VulkanMemoryAllocator/src/SparseBindingTest.cpp
2021-09-30 12:03:35 +02:00

598 lines
23 KiB
C++

//
// Copyright (c) 2017-2021 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#include "Common.h"
#include "SparseBindingTest.h"
#ifdef _WIN32
////////////////////////////////////////////////////////////////////////////////
// External imports
extern VkDevice g_hDevice;
extern VmaAllocator g_hAllocator;
extern uint32_t g_FrameIndex;
extern bool g_SparseBindingEnabled;
extern VkQueue g_hSparseBindingQueue;
extern VkFence g_ImmediateFence;
extern VkCommandBuffer g_hTemporaryCommandBuffer;
void BeginSingleTimeCommands();
void EndSingleTimeCommands();
void SaveAllocatorStatsToFile(const wchar_t* filePath);
void LoadShader(std::vector<char>& out, const char* fileName);
////////////////////////////////////////////////////////////////////////////////
// Class definitions
static uint32_t CalculateMipMapCount(uint32_t width, uint32_t height, uint32_t depth)
{
uint32_t mipMapCount = 1;
while(width > 1 || height > 1 || depth > 1)
{
++mipMapCount;
width /= 2;
height /= 2;
depth /= 2;
}
return mipMapCount;
}
class BaseImage
{
public:
virtual void Init(RandomNumberGenerator& rand) = 0;
virtual ~BaseImage();
const VkImageCreateInfo& GetCreateInfo() const { return m_CreateInfo; }
void TestContent(RandomNumberGenerator& rand);
protected:
VkImageCreateInfo m_CreateInfo = {};
VkImage m_Image = VK_NULL_HANDLE;
void FillImageCreateInfo(RandomNumberGenerator& rand);
void UploadContent();
void ValidateContent(RandomNumberGenerator& rand);
};
class TraditionalImage : public BaseImage
{
public:
virtual void Init(RandomNumberGenerator& rand);
virtual ~TraditionalImage();
private:
VmaAllocation m_Allocation = VK_NULL_HANDLE;
};
class SparseBindingImage : public BaseImage
{
public:
virtual void Init(RandomNumberGenerator& rand);
virtual ~SparseBindingImage();
private:
std::vector<VmaAllocation> m_Allocations;
};
////////////////////////////////////////////////////////////////////////////////
// class BaseImage
BaseImage::~BaseImage()
{
if(m_Image)
{
vkDestroyImage(g_hDevice, m_Image, nullptr);
}
}
void BaseImage::TestContent(RandomNumberGenerator& rand)
{
printf("Validating content of %u x %u texture...\n",
m_CreateInfo.extent.width, m_CreateInfo.extent.height);
UploadContent();
ValidateContent(rand);
}
void BaseImage::FillImageCreateInfo(RandomNumberGenerator& rand)
{
constexpr uint32_t imageSizeMin = 8;
constexpr uint32_t imageSizeMax = 2048;
const bool useMipMaps = rand.Generate() % 2 != 0;
ZeroMemory(&m_CreateInfo, sizeof(m_CreateInfo));
m_CreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
m_CreateInfo.imageType = VK_IMAGE_TYPE_2D;
m_CreateInfo.extent.width = rand.Generate() % (imageSizeMax - imageSizeMin) + imageSizeMin;
m_CreateInfo.extent.height = rand.Generate() % (imageSizeMax - imageSizeMin) + imageSizeMin;
m_CreateInfo.extent.depth = 1;
m_CreateInfo.mipLevels = useMipMaps ?
CalculateMipMapCount(m_CreateInfo.extent.width, m_CreateInfo.extent.height, m_CreateInfo.extent.depth) : 1;
m_CreateInfo.arrayLayers = 1;
m_CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
m_CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
m_CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
m_CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
m_CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
m_CreateInfo.flags = 0;
}
void BaseImage::UploadContent()
{
VkBufferCreateInfo srcBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
srcBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
srcBufCreateInfo.size = 4 * m_CreateInfo.extent.width * m_CreateInfo.extent.height;
VmaAllocationCreateInfo srcBufAllocCreateInfo = {};
srcBufAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
srcBufAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
VkBuffer srcBuf = nullptr;
VmaAllocation srcBufAlloc = nullptr;
VmaAllocationInfo srcAllocInfo = {};
TEST( vmaCreateBuffer(g_hAllocator, &srcBufCreateInfo, &srcBufAllocCreateInfo, &srcBuf, &srcBufAlloc, &srcAllocInfo) == VK_SUCCESS );
// Fill texels with: r = x % 255, g = u % 255, b = 13, a = 25
uint32_t* srcBufPtr = (uint32_t*)srcAllocInfo.pMappedData;
for(uint32_t y = 0, sizeY = m_CreateInfo.extent.height; y < sizeY; ++y)
{
for(uint32_t x = 0, sizeX = m_CreateInfo.extent.width; x < sizeX; ++x, ++srcBufPtr)
{
const uint8_t r = (uint8_t)x;
const uint8_t g = (uint8_t)y;
const uint8_t b = 13;
const uint8_t a = 25;
*srcBufPtr = (uint32_t)r << 24 | (uint32_t)g << 16 |
(uint32_t)b << 8 | (uint32_t)a;
}
}
BeginSingleTimeCommands();
// Barrier undefined to transfer dst.
{
VkImageMemoryBarrier barrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = m_Image;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
vkCmdPipelineBarrier(g_hTemporaryCommandBuffer,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, // srcStageMask
VK_PIPELINE_STAGE_TRANSFER_BIT, // dstStageMask
0, // dependencyFlags
0, nullptr, // memoryBarriers
0, nullptr, // bufferMemoryBarriers
1, &barrier); // imageMemoryBarriers
}
// CopyBufferToImage
{
VkBufferImageCopy region = {};
region.bufferOffset = 0;
region.bufferRowLength = 0; // Zeros mean tightly packed.
region.bufferImageHeight = 0; // Zeros mean tightly packed.
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.mipLevel = 0;
region.imageSubresource.baseArrayLayer = 0;
region.imageSubresource.layerCount = 1;
region.imageOffset = { 0, 0, 0 };
region.imageExtent = m_CreateInfo.extent;
vkCmdCopyBufferToImage(g_hTemporaryCommandBuffer, srcBuf, m_Image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
}
// Barrier transfer dst to fragment shader read only.
{
VkImageMemoryBarrier barrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = m_Image;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
vkCmdPipelineBarrier(g_hTemporaryCommandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT, // srcStageMask
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // dstStageMask
0, // dependencyFlags
0, nullptr, // memoryBarriers
0, nullptr, // bufferMemoryBarriers
1, &barrier); // imageMemoryBarriers
}
EndSingleTimeCommands();
vmaDestroyBuffer(g_hAllocator, srcBuf, srcBufAlloc);
}
void BaseImage::ValidateContent(RandomNumberGenerator& rand)
{
/*
dstBuf has following layout:
For each of texels to be sampled, [0..valueCount):
struct {
in uint32_t pixelX;
in uint32_t pixelY;
out uint32_t pixelColor;
}
*/
const uint32_t valueCount = 128;
VkBufferCreateInfo dstBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
dstBufCreateInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
dstBufCreateInfo.size = valueCount * sizeof(uint32_t) * 3;
VmaAllocationCreateInfo dstBufAllocCreateInfo = {};
dstBufAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
dstBufAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_TO_CPU;
VkBuffer dstBuf = nullptr;
VmaAllocation dstBufAlloc = nullptr;
VmaAllocationInfo dstBufAllocInfo = {};
TEST( vmaCreateBuffer(g_hAllocator, &dstBufCreateInfo, &dstBufAllocCreateInfo, &dstBuf, &dstBufAlloc, &dstBufAllocInfo) == VK_SUCCESS );
// Fill dstBuf input data.
{
uint32_t* dstBufContent = (uint32_t*)dstBufAllocInfo.pMappedData;
for(uint32_t i = 0; i < valueCount; ++i)
{
const uint32_t x = rand.Generate() % m_CreateInfo.extent.width;
const uint32_t y = rand.Generate() % m_CreateInfo.extent.height;
dstBufContent[i * 3 ] = x;
dstBufContent[i * 3 + 1] = y;
dstBufContent[i * 3 + 2] = 0;
}
}
VkSamplerCreateInfo samplerCreateInfo = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
samplerCreateInfo.magFilter = VK_FILTER_NEAREST;
samplerCreateInfo.minFilter = VK_FILTER_NEAREST;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCreateInfo.unnormalizedCoordinates = VK_TRUE;
VkSampler sampler = nullptr;
TEST( vkCreateSampler( g_hDevice, &samplerCreateInfo, nullptr, &sampler) == VK_SUCCESS );
VkDescriptorSetLayoutBinding bindings[2] = {};
bindings[0].binding = 0;
bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[0].descriptorCount = 1;
bindings[0].stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
bindings[0].pImmutableSamplers = &sampler;
bindings[1].binding = 1;
bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
bindings[1].descriptorCount = 1;
bindings[1].stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
VkDescriptorSetLayoutCreateInfo descSetLayoutCreateInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
descSetLayoutCreateInfo.bindingCount = 2;
descSetLayoutCreateInfo.pBindings = bindings;
VkDescriptorSetLayout descSetLayout = nullptr;
TEST( vkCreateDescriptorSetLayout(g_hDevice, &descSetLayoutCreateInfo, nullptr, &descSetLayout) == VK_SUCCESS );
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO };
pipelineLayoutCreateInfo.setLayoutCount = 1;
pipelineLayoutCreateInfo.pSetLayouts = &descSetLayout;
VkPipelineLayout pipelineLayout = nullptr;
TEST( vkCreatePipelineLayout(g_hDevice, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout) == VK_SUCCESS );
std::vector<char> shaderCode;
LoadShader(shaderCode, "SparseBindingTest.comp.spv");
VkShaderModuleCreateInfo shaderModuleCreateInfo = { VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO };
shaderModuleCreateInfo.codeSize = shaderCode.size();
shaderModuleCreateInfo.pCode = (const uint32_t*)shaderCode.data();
VkShaderModule shaderModule = nullptr;
TEST( vkCreateShaderModule(g_hDevice, &shaderModuleCreateInfo, nullptr, &shaderModule) == VK_SUCCESS );
VkComputePipelineCreateInfo pipelineCreateInfo = { VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO };
pipelineCreateInfo.stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
pipelineCreateInfo.stage.stage = VK_SHADER_STAGE_COMPUTE_BIT;
pipelineCreateInfo.stage.module = shaderModule;
pipelineCreateInfo.stage.pName = "main";
pipelineCreateInfo.layout = pipelineLayout;
VkPipeline pipeline = nullptr;
TEST( vkCreateComputePipelines(g_hDevice, nullptr, 1, &pipelineCreateInfo, nullptr, &pipeline) == VK_SUCCESS );
VkDescriptorPoolSize poolSizes[2] = {};
poolSizes[0].type = bindings[0].descriptorType;
poolSizes[0].descriptorCount = bindings[0].descriptorCount;
poolSizes[1].type = bindings[1].descriptorType;
poolSizes[1].descriptorCount = bindings[1].descriptorCount;
VkDescriptorPoolCreateInfo descPoolCreateInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO };
descPoolCreateInfo.maxSets = 1;
descPoolCreateInfo.poolSizeCount = 2;
descPoolCreateInfo.pPoolSizes = poolSizes;
VkDescriptorPool descPool = nullptr;
TEST( vkCreateDescriptorPool(g_hDevice, &descPoolCreateInfo, nullptr, &descPool) == VK_SUCCESS );
VkDescriptorSetAllocateInfo descSetAllocInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO };
descSetAllocInfo.descriptorPool = descPool;
descSetAllocInfo.descriptorSetCount = 1;
descSetAllocInfo.pSetLayouts = &descSetLayout;
VkDescriptorSet descSet = nullptr;
TEST( vkAllocateDescriptorSets(g_hDevice, &descSetAllocInfo, &descSet) == VK_SUCCESS );
VkImageViewCreateInfo imageViewCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
imageViewCreateInfo.image = m_Image;
imageViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageViewCreateInfo.format = m_CreateInfo.format;
imageViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageViewCreateInfo.subresourceRange.layerCount = 1;
imageViewCreateInfo.subresourceRange.levelCount = 1;
VkImageView imageView = nullptr;
TEST( vkCreateImageView(g_hDevice, &imageViewCreateInfo, nullptr, &imageView) == VK_SUCCESS );
VkDescriptorImageInfo descImageInfo = {};
descImageInfo.imageView = imageView;
descImageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkDescriptorBufferInfo descBufferInfo = {};
descBufferInfo.buffer = dstBuf;
descBufferInfo.offset = 0;
descBufferInfo.range = VK_WHOLE_SIZE;
VkWriteDescriptorSet descWrites[2] = {};
descWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descWrites[0].dstSet = descSet;
descWrites[0].dstBinding = bindings[0].binding;
descWrites[0].dstArrayElement = 0;
descWrites[0].descriptorCount = 1;
descWrites[0].descriptorType = bindings[0].descriptorType;
descWrites[0].pImageInfo = &descImageInfo;
descWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descWrites[1].dstSet = descSet;
descWrites[1].dstBinding = bindings[1].binding;
descWrites[1].dstArrayElement = 0;
descWrites[1].descriptorCount = 1;
descWrites[1].descriptorType = bindings[1].descriptorType;
descWrites[1].pBufferInfo = &descBufferInfo;
vkUpdateDescriptorSets(g_hDevice, 2, descWrites, 0, nullptr);
BeginSingleTimeCommands();
vkCmdBindPipeline(g_hTemporaryCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
vkCmdBindDescriptorSets(g_hTemporaryCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout, 0, 1, &descSet, 0, nullptr);
vkCmdDispatch(g_hTemporaryCommandBuffer, valueCount, 1, 1);
EndSingleTimeCommands();
// Validate dstBuf output data.
{
const uint32_t* dstBufContent = (const uint32_t*)dstBufAllocInfo.pMappedData;
for(uint32_t i = 0; i < valueCount; ++i)
{
const uint32_t x = dstBufContent[i * 3 ];
const uint32_t y = dstBufContent[i * 3 + 1];
const uint32_t color = dstBufContent[i * 3 + 2];
const uint8_t a = (uint8_t)(color >> 24);
const uint8_t b = (uint8_t)(color >> 16);
const uint8_t g = (uint8_t)(color >> 8);
const uint8_t r = (uint8_t)color;
TEST(r == (uint8_t)x && g == (uint8_t)y && b == 13 && a == 25);
}
}
vkDestroyImageView(g_hDevice, imageView, nullptr);
vkDestroyDescriptorPool(g_hDevice, descPool, nullptr);
vmaDestroyBuffer(g_hAllocator, dstBuf, dstBufAlloc);
vkDestroyPipeline(g_hDevice, pipeline, nullptr);
vkDestroyShaderModule(g_hDevice, shaderModule, nullptr);
vkDestroyPipelineLayout(g_hDevice, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(g_hDevice, descSetLayout, nullptr);
vkDestroySampler(g_hDevice, sampler, nullptr);
}
////////////////////////////////////////////////////////////////////////////////
// class TraditionalImage
void TraditionalImage::Init(RandomNumberGenerator& rand)
{
FillImageCreateInfo(rand);
VmaAllocationCreateInfo allocCreateInfo = {};
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
// Default BEST_FIT is clearly better.
//allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT;
ERR_GUARD_VULKAN( vmaCreateImage(g_hAllocator, &m_CreateInfo, &allocCreateInfo,
&m_Image, &m_Allocation, nullptr) );
}
TraditionalImage::~TraditionalImage()
{
if(m_Allocation)
{
vmaFreeMemory(g_hAllocator, m_Allocation);
}
}
////////////////////////////////////////////////////////////////////////////////
// class SparseBindingImage
void SparseBindingImage::Init(RandomNumberGenerator& rand)
{
assert(g_SparseBindingEnabled && g_hSparseBindingQueue);
// Create image.
FillImageCreateInfo(rand);
m_CreateInfo.flags |= VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
ERR_GUARD_VULKAN( vkCreateImage(g_hDevice, &m_CreateInfo, nullptr, &m_Image) );
// Get memory requirements.
VkMemoryRequirements imageMemReq;
vkGetImageMemoryRequirements(g_hDevice, m_Image, &imageMemReq);
// This is just to silence validation layer warning.
// But it doesn't help. Looks like a bug in Vulkan validation layers.
// See: https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/364
uint32_t sparseMemReqCount = 0;
vkGetImageSparseMemoryRequirements(g_hDevice, m_Image, &sparseMemReqCount, nullptr);
TEST(sparseMemReqCount <= 8);
VkSparseImageMemoryRequirements sparseMemReq[8];
vkGetImageSparseMemoryRequirements(g_hDevice, m_Image, &sparseMemReqCount, sparseMemReq);
// According to Vulkan specification, for sparse resources memReq.alignment is also page size.
const VkDeviceSize pageSize = imageMemReq.alignment;
const uint32_t pageCount = (uint32_t)ceil_div<VkDeviceSize>(imageMemReq.size, pageSize);
VmaAllocationCreateInfo allocCreateInfo = {};
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
VkMemoryRequirements pageMemReq = imageMemReq;
pageMemReq.size = pageSize;
// Allocate and bind memory pages.
m_Allocations.resize(pageCount);
std::fill(m_Allocations.begin(), m_Allocations.end(), nullptr);
std::vector<VkSparseMemoryBind> binds{pageCount};
std::vector<VmaAllocationInfo> allocInfo{pageCount};
ERR_GUARD_VULKAN( vmaAllocateMemoryPages(g_hAllocator, &pageMemReq, &allocCreateInfo, pageCount, m_Allocations.data(), allocInfo.data()) );
for(uint32_t i = 0; i < pageCount; ++i)
{
binds[i] = {};
binds[i].resourceOffset = pageSize * i;
binds[i].size = pageSize;
binds[i].memory = allocInfo[i].deviceMemory;
binds[i].memoryOffset = allocInfo[i].offset;
}
VkSparseImageOpaqueMemoryBindInfo imageBindInfo;
imageBindInfo.image = m_Image;
imageBindInfo.bindCount = pageCount;
imageBindInfo.pBinds = binds.data();
VkBindSparseInfo bindSparseInfo = { VK_STRUCTURE_TYPE_BIND_SPARSE_INFO };
bindSparseInfo.pImageOpaqueBinds = &imageBindInfo;
bindSparseInfo.imageOpaqueBindCount = 1;
ERR_GUARD_VULKAN( vkResetFences(g_hDevice, 1, &g_ImmediateFence) );
ERR_GUARD_VULKAN( vkQueueBindSparse(g_hSparseBindingQueue, 1, &bindSparseInfo, g_ImmediateFence) );
ERR_GUARD_VULKAN( vkWaitForFences(g_hDevice, 1, &g_ImmediateFence, VK_TRUE, UINT64_MAX) );
}
SparseBindingImage::~SparseBindingImage()
{
vmaFreeMemoryPages(g_hAllocator, m_Allocations.size(), m_Allocations.data());
}
////////////////////////////////////////////////////////////////////////////////
// Private functions
////////////////////////////////////////////////////////////////////////////////
// Public functions
void TestSparseBinding()
{
wprintf(L"TESTING SPARSE BINDING:\n");
struct ImageInfo
{
std::unique_ptr<BaseImage> image;
uint32_t endFrame;
};
std::vector<ImageInfo> images;
constexpr uint32_t frameCount = 1000;
constexpr uint32_t imageLifeFramesMin = 1;
constexpr uint32_t imageLifeFramesMax = 400;
RandomNumberGenerator rand(4652467);
for(uint32_t frameIndex = 0; frameIndex < frameCount; ++frameIndex)
{
// Bump frame index.
++g_FrameIndex;
vmaSetCurrentFrameIndex(g_hAllocator, g_FrameIndex);
// Create one new, random image.
ImageInfo imageInfo;
//imageInfo.image = std::make_unique<TraditionalImage>();
imageInfo.image = std::make_unique<SparseBindingImage>();
imageInfo.image->Init(rand);
imageInfo.endFrame = g_FrameIndex + rand.Generate() % (imageLifeFramesMax - imageLifeFramesMin) + imageLifeFramesMin;
images.push_back(std::move(imageInfo));
// Delete all images that expired.
for(size_t imageIndex = images.size(); imageIndex--; )
{
if(g_FrameIndex >= images[imageIndex].endFrame)
{
images.erase(images.begin() + imageIndex);
}
}
}
SaveAllocatorStatsToFile(L"SparseBindingTest.json");
// Choose biggest image. Test uploading and sampling.
BaseImage* biggestImage = nullptr;
for(size_t i = 0, count = images.size(); i < count; ++i)
{
if(!biggestImage ||
images[i].image->GetCreateInfo().extent.width * images[i].image->GetCreateInfo().extent.height >
biggestImage->GetCreateInfo().extent.width * biggestImage->GetCreateInfo().extent.height)
{
biggestImage = images[i].image.get();
}
}
assert(biggestImage);
biggestImage->TestContent(rand);
// Free remaining images.
images.clear();
wprintf(L"Done.\n");
}
#endif // #ifdef _WIN32