); g_hTemporaryCommandBuffer = VK_NULL_HANDLE; } if(g_hCommandPool != VK_NULL_HANDLE) { vkDestroyCommandPool(g_hDevice, g_hCommandPool, g_Allocs); g_hCommandPool = VK_NULL_HANDLE; } if(g_hAllocator != VK_NULL_HANDLE) { vmaDestroyAllocator(g_hAllocator); g_hAllocator = nullptr; } if(g_hDevice != VK_NULL_HANDLE) { vkDestroyDevice(g_hDevice, g_Allocs); g_hDevice = nullptr; } if(g_hSurface != VK_NULL_HANDLE) { vkDestroySurfaceKHR(g_hVulkanInstance, g_hSurface, g_Allocs); g_hSurface = VK_NULL_HANDLE; } } static void PrintAllocatorStats() { #if VMA_STATS_STRING_ENABLED char* statsString = nullptr; vmaBuildStatsString(g_hAllocator, &statsString, true); printf("%s\n", statsString); vmaFreeStatsString(g_hAllocator, statsString); #endif } static void RecreateSwapChain() { vkDeviceWaitIdle(g_hDevice); DestroySwapchain(false); CreateSwapchain(); } static void DrawFrame() { // Begin main command buffer size_t cmdBufIndex = (g_NextCommandBufferIndex++) % COMMAND_BUFFER_COUNT; VkCommandBuffer hCommandBuffer = g_MainCommandBuffers[cmdBufIndex]; VkFence hCommandBufferExecutedFence = g_MainCommandBufferExecutedFances[cmdBufIndex]; ERR_GUARD_VULKAN( vkWaitForFences(g_hDevice, 1, &hCommandBufferExecutedFence, VK_TRUE, UINT64_MAX) ); ERR_GUARD_VULKAN( vkResetFences(g_hDevice, 1, &hCommandBufferExecutedFence) ); VkCommandBufferBeginInfo commandBufferBeginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO }; commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; ERR_GUARD_VULKAN( vkBeginCommandBuffer(hCommandBuffer, &commandBufferBeginInfo) ); // Acquire swapchain image uint32_t imageIndex = 0; VkResult res = vkAcquireNextImageKHR(g_hDevice, g_hSwapchain, UINT64_MAX, g_hImageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex); if(res == VK_ERROR_OUT_OF_DATE_KHR) { RecreateSwapChain(); return; } else if(res < 0) { ERR_GUARD_VULKAN(res); } // Record geometry pass VkClearValue clearValues[2]; ZeroMemory(clearValues, sizeof(clearValues)); clearValues[0].color.float32[0] = 0.25f; clearValues[0].color.float32[1] = 0.25f; clearValues[0].color.float32[2] = 0.5f; clearValues[0].color.float32[3] = 1.0f; clearValues[1].depthStencil.depth = 1.0f; VkRenderPassBeginInfo renderPassBeginInfo = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO }; renderPassBeginInfo.renderPass = g_hRenderPass; renderPassBeginInfo.framebuffer = g_Framebuffers[imageIndex]; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent = g_Extent; renderPassBeginInfo.clearValueCount = (uint32_t)_countof(clearValues); renderPassBeginInfo.pClearValues = clearValues; vkCmdBeginRenderPass(hCommandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline( hCommandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_hPipeline); mat4 view = mat4::LookAt( vec3(0.f, 0.f, 0.f), vec3(0.f, -2.f, 4.f), vec3(0.f, 1.f, 0.f)); mat4 proj = mat4::Perspective( 1.0471975511966f, // 60 degrees (float)g_Extent.width / (float)g_Extent.height, 0.1f, 1000.f); mat4 viewProj = view * proj; vkCmdBindDescriptorSets( hCommandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_hPipelineLayout, 0, 1, &g_hDescriptorSet, 0, nullptr); float rotationAngle = (float)GetTickCount() * 0.001f * (float)PI * 0.2f; mat4 model = mat4::RotationY(rotationAngle); UniformBufferObject ubo = {}; ubo.ModelViewProj = model * viewProj; vkCmdPushConstants(hCommandBuffer, g_hPipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(UniformBufferObject), &ubo); VkBuffer vertexBuffers[] = { g_hVertexBuffer }; VkDeviceSize offsets[] = { 0 }; vkCmdBindVertexBuffers(hCommandBuffer, 0, 1, vertexBuffers, offsets); vkCmdBindIndexBuffer(hCommandBuffer, g_hIndexBuffer, 0, VK_INDEX_TYPE_UINT16); vkCmdDrawIndexed(hCommandBuffer, g_IndexCount, 1, 0, 0, 0); vkCmdEndRenderPass(hCommandBuffer); vkEndCommandBuffer(hCommandBuffer); // Submit command buffer VkSemaphore submitWaitSemaphores[] = { g_hImageAvailableSemaphore }; VkPipelineStageFlags submitWaitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; VkSemaphore submitSignalSemaphores[] = { g_hRenderFinishedSemaphore }; VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO }; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = submitWaitSemaphores; submitInfo.pWaitDstStageMask = submitWaitStages; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &hCommandBuffer; submitInfo.signalSemaphoreCount = _countof(submitSignalSemaphores); submitInfo.pSignalSemaphores = submitSignalSemaphores; ERR_GUARD_VULKAN( vkQueueSubmit(g_hGraphicsQueue, 1, &submitInfo, hCommandBufferExecutedFence) ); VkSemaphore presentWaitSemaphores[] = { g_hRenderFinishedSemaphore }; VkSwapchainKHR swapchains[] = { g_hSwapchain }; VkPresentInfoKHR presentInfo = { VK_STRUCTURE_TYPE_PRESENT_INFO_KHR }; presentInfo.waitSemaphoreCount = _countof(presentWaitSemaphores); presentInfo.pWaitSemaphores = presentWaitSemaphores; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = swapchains; presentInfo.pImageIndices = &imageIndex; presentInfo.pResults = nullptr; res = vkQueuePresentKHR(g_hPresentQueue, &presentInfo); if(res == VK_ERROR_OUT_OF_DATE_KHR) { RecreateSwapChain(); } else ERR_GUARD_VULKAN(res); } static void HandlePossibleSizeChange() { RECT clientRect; GetClientRect(g_hWnd, &clientRect); LONG newSizeX = clientRect.right - clientRect.left; LONG newSizeY = clientRect.bottom - clientRect.top; if((newSizeX > 0) && (newSizeY > 0) && ((newSizeX != g_SizeX) || (newSizeY != g_SizeY))) { g_SizeX = newSizeX; g_SizeY = newSizeY; RecreateSwapChain(); } } #define CATCH_PRINT_ERROR(extraCatchCode) \ catch(const std::exception& ex) \ { \ fwprintf(stderr, L"ERROR: %hs\n", ex.what()); \ extraCatchCode \ } \ catch(...) \ { \ fwprintf(stderr, L"UNKNOWN ERROR.\n"); \ extraCatchCode \ } static LRESULT WINAPI WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) { switch(msg) { case WM_DESTROY: try { FinalizeApplication(); } CATCH_PRINT_ERROR(;) PostQuitMessage(0); return 0; // This prevents app from freezing when left Alt is pressed // (which normally enters modal menu loop). case WM_SYSKEYDOWN: case WM_SYSKEYUP: return 0; case WM_SIZE: if((wParam == SIZE_MAXIMIZED) || (wParam == SIZE_RESTORED)) { try { HandlePossibleSizeChange(); } CATCH_PRINT_ERROR(DestroyWindow(hWnd);) } return 0; case WM_EXITSIZEMOVE: try { HandlePossibleSizeChange(); } CATCH_PRINT_ERROR(DestroyWindow(hWnd);) return 0; case WM_KEYDOWN: switch(wParam) { case VK_ESCAPE: PostMessage(hWnd, WM_CLOSE, 0, 0); break; case 'T': try { Test(); } CATCH_PRINT_ERROR(;) break; case 'S': if (g_SparseBindingEnabled) { try { TestSparseBinding(); } CATCH_PRINT_ERROR(;) } else { printf("Sparse binding not supported.\n"); } break; } return 0; default: break; } return DefWindowProc(hWnd, msg, wParam, lParam); } static void PrintLogo() { wprintf(L"%s\n", APP_TITLE_W); } static void PrintHelp() { wprintf( L"Command line syntax:\n" L"-h, --Help Print this information\n" L"-l, --List Print list of GPUs\n" L"-g S, --GPU S Select GPU with name containing S\n" L"-i N, --GPUIndex N Select GPU index N\n" L"-t, --Test Run tests and exit\n" L"-s, --TestSparseBinding Run sparese binding tests and exit\n" ); } int MainWindow() { WNDCLASSEX wndClassDesc = { sizeof(WNDCLASSEX) }; wndClassDesc.style = CS_VREDRAW | CS_HREDRAW | CS_DBLCLKS; wndClassDesc.hbrBackground = NULL; wndClassDesc.hCursor = LoadCursor(NULL, IDC_CROSS); wndClassDesc.hIcon = LoadIcon(NULL, IDI_APPLICATION); wndClassDesc.hInstance = g_hAppInstance; wndClassDesc.lpfnWndProc = WndProc; wndClassDesc.lpszClassName = WINDOW_CLASS_NAME; const ATOM hWndClass = RegisterClassEx(&wndClassDesc); assert(hWndClass); const DWORD style = WS_VISIBLE | WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX | WS_MAXIMIZEBOX | WS_THICKFRAME; const DWORD exStyle = 0; RECT rect = { 0, 0, g_SizeX, g_SizeY }; AdjustWindowRectEx(&rect, style, FALSE, exStyle); g_hWnd = CreateWindowEx( exStyle, WINDOW_CLASS_NAME, APP_TITLE_W, style, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, g_hAppInstance, NULL); assert(g_hWnd); InitializeApplication(); //PrintAllocatorStats(); // Run tests and close program if(g_CommandLineParameters.m_Test) Test(); if(g_CommandLineParameters.m_TestSparseBinding) { if(g_SparseBindingEnabled) TestSparseBinding(); else printf("Sparse binding not supported.\n"); } if(g_CommandLineParameters.m_Test || g_CommandLineParameters.m_TestSparseBinding) PostMessage(g_hWnd, WM_CLOSE, 0, 0); MSG msg; for(;;) { if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { if(msg.message == WM_QUIT) break; TranslateMessage(&msg); DispatchMessage(&msg); } else { DrawFrame(); } } return (int)msg.wParam;; } int Main2(int argc, wchar_t** argv) { PrintLogo(); if(!g_CommandLineParameters.Parse(argc, argv)) { wprintf(L"ERROR: Invalid command line syntax.\n"); PrintHelp(); return (int)ExitCode::CommandLineError; } if(g_CommandLineParameters.m_Help) { PrintHelp(); return (int)ExitCode::Help; } VulkanUsage vulkanUsage; vulkanUsage.Init(); if(g_CommandLineParameters.m_List) { vulkanUsage.PrintPhysicalDeviceList(); return (int)ExitCode::GPUList; } g_hPhysicalDevice = vulkanUsage.SelectPhysicalDevice(g_CommandLineParameters.m_GPUSelection); TEST(g_hPhysicalDevice); return MainWindow(); } int wmain(int argc, wchar_t** argv) { try { return Main2(argc, argv); TEST(g_CpuAllocCount.load() == 0); } CATCH_PRINT_ERROR(return (int)ExitCode::RuntimeError;) } #else // #ifdef _WIN32 #include "VmaUsage.h" int main() { } #endif // #ifdef _WIN32