mirror of
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
synced 2024-11-05 20:30:05 +00:00
5236 lines
175 KiB
C++
5236 lines
175 KiB
C++
//
|
|
// Copyright (c) 2017 Advanced Micro Devices, Inc. All rights reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
//
|
|
|
|
#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
#define AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
|
/** \mainpage Vulkan Memory Allocator
|
|
|
|
Version 2.0.0-alpha.1 (2017-07-04)
|
|
|
|
Members grouped: see <a href="modules.html"><b>Modules</b></a>.
|
|
|
|
All members: see vk_mem_alloc.h.
|
|
|
|
\section problem Problem Statement
|
|
|
|
Memory allocation and resource (buffer and image) creation in Vulkan is
|
|
difficult (comparing to older graphics API-s, like D3D11 or OpenGL) for several
|
|
reasons:
|
|
|
|
- It requires a lot of boilerplate code, just like everything else in Vulkan,
|
|
because it is a low-level and high-performance API.
|
|
- There is additional level of indirection: VkDeviceMemory is allocated
|
|
separately from creating VkBuffer/VkImage and they must be bound together. The
|
|
binding cannot be changed later - resource must be recreated.
|
|
- Driver must be queried for supported memory heaps and memory types. Different
|
|
IHV-s provide different types of it.
|
|
- It is recommended practice to allocate bigger chunks of memory and assign
|
|
parts of them to particular resources.
|
|
|
|
\section features Features
|
|
|
|
This library is helps game developers to manage memory allocations and resource
|
|
creation by offering some higher-level functions. Features of the library could
|
|
be divided into several layers, low level to high level:
|
|
|
|
-# Functions that help to choose correct and optimal memory type based on
|
|
intended usage of the memory.
|
|
- Required or preferred traits of the memory are expressed using higher-level
|
|
description comparing to Vulkan flags.
|
|
-# Functions that allocate memory blocks, reserve and return parts of them
|
|
(VkDeviceMemory + offset + size) to the user.
|
|
- Library keeps track of allocated memory blocks, used and unused ranges
|
|
inside them, finds best matching unused ranges for new allocations, takes
|
|
all the rules of alignment into consideration.
|
|
-# Functions that can create an image/buffer, allocate memory for it and bind
|
|
them together - all in one call.
|
|
|
|
\section prequisites Prequisites
|
|
|
|
- Self-contained C++ library in single header file. No external dependencies
|
|
other than standard C and C++ library and of course Vulkan.
|
|
- Public interface in C, in same convention as Vulkan API. Implementation in
|
|
C++.
|
|
- Interface documented using Doxygen-style comments.
|
|
- Platform-independent, but developed and tested on Windows using Visual Studio.
|
|
- Error handling implemented by returning VkResult error codes - same way as in
|
|
Vulkan.
|
|
|
|
\section quick_start Quick Start
|
|
|
|
In your project code:
|
|
|
|
-# Include "vk_mem_alloc.h" file wherever you want to use the library.
|
|
-# In exacly one C++ file define following macro before include to build library
|
|
implementation.
|
|
|
|
|
|
#define VMA_IMPLEMENTATION
|
|
#include "vk_mem_alloc.h"
|
|
|
|
At program startup:
|
|
|
|
-# Initialize Vulkan to have VkPhysicalDevice and VkDevice object.
|
|
-# Fill VmaAllocatorCreateInfo structure and create VmaAllocator object by
|
|
calling vmaCreateAllocator().
|
|
|
|
|
|
VmaAllocatorCreateInfo allocatorInfo = {};
|
|
allocatorInfo.physicalDevice = physicalDevice;
|
|
allocatorInfo.device = device;
|
|
|
|
VmaAllocator allocator;
|
|
vmaCreateAllocator(&allocatorInfo, &allocator);
|
|
|
|
When you want to create a buffer or image:
|
|
|
|
-# Fill VkBufferCreateInfo / VkImageCreateInfo structure.
|
|
-# Fill VmaMemoryRequirements structure.
|
|
-# Call vmaCreateBuffer() / vmaCreateImage() to get VkBuffer/VkImage with memory
|
|
already allocated and bound to it.
|
|
|
|
|
|
VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufferInfo.size = myBufferSize;
|
|
bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaMemoryRequirements memReq = {};
|
|
memReq.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
|
VkBuffer buffer;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &memReq, &buffer, nullptr, nullptr);
|
|
|
|
\section configuration Configuration
|
|
|
|
Please check "CONFIGURATION SECTION" in the code to find macros that you can define
|
|
before each #include of this file or change directly in this file to provide
|
|
your own implementation of basic facilities like assert, min and max functions,
|
|
mutex etc. C++ STL is used by default, but changing these allows you to get rid
|
|
of any STL usage if you want, as many game developers tend to do.
|
|
|
|
\section custom_memory_allocator Custom memory allocator
|
|
|
|
You can use custom memory allocator by filling optional member
|
|
VmaAllocatorCreateInfo::pAllocationCallbacks. These functions will be passed to
|
|
Vulkan, as well as used by the library itself to make any CPU-side allocations.
|
|
|
|
\section thread_safety Thread safety
|
|
|
|
All calls to functions that take VmaAllocator as first parameter are safe to
|
|
call from multiple threads simultaneously, synchronized internally when needed.
|
|
*/
|
|
|
|
#include <vulkan/vulkan.h>
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/** \defgroup general General
|
|
@{
|
|
*/
|
|
|
|
VK_DEFINE_HANDLE(VmaAllocator)
|
|
|
|
/// Callback function called after successful vkAllocateMemory.
|
|
typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryType,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize size);
|
|
/// Callback function called before vkFreeMemory.
|
|
typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryType,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize size);
|
|
|
|
/** \brief Set of callbacks that the library will call for vkAllocateMemory and vkFreeMemory.
|
|
|
|
Provided for informative purpose, e.g. to gather statistics about number of
|
|
allocations or total amount of memory allocated in Vulkan.
|
|
*/
|
|
typedef struct VmaDeviceMemoryCallbacks {
|
|
/// Optional, can be null.
|
|
PFN_vmaAllocateDeviceMemoryFunction pfnAllocate;
|
|
/// Optional, can be null.
|
|
PFN_vmaFreeDeviceMemoryFunction pfnFree;
|
|
} VmaDeviceMemoryCallbacks;
|
|
|
|
/// Description of a Allocator to be created.
|
|
typedef struct VmaAllocatorCreateInfo
|
|
{
|
|
/// Vulkan physical device.
|
|
/** It must be valid throughout whole lifetime of created Allocator. */
|
|
VkPhysicalDevice physicalDevice;
|
|
/// Vulkan device.
|
|
/** It must be valid throughout whole lifetime of created Allocator. */
|
|
VkDevice device;
|
|
/// Size of a single memory block to allocate for resources.
|
|
/** Set to 0 to use default, which is currently 256 MB. */
|
|
VkDeviceSize preferredLargeHeapBlockSize;
|
|
/// Size of a single memory block to allocate for resources from a small heap <= 512 MB.
|
|
/** Set to 0 to use default, which is currently 64 MB. */
|
|
VkDeviceSize preferredSmallHeapBlockSize;
|
|
/// Custom allocation callbacks.
|
|
/** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
|
|
const VkAllocationCallbacks* pAllocationCallbacks;
|
|
/// Informative callbacks for vkAllocateMemory, vkFreeMemory.
|
|
/** Optional, can be null. */
|
|
const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks;
|
|
} VmaAllocatorCreateInfo;
|
|
|
|
/// Creates Allocator object.
|
|
VkResult vmaCreateAllocator(
|
|
const VmaAllocatorCreateInfo* pCreateInfo,
|
|
VmaAllocator* pAllocator);
|
|
|
|
/// Destroys allocator object.
|
|
void vmaDestroyAllocator(
|
|
VmaAllocator allocator);
|
|
|
|
/**
|
|
PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
|
|
You can access it here, without fetching it again on your own.
|
|
*/
|
|
void vmaGetPhysicalDeviceProperties(
|
|
VmaAllocator allocator,
|
|
const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties);
|
|
|
|
/**
|
|
PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
|
|
You can access it here, without fetching it again on your own.
|
|
*/
|
|
void vmaGetMemoryProperties(
|
|
VmaAllocator allocator,
|
|
const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties);
|
|
|
|
/**
|
|
\brief Given Memory Type Index, returns Property Flags of this memory type.
|
|
|
|
This is just a convenience function. Same information can be obtained using
|
|
vmaGetMemoryProperties().
|
|
*/
|
|
void vmaGetMemoryTypeProperties(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeIndex,
|
|
VkMemoryPropertyFlags* pFlags);
|
|
|
|
typedef struct VmaStatInfo
|
|
{
|
|
uint32_t AllocationCount;
|
|
uint32_t SuballocationCount;
|
|
uint32_t UnusedRangeCount;
|
|
VkDeviceSize UsedBytes;
|
|
VkDeviceSize UnusedBytes;
|
|
VkDeviceSize SuballocationSizeMin, SuballocationSizeAvg, SuballocationSizeMax;
|
|
VkDeviceSize UnusedRangeSizeMin, UnusedRangeSizeAvg, UnusedRangeSizeMax;
|
|
} VmaStatInfo;
|
|
|
|
/// General statistics from current state of Allocator.
|
|
struct VmaStats
|
|
{
|
|
VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
|
|
VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
|
|
VmaStatInfo total;
|
|
};
|
|
|
|
/// Retrieves statistics from current state of the Allocator.
|
|
void vmaCalculateStats(
|
|
VmaAllocator allocator,
|
|
VmaStats* pStats);
|
|
|
|
#define VMA_STATS_STRING_ENABLED 1
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
/// Builds and returns statistics as string in JSON format.
|
|
/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
|
|
*/
|
|
void vmaBuildStatsString(
|
|
VmaAllocator allocator,
|
|
char** ppStatsString,
|
|
VkBool32 detailedMap);
|
|
|
|
void vmaFreeStatsString(
|
|
VmaAllocator allocator,
|
|
char* pStatsString);
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
/** @} */
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/** \defgroup layer1 Layer 1 Choosing Memory Type
|
|
@{
|
|
*/
|
|
|
|
typedef enum VmaMemoryUsage
|
|
{
|
|
/// No intended memory usage specified.
|
|
VMA_MEMORY_USAGE_UNKNOWN = 0,
|
|
/// Memory will be used on device only, no need to be mapped on host.
|
|
VMA_MEMORY_USAGE_GPU_ONLY = 1,
|
|
/// Memory will be mapped on host. Could be used for transfer to device.
|
|
/** Guarantees to be HOST_VISIBLE and HOST_COHERENT. */
|
|
VMA_MEMORY_USAGE_CPU_ONLY = 2,
|
|
/// Memory will be used for frequent (dynamic) updates from host and reads on device.
|
|
/** Guarantees to be HOST_VISIBLE. */
|
|
VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
|
|
/// Memory will be used for writing on device and readback on host.
|
|
/** Guarantees to be HOST_VISIBLE. */
|
|
VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
|
|
VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaMemoryUsage;
|
|
|
|
/// Flags to be passed as VmaMemoryRequirements::flags.
|
|
typedef enum VmaMemoryRequirementFlagBits {
|
|
/** \brief Set this flag if the allocation should have its own memory block.
|
|
|
|
Use it for special, big resources, like fullscreen images used as attachments.
|
|
|
|
This flag must also be used for host visible resources that you want to map
|
|
simultaneously because otherwise they might end up as regions of the same
|
|
VkDeviceMemory, while mapping same VkDeviceMemory multiple times is illegal.
|
|
*/
|
|
VMA_MEMORY_REQUIREMENT_OWN_MEMORY_BIT = 0x00000001,
|
|
|
|
/** \brief Set this flag to only try to allocate from existing VkDeviceMemory blocks and never create new such block.
|
|
|
|
If new allocation cannot be placed in any of the existing blocks, allocation
|
|
fails with VK_ERROR_OUT_OF_DEVICE_MEMORY error.
|
|
|
|
It makes no sense to set VMA_MEMORY_REQUIREMENT_OWN_MEMORY_BIT and
|
|
VMA_MEMORY_REQUIREMENT_NEVER_ALLOCATE_BIT at the same time. */
|
|
VMA_MEMORY_REQUIREMENT_NEVER_ALLOCATE_BIT = 0x00000002,
|
|
/** \brief Set to use a memory that will be persistently mapped and retrieve pointer to it.
|
|
|
|
Pointer to mapped memory will be returned through ppMappedData. You cannot
|
|
map the memory on your own as multiple maps of a single VkDeviceMemory are
|
|
illegal.
|
|
*/
|
|
VMA_MEMORY_REQUIREMENT_PERSISTENT_MAP_BIT = 0x00000004,
|
|
|
|
VMA_MEMORY_REQUIREMENT_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaMemoryRequirementFlagBits;
|
|
typedef VkFlags VmaMemoryRequirementFlags;
|
|
|
|
typedef struct VmaMemoryRequirements
|
|
{
|
|
VmaMemoryRequirementFlags flags;
|
|
/** \brief Intended usage of memory.
|
|
|
|
Leave VMA_MEMORY_USAGE_UNKNOWN if you specify requiredFlags. You can also use both.
|
|
*/
|
|
VmaMemoryUsage usage;
|
|
/** \brief Flags that must be set in a Memory Type chosen for an allocation.
|
|
|
|
Leave 0 if you specify requirement via usage. */
|
|
VkMemoryPropertyFlags requiredFlags;
|
|
/** \brief Flags that preferably should be set in a Memory Type chosen for an allocation.
|
|
|
|
Set to 0 if no additional flags are prefered and only requiredFlags should be used.
|
|
If not 0, it must be a superset or equal to requiredFlags. */
|
|
VkMemoryPropertyFlags preferredFlags;
|
|
/** \brief Custom general-purpose pointer that will be stored in VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). */
|
|
void* pUserData;
|
|
} VmaMemoryRequirements;
|
|
|
|
/**
|
|
This algorithm tries to find a memory type that:
|
|
|
|
- Is allowed by memoryTypeBits.
|
|
- Contains all the flags from pMemoryRequirements->requiredFlags.
|
|
- Matches intended usage.
|
|
- Has as many flags from pMemoryRequirements->preferredFlags as possible.
|
|
|
|
\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
|
|
from this function or any other allocating function probably means that your
|
|
device doesn't support any memory type with requested features for the specific
|
|
type of resource you want to use it for. Please check parameters of your
|
|
resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
|
|
*/
|
|
VkResult vmaFindMemoryTypeIndex(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeBits,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
uint32_t* pMemoryTypeIndex);
|
|
|
|
/** @} */
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/** \defgroup layer2 Layer 2 Allocating Memory
|
|
@{
|
|
*/
|
|
|
|
VK_DEFINE_HANDLE(VmaAllocation)
|
|
|
|
/** \brief Parameters of VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
|
|
*/
|
|
typedef struct VmaAllocationInfo {
|
|
/** \brief Memory type index that this allocation was allocated from.
|
|
|
|
It never changes.
|
|
*/
|
|
uint32_t memoryType;
|
|
/** \brief Handle to Vulkan memory object.
|
|
|
|
Same memory object can be shared by multiple allocations.
|
|
|
|
It can change after call to vmaDefragment() if this allocation is passed to the function.
|
|
*/
|
|
VkDeviceMemory deviceMemory;
|
|
/** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
|
|
|
|
It can change after call to vmaDefragment() if this allocation is passed to the function.
|
|
*/
|
|
VkDeviceSize offset;
|
|
/** \brief Size of this allocation, in bytes.
|
|
|
|
It never changes.
|
|
*/
|
|
VkDeviceSize size;
|
|
/** \brief Pointer to the beginning of this allocation as mapped data. Null if this alloaction is not persistently mapped.
|
|
|
|
It can change after call to vmaUnmapPersistentlyMappedMemory(), vmaMapPersistentlyMappedMemory().
|
|
It can also change after call to vmaDefragment() if this allocation is passed to the function.
|
|
*/
|
|
void* pMappedData;
|
|
/** \brief Custom general-purpose pointer that was passed as VmaMemoryRequirements::pUserData or set using vmaSetAllocationUserData().
|
|
|
|
It can change after call to vmaSetAllocationUserData() for this allocation.
|
|
*/
|
|
void* pUserData;
|
|
} VmaAllocationInfo;
|
|
|
|
/** \brief General purpose memory allocation.
|
|
|
|
@param[out] pAllocation Handle to allocated memory.
|
|
@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function VmaGetAllocationInfo().
|
|
|
|
You should free the memory using vmaFreeMemory().
|
|
|
|
It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
|
|
vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
|
|
*/
|
|
VkResult vmaAllocateMemory(
|
|
VmaAllocator allocator,
|
|
const VkMemoryRequirements* pVkMemoryRequirements,
|
|
const VmaMemoryRequirements* pVmaMemoryRequirements,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo);
|
|
|
|
/**
|
|
@param[out] pAllocation Handle to allocated memory.
|
|
@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function VmaGetAllocationInfo().
|
|
|
|
You should free the memory using vmaFreeMemory().
|
|
*/
|
|
VkResult vmaAllocateMemoryForBuffer(
|
|
VmaAllocator allocator,
|
|
VkBuffer buffer,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo);
|
|
|
|
/// Function similar to vmaAllocateMemoryForBuffer().
|
|
VkResult vmaAllocateMemoryForImage(
|
|
VmaAllocator allocator,
|
|
VkImage image,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo);
|
|
|
|
/// Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
|
|
void vmaFreeMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation);
|
|
|
|
/// Returns current information about specified allocation.
|
|
void vmaGetAllocationInfo(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VmaAllocationInfo* pAllocationInfo);
|
|
|
|
/// Sets pUserData in given allocation to new value.
|
|
void vmaSetAllocationUserData(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
void* pUserData);
|
|
|
|
/**
|
|
Feel free to use vkMapMemory on these memory blocks on you own if you want, but
|
|
just for convenience and to make sure correct offset and size is always
|
|
specified, usage of vmaMapMemory() / vmaUnmapMemory() is recommended.
|
|
|
|
Do not use it on memory allocated with VMA_MEMORY_REQUIREMENT_PERSISTENT_MAP_BIT
|
|
as multiple maps to same VkDeviceMemory is illegal.
|
|
*/
|
|
VkResult vmaMapMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
void** ppData);
|
|
|
|
void vmaUnmapMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation);
|
|
|
|
/** \brief Unmaps persistently mapped memory of types that is HOST_COHERENT and DEVICE_LOCAL.
|
|
|
|
This is optional performance optimization. You should call it on Windows for
|
|
time of call to vkQueueSubmit and vkQueuePresent, for performance reasons,
|
|
because of the internal behavior of WDDM.
|
|
|
|
After this call VmaAllocationInfo::pMappedData of some allocations may become null.
|
|
|
|
This call is reference-counted. Memory is mapped again after you call
|
|
vmaMapPersistentlyMappedMemory() same number of times that you called
|
|
vmaUnmapPersistentlyMappedMemory().
|
|
*/
|
|
void vmaUnmapPersistentlyMappedMemory(VmaAllocator allocator);
|
|
|
|
/** \brief Maps back persistently mapped memory of types that is HOST_COHERENT and DEVICE_LOCAL.
|
|
|
|
See vmaUnmapPersistentlyMappedMemory().
|
|
|
|
After this call VmaAllocationInfo::pMappedData of some allocation may have value
|
|
different than before calling vmaUnmapPersistentlyMappedMemory().
|
|
*/
|
|
VkResult vmaMapPersistentlyMappedMemory(VmaAllocator allocator);
|
|
|
|
/** \brief Optional configuration parameters to be passed to function vmaDefragment(). */
|
|
typedef struct VmaDefragmentationInfo {
|
|
/** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
|
|
|
|
Default is VK_WHOLE_SIZE, which means no limit.
|
|
*/
|
|
VkDeviceSize maxBytesToMove;
|
|
/** \brief Maximum number of allocations that can be moved to different place.
|
|
|
|
Default is UINT32_MAX, which means no limit.
|
|
*/
|
|
uint32_t maxAllocationsToMove;
|
|
} VmaDefragmentationInfo;
|
|
|
|
/** \brief Statistics returned by function vmaDefragment(). */
|
|
typedef struct VmaDefragmentationStats {
|
|
/// Total number of bytes that have been copied while moving allocations to different places.
|
|
VkDeviceSize bytesMoved;
|
|
/// Total number of bytes that have been released to the system by freeing empty VkDeviceMemory objects.
|
|
VkDeviceSize bytesFreed;
|
|
/// Number of allocations that have been moved to different places.
|
|
uint32_t allocationsMoved;
|
|
/// Number of empty VkDeviceMemory objects that have been released to the system.
|
|
uint32_t deviceMemoryBlocksFreed;
|
|
} VmaDefragmentationStats;
|
|
|
|
/** \brief Compacts memory by moving allocations.
|
|
|
|
@param pAllocations Array of allocations that can be moved during this compation.
|
|
@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
|
|
@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
|
|
@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
|
|
@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
|
|
@return VK_SUCCESS if completed, VK_INCOMPLETE if succeeded but didn't make all possible optimizations because limits specified in pDefragmentationInfo have been reached, negative error code in case of error.
|
|
|
|
This function works by moving allocations to different places (different
|
|
VkDeviceMemory objects and/or different offsets) in order to optimize memory
|
|
usage. Only allocations that are in pAllocations array can be moved. All other
|
|
allocations are considered nonmovable in this call. Basic rules:
|
|
|
|
- Only allocations made in memory types that have
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT flag can be compacted. You may pass other
|
|
allocations but it makes no sense - these will never be moved.
|
|
- You may pass allocations made with VMA_MEMORY_REQUIREMENT_OWN_MEMORY_BIT but
|
|
it makes no sense - they will never be moved.
|
|
- Both allocations made with or without VMA_MEMORY_REQUIREMENT_PERSISTENT_MAP_BIT
|
|
flag can be compacted. If not persistently mapped, memory will be mapped
|
|
temporarily inside this function if needed, so it shouldn't be mapped by you for
|
|
the time of this call.
|
|
- You must not pass same VmaAllocation object multiple times in pAllocations array.
|
|
|
|
The function also frees empty VkDeviceMemory blocks.
|
|
|
|
After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
|
|
VmaAllocationInfo::offset changes. You must query them again using
|
|
vmaGetAllocationInfo() if you need them.
|
|
|
|
If an allocation has been moved, data in memory is copied to new place
|
|
automatically, but if it was bound to a buffer or an image, you must destroy
|
|
that object yourself, create new one and bind it to the new memory pointed by
|
|
the allocation. You must use vkDestroyBuffer(), vkDestroyImage(),
|
|
vkCreateBuffer(), vkCreateImage() for that purpose and NOT vmaDestroyBuffer(),
|
|
vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage()! Example:
|
|
|
|
|
|
VkDevice device = ...;
|
|
VmaAllocator allocator = ...;
|
|
std::vector<VkBuffer> buffers = ...;
|
|
std::vector<VmaAllocation> allocations = ...;
|
|
|
|
std::vector<VkBool32> allocationsChanged(allocations.size());
|
|
vmaDefragment(allocator, allocations.data(), allocations.size(), allocationsChanged.data(), nullptr, nullptr);
|
|
|
|
for(size_t i = 0; i < allocations.size(); ++i)
|
|
{
|
|
if(allocationsChanged[i])
|
|
{
|
|
VmaAllocationInfo allocInfo;
|
|
vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
|
|
|
|
vkDestroyBuffer(device, buffers[i], nullptr);
|
|
|
|
VkBufferCreateInfo bufferInfo = ...;
|
|
vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
|
|
|
|
.// You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
|
|
|
|
vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset);
|
|
}
|
|
}
|
|
|
|
This function may be time-consuming, so you shouldn't call it too often (like
|
|
every frame or after every resource creation/destruction), but rater you can
|
|
call it on special occasions (like when reloading a game level, when you just
|
|
destroyed a lot of objects).
|
|
*/
|
|
VkResult vmaDefragment(
|
|
VmaAllocator allocator,
|
|
VmaAllocation* pAllocations,
|
|
size_t allocationCount,
|
|
VkBool32* pAllocationsChanged,
|
|
const VmaDefragmentationInfo *pDefragmentationInfo,
|
|
VmaDefragmentationStats* pDefragmentationStats);
|
|
|
|
/** @} */
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/** \defgroup layer3 Layer 3 Creating Buffers and Images
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
@param[out] pBuffer Buffer that was created.
|
|
@param[out] pAllocation Allocation that was created.
|
|
@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function VmaGetAllocationInfo().
|
|
|
|
This function automatically:
|
|
|
|
-# Creates buffer/image.
|
|
-# Allocates appropriate memory for it.
|
|
-# Binds the buffer/image with the memory.
|
|
|
|
You do not (and should not) pass returned pMemory to vmaFreeMemory. Only calling
|
|
vmaDestroyBuffer() / vmaDestroyImage() is required for objects created using
|
|
vmaCreateBuffer() / vmaCreateImage().
|
|
*/
|
|
VkResult vmaCreateBuffer(
|
|
VmaAllocator allocator,
|
|
const VkBufferCreateInfo* pCreateInfo,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VkBuffer* pBuffer,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo);
|
|
|
|
void vmaDestroyBuffer(
|
|
VmaAllocator allocator,
|
|
VkBuffer buffer,
|
|
VmaAllocation allocation);
|
|
|
|
/// Function similar to vmaCreateBuffer().
|
|
VkResult vmaCreateImage(
|
|
VmaAllocator allocator,
|
|
const VkImageCreateInfo* pCreateInfo,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VkImage* pImage,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo);
|
|
|
|
void vmaDestroyImage(
|
|
VmaAllocator allocator,
|
|
VkImage image,
|
|
VmaAllocation allocation);
|
|
|
|
/** @} */
|
|
|
|
#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
|
#ifdef VMA_IMPLEMENTATION
|
|
#undef VMA_IMPLEMENTATION
|
|
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
|
|
/*******************************************************************************
|
|
CONFIGURATION SECTION
|
|
|
|
Define some of these macros before each #include of this header or change them
|
|
here if you need other then default behavior depending on your environment.
|
|
*/
|
|
|
|
// Define this macro to 1 to make the library use STL containers instead of its own implementation.
|
|
//#define VMA_USE_STL_CONTAINERS 1
|
|
|
|
/* Set this macro to 1 to make the library including and using STL containers:
|
|
std::pair, std::vector, std::list, std::unordered_map.
|
|
|
|
Set it to 0 or undefined to make the library using its own implementation of
|
|
the containers.
|
|
*/
|
|
#if VMA_USE_STL_CONTAINERS
|
|
#define VMA_USE_STL_VECTOR 1
|
|
#define VMA_USE_STL_UNORDERED_MAP 1
|
|
#define VMA_USE_STL_LIST 1
|
|
#endif
|
|
|
|
#if VMA_USE_STL_VECTOR
|
|
#include <vector>
|
|
#endif
|
|
|
|
#if VMA_USE_STL_UNORDERED_MAP
|
|
#include <unordered_map>
|
|
#endif
|
|
|
|
#if VMA_USE_STL_LIST
|
|
#include <list>
|
|
#endif
|
|
|
|
/*
|
|
Following headers are used in this CONFIGURATION section only, so feel free to
|
|
remove them if not needed.
|
|
*/
|
|
#include <cassert> // for assert
|
|
#include <algorithm> // for min, max
|
|
#include <mutex> // for std::mutex
|
|
|
|
#if !defined(_WIN32)
|
|
#include <malloc.h> // for aligned_alloc()
|
|
#endif
|
|
|
|
// Normal assert to check for programmer's errors, especially in Debug configuration.
|
|
#ifndef VMA_ASSERT
|
|
#ifdef _DEBUG
|
|
#define VMA_ASSERT(expr) assert(expr)
|
|
#else
|
|
#define VMA_ASSERT(expr)
|
|
#endif
|
|
#endif
|
|
|
|
// Assert that will be called very often, like inside data structures e.g. operator[].
|
|
// Making it non-empty can make program slow.
|
|
#ifndef VMA_HEAVY_ASSERT
|
|
#ifdef _DEBUG
|
|
#define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
|
|
#else
|
|
#define VMA_HEAVY_ASSERT(expr)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_NULL
|
|
// Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
|
|
#define VMA_NULL nullptr
|
|
#endif
|
|
|
|
#ifndef VMA_ALIGN_OF
|
|
#define VMA_ALIGN_OF(type) (__alignof(type))
|
|
#endif
|
|
|
|
#ifndef VMA_SYSTEM_ALIGNED_MALLOC
|
|
#if defined(_WIN32)
|
|
#define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment)))
|
|
#else
|
|
#define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) ))
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_SYSTEM_FREE
|
|
#if defined(_WIN32)
|
|
#define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr)
|
|
#else
|
|
#define VMA_SYSTEM_FREE(ptr) free(ptr)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_MIN
|
|
#define VMA_MIN(v1, v2) (std::min((v1), (v2)))
|
|
#endif
|
|
|
|
#ifndef VMA_MAX
|
|
#define VMA_MAX(v1, v2) (std::max((v1), (v2)))
|
|
#endif
|
|
|
|
#ifndef VMA_SWAP
|
|
#define VMA_SWAP(v1, v2) std::swap((v1), (v2))
|
|
#endif
|
|
|
|
#ifndef VMA_SORT
|
|
#define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_LOG
|
|
#define VMA_DEBUG_LOG(format, ...)
|
|
/*
|
|
#define VMA_DEBUG_LOG(format, ...) do { \
|
|
printf(format, __VA_ARGS__); \
|
|
printf("\n"); \
|
|
} while(false)
|
|
*/
|
|
#endif
|
|
|
|
// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)
|
|
{
|
|
_ultoa_s(num, outStr, strLen, 10);
|
|
}
|
|
static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)
|
|
{
|
|
_ui64toa_s(num, outStr, strLen, 10);
|
|
}
|
|
#endif
|
|
|
|
#ifndef VMA_MUTEX
|
|
class VmaMutex
|
|
{
|
|
public:
|
|
VmaMutex() { }
|
|
~VmaMutex() { }
|
|
void Lock() { m_Mutex.lock(); }
|
|
void Unlock() { m_Mutex.unlock(); }
|
|
private:
|
|
std::mutex m_Mutex;
|
|
};
|
|
#define VMA_MUTEX VmaMutex
|
|
#endif
|
|
|
|
#ifndef VMA_BEST_FIT
|
|
/**
|
|
Main parameter for function assessing how good is a free suballocation for a new
|
|
allocation request.
|
|
|
|
- Set to 1 to use Best-Fit algorithm - prefer smaller blocks, as close to the
|
|
size of requested allocations as possible.
|
|
- Set to 0 to use Worst-Fit algorithm - prefer larger blocks, as large as
|
|
possible.
|
|
|
|
Experiments in special testing environment showed that Best-Fit algorithm is
|
|
better.
|
|
*/
|
|
#define VMA_BEST_FIT (1)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_ALWAYS_OWN_MEMORY
|
|
/**
|
|
Every object will have its own allocation.
|
|
Define to 1 for debugging purposes only.
|
|
*/
|
|
#define VMA_DEBUG_ALWAYS_OWN_MEMORY (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_ALIGNMENT
|
|
/**
|
|
Minimum alignment of all suballocations, in bytes.
|
|
Set to more than 1 for debugging purposes only. Must be power of two.
|
|
*/
|
|
#define VMA_DEBUG_ALIGNMENT (1)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_MARGIN
|
|
/**
|
|
Minimum margin between suballocations, in bytes.
|
|
Set nonzero for debugging purposes only.
|
|
*/
|
|
#define VMA_DEBUG_MARGIN (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_GLOBAL_MUTEX
|
|
/**
|
|
Set this to 1 for debugging purposes only, to enable single mutex protecting all
|
|
entry calls to the library. Can be useful for debugging multithreading issues.
|
|
*/
|
|
#define VMA_DEBUG_GLOBAL_MUTEX (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
|
|
/**
|
|
Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
|
|
Set to more than 1 for debugging purposes only. Must be power of two.
|
|
*/
|
|
#define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
|
|
#endif
|
|
|
|
#ifndef VMA_SMALL_HEAP_MAX_SIZE
|
|
/// Maximum size of a memory heap in Vulkan to consider it "small".
|
|
#define VMA_SMALL_HEAP_MAX_SIZE (512 * 1024 * 1024)
|
|
#endif
|
|
|
|
#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
|
|
/// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
|
|
#define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256 * 1024 * 1024)
|
|
#endif
|
|
|
|
#ifndef VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE
|
|
/// Default size of a block allocated as single VkDeviceMemory from a "small" heap.
|
|
#define VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE (64 * 1024 * 1024)
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
END OF CONFIGURATION
|
|
*/
|
|
|
|
static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
|
|
VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
|
|
|
|
// Returns number of bits set to 1 in (v).
|
|
static inline uint32_t CountBitsSet(uint32_t v)
|
|
{
|
|
uint32_t c = v - ((v >> 1) & 0x55555555);
|
|
c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
|
|
c = ((c >> 4) + c) & 0x0F0F0F0F;
|
|
c = ((c >> 8) + c) & 0x00FF00FF;
|
|
c = ((c >> 16) + c) & 0x0000FFFF;
|
|
return c;
|
|
}
|
|
|
|
// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
|
|
// Use types like uint32_t, uint64_t as T.
|
|
template <typename T>
|
|
static inline T VmaAlignUp(T val, T align)
|
|
{
|
|
return (val + align - 1) / align * align;
|
|
}
|
|
|
|
// Division with mathematical rounding to nearest number.
|
|
template <typename T>
|
|
inline T VmaRoundDiv(T x, T y)
|
|
{
|
|
return (x + (y / (T)2)) / y;
|
|
}
|
|
|
|
#ifndef VMA_SORT
|
|
|
|
template<typename Iterator, typename Compare>
|
|
Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
|
|
{
|
|
Iterator centerValue = end; --centerValue;
|
|
Iterator insertIndex = beg;
|
|
for(Iterator i = beg; i < centerValue; ++i)
|
|
{
|
|
if(cmp(*i, *centerValue))
|
|
{
|
|
if(insertIndex != i)
|
|
{
|
|
VMA_SWAP(*i, *insertIndex);
|
|
}
|
|
++insertIndex;
|
|
}
|
|
}
|
|
if(insertIndex != centerValue)
|
|
{
|
|
VMA_SWAP(*insertIndex, *centerValue);
|
|
}
|
|
return insertIndex;
|
|
}
|
|
|
|
template<typename Iterator, typename Compare>
|
|
void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
|
|
{
|
|
if(beg < end)
|
|
{
|
|
Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
|
|
VmaQuickSort<Iterator, Compare>(beg, it, cmp);
|
|
VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
|
|
}
|
|
}
|
|
|
|
#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
|
|
|
|
#endif // #ifndef VMA_SORT
|
|
|
|
/*
|
|
Returns true if two memory blocks occupy overlapping pages.
|
|
ResourceA must be in less memory offset than ResourceB.
|
|
|
|
Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
|
|
chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
|
|
*/
|
|
static inline bool VmaBlocksOnSamePage(
|
|
VkDeviceSize resourceAOffset,
|
|
VkDeviceSize resourceASize,
|
|
VkDeviceSize resourceBOffset,
|
|
VkDeviceSize pageSize)
|
|
{
|
|
VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
|
|
VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
|
|
VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
|
|
VkDeviceSize resourceBStart = resourceBOffset;
|
|
VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
|
|
return resourceAEndPage == resourceBStartPage;
|
|
}
|
|
|
|
enum VmaSuballocationType
|
|
{
|
|
VMA_SUBALLOCATION_TYPE_FREE = 0,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER = 2,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
|
|
VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
|
|
};
|
|
|
|
/*
|
|
Returns true if given suballocation types could conflict and must respect
|
|
VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
|
|
or linear image and another one is optimal image. If type is unknown, behave
|
|
conservatively.
|
|
*/
|
|
static inline bool VmaIsBufferImageGranularityConflict(
|
|
VmaSuballocationType suballocType1,
|
|
VmaSuballocationType suballocType2)
|
|
{
|
|
if(suballocType1 > suballocType2)
|
|
VMA_SWAP(suballocType1, suballocType2);
|
|
|
|
switch(suballocType1)
|
|
{
|
|
case VMA_SUBALLOCATION_TYPE_FREE:
|
|
return false;
|
|
case VMA_SUBALLOCATION_TYPE_UNKNOWN:
|
|
return true;
|
|
case VMA_SUBALLOCATION_TYPE_BUFFER:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
|
|
return false;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
|
|
struct VmaMutexLock
|
|
{
|
|
public:
|
|
VmaMutexLock(VMA_MUTEX& mutex) : m_Mutex(mutex) { mutex.Lock(); }
|
|
~VmaMutexLock() { m_Mutex.Unlock(); }
|
|
|
|
private:
|
|
VMA_MUTEX& m_Mutex;
|
|
};
|
|
|
|
#if VMA_DEBUG_GLOBAL_MUTEX
|
|
static VMA_MUTEX gDebugGlobalMutex;
|
|
#define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex);
|
|
#else
|
|
#define VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
#endif
|
|
|
|
// Minimum size of a free suballocation to register it in the free suballocation collection.
|
|
static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
|
|
|
|
/*
|
|
Performs binary search and returns iterator to first element that is greater or
|
|
equal to (key), according to comparison (cmp).
|
|
|
|
Cmp should return true if first argument is less than second argument.
|
|
|
|
Returned value is the found element, if present in the collection or place where
|
|
new element with value (key) should be inserted.
|
|
*/
|
|
template <typename IterT, typename KeyT, typename CmpT>
|
|
static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpT cmp)
|
|
{
|
|
size_t down = 0, up = (end - beg);
|
|
while(down < up)
|
|
{
|
|
const size_t mid = (down + up) / 2;
|
|
if(cmp(*(beg+mid), key))
|
|
down = mid + 1;
|
|
else
|
|
up = mid;
|
|
}
|
|
return beg + down;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Memory allocation
|
|
|
|
static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
|
|
{
|
|
if((pAllocationCallbacks != VMA_NULL) &&
|
|
(pAllocationCallbacks->pfnAllocation != VMA_NULL))
|
|
{
|
|
return (*pAllocationCallbacks->pfnAllocation)(
|
|
pAllocationCallbacks->pUserData,
|
|
size,
|
|
alignment,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
}
|
|
else
|
|
{
|
|
return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
|
|
}
|
|
}
|
|
|
|
static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
|
|
{
|
|
if((pAllocationCallbacks != VMA_NULL) &&
|
|
(pAllocationCallbacks->pfnFree != VMA_NULL))
|
|
{
|
|
(*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
|
|
}
|
|
else
|
|
{
|
|
VMA_SYSTEM_FREE(ptr);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
|
|
{
|
|
return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
|
|
{
|
|
return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
|
|
|
|
#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
|
|
|
|
template<typename T>
|
|
static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
|
|
{
|
|
ptr->~T();
|
|
VmaFree(pAllocationCallbacks, ptr);
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
|
|
{
|
|
if(ptr != VMA_NULL)
|
|
{
|
|
for(size_t i = count; i--; )
|
|
ptr[i].~T();
|
|
VmaFree(pAllocationCallbacks, ptr);
|
|
}
|
|
}
|
|
|
|
// STL-compatible allocator.
|
|
template<typename T>
|
|
class VmaStlAllocator
|
|
{
|
|
public:
|
|
const VkAllocationCallbacks* const m_pCallbacks;
|
|
typedef T value_type;
|
|
|
|
VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
|
|
template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
|
|
|
|
T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
|
|
void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
|
|
|
|
template<typename U>
|
|
bool operator==(const VmaStlAllocator<U>& rhs) const
|
|
{
|
|
return m_pCallbacks == rhs.m_pCallbacks;
|
|
}
|
|
template<typename U>
|
|
bool operator!=(const VmaStlAllocator<U>& rhs) const
|
|
{
|
|
return m_pCallbacks != rhs.m_pCallbacks;
|
|
}
|
|
|
|
VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
|
|
};
|
|
|
|
#if VMA_USE_STL_VECTOR
|
|
|
|
#define VmaVector std::vector
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
|
|
{
|
|
vec.insert(vec.begin() + index, item);
|
|
}
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VectorRemove(std::vector<T, allocatorT>& vec, size_t index)
|
|
{
|
|
vec.erase(vec.begin() + index);
|
|
}
|
|
|
|
#else // #if VMA_USE_STL_VECTOR
|
|
|
|
/* Class with interface compatible with subset of std::vector.
|
|
T must be POD because constructors and destructors are not called and memcpy is
|
|
used for these objects. */
|
|
template<typename T, typename AllocatorT>
|
|
class VmaVector
|
|
{
|
|
public:
|
|
VmaVector(const AllocatorT& allocator) :
|
|
m_Allocator(allocator),
|
|
m_pArray(VMA_NULL),
|
|
m_Count(0),
|
|
m_Capacity(0)
|
|
{
|
|
}
|
|
|
|
VmaVector(size_t count, const AllocatorT& allocator) :
|
|
m_Allocator(allocator),
|
|
m_pArray(count ? (T*)VmaAllocateArray<T>(allocator->m_pCallbacks, count) : VMA_NULL),
|
|
m_Count(count),
|
|
m_Capacity(count)
|
|
{
|
|
}
|
|
|
|
VmaVector(const VmaVector<T, AllocatorT>& src) :
|
|
m_Allocator(src.m_Allocator),
|
|
m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src->m_pCallbacks, src.m_Count) : VMA_NULL),
|
|
m_Count(src.m_Count),
|
|
m_Capacity(src.m_Count)
|
|
{
|
|
if(m_Count != 0)
|
|
memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
|
|
}
|
|
|
|
~VmaVector()
|
|
{
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
}
|
|
|
|
VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
|
|
{
|
|
if(&rhs != this)
|
|
{
|
|
Resize(rhs.m_Count);
|
|
if(m_Count != 0)
|
|
memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool empty() const { return m_Count == 0; }
|
|
size_t size() const { return m_Count; }
|
|
T* data() { return m_pArray; }
|
|
const T* data() const { return m_pArray; }
|
|
|
|
T& operator[](size_t index)
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
return m_pArray[index];
|
|
}
|
|
const T& operator[](size_t index) const
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
return m_pArray[index];
|
|
}
|
|
|
|
T& front()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return m_pArray[0];
|
|
}
|
|
const T& front() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return m_pArray[0];
|
|
}
|
|
T& back()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return m_pArray[m_Count - 1];
|
|
}
|
|
const T& back() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return m_pArray[m_Count - 1];
|
|
}
|
|
|
|
void reserve(size_t newCapacity, bool freeMemory = false)
|
|
{
|
|
newCapacity = VMA_MAX(newCapacity, m_Count);
|
|
|
|
if((newCapacity < m_Capacity) && !freeMemory)
|
|
newCapacity = m_Capacity;
|
|
|
|
if(newCapacity != m_Capacity)
|
|
{
|
|
T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
|
|
if(m_Count != 0)
|
|
memcpy(newArray, m_pArray, m_Count * sizeof(T));
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
m_Capacity = newCapacity;
|
|
m_pArray = newArray;
|
|
}
|
|
}
|
|
|
|
void resize(size_t newCount, bool freeMemory = false)
|
|
{
|
|
size_t newCapacity = m_Capacity;
|
|
if(newCount > m_Capacity)
|
|
newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
|
|
else if(freeMemory)
|
|
newCapacity = newCount;
|
|
|
|
if(newCapacity != m_Capacity)
|
|
{
|
|
T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
|
|
const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
|
|
if(elementsToCopy != 0)
|
|
memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
m_Capacity = newCapacity;
|
|
m_pArray = newArray;
|
|
}
|
|
|
|
m_Count = newCount;
|
|
}
|
|
|
|
void clear(bool freeMemory = false)
|
|
{
|
|
resize(0, freeMemory);
|
|
}
|
|
|
|
void insert(size_t index, const T& src)
|
|
{
|
|
VMA_HEAVY_ASSERT(index <= m_Count);
|
|
const size_t oldCount = size();
|
|
resize(oldCount + 1);
|
|
if(index < oldCount)
|
|
memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
|
|
m_pArray[index] = src;
|
|
}
|
|
|
|
void remove(size_t index)
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
const size_t oldCount = size();
|
|
if(index < oldCount - 1)
|
|
memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
|
|
resize(oldCount - 1);
|
|
}
|
|
|
|
void push_back(const T& src)
|
|
{
|
|
const size_t newIndex = size();
|
|
resize(newIndex + 1);
|
|
m_pArray[newIndex] = src;
|
|
}
|
|
|
|
void pop_back()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
resize(size() - 1);
|
|
}
|
|
|
|
void push_front(const T& src)
|
|
{
|
|
insert(0, src);
|
|
}
|
|
|
|
void pop_front()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
remove(0);
|
|
}
|
|
|
|
typedef T* iterator;
|
|
|
|
iterator begin() { return m_pArray; }
|
|
iterator end() { return m_pArray + m_Count; }
|
|
|
|
private:
|
|
AllocatorT m_Allocator;
|
|
T* m_pArray;
|
|
size_t m_Count;
|
|
size_t m_Capacity;
|
|
};
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
|
|
{
|
|
vec.insert(index, item);
|
|
}
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
|
|
{
|
|
vec.remove(index);
|
|
}
|
|
|
|
#endif // #if VMA_USE_STL_VECTOR
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaPoolAllocator
|
|
|
|
/*
|
|
Allocator for objects of type T using a list of arrays (pools) to speed up
|
|
allocation. Number of elements that can be allocated is not bounded because
|
|
allocator can create multiple blocks.
|
|
*/
|
|
template<typename T>
|
|
class VmaPoolAllocator
|
|
{
|
|
public:
|
|
VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock);
|
|
~VmaPoolAllocator();
|
|
void Clear();
|
|
T* Alloc();
|
|
void Free(T* ptr);
|
|
|
|
private:
|
|
union Item
|
|
{
|
|
uint32_t NextFreeIndex;
|
|
T Value;
|
|
};
|
|
|
|
struct ItemBlock
|
|
{
|
|
Item* pItems;
|
|
uint32_t FirstFreeIndex;
|
|
};
|
|
|
|
const VkAllocationCallbacks* m_pAllocationCallbacks;
|
|
size_t m_ItemsPerBlock;
|
|
VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
|
|
|
|
ItemBlock& CreateNewBlock();
|
|
};
|
|
|
|
template<typename T>
|
|
VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock) :
|
|
m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_ItemsPerBlock(itemsPerBlock),
|
|
m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
|
|
{
|
|
VMA_ASSERT(itemsPerBlock > 0);
|
|
}
|
|
|
|
template<typename T>
|
|
VmaPoolAllocator<T>::~VmaPoolAllocator()
|
|
{
|
|
Clear();
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaPoolAllocator<T>::Clear()
|
|
{
|
|
for(size_t i = m_ItemBlocks.size(); i--; )
|
|
vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemsPerBlock);
|
|
m_ItemBlocks.clear();
|
|
}
|
|
|
|
template<typename T>
|
|
T* VmaPoolAllocator<T>::Alloc()
|
|
{
|
|
for(size_t i = m_ItemBlocks.size(); i--; )
|
|
{
|
|
ItemBlock& block = m_ItemBlocks[i];
|
|
// This block has some free items: Use first one.
|
|
if(block.FirstFreeIndex != UINT32_MAX)
|
|
{
|
|
Item* const pItem = &block.pItems[block.FirstFreeIndex];
|
|
block.FirstFreeIndex = pItem->NextFreeIndex;
|
|
return &pItem->Value;
|
|
}
|
|
}
|
|
|
|
// No block has free item: Create new one and use it.
|
|
ItemBlock& newBlock = CreateNewBlock();
|
|
Item* const pItem = &newBlock.pItems[0];
|
|
newBlock.FirstFreeIndex = pItem->NextFreeIndex;
|
|
return &pItem->Value;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaPoolAllocator<T>::Free(T* ptr)
|
|
{
|
|
// Search all memory blocks to find ptr.
|
|
for(size_t i = 0; i < m_ItemBlocks.size(); ++i)
|
|
{
|
|
ItemBlock& block = m_ItemBlocks[i];
|
|
|
|
// Casting to union.
|
|
Item* pItemPtr;
|
|
memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
|
|
|
|
// Check if pItemPtr is in address range of this block.
|
|
if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + m_ItemsPerBlock))
|
|
{
|
|
const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
|
|
pItemPtr->NextFreeIndex = block.FirstFreeIndex;
|
|
block.FirstFreeIndex = index;
|
|
return;
|
|
}
|
|
}
|
|
VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
|
|
}
|
|
|
|
template<typename T>
|
|
typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
|
|
{
|
|
ItemBlock newBlock = {
|
|
vma_new_array(m_pAllocationCallbacks, Item, m_ItemsPerBlock), 0 };
|
|
|
|
m_ItemBlocks.push_back(newBlock);
|
|
|
|
// Setup singly-linked list of all free items in this block.
|
|
for(uint32_t i = 0; i < m_ItemsPerBlock - 1; ++i)
|
|
newBlock.pItems[i].NextFreeIndex = i + 1;
|
|
newBlock.pItems[m_ItemsPerBlock - 1].NextFreeIndex = UINT32_MAX;
|
|
return m_ItemBlocks.back();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaRawList, VmaList
|
|
|
|
#if VMA_USE_STL_LIST
|
|
|
|
#define VmaList std::list
|
|
|
|
#else // #if VMA_USE_STL_LIST
|
|
|
|
template<typename T>
|
|
struct VmaListItem
|
|
{
|
|
VmaListItem* pPrev;
|
|
VmaListItem* pNext;
|
|
T Value;
|
|
};
|
|
|
|
// Doubly linked list.
|
|
template<typename T>
|
|
class VmaRawList
|
|
{
|
|
public:
|
|
typedef VmaListItem<T> ItemType;
|
|
|
|
VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
|
|
~VmaRawList();
|
|
void Clear();
|
|
|
|
size_t GetCount() const { return m_Count; }
|
|
bool IsEmpty() const { return m_Count == 0; }
|
|
|
|
ItemType* Front() { return m_pFront; }
|
|
const ItemType* Front() const { return m_pFront; }
|
|
ItemType* Back() { return m_pBack; }
|
|
const ItemType* Back() const { return m_pBack; }
|
|
|
|
ItemType* PushBack();
|
|
ItemType* PushFront();
|
|
ItemType* PushBack(const T& value);
|
|
ItemType* PushFront(const T& value);
|
|
void PopBack();
|
|
void PopFront();
|
|
|
|
// Item can be null - it means PushBack.
|
|
ItemType* InsertBefore(ItemType* pItem);
|
|
// Item can be null - it means PushFront.
|
|
ItemType* InsertAfter(ItemType* pItem);
|
|
|
|
ItemType* InsertBefore(ItemType* pItem, const T& value);
|
|
ItemType* InsertAfter(ItemType* pItem, const T& value);
|
|
|
|
void Remove(ItemType* pItem);
|
|
|
|
private:
|
|
const VkAllocationCallbacks* const m_pAllocationCallbacks;
|
|
VmaPoolAllocator<ItemType> m_ItemAllocator;
|
|
ItemType* m_pFront;
|
|
ItemType* m_pBack;
|
|
size_t m_Count;
|
|
|
|
// Declared not defined, to block copy constructor and assignment operator.
|
|
VmaRawList(const VmaRawList<T>& src);
|
|
VmaRawList<T>& operator=(const VmaRawList<T>& rhs);
|
|
};
|
|
|
|
template<typename T>
|
|
VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
|
|
m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_ItemAllocator(pAllocationCallbacks, 128),
|
|
m_pFront(VMA_NULL),
|
|
m_pBack(VMA_NULL),
|
|
m_Count(0)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
VmaRawList<T>::~VmaRawList()
|
|
{
|
|
// Intentionally not calling Clear, because that would be unnecessary
|
|
// computations to return all items to m_ItemAllocator as free.
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::Clear()
|
|
{
|
|
if(IsEmpty() == false)
|
|
{
|
|
ItemType* pItem = m_pBack;
|
|
while(pItem != VMA_NULL)
|
|
{
|
|
ItemType* const pPrevItem = pItem->pPrev;
|
|
m_ItemAllocator.Free(pItem);
|
|
pItem = pPrevItem;
|
|
}
|
|
m_pFront = VMA_NULL;
|
|
m_pBack = VMA_NULL;
|
|
m_Count = 0;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushBack()
|
|
{
|
|
ItemType* const pNewItem = m_ItemAllocator.Alloc();
|
|
pNewItem->pNext = VMA_NULL;
|
|
if(IsEmpty())
|
|
{
|
|
pNewItem->pPrev = VMA_NULL;
|
|
m_pFront = pNewItem;
|
|
m_pBack = pNewItem;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
pNewItem->pPrev = m_pBack;
|
|
m_pBack->pNext = pNewItem;
|
|
m_pBack = pNewItem;
|
|
++m_Count;
|
|
}
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushFront()
|
|
{
|
|
ItemType* const pNewItem = m_ItemAllocator.Alloc();
|
|
pNewItem->pPrev = VMA_NULL;
|
|
if(IsEmpty())
|
|
{
|
|
pNewItem->pNext = VMA_NULL;
|
|
m_pFront = pNewItem;
|
|
m_pBack = pNewItem;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
pNewItem->pNext = m_pFront;
|
|
m_pFront->pPrev = pNewItem;
|
|
m_pFront = pNewItem;
|
|
++m_Count;
|
|
}
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
|
|
{
|
|
ItemType* const pNewItem = PushBack();
|
|
pNewItem->Value = value;
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
|
|
{
|
|
ItemType* const pNewItem = PushFront();
|
|
pNewItem->Value = value;
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::PopBack()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const pBackItem = m_pBack;
|
|
ItemType* const pPrevItem = pBackItem->pPrev;
|
|
if(pPrevItem != VMA_NULL)
|
|
pPrevItem->pNext = VMA_NULL;
|
|
m_pBack = pPrevItem;
|
|
m_ItemAllocator.Free(pBackItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::PopFront()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const pFrontItem = m_pFront;
|
|
ItemType* const pNextItem = pFrontItem->pNext;
|
|
if(pNextItem != VMA_NULL)
|
|
pNextItem->pPrev = VMA_NULL;
|
|
m_pFront = pNextItem;
|
|
m_ItemAllocator.Free(pFrontItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::Remove(ItemType* pItem)
|
|
{
|
|
VMA_HEAVY_ASSERT(pItem != VMA_NULL);
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
|
if(pItem->pPrev != VMA_NULL)
|
|
pItem->pPrev->pNext = pItem->pNext;
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pFront == pItem);
|
|
m_pFront = pItem->pNext;
|
|
}
|
|
|
|
if(pItem->pNext != VMA_NULL)
|
|
pItem->pNext->pPrev = pItem->pPrev;
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pBack == pItem);
|
|
m_pBack = pItem->pPrev;
|
|
}
|
|
|
|
m_ItemAllocator.Free(pItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
|
|
{
|
|
if(pItem != VMA_NULL)
|
|
{
|
|
ItemType* const prevItem = pItem->pPrev;
|
|
ItemType* const newItem = m_ItemAllocator.Alloc();
|
|
newItem->pPrev = prevItem;
|
|
newItem->pNext = pItem;
|
|
pItem->pPrev = newItem;
|
|
if(prevItem != VMA_NULL)
|
|
prevItem->pNext = newItem;
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pFront = pItem);
|
|
m_pFront = newItem;
|
|
}
|
|
++m_Count;
|
|
return newItem;
|
|
}
|
|
else
|
|
return PushBack();
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
|
|
{
|
|
if(pItem != VMA_NULL)
|
|
{
|
|
ItemType* const nextItem = pItem->pNext;
|
|
ItemType* const newItem = m_ItemAllocator.Alloc();
|
|
newItem->pNext = nextItem;
|
|
newItem->pPrev = pItem;
|
|
pItem->pNext = newItem;
|
|
if(nextItem != VMA_NULL)
|
|
nextItem->pPrev = newItem;
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pBack = pItem);
|
|
m_pBack = newItem;
|
|
}
|
|
++m_Count;
|
|
return newItem;
|
|
}
|
|
else
|
|
return PushFront();
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
|
|
{
|
|
ItemType* const newItem = InsertBefore(pItem);
|
|
newItem->Value = value;
|
|
return newItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
|
|
{
|
|
ItemType* const newItem = InsertAfter(pItem);
|
|
newItem->Value = value;
|
|
return newItem;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
class VmaList
|
|
{
|
|
public:
|
|
class iterator
|
|
{
|
|
public:
|
|
iterator() :
|
|
m_pList(VMA_NULL),
|
|
m_pItem(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
T& operator*() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return m_pItem->Value;
|
|
}
|
|
T* operator->() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return &m_pItem->Value;
|
|
}
|
|
|
|
iterator& operator++()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
m_pItem = m_pItem->pNext;
|
|
return *this;
|
|
}
|
|
iterator& operator--()
|
|
{
|
|
if(m_pItem != VMA_NULL)
|
|
m_pItem = m_pItem->pPrev;
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList.IsEmpty());
|
|
m_pItem = m_pList->Back();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
iterator operator++(int)
|
|
{
|
|
iterator result = *this;
|
|
++*this;
|
|
return result;
|
|
}
|
|
iterator operator--(int)
|
|
{
|
|
iterator result = *this;
|
|
--*this;
|
|
return result;
|
|
}
|
|
|
|
bool operator==(const iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem == rhs.m_pItem;
|
|
}
|
|
bool operator!=(const iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem != rhs.m_pItem;
|
|
}
|
|
|
|
private:
|
|
VmaRawList<T>* m_pList;
|
|
VmaListItem<T>* m_pItem;
|
|
|
|
iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
|
|
m_pList(pList),
|
|
m_pItem(pItem)
|
|
{
|
|
}
|
|
|
|
friend class VmaList<T, AllocatorT>;
|
|
friend class VmaList<T, AllocatorT>:: const_iterator;
|
|
};
|
|
|
|
class const_iterator
|
|
{
|
|
public:
|
|
const_iterator() :
|
|
m_pList(VMA_NULL),
|
|
m_pItem(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
const_iterator(const iterator& src) :
|
|
m_pList(src.m_pList),
|
|
m_pItem(src.m_pItem)
|
|
{
|
|
}
|
|
|
|
const T& operator*() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return m_pItem->Value;
|
|
}
|
|
const T* operator->() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return &m_pItem->Value;
|
|
}
|
|
|
|
const_iterator& operator++()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
m_pItem = m_pItem->pNext;
|
|
return *this;
|
|
}
|
|
const_iterator& operator--()
|
|
{
|
|
if(m_pItem != VMA_NULL)
|
|
m_pItem = m_pItem->pPrev;
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Back();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
const_iterator operator++(int)
|
|
{
|
|
const_iterator result = *this;
|
|
++*this;
|
|
return result;
|
|
}
|
|
const_iterator operator--(int)
|
|
{
|
|
const_iterator result = *this;
|
|
--*this;
|
|
return result;
|
|
}
|
|
|
|
bool operator==(const const_iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem == rhs.m_pItem;
|
|
}
|
|
bool operator!=(const const_iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem != rhs.m_pItem;
|
|
}
|
|
|
|
private:
|
|
const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
|
|
m_pList(pList),
|
|
m_pItem(pItem)
|
|
{
|
|
}
|
|
|
|
const VmaRawList<T>* m_pList;
|
|
const VmaListItem<T>* m_pItem;
|
|
|
|
friend class VmaList<T, AllocatorT>;
|
|
};
|
|
|
|
VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
|
|
|
|
bool empty() const { return m_RawList.IsEmpty(); }
|
|
size_t size() const { return m_RawList.GetCount(); }
|
|
|
|
iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
|
|
iterator end() { return iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
|
|
const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
|
|
|
|
void clear() { m_RawList.Clear(); }
|
|
void push_back(const T& value) { m_RawList.PushBack(value); }
|
|
void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
|
|
iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
|
|
|
|
private:
|
|
VmaRawList<T> m_RawList;
|
|
};
|
|
|
|
#endif // #if VMA_USE_STL_LIST
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaMap
|
|
|
|
#if VMA_USE_STL_UNORDERED_MAP
|
|
|
|
#define VmaPair std::pair
|
|
|
|
#define VMA_MAP_TYPE(KeyT, ValueT) \
|
|
std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
|
|
|
|
#else // #if VMA_USE_STL_UNORDERED_MAP
|
|
|
|
template<typename T1, typename T2>
|
|
struct VmaPair
|
|
{
|
|
T1 first;
|
|
T2 second;
|
|
|
|
VmaPair() : first(), second() { }
|
|
VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
|
|
};
|
|
|
|
/* Class compatible with subset of interface of std::unordered_map.
|
|
KeyT, ValueT must be POD because they will be stored in VmaVector.
|
|
*/
|
|
template<typename KeyT, typename ValueT>
|
|
class VmaMap
|
|
{
|
|
public:
|
|
typedef VmaPair<KeyT, ValueT> PairType;
|
|
typedef PairType* iterator;
|
|
|
|
VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
|
|
|
|
iterator begin() { return m_Vector.begin(); }
|
|
iterator end() { return m_Vector.end(); }
|
|
|
|
void insert(const PairType& pair);
|
|
iterator find(const KeyT& key);
|
|
void erase(iterator it);
|
|
|
|
private:
|
|
VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
|
|
};
|
|
|
|
#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
|
|
|
|
template<typename FirstT, typename SecondT>
|
|
struct VmaPairFirstLess
|
|
{
|
|
bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
|
|
{
|
|
return lhs.first < rhs.first;
|
|
}
|
|
bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
|
|
{
|
|
return lhs.first < rhsFirst;
|
|
}
|
|
};
|
|
|
|
template<typename KeyT, typename ValueT>
|
|
void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
|
|
{
|
|
const size_t indexToInsert = VmaBinaryFindFirstNotLess(
|
|
m_Vector.data(),
|
|
m_Vector.data() + m_Vector.size(),
|
|
pair,
|
|
VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
|
|
VectorInsert(m_Vector, indexToInsert, pair);
|
|
}
|
|
|
|
template<typename KeyT, typename ValueT>
|
|
VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
|
|
{
|
|
PairType* it = VmaBinaryFindFirstNotLess(
|
|
m_Vector.data(),
|
|
m_Vector.data() + m_Vector.size(),
|
|
key,
|
|
VmaPairFirstLess<KeyT, ValueT>());
|
|
if((it != m_Vector.end()) && (it->first == key))
|
|
return it;
|
|
else
|
|
return m_Vector.end();
|
|
}
|
|
|
|
template<typename KeyT, typename ValueT>
|
|
void VmaMap<KeyT, ValueT>::erase(iterator it)
|
|
{
|
|
VectorRemove(m_Vector, it - m_Vector.begin());
|
|
}
|
|
|
|
#endif // #if VMA_USE_STL_UNORDERED_MAP
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class VmaBlock;
|
|
|
|
enum VMA_BLOCK_VECTOR_TYPE
|
|
{
|
|
VMA_BLOCK_VECTOR_TYPE_UNMAPPED,
|
|
VMA_BLOCK_VECTOR_TYPE_MAPPED,
|
|
VMA_BLOCK_VECTOR_TYPE_COUNT
|
|
};
|
|
|
|
static VMA_BLOCK_VECTOR_TYPE VmaMemoryRequirementFlagsToBlockVectorType(VmaMemoryRequirementFlags flags)
|
|
{
|
|
return (flags & VMA_MEMORY_REQUIREMENT_PERSISTENT_MAP_BIT) != 0 ?
|
|
VMA_BLOCK_VECTOR_TYPE_MAPPED :
|
|
VMA_BLOCK_VECTOR_TYPE_UNMAPPED;
|
|
}
|
|
|
|
struct VmaAllocation_T
|
|
{
|
|
public:
|
|
enum ALLOCATION_TYPE
|
|
{
|
|
ALLOCATION_TYPE_NONE,
|
|
ALLOCATION_TYPE_BLOCK,
|
|
ALLOCATION_TYPE_OWN,
|
|
};
|
|
|
|
VmaAllocation_T()
|
|
{
|
|
memset(this, 0, sizeof(VmaAllocation_T));
|
|
}
|
|
|
|
void InitBlockAllocation(
|
|
VmaBlock* block,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize alignment,
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocationType,
|
|
void* pUserData)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
VMA_ASSERT(block != VMA_NULL);
|
|
m_Type = ALLOCATION_TYPE_BLOCK;
|
|
m_Alignment = alignment;
|
|
m_Size = size;
|
|
m_pUserData = pUserData;
|
|
m_SuballocationType = suballocationType;
|
|
m_BlockAllocation.m_Block = block;
|
|
m_BlockAllocation.m_Offset = offset;
|
|
}
|
|
|
|
void ChangeBlockAllocation(
|
|
VmaBlock* block,
|
|
VkDeviceSize offset)
|
|
{
|
|
VMA_ASSERT(block != VMA_NULL);
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
m_BlockAllocation.m_Block = block;
|
|
m_BlockAllocation.m_Offset = offset;
|
|
}
|
|
|
|
void InitOwnAllocation(
|
|
uint32_t memoryTypeIndex,
|
|
VkDeviceMemory hMemory,
|
|
VmaSuballocationType suballocationType,
|
|
bool persistentMap,
|
|
void* pMappedData,
|
|
VkDeviceSize size,
|
|
void* pUserData)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
VMA_ASSERT(hMemory != VK_NULL_HANDLE);
|
|
m_Type = ALLOCATION_TYPE_OWN;
|
|
m_Alignment = 0;
|
|
m_Size = size;
|
|
m_pUserData = pUserData;
|
|
m_SuballocationType = suballocationType;
|
|
m_OwnAllocation.m_MemoryTypeIndex = memoryTypeIndex;
|
|
m_OwnAllocation.m_hMemory = hMemory;
|
|
m_OwnAllocation.m_PersistentMap = persistentMap;
|
|
m_OwnAllocation.m_pMappedData = pMappedData;
|
|
}
|
|
|
|
ALLOCATION_TYPE GetType() const { return m_Type; }
|
|
VkDeviceSize GetAlignment() const { return m_Alignment; }
|
|
VkDeviceSize GetSize() const { return m_Size; }
|
|
void* GetUserData() const { return m_pUserData; }
|
|
void SetUserData(void* pUserData) { m_pUserData = pUserData; }
|
|
VmaSuballocationType GetSuballocationType() const { return m_SuballocationType; }
|
|
|
|
VmaBlock* GetBlock() const
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
return m_BlockAllocation.m_Block;
|
|
}
|
|
VkDeviceSize GetOffset() const
|
|
{
|
|
return (m_Type == ALLOCATION_TYPE_BLOCK) ? m_BlockAllocation.m_Offset : 0;
|
|
}
|
|
VkDeviceMemory GetMemory() const;
|
|
uint32_t GetMemoryTypeIndex() const;
|
|
VMA_BLOCK_VECTOR_TYPE GetBlockVectorType() const;
|
|
void* GetMappedData() const;
|
|
|
|
VkResult OwnAllocMapPersistentlyMappedMemory(VkDevice hDevice)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_OWN);
|
|
if(m_OwnAllocation.m_PersistentMap)
|
|
{
|
|
return vkMapMemory(hDevice, m_OwnAllocation.m_hMemory, 0, VK_WHOLE_SIZE, 0, &m_OwnAllocation.m_pMappedData);
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
void OwnAllocUnmapPersistentlyMappedMemory(VkDevice hDevice)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_OWN);
|
|
if(m_OwnAllocation.m_pMappedData)
|
|
{
|
|
VMA_ASSERT(m_OwnAllocation.m_PersistentMap);
|
|
vkUnmapMemory(hDevice, m_OwnAllocation.m_hMemory);
|
|
m_OwnAllocation.m_pMappedData = VMA_NULL;
|
|
}
|
|
}
|
|
|
|
private:
|
|
VkDeviceSize m_Alignment;
|
|
VkDeviceSize m_Size;
|
|
void* m_pUserData;
|
|
ALLOCATION_TYPE m_Type;
|
|
VmaSuballocationType m_SuballocationType;
|
|
|
|
union
|
|
{
|
|
// Allocation out of VmaBlock.
|
|
struct BlockAllocation
|
|
{
|
|
VmaBlock* m_Block;
|
|
VkDeviceSize m_Offset;
|
|
} m_BlockAllocation;
|
|
|
|
// Allocation for an object that has its own private VkDeviceMemory.
|
|
struct OwnAllocation
|
|
{
|
|
uint32_t m_MemoryTypeIndex;
|
|
VkDeviceMemory m_hMemory;
|
|
bool m_PersistentMap;
|
|
void* m_pMappedData;
|
|
} m_OwnAllocation;
|
|
};
|
|
};
|
|
|
|
/*
|
|
Represents a region of VmaBlock that is either assigned and returned as
|
|
allocated memory block or free.
|
|
*/
|
|
struct VmaSuballocation
|
|
{
|
|
VkDeviceSize offset;
|
|
VkDeviceSize size;
|
|
VmaSuballocationType type;
|
|
};
|
|
|
|
typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
|
|
|
|
// Parameters of an allocation.
|
|
struct VmaAllocationRequest
|
|
{
|
|
VmaSuballocationList::iterator freeSuballocationItem;
|
|
VkDeviceSize offset;
|
|
};
|
|
|
|
/* Single block of memory - VkDeviceMemory with all the data about its regions
|
|
assigned or free. */
|
|
class VmaBlock
|
|
{
|
|
public:
|
|
uint32_t m_MemoryTypeIndex;
|
|
VMA_BLOCK_VECTOR_TYPE m_BlockVectorType;
|
|
VkDeviceMemory m_hMemory;
|
|
VkDeviceSize m_Size;
|
|
bool m_PersistentMap;
|
|
void* m_pMappedData;
|
|
uint32_t m_FreeCount;
|
|
VkDeviceSize m_SumFreeSize;
|
|
VmaSuballocationList m_Suballocations;
|
|
// Suballocations that are free and have size greater than certain threshold.
|
|
// Sorted by size, ascending.
|
|
VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;
|
|
|
|
VmaBlock(VmaAllocator hAllocator);
|
|
|
|
~VmaBlock()
|
|
{
|
|
VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
|
|
}
|
|
|
|
// Always call after construction.
|
|
void Init(
|
|
uint32_t newMemoryTypeIndex,
|
|
VMA_BLOCK_VECTOR_TYPE newBlockVectorType,
|
|
VkDeviceMemory newMemory,
|
|
VkDeviceSize newSize,
|
|
bool persistentMap,
|
|
void* pMappedData);
|
|
// Always call before destruction.
|
|
void Destroy(VmaAllocator allocator);
|
|
|
|
// Validates all data structures inside this object. If not valid, returns false.
|
|
bool Validate() const;
|
|
|
|
// Tries to find a place for suballocation with given parameters inside this allocation.
|
|
// If succeeded, fills pAllocationRequest and returns true.
|
|
// If failed, returns false.
|
|
bool CreateAllocationRequest(
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
|
|
// Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
|
|
// If yes, fills pOffset and returns true. If no, returns false.
|
|
bool CheckAllocation(
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
VmaSuballocationList::const_iterator freeSuballocItem,
|
|
VkDeviceSize* pOffset) const;
|
|
|
|
// Returns true if this allocation is empty - contains only single free suballocation.
|
|
bool IsEmpty() const;
|
|
|
|
// Makes actual allocation based on request. Request must already be checked
|
|
// and valid.
|
|
void Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
VkDeviceSize allocSize);
|
|
|
|
// Frees suballocation assigned to given memory region.
|
|
void Free(const VmaAllocation allocation);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaStringBuilder& sb) const;
|
|
#endif
|
|
|
|
private:
|
|
// Given free suballocation, it merges it with following one, which must also be free.
|
|
void MergeFreeWithNext(VmaSuballocationList::iterator item);
|
|
// Releases given suballocation, making it free. Merges it with adjacent free
|
|
// suballocations if applicable.
|
|
void FreeSuballocation(VmaSuballocationList::iterator suballocItem);
|
|
// Given free suballocation, it inserts it into sorted list of
|
|
// m_FreeSuballocationsBySize if it's suitable.
|
|
void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
|
|
// Given free suballocation, it removes it from sorted list of
|
|
// m_FreeSuballocationsBySize if it's suitable.
|
|
void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
|
|
};
|
|
|
|
struct VmaPointerLess
|
|
{
|
|
bool operator()(const void* lhs, const void* rhs) const
|
|
{
|
|
return lhs < rhs;
|
|
}
|
|
};
|
|
|
|
/* Sequence of VmaBlock. Represents memory blocks allocated for a specific
|
|
Vulkan memory type. */
|
|
struct VmaBlockVector
|
|
{
|
|
// Incrementally sorted by sumFreeSize, ascending.
|
|
VmaVector< VmaBlock*, VmaStlAllocator<VmaBlock*> > m_Blocks;
|
|
|
|
VmaBlockVector(VmaAllocator hAllocator);
|
|
~VmaBlockVector();
|
|
|
|
bool IsEmpty() const { return m_Blocks.empty(); }
|
|
|
|
// Finds and removes given block from vector.
|
|
void Remove(VmaBlock* pBlock);
|
|
|
|
// Performs single step in sorting m_Blocks. They may not be fully sorted
|
|
// after this call.
|
|
void IncrementallySortBlocks();
|
|
|
|
// Adds statistics of this BlockVector to pStats.
|
|
void AddStats(VmaStats* pStats, uint32_t memTypeIndex, uint32_t memHeapIndex) const;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaStringBuilder& sb) const;
|
|
#endif
|
|
|
|
void UnmapPersistentlyMappedMemory();
|
|
VkResult MapPersistentlyMappedMemory();
|
|
|
|
private:
|
|
VmaAllocator m_hAllocator;
|
|
};
|
|
|
|
// Main allocator object.
|
|
struct VmaAllocator_T
|
|
{
|
|
VkDevice m_hDevice;
|
|
bool m_AllocationCallbacksSpecified;
|
|
VkAllocationCallbacks m_AllocationCallbacks;
|
|
VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
|
|
VkDeviceSize m_PreferredLargeHeapBlockSize;
|
|
VkDeviceSize m_PreferredSmallHeapBlockSize;
|
|
// Non-zero when we are inside UnmapPersistentlyMappedMemory...MapPersistentlyMappedMemory.
|
|
// Counter to allow nested calls to these functions.
|
|
uint32_t m_UnmapPersistentlyMappedMemoryCounter;
|
|
|
|
VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
|
|
VkPhysicalDeviceMemoryProperties m_MemProps;
|
|
|
|
VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES][VMA_BLOCK_VECTOR_TYPE_COUNT];
|
|
/* There can be at most one allocation that is completely empty - a
|
|
hysteresis to avoid pessimistic case of alternating creation and destruction
|
|
of a VkDeviceMemory. */
|
|
bool m_HasEmptyBlock[VK_MAX_MEMORY_TYPES];
|
|
VMA_MUTEX m_BlocksMutex[VK_MAX_MEMORY_TYPES];
|
|
|
|
// Each vector is sorted by memory (handle value).
|
|
typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
|
|
AllocationVectorType* m_pOwnAllocations[VK_MAX_MEMORY_TYPES][VMA_BLOCK_VECTOR_TYPE_COUNT];
|
|
VMA_MUTEX m_OwnAllocationsMutex[VK_MAX_MEMORY_TYPES];
|
|
|
|
VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
|
|
~VmaAllocator_T();
|
|
|
|
const VkAllocationCallbacks* GetAllocationCallbacks() const
|
|
{
|
|
return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
|
|
}
|
|
|
|
VkDeviceSize GetPreferredBlockSize(uint32_t memTypeIndex) const;
|
|
|
|
VkDeviceSize GetBufferImageGranularity() const
|
|
{
|
|
return VMA_MAX(
|
|
static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
|
|
m_PhysicalDeviceProperties.limits.bufferImageGranularity);
|
|
}
|
|
|
|
uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
|
|
uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
|
|
|
|
// Main allocation function.
|
|
VkResult AllocateMemory(
|
|
const VkMemoryRequirements& vkMemReq,
|
|
const VmaMemoryRequirements& vmaMemReq,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation);
|
|
|
|
// Main deallocation function.
|
|
void FreeMemory(const VmaAllocation allocation);
|
|
|
|
void CalculateStats(VmaStats* pStats);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaStringBuilder& sb);
|
|
#endif
|
|
|
|
void UnmapPersistentlyMappedMemory();
|
|
VkResult MapPersistentlyMappedMemory();
|
|
|
|
VkResult Defragment(
|
|
VmaAllocation* pAllocations,
|
|
size_t allocationCount,
|
|
VkBool32* pAllocationsChanged,
|
|
const VmaDefragmentationInfo* pDefragmentationInfo,
|
|
VmaDefragmentationStats* pDefragmentationStats);
|
|
|
|
static void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
|
|
|
|
private:
|
|
VkPhysicalDevice m_PhysicalDevice;
|
|
|
|
VkResult AllocateMemoryOfType(
|
|
const VkMemoryRequirements& vkMemReq,
|
|
const VmaMemoryRequirements& vmaMemReq,
|
|
uint32_t memTypeIndex,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation);
|
|
|
|
// Allocates and registers new VkDeviceMemory specifically for single allocation.
|
|
VkResult AllocateOwnMemory(
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t memTypeIndex,
|
|
bool map,
|
|
void* pUserData,
|
|
VmaAllocation* pAllocation);
|
|
|
|
// Tries to free pMemory as Own Memory. Returns true if found and freed.
|
|
void FreeOwnMemory(VmaAllocation allocation);
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Memory allocation #2 after VmaAllocator_T definition
|
|
|
|
static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
|
|
{
|
|
return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
|
|
}
|
|
|
|
static void VmaFree(VmaAllocator hAllocator, void* ptr)
|
|
{
|
|
VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocate(VmaAllocator hAllocator)
|
|
{
|
|
return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
|
|
{
|
|
return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete(VmaAllocator hAllocator, T* ptr)
|
|
{
|
|
if(ptr != VMA_NULL)
|
|
{
|
|
ptr->~T();
|
|
VmaFree(hAllocator, ptr);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
|
|
{
|
|
if(ptr != VMA_NULL)
|
|
{
|
|
for(size_t i = count; i--; )
|
|
ptr[i].~T();
|
|
VmaFree(hAllocator, ptr);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaStringBuilder
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
class VmaStringBuilder
|
|
{
|
|
public:
|
|
VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }
|
|
size_t GetLength() const { return m_Data.size(); }
|
|
const char* GetData() const { return m_Data.data(); }
|
|
|
|
void Add(char ch) { m_Data.push_back(ch); }
|
|
void Add(const char* pStr);
|
|
void AddNewLine() { Add('\n'); }
|
|
void AddNumber(uint32_t num);
|
|
void AddNumber(uint64_t num);
|
|
void AddBool(bool b) { Add(b ? "true" : "false"); }
|
|
void AddNull() { Add("null"); }
|
|
void AddString(const char* pStr);
|
|
|
|
private:
|
|
VmaVector< char, VmaStlAllocator<char> > m_Data;
|
|
};
|
|
|
|
void VmaStringBuilder::Add(const char* pStr)
|
|
{
|
|
const size_t strLen = strlen(pStr);
|
|
if(strLen > 0)
|
|
{
|
|
const size_t oldCount = m_Data.size();
|
|
m_Data.resize(oldCount + strLen);
|
|
memcpy(m_Data.data() + oldCount, pStr, strLen);
|
|
}
|
|
}
|
|
|
|
void VmaStringBuilder::AddNumber(uint32_t num)
|
|
{
|
|
char buf[11];
|
|
VmaUint32ToStr(buf, sizeof(buf), num);
|
|
Add(buf);
|
|
}
|
|
|
|
void VmaStringBuilder::AddNumber(uint64_t num)
|
|
{
|
|
char buf[21];
|
|
VmaUint64ToStr(buf, sizeof(buf), num);
|
|
Add(buf);
|
|
}
|
|
|
|
void VmaStringBuilder::AddString(const char* pStr)
|
|
{
|
|
Add('"');
|
|
const size_t strLen = strlen(pStr);
|
|
for(size_t i = 0; i < strLen; ++i)
|
|
{
|
|
char ch = pStr[i];
|
|
if(ch == '\'')
|
|
Add("\\\\");
|
|
else if(ch == '"')
|
|
Add("\\\"");
|
|
else if(ch >= 32)
|
|
Add(ch);
|
|
else switch(ch)
|
|
{
|
|
case '\n':
|
|
Add("\\n");
|
|
break;
|
|
case '\r':
|
|
Add("\\r");
|
|
break;
|
|
case '\t':
|
|
Add("\\t");
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0 && "Character not currently supported.");
|
|
break;
|
|
}
|
|
}
|
|
Add('"');
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
VkDeviceMemory VmaAllocation_T::GetMemory() const
|
|
{
|
|
return (m_Type == ALLOCATION_TYPE_BLOCK) ?
|
|
m_BlockAllocation.m_Block->m_hMemory : m_OwnAllocation.m_hMemory;
|
|
}
|
|
|
|
uint32_t VmaAllocation_T::GetMemoryTypeIndex() const
|
|
{
|
|
return (m_Type == ALLOCATION_TYPE_BLOCK) ?
|
|
m_BlockAllocation.m_Block->m_MemoryTypeIndex : m_OwnAllocation.m_MemoryTypeIndex;
|
|
}
|
|
|
|
VMA_BLOCK_VECTOR_TYPE VmaAllocation_T::GetBlockVectorType() const
|
|
{
|
|
return (m_Type == ALLOCATION_TYPE_BLOCK) ?
|
|
m_BlockAllocation.m_Block->m_BlockVectorType :
|
|
(m_OwnAllocation.m_PersistentMap ? VMA_BLOCK_VECTOR_TYPE_MAPPED : VMA_BLOCK_VECTOR_TYPE_UNMAPPED);
|
|
}
|
|
|
|
void* VmaAllocation_T::GetMappedData() const
|
|
{
|
|
switch(m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
if(m_BlockAllocation.m_Block->m_pMappedData != VMA_NULL)
|
|
{
|
|
return (char*)m_BlockAllocation.m_Block->m_pMappedData + m_BlockAllocation.m_Offset;
|
|
}
|
|
else
|
|
{
|
|
return VMA_NULL;
|
|
}
|
|
break;
|
|
case ALLOCATION_TYPE_OWN:
|
|
return m_OwnAllocation.m_pMappedData;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VMA_NULL;
|
|
}
|
|
}
|
|
|
|
// Correspond to values of enum VmaSuballocationType.
|
|
static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
|
|
"FREE",
|
|
"UNKNOWN",
|
|
"BUFFER",
|
|
"IMAGE_UNKNOWN",
|
|
"IMAGE_LINEAR",
|
|
"IMAGE_OPTIMAL",
|
|
};
|
|
|
|
static void VmaPrintStatInfo(VmaStringBuilder& sb, const VmaStatInfo& stat)
|
|
{
|
|
sb.Add("{ \"Allocations\": ");
|
|
sb.AddNumber(stat.AllocationCount);
|
|
sb.Add(", \"Suballocations\": ");
|
|
sb.AddNumber(stat.SuballocationCount);
|
|
sb.Add(", \"UnusedRanges\": ");
|
|
sb.AddNumber(stat.UnusedRangeCount);
|
|
sb.Add(", \"UsedBytes\": ");
|
|
sb.AddNumber(stat.UsedBytes);
|
|
sb.Add(", \"UnusedBytes\": ");
|
|
sb.AddNumber(stat.UnusedBytes);
|
|
sb.Add(", \"SuballocationSize\": { \"Min\": ");
|
|
sb.AddNumber(stat.SuballocationSizeMin);
|
|
sb.Add(", \"Avg\": ");
|
|
sb.AddNumber(stat.SuballocationSizeAvg);
|
|
sb.Add(", \"Max\": ");
|
|
sb.AddNumber(stat.SuballocationSizeMax);
|
|
sb.Add(" }, \"UnusedRangeSize\": { \"Min\": ");
|
|
sb.AddNumber(stat.UnusedRangeSizeMin);
|
|
sb.Add(", \"Avg\": ");
|
|
sb.AddNumber(stat.UnusedRangeSizeAvg);
|
|
sb.Add(", \"Max\": ");
|
|
sb.AddNumber(stat.UnusedRangeSizeMax);
|
|
sb.Add(" } }");
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
struct VmaSuballocationItemSizeLess
|
|
{
|
|
bool operator()(
|
|
const VmaSuballocationList::iterator lhs,
|
|
const VmaSuballocationList::iterator rhs) const
|
|
{
|
|
return lhs->size < rhs->size;
|
|
}
|
|
bool operator()(
|
|
const VmaSuballocationList::iterator lhs,
|
|
VkDeviceSize rhsSize) const
|
|
{
|
|
return lhs->size < rhsSize;
|
|
}
|
|
};
|
|
|
|
VmaBlock::VmaBlock(VmaAllocator hAllocator) :
|
|
m_MemoryTypeIndex(UINT32_MAX),
|
|
m_BlockVectorType(VMA_BLOCK_VECTOR_TYPE_COUNT),
|
|
m_hMemory(VK_NULL_HANDLE),
|
|
m_Size(0),
|
|
m_PersistentMap(false),
|
|
m_pMappedData(VMA_NULL),
|
|
m_FreeCount(0),
|
|
m_SumFreeSize(0),
|
|
m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
|
|
m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))
|
|
{
|
|
}
|
|
|
|
void VmaBlock::Init(
|
|
uint32_t newMemoryTypeIndex,
|
|
VMA_BLOCK_VECTOR_TYPE newBlockVectorType,
|
|
VkDeviceMemory newMemory,
|
|
VkDeviceSize newSize,
|
|
bool persistentMap,
|
|
void* pMappedData)
|
|
{
|
|
VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
|
|
|
|
m_MemoryTypeIndex = newMemoryTypeIndex;
|
|
m_BlockVectorType = newBlockVectorType;
|
|
m_hMemory = newMemory;
|
|
m_Size = newSize;
|
|
m_PersistentMap = persistentMap;
|
|
m_pMappedData = pMappedData;
|
|
m_FreeCount = 1;
|
|
m_SumFreeSize = newSize;
|
|
|
|
m_Suballocations.clear();
|
|
m_FreeSuballocationsBySize.clear();
|
|
|
|
VmaSuballocation suballoc = {};
|
|
suballoc.offset = 0;
|
|
suballoc.size = newSize;
|
|
suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
|
|
m_Suballocations.push_back(suballoc);
|
|
VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
|
|
--suballocItem;
|
|
m_FreeSuballocationsBySize.push_back(suballocItem);
|
|
}
|
|
|
|
void VmaBlock::Destroy(VmaAllocator allocator)
|
|
{
|
|
VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
|
|
if(m_pMappedData != VMA_NULL)
|
|
{
|
|
vkUnmapMemory(allocator->m_hDevice, m_hMemory);
|
|
m_pMappedData = VMA_NULL;
|
|
}
|
|
|
|
// Callback.
|
|
if(allocator->m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
|
|
{
|
|
(*allocator->m_DeviceMemoryCallbacks.pfnFree)(allocator, m_MemoryTypeIndex, m_hMemory, m_Size);
|
|
}
|
|
|
|
vkFreeMemory(allocator->m_hDevice, m_hMemory, allocator->GetAllocationCallbacks());
|
|
m_hMemory = VK_NULL_HANDLE;
|
|
}
|
|
|
|
bool VmaBlock::Validate() const
|
|
{
|
|
if((m_hMemory == VK_NULL_HANDLE) ||
|
|
(m_Size == 0) ||
|
|
m_Suballocations.empty())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Expected offset of new suballocation as calculates from previous ones.
|
|
VkDeviceSize calculatedOffset = 0;
|
|
// Expected number of free suballocations as calculated from traversing their list.
|
|
uint32_t calculatedFreeCount = 0;
|
|
// Expected sum size of free suballocations as calculated from traversing their list.
|
|
VkDeviceSize calculatedSumFreeSize = 0;
|
|
// Expected number of free suballocations that should be registered in
|
|
// m_FreeSuballocationsBySize calculated from traversing their list.
|
|
size_t freeSuballocationsToRegister = 0;
|
|
// True if previous visisted suballocation was free.
|
|
bool prevFree = false;
|
|
|
|
for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
|
|
suballocItem != m_Suballocations.cend();
|
|
++suballocItem)
|
|
{
|
|
const VmaSuballocation& subAlloc = *suballocItem;
|
|
|
|
// Actual offset of this suballocation doesn't match expected one.
|
|
if(subAlloc.offset != calculatedOffset)
|
|
return false;
|
|
|
|
const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
// Two adjacent free suballocations are invalid. They should be merged.
|
|
if(prevFree && currFree)
|
|
return false;
|
|
prevFree = currFree;
|
|
|
|
if(currFree)
|
|
{
|
|
calculatedSumFreeSize += subAlloc.size;
|
|
++calculatedFreeCount;
|
|
if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
|
|
++freeSuballocationsToRegister;
|
|
}
|
|
|
|
calculatedOffset += subAlloc.size;
|
|
}
|
|
|
|
// Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
|
|
// match expected one.
|
|
if(m_FreeSuballocationsBySize.size() != freeSuballocationsToRegister)
|
|
return false;
|
|
|
|
VkDeviceSize lastSize = 0;
|
|
for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
|
|
{
|
|
VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
|
|
|
|
// Only free suballocations can be registered in m_FreeSuballocationsBySize.
|
|
if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
return false;
|
|
// They must be sorted by size ascending.
|
|
if(suballocItem->size < lastSize)
|
|
return false;
|
|
|
|
lastSize = suballocItem->size;
|
|
}
|
|
|
|
// Check if totals match calculacted values.
|
|
return
|
|
(calculatedOffset == m_Size) &&
|
|
(calculatedSumFreeSize == m_SumFreeSize) &&
|
|
(calculatedFreeCount == m_FreeCount);
|
|
}
|
|
|
|
/*
|
|
How many suitable free suballocations to analyze before choosing best one.
|
|
- Set to 1 to use First-Fit algorithm - first suitable free suballocation will
|
|
be chosen.
|
|
- Set to UINT32_MAX to use Best-Fit/Worst-Fit algorithm - all suitable free
|
|
suballocations will be analized and best one will be chosen.
|
|
- Any other value is also acceptable.
|
|
*/
|
|
//static const uint32_t MAX_SUITABLE_SUBALLOCATIONS_TO_CHECK = 8;
|
|
|
|
bool VmaBlock::CreateAllocationRequest(
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(allocSize > 0);
|
|
VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(pAllocationRequest != VMA_NULL);
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
|
|
// There is not enough total free space in this allocation to fullfill the request: Early return.
|
|
if(m_SumFreeSize < allocSize)
|
|
return false;
|
|
|
|
// Old brute-force algorithm, linearly searching suballocations.
|
|
/*
|
|
uint32_t suitableSuballocationsFound = 0;
|
|
for(VmaSuballocationList::iterator suballocItem = suballocations.Front();
|
|
suballocItem != VMA_NULL &&
|
|
suitableSuballocationsFound < MAX_SUITABLE_SUBALLOCATIONS_TO_CHECK;
|
|
suballocItem = suballocItem->Next)
|
|
{
|
|
if(suballocItem->Value.type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
VkDeviceSize offset = 0, cost = 0;
|
|
if(CheckAllocation(bufferImageGranularity, allocSize, allocAlignment, allocType, suballocItem, &offset, &cost))
|
|
{
|
|
++suitableSuballocationsFound;
|
|
if(cost < costLimit)
|
|
{
|
|
pAllocationRequest->freeSuballocationItem = suballocItem;
|
|
pAllocationRequest->offset = offset;
|
|
pAllocationRequest->cost = cost;
|
|
if(cost == 0)
|
|
return true;
|
|
costLimit = cost;
|
|
betterSuballocationFound = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
// New algorithm, efficiently searching freeSuballocationsBySize.
|
|
const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
|
|
if(freeSuballocCount > 0)
|
|
{
|
|
if(VMA_BEST_FIT)
|
|
{
|
|
// Find first free suballocation with size not less than allocSize.
|
|
VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
|
|
m_FreeSuballocationsBySize.data(),
|
|
m_FreeSuballocationsBySize.data() + freeSuballocCount,
|
|
allocSize,
|
|
VmaSuballocationItemSizeLess());
|
|
size_t index = it - m_FreeSuballocationsBySize.data();
|
|
for(; index < freeSuballocCount; ++index)
|
|
{
|
|
VkDeviceSize offset = 0;
|
|
const VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[index];
|
|
if(CheckAllocation(bufferImageGranularity, allocSize, allocAlignment, allocType, suballocItem, &offset))
|
|
{
|
|
pAllocationRequest->freeSuballocationItem = suballocItem;
|
|
pAllocationRequest->offset = offset;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Search staring from biggest suballocations.
|
|
for(size_t index = freeSuballocCount; index--; )
|
|
{
|
|
VkDeviceSize offset = 0;
|
|
const VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[index];
|
|
if(CheckAllocation(bufferImageGranularity, allocSize, allocAlignment, allocType, suballocItem, &offset))
|
|
{
|
|
pAllocationRequest->freeSuballocationItem = suballocItem;
|
|
pAllocationRequest->offset = offset;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool VmaBlock::CheckAllocation(
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
VmaSuballocationList::const_iterator freeSuballocItem,
|
|
VkDeviceSize* pOffset) const
|
|
{
|
|
VMA_ASSERT(allocSize > 0);
|
|
VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(freeSuballocItem != m_Suballocations.cend());
|
|
VMA_ASSERT(pOffset != VMA_NULL);
|
|
|
|
const VmaSuballocation& suballoc = *freeSuballocItem;
|
|
VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
// Size of this suballocation is too small for this request: Early return.
|
|
if(suballoc.size < allocSize)
|
|
return false;
|
|
|
|
// Start from offset equal to beginning of this suballocation.
|
|
*pOffset = suballoc.offset;
|
|
|
|
// Apply VMA_DEBUG_MARGIN at the beginning.
|
|
if((VMA_DEBUG_MARGIN > 0) && freeSuballocItem != m_Suballocations.cbegin())
|
|
*pOffset += VMA_DEBUG_MARGIN;
|
|
|
|
// Apply alignment.
|
|
const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
|
|
*pOffset = VmaAlignUp(*pOffset, alignment);
|
|
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if(bufferImageGranularity > 1)
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
VmaSuballocationList::const_iterator prevSuballocItem = freeSuballocItem;
|
|
while(prevSuballocItem != m_Suballocations.cbegin())
|
|
{
|
|
--prevSuballocItem;
|
|
const VmaSuballocation& prevSuballoc = *prevSuballocItem;
|
|
if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if(bufferImageGranularityConflict)
|
|
*pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
|
|
}
|
|
|
|
// Calculate padding at the beginning based on current offset.
|
|
const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
|
|
|
|
// Calculate required margin at the end if this is not last suballocation.
|
|
VmaSuballocationList::const_iterator next = freeSuballocItem;
|
|
++next;
|
|
const VkDeviceSize requiredEndMargin =
|
|
(next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
|
|
|
|
// Fail if requested size plus margin before and after is bigger than size of this suballocation.
|
|
if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
|
|
return false;
|
|
|
|
// Check next suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, allocation cannot be made here.
|
|
if(bufferImageGranularity > 1)
|
|
{
|
|
VmaSuballocationList::const_iterator nextSuballocItem = freeSuballocItem;
|
|
++nextSuballocItem;
|
|
while(nextSuballocItem != m_Suballocations.cend())
|
|
{
|
|
const VmaSuballocation& nextSuballoc = *nextSuballocItem;
|
|
if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
return false;
|
|
}
|
|
else
|
|
// Already on next page.
|
|
break;
|
|
++nextSuballocItem;
|
|
}
|
|
}
|
|
|
|
// All tests passed: Success. pOffset is already filled.
|
|
return true;
|
|
}
|
|
|
|
bool VmaBlock::IsEmpty() const
|
|
{
|
|
return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
|
|
}
|
|
|
|
void VmaBlock::Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
VkDeviceSize allocSize)
|
|
{
|
|
VMA_ASSERT(request.freeSuballocationItem != m_Suballocations.end());
|
|
VmaSuballocation& suballoc = *request.freeSuballocationItem;
|
|
// Given suballocation is a free block.
|
|
VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
// Given offset is inside this suballocation.
|
|
VMA_ASSERT(request.offset >= suballoc.offset);
|
|
const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
|
|
VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
|
|
const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
|
|
|
|
// Unregister this free suballocation from m_FreeSuballocationsBySize and update
|
|
// it to become used.
|
|
UnregisterFreeSuballocation(request.freeSuballocationItem);
|
|
|
|
suballoc.offset = request.offset;
|
|
suballoc.size = allocSize;
|
|
suballoc.type = type;
|
|
|
|
// If there are any free bytes remaining at the end, insert new free suballocation after current one.
|
|
if(paddingEnd)
|
|
{
|
|
VmaSuballocation paddingSuballoc = {};
|
|
paddingSuballoc.offset = request.offset + allocSize;
|
|
paddingSuballoc.size = paddingEnd;
|
|
paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
VmaSuballocationList::iterator next = request.freeSuballocationItem;
|
|
++next;
|
|
const VmaSuballocationList::iterator paddingEndItem =
|
|
m_Suballocations.insert(next, paddingSuballoc);
|
|
RegisterFreeSuballocation(paddingEndItem);
|
|
}
|
|
|
|
// If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
|
|
if(paddingBegin)
|
|
{
|
|
VmaSuballocation paddingSuballoc = {};
|
|
paddingSuballoc.offset = request.offset - paddingBegin;
|
|
paddingSuballoc.size = paddingBegin;
|
|
paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
const VmaSuballocationList::iterator paddingBeginItem =
|
|
m_Suballocations.insert(request.freeSuballocationItem, paddingSuballoc);
|
|
RegisterFreeSuballocation(paddingBeginItem);
|
|
}
|
|
|
|
// Update totals.
|
|
m_FreeCount = m_FreeCount - 1;
|
|
if(paddingBegin > 0)
|
|
++m_FreeCount;
|
|
if(paddingEnd > 0)
|
|
++m_FreeCount;
|
|
m_SumFreeSize -= allocSize;
|
|
}
|
|
|
|
void VmaBlock::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
|
|
{
|
|
// Change this suballocation to be marked as free.
|
|
VmaSuballocation& suballoc = *suballocItem;
|
|
suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
|
|
// Update totals.
|
|
++m_FreeCount;
|
|
m_SumFreeSize += suballoc.size;
|
|
|
|
// Merge with previous and/or next suballocation if it's also free.
|
|
bool mergeWithNext = false;
|
|
bool mergeWithPrev = false;
|
|
|
|
VmaSuballocationList::iterator nextItem = suballocItem;
|
|
++nextItem;
|
|
if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
|
|
mergeWithNext = true;
|
|
|
|
VmaSuballocationList::iterator prevItem = suballocItem;
|
|
if(suballocItem != m_Suballocations.begin())
|
|
{
|
|
--prevItem;
|
|
if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
mergeWithPrev = true;
|
|
}
|
|
|
|
if(mergeWithNext)
|
|
{
|
|
UnregisterFreeSuballocation(nextItem);
|
|
MergeFreeWithNext(suballocItem);
|
|
}
|
|
|
|
if(mergeWithPrev)
|
|
{
|
|
UnregisterFreeSuballocation(prevItem);
|
|
MergeFreeWithNext(prevItem);
|
|
RegisterFreeSuballocation(prevItem);
|
|
}
|
|
else
|
|
RegisterFreeSuballocation(suballocItem);
|
|
}
|
|
|
|
void VmaBlock::Free(const VmaAllocation allocation)
|
|
{
|
|
// If suballocation to free has offset smaller than half of allocation size, search forward.
|
|
// Otherwise search backward.
|
|
const VkDeviceSize allocationOffset = allocation->GetOffset();
|
|
const bool forwardDirection = allocationOffset < (m_Size / 2);
|
|
if(forwardDirection)
|
|
{
|
|
for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
|
|
suballocItem != m_Suballocations.end();
|
|
++suballocItem)
|
|
{
|
|
VmaSuballocation& suballoc = *suballocItem;
|
|
if(suballoc.offset == allocationOffset)
|
|
{
|
|
FreeSuballocation(suballocItem);
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
return;
|
|
}
|
|
}
|
|
VMA_ASSERT(0 && "Not found!");
|
|
}
|
|
else
|
|
{
|
|
for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
|
|
suballocItem != m_Suballocations.end();
|
|
++suballocItem)
|
|
{
|
|
VmaSuballocation& suballoc = *suballocItem;
|
|
if(suballoc.offset == allocationOffset)
|
|
{
|
|
FreeSuballocation(suballocItem);
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
return;
|
|
}
|
|
}
|
|
VMA_ASSERT(0 && "Not found!");
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlock::PrintDetailedMap(class VmaStringBuilder& sb) const
|
|
{
|
|
sb.Add("{\n\t\t\t\"Bytes\": ");
|
|
sb.AddNumber(m_Size);
|
|
sb.Add(",\n\t\t\t\"FreeBytes\": ");
|
|
sb.AddNumber(m_SumFreeSize);
|
|
sb.Add(",\n\t\t\t\"Suballocations\": ");
|
|
sb.AddNumber(m_Suballocations.size());
|
|
sb.Add(",\n\t\t\t\"FreeSuballocations\": ");
|
|
sb.AddNumber(m_FreeCount);
|
|
sb.Add(",\n\t\t\t\"SuballocationList\": [");
|
|
|
|
size_t i = 0;
|
|
for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
|
|
suballocItem != m_Suballocations.cend();
|
|
++suballocItem, ++i)
|
|
{
|
|
if(i > 0)
|
|
sb.Add(",\n\t\t\t\t{ \"Type\": ");
|
|
else
|
|
sb.Add("\n\t\t\t\t{ \"Type\": ");
|
|
sb.AddString(VMA_SUBALLOCATION_TYPE_NAMES[suballocItem->type]);
|
|
sb.Add(", \"Size\": ");
|
|
sb.AddNumber(suballocItem->size);
|
|
sb.Add(", \"Offset\": ");
|
|
sb.AddNumber(suballocItem->offset);
|
|
sb.Add(" }");
|
|
}
|
|
|
|
sb.Add("\n\t\t\t]\n\t\t}");
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlock::MergeFreeWithNext(VmaSuballocationList::iterator item)
|
|
{
|
|
VMA_ASSERT(item != m_Suballocations.end());
|
|
VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
VmaSuballocationList::iterator nextItem = item;
|
|
++nextItem;
|
|
VMA_ASSERT(nextItem != m_Suballocations.end());
|
|
VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
item->size += nextItem->size;
|
|
--m_FreeCount;
|
|
m_Suballocations.erase(nextItem);
|
|
}
|
|
|
|
void VmaBlock::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
|
|
{
|
|
VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(item->size > 0);
|
|
|
|
if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
|
|
{
|
|
if(m_FreeSuballocationsBySize.empty())
|
|
m_FreeSuballocationsBySize.push_back(item);
|
|
else
|
|
{
|
|
VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
|
|
m_FreeSuballocationsBySize.data(),
|
|
m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
|
|
item,
|
|
VmaSuballocationItemSizeLess());
|
|
size_t index = it - m_FreeSuballocationsBySize.data();
|
|
VectorInsert(m_FreeSuballocationsBySize, index, item);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaBlock::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
|
|
{
|
|
VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(item->size > 0);
|
|
|
|
if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
|
|
{
|
|
VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
|
|
m_FreeSuballocationsBySize.data(),
|
|
m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
|
|
item,
|
|
VmaSuballocationItemSizeLess());
|
|
for(size_t index = it - m_FreeSuballocationsBySize.data();
|
|
index < m_FreeSuballocationsBySize.size();
|
|
++index)
|
|
{
|
|
if(m_FreeSuballocationsBySize[index] == item)
|
|
{
|
|
VectorRemove(m_FreeSuballocationsBySize, index);
|
|
return;
|
|
}
|
|
VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
|
|
}
|
|
VMA_ASSERT(0 && "Not found.");
|
|
}
|
|
}
|
|
|
|
static void InitStatInfo(VmaStatInfo& outInfo)
|
|
{
|
|
memset(&outInfo, 0, sizeof(outInfo));
|
|
outInfo.SuballocationSizeMin = UINT64_MAX;
|
|
outInfo.UnusedRangeSizeMin = UINT64_MAX;
|
|
}
|
|
|
|
static void CalcAllocationStatInfo(VmaStatInfo& outInfo, const VmaBlock& alloc)
|
|
{
|
|
outInfo.AllocationCount = 1;
|
|
|
|
const uint32_t rangeCount = (uint32_t)alloc.m_Suballocations.size();
|
|
outInfo.SuballocationCount = rangeCount - alloc.m_FreeCount;
|
|
outInfo.UnusedRangeCount = alloc.m_FreeCount;
|
|
|
|
outInfo.UnusedBytes = alloc.m_SumFreeSize;
|
|
outInfo.UsedBytes = alloc.m_Size - outInfo.UnusedBytes;
|
|
|
|
outInfo.SuballocationSizeMin = UINT64_MAX;
|
|
outInfo.SuballocationSizeMax = 0;
|
|
outInfo.UnusedRangeSizeMin = UINT64_MAX;
|
|
outInfo.UnusedRangeSizeMax = 0;
|
|
|
|
for(VmaSuballocationList::const_iterator suballocItem = alloc.m_Suballocations.cbegin();
|
|
suballocItem != alloc.m_Suballocations.cend();
|
|
++suballocItem)
|
|
{
|
|
const VmaSuballocation& suballoc = *suballocItem;
|
|
if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
outInfo.SuballocationSizeMin = VMA_MIN(outInfo.SuballocationSizeMin, suballoc.size);
|
|
outInfo.SuballocationSizeMax = VMA_MAX(outInfo.SuballocationSizeMax, suballoc.size);
|
|
}
|
|
else
|
|
{
|
|
outInfo.UnusedRangeSizeMin = VMA_MIN(outInfo.UnusedRangeSizeMin, suballoc.size);
|
|
outInfo.UnusedRangeSizeMax = VMA_MAX(outInfo.UnusedRangeSizeMax, suballoc.size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
|
|
static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
|
|
{
|
|
inoutInfo.AllocationCount += srcInfo.AllocationCount;
|
|
inoutInfo.SuballocationCount += srcInfo.SuballocationCount;
|
|
inoutInfo.UnusedRangeCount += srcInfo.UnusedRangeCount;
|
|
inoutInfo.UsedBytes += srcInfo.UsedBytes;
|
|
inoutInfo.UnusedBytes += srcInfo.UnusedBytes;
|
|
inoutInfo.SuballocationSizeMin = VMA_MIN(inoutInfo.SuballocationSizeMin, srcInfo.SuballocationSizeMin);
|
|
inoutInfo.SuballocationSizeMax = VMA_MAX(inoutInfo.SuballocationSizeMax, srcInfo.SuballocationSizeMax);
|
|
inoutInfo.UnusedRangeSizeMin = VMA_MIN(inoutInfo.UnusedRangeSizeMin, srcInfo.UnusedRangeSizeMin);
|
|
inoutInfo.UnusedRangeSizeMax = VMA_MAX(inoutInfo.UnusedRangeSizeMax, srcInfo.UnusedRangeSizeMax);
|
|
}
|
|
|
|
static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
|
|
{
|
|
inoutInfo.SuballocationSizeAvg = (inoutInfo.SuballocationCount > 0) ?
|
|
VmaRoundDiv<VkDeviceSize>(inoutInfo.UsedBytes, inoutInfo.SuballocationCount) : 0;
|
|
inoutInfo.UnusedRangeSizeAvg = (inoutInfo.UnusedRangeCount > 0) ?
|
|
VmaRoundDiv<VkDeviceSize>(inoutInfo.UnusedBytes, inoutInfo.UnusedRangeCount) : 0;
|
|
}
|
|
|
|
VmaBlockVector::VmaBlockVector(VmaAllocator hAllocator) :
|
|
m_hAllocator(hAllocator),
|
|
m_Blocks(VmaStlAllocator<VmaBlock*>(hAllocator->GetAllocationCallbacks()))
|
|
{
|
|
}
|
|
|
|
VmaBlockVector::~VmaBlockVector()
|
|
{
|
|
for(size_t i = m_Blocks.size(); i--; )
|
|
{
|
|
m_Blocks[i]->Destroy(m_hAllocator);
|
|
vma_delete(m_hAllocator, m_Blocks[i]);
|
|
}
|
|
}
|
|
|
|
void VmaBlockVector::Remove(VmaBlock* pBlock)
|
|
{
|
|
for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
if(m_Blocks[blockIndex] == pBlock)
|
|
{
|
|
VectorRemove(m_Blocks, blockIndex);
|
|
return;
|
|
}
|
|
}
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
void VmaBlockVector::IncrementallySortBlocks()
|
|
{
|
|
// Bubble sort only until first swap.
|
|
for(size_t i = 1; i < m_Blocks.size(); ++i)
|
|
{
|
|
if(m_Blocks[i - 1]->m_SumFreeSize > m_Blocks[i]->m_SumFreeSize)
|
|
{
|
|
VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlockVector::PrintDetailedMap(class VmaStringBuilder& sb) const
|
|
{
|
|
for(size_t i = 0; i < m_Blocks.size(); ++i)
|
|
{
|
|
if(i > 0)
|
|
sb.Add(",\n\t\t");
|
|
else
|
|
sb.Add("\n\t\t");
|
|
m_Blocks[i]->PrintDetailedMap(sb);
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlockVector::UnmapPersistentlyMappedMemory()
|
|
{
|
|
for(size_t i = m_Blocks.size(); i--; )
|
|
{
|
|
VmaBlock* pBlock = m_Blocks[i];
|
|
if(pBlock->m_pMappedData != VMA_NULL)
|
|
{
|
|
VMA_ASSERT(pBlock->m_PersistentMap != false);
|
|
vkUnmapMemory(m_hAllocator->m_hDevice, pBlock->m_hMemory);
|
|
pBlock->m_pMappedData = VMA_NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaBlockVector::MapPersistentlyMappedMemory()
|
|
{
|
|
VkResult finalResult = VK_SUCCESS;
|
|
for(size_t i = 0, count = m_Blocks.size(); i < count; ++i)
|
|
{
|
|
VmaBlock* pBlock = m_Blocks[i];
|
|
if(pBlock->m_PersistentMap)
|
|
{
|
|
VMA_ASSERT(pBlock->m_pMappedData == nullptr);
|
|
VkResult localResult = vkMapMemory(m_hAllocator->m_hDevice, pBlock->m_hMemory, 0, VK_WHOLE_SIZE, 0, &pBlock->m_pMappedData);
|
|
if(localResult != VK_SUCCESS)
|
|
{
|
|
finalResult = localResult;
|
|
}
|
|
}
|
|
}
|
|
return finalResult;
|
|
}
|
|
|
|
void VmaBlockVector::AddStats(VmaStats* pStats, uint32_t memTypeIndex, uint32_t memHeapIndex) const
|
|
{
|
|
for(uint32_t allocIndex = 0; allocIndex < m_Blocks.size(); ++allocIndex)
|
|
{
|
|
const VmaBlock* const pBlock = m_Blocks[allocIndex];
|
|
VMA_ASSERT(pBlock);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
VmaStatInfo allocationStatInfo;
|
|
CalcAllocationStatInfo(allocationStatInfo, *pBlock);
|
|
VmaAddStatInfo(pStats->total, allocationStatInfo);
|
|
VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
|
|
VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaDefragmentator
|
|
|
|
class VmaDefragmentator
|
|
{
|
|
VkDevice m_hDevice;
|
|
const VkAllocationCallbacks* m_pAllocationCallbacks;
|
|
VkDeviceSize m_BufferImageGranularity;
|
|
uint32_t m_MemTypeIndex;
|
|
VMA_BLOCK_VECTOR_TYPE m_BlockVectorType;
|
|
VkDeviceSize m_BytesMoved;
|
|
uint32_t m_AllocationsMoved;
|
|
|
|
struct AllocationInfo
|
|
{
|
|
VmaAllocation m_hAllocation;
|
|
VkBool32* m_pChanged;
|
|
|
|
AllocationInfo() :
|
|
m_hAllocation(VK_NULL_HANDLE),
|
|
m_pChanged(VMA_NULL)
|
|
{
|
|
}
|
|
};
|
|
|
|
struct AllocationInfoSizeGreater
|
|
{
|
|
bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
|
|
{
|
|
return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
|
|
}
|
|
};
|
|
|
|
// Used between AddAllocation and Defragment.
|
|
VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
|
|
|
|
struct BlockInfo
|
|
{
|
|
VmaBlock* m_pBlock;
|
|
bool m_HasNonMovableAllocations;
|
|
VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
|
|
|
|
BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
|
|
m_pBlock(VMA_NULL),
|
|
m_HasNonMovableAllocations(true),
|
|
m_Allocations(pAllocationCallbacks),
|
|
m_pMappedDataForDefragmentation(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
void CalcHasNonMovableAllocations()
|
|
{
|
|
const size_t blockAllocCount =
|
|
m_pBlock->m_Suballocations.size() - m_pBlock->m_FreeCount;
|
|
const size_t defragmentAllocCount = m_Allocations.size();
|
|
m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
|
|
}
|
|
|
|
void SortAllocationsBySizeDescecnding()
|
|
{
|
|
VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
|
|
}
|
|
|
|
VkResult EnsureMapping(VkDevice hDevice, void** ppMappedData)
|
|
{
|
|
// It has already been mapped for defragmentation.
|
|
if(m_pMappedDataForDefragmentation)
|
|
{
|
|
*ppMappedData = m_pMappedDataForDefragmentation;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// It is persistently mapped.
|
|
if(m_pBlock->m_PersistentMap)
|
|
{
|
|
VMA_ASSERT(m_pBlock->m_pMappedData != VMA_NULL);
|
|
*ppMappedData = m_pBlock->m_pMappedData;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Map on first usage.
|
|
VkResult res = vkMapMemory(hDevice, m_pBlock->m_hMemory, 0, VK_WHOLE_SIZE, 0, &m_pMappedDataForDefragmentation);
|
|
*ppMappedData = m_pMappedDataForDefragmentation;
|
|
return res;
|
|
}
|
|
|
|
void Unmap(VkDevice hDevice)
|
|
{
|
|
if(m_pMappedDataForDefragmentation != VMA_NULL)
|
|
{
|
|
vkUnmapMemory(hDevice, m_pBlock->m_hMemory);
|
|
}
|
|
}
|
|
|
|
private:
|
|
// Not null if mapped for defragmentation only, not persistently mapped.
|
|
void* m_pMappedDataForDefragmentation;
|
|
};
|
|
|
|
struct BlockPointerLess
|
|
{
|
|
bool operator()(const BlockInfo* pLhsBlockInfo, const VmaBlock* pRhsBlock) const
|
|
{
|
|
return pLhsBlockInfo->m_pBlock < pRhsBlock;
|
|
}
|
|
bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
|
|
{
|
|
return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
|
|
}
|
|
};
|
|
|
|
// 1. Blocks with some non-movable allocations go first.
|
|
// 2. Blocks with smaller sumFreeSize go first.
|
|
struct BlockInfoCompareMoveDestination
|
|
{
|
|
bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
|
|
{
|
|
if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
|
|
return true;
|
|
if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
|
|
return false;
|
|
if(pLhsBlockInfo->m_pBlock->m_SumFreeSize < pRhsBlockInfo->m_pBlock->m_SumFreeSize)
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
|
|
typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
|
|
BlockInfoVector m_Blocks;
|
|
|
|
VkResult DefragmentRound(
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove);
|
|
|
|
static bool MoveMakesSense(
|
|
size_t dstBlockIndex, VkDeviceSize dstOffset,
|
|
size_t srcBlockIndex, VkDeviceSize srcOffset);
|
|
|
|
public:
|
|
VmaDefragmentator(
|
|
VkDevice hDevice,
|
|
const VkAllocationCallbacks* pAllocationCallbacks,
|
|
VkDeviceSize bufferImageGranularity,
|
|
uint32_t memTypeIndex,
|
|
VMA_BLOCK_VECTOR_TYPE blockVectorType);
|
|
|
|
~VmaDefragmentator();
|
|
|
|
VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
|
|
uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
|
|
|
|
void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
|
|
|
|
VkResult Defragment(
|
|
VmaBlockVector* pBlockVector,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove);
|
|
};
|
|
|
|
VmaDefragmentator::VmaDefragmentator(
|
|
VkDevice hDevice,
|
|
const VkAllocationCallbacks* pAllocationCallbacks,
|
|
VkDeviceSize bufferImageGranularity,
|
|
uint32_t memTypeIndex,
|
|
VMA_BLOCK_VECTOR_TYPE blockVectorType) :
|
|
m_hDevice(hDevice),
|
|
m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_BufferImageGranularity(bufferImageGranularity),
|
|
m_MemTypeIndex(memTypeIndex),
|
|
m_BlockVectorType(blockVectorType),
|
|
m_BytesMoved(0),
|
|
m_AllocationsMoved(0),
|
|
m_Allocations(VmaStlAllocator<AllocationInfo>(pAllocationCallbacks)),
|
|
m_Blocks(VmaStlAllocator<BlockInfo*>(pAllocationCallbacks))
|
|
{
|
|
}
|
|
|
|
VmaDefragmentator::~VmaDefragmentator()
|
|
{
|
|
for(size_t i = m_Blocks.size(); i--; )
|
|
{
|
|
vma_delete(m_pAllocationCallbacks, m_Blocks[i]);
|
|
}
|
|
}
|
|
|
|
void VmaDefragmentator::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
|
|
{
|
|
AllocationInfo allocInfo;
|
|
allocInfo.m_hAllocation = hAlloc;
|
|
allocInfo.m_pChanged = pChanged;
|
|
m_Allocations.push_back(allocInfo);
|
|
}
|
|
|
|
VkResult VmaDefragmentator::DefragmentRound(
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove)
|
|
{
|
|
if(m_Blocks.empty())
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
size_t srcBlockIndex = m_Blocks.size() - 1;
|
|
size_t srcAllocIndex = SIZE_MAX;
|
|
for(;;)
|
|
{
|
|
// 1. Find next allocation to move.
|
|
// 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
|
|
// 1.2. Then start from last to first m_Allocations - they are sorted from largest to smallest.
|
|
while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
|
|
{
|
|
if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
|
|
{
|
|
// Finished: no more allocations to process.
|
|
if(srcBlockIndex == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
--srcBlockIndex;
|
|
srcAllocIndex = SIZE_MAX;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
|
|
}
|
|
}
|
|
|
|
BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
|
|
AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
|
|
|
|
const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
|
|
const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
|
|
const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
|
|
const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
|
|
|
|
// 2. Try to find new place for this allocation in preceding or current block.
|
|
for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
|
|
{
|
|
BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
|
|
VmaAllocationRequest dstAllocRequest;
|
|
if(pDstBlockInfo->m_pBlock->CreateAllocationRequest(
|
|
m_BufferImageGranularity,
|
|
size,
|
|
alignment,
|
|
suballocType,
|
|
&dstAllocRequest) &&
|
|
MoveMakesSense(
|
|
dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
|
|
{
|
|
// Reached limit on number of allocations or bytes to move.
|
|
if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
|
|
(m_BytesMoved + size > maxBytesToMove))
|
|
{
|
|
return VK_INCOMPLETE;
|
|
}
|
|
|
|
void* pDstMappedData = VMA_NULL;
|
|
VkResult res = pDstBlockInfo->EnsureMapping(m_hDevice, &pDstMappedData);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
void* pSrcMappedData = VMA_NULL;
|
|
res = pSrcBlockInfo->EnsureMapping(m_hDevice, &pSrcMappedData);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
// THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
|
|
memcpy(
|
|
reinterpret_cast<char*>(pDstMappedData) + dstAllocRequest.offset,
|
|
reinterpret_cast<char*>(pSrcMappedData) + srcOffset,
|
|
size);
|
|
|
|
pDstBlockInfo->m_pBlock->Alloc(dstAllocRequest, suballocType, size);
|
|
pSrcBlockInfo->m_pBlock->Free(allocInfo.m_hAllocation);
|
|
|
|
allocInfo.m_hAllocation->ChangeBlockAllocation(pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
|
|
|
|
if(allocInfo.m_pChanged != VMA_NULL)
|
|
{
|
|
*allocInfo.m_pChanged = VK_TRUE;
|
|
}
|
|
|
|
++m_AllocationsMoved;
|
|
m_BytesMoved += size;
|
|
|
|
VectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
|
|
|
|
if(srcAllocIndex > 0)
|
|
{
|
|
--srcAllocIndex;
|
|
}
|
|
else
|
|
{
|
|
if(srcBlockIndex > 0)
|
|
{
|
|
--srcBlockIndex;
|
|
srcAllocIndex = SIZE_MAX;
|
|
}
|
|
else
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaDefragmentator::Defragment(
|
|
VmaBlockVector* pBlockVector,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove)
|
|
{
|
|
if(m_Allocations.empty())
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Create block info for each block.
|
|
const size_t blockCount = pBlockVector->m_Blocks.size();
|
|
for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
BlockInfo* pBlockInfo = vma_new(m_pAllocationCallbacks, BlockInfo)(m_pAllocationCallbacks);
|
|
pBlockInfo->m_pBlock = pBlockVector->m_Blocks[blockIndex];
|
|
m_Blocks.push_back(pBlockInfo);
|
|
}
|
|
|
|
// Sort them by m_pBlock pointer value.
|
|
VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
|
|
|
|
// Move allocation infos from m_Allocations to appropriate m_Blocks[i].m_Allocations.
|
|
for(size_t allocIndex = 0, allocCount = m_Allocations.size(); allocIndex < allocCount; ++allocIndex)
|
|
{
|
|
AllocationInfo& allocInfo = m_Allocations[allocIndex];
|
|
VmaBlock* pBlock = allocInfo.m_hAllocation->GetBlock();
|
|
BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
|
|
if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
|
|
{
|
|
(*it)->m_Allocations.push_back(allocInfo);
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
m_Allocations.clear();
|
|
|
|
for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
BlockInfo* pBlockInfo = m_Blocks[blockIndex];
|
|
pBlockInfo->CalcHasNonMovableAllocations();
|
|
pBlockInfo->SortAllocationsBySizeDescecnding();
|
|
}
|
|
|
|
// Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
|
|
VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
|
|
|
|
// Execute defragmentation round (the main part).
|
|
VkResult result = VK_SUCCESS;
|
|
for(size_t round = 0; (round < 2) && (result == VK_SUCCESS); ++round)
|
|
{
|
|
result = DefragmentRound(maxBytesToMove, maxAllocationsToMove);
|
|
}
|
|
|
|
// Unmap blocks that were mapped for defragmentation.
|
|
for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
m_Blocks[blockIndex]->Unmap(m_hDevice);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool VmaDefragmentator::MoveMakesSense(
|
|
size_t dstBlockIndex, VkDeviceSize dstOffset,
|
|
size_t srcBlockIndex, VkDeviceSize srcOffset)
|
|
{
|
|
if(dstBlockIndex < srcBlockIndex)
|
|
{
|
|
return true;
|
|
}
|
|
if(dstBlockIndex > srcBlockIndex)
|
|
{
|
|
return false;
|
|
}
|
|
if(dstOffset < srcOffset)
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaAllocator_T
|
|
|
|
VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
|
|
m_PhysicalDevice(pCreateInfo->physicalDevice),
|
|
m_hDevice(pCreateInfo->device),
|
|
m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
|
|
m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
|
|
*pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
|
|
m_PreferredLargeHeapBlockSize(0),
|
|
m_PreferredSmallHeapBlockSize(0),
|
|
m_UnmapPersistentlyMappedMemoryCounter(0)
|
|
{
|
|
VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);
|
|
|
|
memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
|
|
memset(&m_MemProps, 0, sizeof(m_MemProps));
|
|
memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
|
|
|
|
memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
|
|
memset(&m_HasEmptyBlock, 0, sizeof(m_HasEmptyBlock));
|
|
memset(&m_pOwnAllocations, 0, sizeof(m_pOwnAllocations));
|
|
|
|
if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
|
|
{
|
|
m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
|
|
m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
|
|
}
|
|
|
|
m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
|
|
pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
|
|
m_PreferredSmallHeapBlockSize = (pCreateInfo->preferredSmallHeapBlockSize != 0) ?
|
|
pCreateInfo->preferredSmallHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE);
|
|
|
|
vkGetPhysicalDeviceProperties(m_PhysicalDevice, &m_PhysicalDeviceProperties);
|
|
vkGetPhysicalDeviceMemoryProperties(m_PhysicalDevice, &m_MemProps);
|
|
|
|
for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
|
|
{
|
|
for(size_t j = 0; j < VMA_BLOCK_VECTOR_TYPE_COUNT; ++j)
|
|
{
|
|
m_pBlockVectors[i][j] = vma_new(this, VmaBlockVector)(this);
|
|
m_pOwnAllocations[i][j] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
|
|
}
|
|
}
|
|
}
|
|
|
|
VmaAllocator_T::~VmaAllocator_T()
|
|
{
|
|
for(uint32_t typeIndex = 0; typeIndex < GetMemoryTypeCount(); ++typeIndex)
|
|
{
|
|
for(size_t blockVectorType = VMA_BLOCK_VECTOR_TYPE_COUNT; blockVectorType--; )
|
|
{
|
|
AllocationVectorType* pOwnAllocations = m_pOwnAllocations[typeIndex][blockVectorType];
|
|
VMA_ASSERT(pOwnAllocations != VMA_NULL && pOwnAllocations->size() == 0);
|
|
}
|
|
}
|
|
|
|
for(size_t i = GetMemoryTypeCount(); i--; )
|
|
{
|
|
for(size_t j = VMA_BLOCK_VECTOR_TYPE_COUNT; j--; )
|
|
{
|
|
vma_delete(this, m_pOwnAllocations[i][j]);
|
|
vma_delete(this, m_pBlockVectors[i][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
VkDeviceSize VmaAllocator_T::GetPreferredBlockSize(uint32_t memTypeIndex) const
|
|
{
|
|
VkDeviceSize heapSize = m_MemProps.memoryHeaps[m_MemProps.memoryTypes[memTypeIndex].heapIndex].size;
|
|
return (heapSize <= VMA_SMALL_HEAP_MAX_SIZE) ?
|
|
m_PreferredSmallHeapBlockSize : m_PreferredLargeHeapBlockSize;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateMemoryOfType(
|
|
const VkMemoryRequirements& vkMemReq,
|
|
const VmaMemoryRequirements& vmaMemReq,
|
|
uint32_t memTypeIndex,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
VMA_ASSERT(pAllocation != VMA_NULL);
|
|
VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, Size=%llu", memTypeIndex, vkMemReq.size);
|
|
|
|
const VkDeviceSize preferredBlockSize = GetPreferredBlockSize(memTypeIndex);
|
|
// Heuristics: Allocate own memory if requested size if greater than half of preferred block size.
|
|
const bool ownMemory =
|
|
(vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_OWN_MEMORY_BIT) != 0 ||
|
|
VMA_DEBUG_ALWAYS_OWN_MEMORY ||
|
|
((vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_NEVER_ALLOCATE_BIT) == 0 &&
|
|
vkMemReq.size > preferredBlockSize / 2);
|
|
|
|
if(ownMemory)
|
|
{
|
|
if((vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_NEVER_ALLOCATE_BIT) != 0)
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
else
|
|
{
|
|
return AllocateOwnMemory(
|
|
vkMemReq.size,
|
|
suballocType,
|
|
memTypeIndex,
|
|
(vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_PERSISTENT_MAP_BIT) != 0,
|
|
vmaMemReq.pUserData,
|
|
pAllocation);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uint32_t blockVectorType = VmaMemoryRequirementFlagsToBlockVectorType(vmaMemReq.flags);
|
|
|
|
VmaMutexLock lock(m_BlocksMutex[memTypeIndex]);
|
|
VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex][blockVectorType];
|
|
VMA_ASSERT(blockVector);
|
|
|
|
// 1. Search existing allocations.
|
|
// Forward order - prefer blocks with smallest amount of free space.
|
|
for(size_t allocIndex = 0; allocIndex < blockVector->m_Blocks.size(); ++allocIndex )
|
|
{
|
|
VmaBlock* const pBlock = blockVector->m_Blocks[allocIndex];
|
|
VMA_ASSERT(pBlock);
|
|
VmaAllocationRequest allocRequest = {};
|
|
// Check if can allocate from pBlock.
|
|
if(pBlock->CreateAllocationRequest(
|
|
GetBufferImageGranularity(),
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
suballocType,
|
|
&allocRequest))
|
|
{
|
|
// We no longer have an empty Allocation.
|
|
if(pBlock->IsEmpty())
|
|
m_HasEmptyBlock[memTypeIndex] = false;
|
|
// Allocate from this pBlock.
|
|
pBlock->Alloc(allocRequest, suballocType, vkMemReq.size);
|
|
*pAllocation = vma_new(this, VmaAllocation_T)();
|
|
(*pAllocation)->InitBlockAllocation(
|
|
pBlock,
|
|
allocRequest.offset,
|
|
vkMemReq.alignment,
|
|
vkMemReq.size,
|
|
suballocType,
|
|
vmaMemReq.pUserData);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
VMA_DEBUG_LOG(" Returned from existing allocation #%u", (uint32_t)allocIndex);
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
|
|
// 2. Create new Allocation.
|
|
if((vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_NEVER_ALLOCATE_BIT) != 0)
|
|
{
|
|
VMA_DEBUG_LOG(" FAILED due to VMA_MEMORY_REQUIREMENT_NEVER_ALLOCATE_BIT");
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
// Start with full preferredBlockSize.
|
|
VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
allocInfo.memoryTypeIndex = memTypeIndex;
|
|
allocInfo.allocationSize = preferredBlockSize;
|
|
VkDeviceMemory mem = VK_NULL_HANDLE;
|
|
VkResult res = vkAllocateMemory(m_hDevice, &allocInfo, GetAllocationCallbacks(), &mem);
|
|
if(res < 0)
|
|
{
|
|
// 3. Try half the size.
|
|
allocInfo.allocationSize /= 2;
|
|
if(allocInfo.allocationSize >= vkMemReq.size)
|
|
{
|
|
res = vkAllocateMemory(m_hDevice, &allocInfo, GetAllocationCallbacks(), &mem);
|
|
if(res < 0)
|
|
{
|
|
// 4. Try quarter the size.
|
|
allocInfo.allocationSize /= 2;
|
|
if(allocInfo.allocationSize >= vkMemReq.size)
|
|
{
|
|
res = vkAllocateMemory(m_hDevice, &allocInfo, GetAllocationCallbacks(), &mem);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(res < 0)
|
|
{
|
|
// 5. Try OwnAlloc.
|
|
res = AllocateOwnMemory(
|
|
vkMemReq.size,
|
|
suballocType,
|
|
memTypeIndex,
|
|
(vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_PERSISTENT_MAP_BIT) != 0,
|
|
vmaMemReq.pUserData,
|
|
pAllocation);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Succeeded: AllocateOwnMemory function already filld pMemory, nothing more to do here.
|
|
VMA_DEBUG_LOG(" Allocated as OwnMemory");
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
// Everything failed: Return error code.
|
|
VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
|
|
return res;
|
|
}
|
|
}
|
|
|
|
// New VkDeviceMemory successfully created.
|
|
|
|
// Map memory if needed.
|
|
void* pMappedData = VMA_NULL;
|
|
const bool persistentMap = (vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_PERSISTENT_MAP_BIT) != 0;
|
|
if(persistentMap && m_UnmapPersistentlyMappedMemoryCounter == 0)
|
|
{
|
|
res = vkMapMemory(m_hDevice, mem, 0, VK_WHOLE_SIZE, 0, &pMappedData);
|
|
if(res < 0)
|
|
{
|
|
VMA_DEBUG_LOG(" vkMapMemory FAILED");
|
|
vkFreeMemory(m_hDevice, mem, GetAllocationCallbacks());
|
|
return res;
|
|
}
|
|
}
|
|
|
|
// Callback.
|
|
if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
|
|
{
|
|
(*m_DeviceMemoryCallbacks.pfnAllocate)(this, memTypeIndex, mem, allocInfo.allocationSize);
|
|
}
|
|
|
|
// Create new Allocation for it.
|
|
VmaBlock* const pBlock = vma_new(this, VmaBlock)(this);
|
|
pBlock->Init(
|
|
memTypeIndex,
|
|
(VMA_BLOCK_VECTOR_TYPE)blockVectorType,
|
|
mem,
|
|
allocInfo.allocationSize,
|
|
persistentMap,
|
|
pMappedData);
|
|
|
|
blockVector->m_Blocks.push_back(pBlock);
|
|
|
|
// Allocate from pBlock. Because it is empty, dstAllocRequest can be trivially filled.
|
|
VmaAllocationRequest allocRequest = {};
|
|
allocRequest.freeSuballocationItem = pBlock->m_Suballocations.begin();
|
|
allocRequest.offset = 0;
|
|
pBlock->Alloc(allocRequest, suballocType, vkMemReq.size);
|
|
*pAllocation = vma_new(this, VmaAllocation_T)();
|
|
(*pAllocation)->InitBlockAllocation(
|
|
pBlock,
|
|
allocRequest.offset,
|
|
vkMemReq.alignment,
|
|
vkMemReq.size,
|
|
suballocType,
|
|
vmaMemReq.pUserData);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
VMA_DEBUG_LOG(" Created new allocation Size=%llu", allocInfo.allocationSize);
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateOwnMemory(
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t memTypeIndex,
|
|
bool map,
|
|
void* pUserData,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
VMA_ASSERT(pAllocation);
|
|
|
|
VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
allocInfo.memoryTypeIndex = memTypeIndex;
|
|
allocInfo.allocationSize = size;
|
|
|
|
// Allocate VkDeviceMemory.
|
|
VkDeviceMemory hMemory = VK_NULL_HANDLE;
|
|
VkResult res = vkAllocateMemory(m_hDevice, &allocInfo, GetAllocationCallbacks(), &hMemory);
|
|
if(res < 0)
|
|
{
|
|
VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
|
|
return res;
|
|
}
|
|
|
|
void* pMappedData = nullptr;
|
|
if(map)
|
|
{
|
|
if(m_UnmapPersistentlyMappedMemoryCounter == 0)
|
|
{
|
|
res = vkMapMemory(m_hDevice, hMemory, 0, VK_WHOLE_SIZE, 0, &pMappedData);
|
|
if(res < 0)
|
|
{
|
|
VMA_DEBUG_LOG(" vkMapMemory FAILED");
|
|
vkFreeMemory(m_hDevice, hMemory, GetAllocationCallbacks());
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Callback.
|
|
if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
|
|
{
|
|
(*m_DeviceMemoryCallbacks.pfnAllocate)(this, memTypeIndex, hMemory, size);
|
|
}
|
|
|
|
*pAllocation = vma_new(this, VmaAllocation_T)();
|
|
(*pAllocation)->InitOwnAllocation(memTypeIndex, hMemory, suballocType, map, pMappedData, size, pUserData);
|
|
|
|
// Register it in m_pOwnAllocations.
|
|
{
|
|
VmaMutexLock lock(m_OwnAllocationsMutex[memTypeIndex]);
|
|
AllocationVectorType* pOwnAllocations = m_pOwnAllocations[memTypeIndex][map ? VMA_BLOCK_VECTOR_TYPE_MAPPED : VMA_BLOCK_VECTOR_TYPE_UNMAPPED];
|
|
VMA_ASSERT(pOwnAllocations);
|
|
VmaAllocation* const pOwnAllocationsBeg = pOwnAllocations->data();
|
|
VmaAllocation* const pOwnAllocationsEnd = pOwnAllocationsBeg + pOwnAllocations->size();
|
|
const size_t indexToInsert = VmaBinaryFindFirstNotLess(
|
|
pOwnAllocationsBeg,
|
|
pOwnAllocationsEnd,
|
|
*pAllocation,
|
|
VmaPointerLess()) - pOwnAllocationsBeg;
|
|
VectorInsert(*pOwnAllocations, indexToInsert, *pAllocation);
|
|
}
|
|
|
|
VMA_DEBUG_LOG(" Allocated OwnMemory MemoryTypeIndex=#%u", memTypeIndex);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateMemory(
|
|
const VkMemoryRequirements& vkMemReq,
|
|
const VmaMemoryRequirements& vmaMemReq,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
if((vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_OWN_MEMORY_BIT) != 0 &&
|
|
(vmaMemReq.flags & VMA_MEMORY_REQUIREMENT_NEVER_ALLOCATE_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "Specifying VMA_MEMORY_REQUIREMENT_OWN_MEMORY_BIT together with VMA_MEMORY_REQUIREMENT_NEVER_ALLOCATE_BIT makes no sense.");
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
// Bit mask of memory Vulkan types acceptable for this allocation.
|
|
uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
|
|
uint32_t memTypeIndex = UINT32_MAX;
|
|
VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &vmaMemReq, &memTypeIndex);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
res = AllocateMemoryOfType(vkMemReq, vmaMemReq, memTypeIndex, suballocType, pAllocation);
|
|
// Succeeded on first try.
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
// Allocation from this memory type failed. Try other compatible memory types.
|
|
else
|
|
{
|
|
for(;;)
|
|
{
|
|
// Remove old memTypeIndex from list of possibilities.
|
|
memoryTypeBits &= ~(1u << memTypeIndex);
|
|
// Find alternative memTypeIndex.
|
|
res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &vmaMemReq, &memTypeIndex);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
res = AllocateMemoryOfType(vkMemReq, vmaMemReq, memTypeIndex, suballocType, pAllocation);
|
|
// Allocation from this alternative memory type succeeded.
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
// else: Allocation from this memory type failed. Try next one - next loop iteration.
|
|
}
|
|
// No other matching memory type index could be found.
|
|
else
|
|
// Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
}
|
|
}
|
|
// Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
|
|
else
|
|
return res;
|
|
}
|
|
|
|
void VmaAllocator_T::FreeMemory(const VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocation);
|
|
|
|
if(allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK)
|
|
{
|
|
VmaBlock* pBlockToDelete = VMA_NULL;
|
|
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
const VMA_BLOCK_VECTOR_TYPE blockVectorType = allocation->GetBlockVectorType();
|
|
{
|
|
VmaMutexLock lock(m_BlocksMutex[memTypeIndex]);
|
|
|
|
VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex][blockVectorType];
|
|
VmaBlock* pBlock = allocation->GetBlock();
|
|
|
|
pBlock->Free(allocation);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
|
|
VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", memTypeIndex);
|
|
|
|
// pBlock became empty after this deallocation.
|
|
if(pBlock->IsEmpty())
|
|
{
|
|
// Already has empty Allocation. We don't want to have two, so delete this one.
|
|
if(m_HasEmptyBlock[memTypeIndex])
|
|
{
|
|
pBlockToDelete = pBlock;
|
|
pBlockVector->Remove(pBlock);
|
|
}
|
|
// We now have first empty Allocation.
|
|
else
|
|
m_HasEmptyBlock[memTypeIndex] = true;
|
|
}
|
|
// Must be called after srcBlockIndex is used, because later it may become invalid!
|
|
pBlockVector->IncrementallySortBlocks();
|
|
}
|
|
// Destruction of a free Allocation. Deferred until this point, outside of mutex
|
|
// lock, for performance reason.
|
|
if(pBlockToDelete != VMA_NULL)
|
|
{
|
|
VMA_DEBUG_LOG(" Deleted empty allocation");
|
|
pBlockToDelete->Destroy(this);
|
|
vma_delete(this, pBlockToDelete);
|
|
}
|
|
|
|
vma_delete(this, allocation);
|
|
}
|
|
else // VmaAllocation_T::ALLOCATION_TYPE_OWN
|
|
{
|
|
FreeOwnMemory(allocation);
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::CalculateStats(VmaStats* pStats)
|
|
{
|
|
InitStatInfo(pStats->total);
|
|
for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
|
|
InitStatInfo(pStats->memoryType[i]);
|
|
for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
|
|
InitStatInfo(pStats->memoryHeap[i]);
|
|
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaMutexLock allocationsLock(m_BlocksMutex[memTypeIndex]);
|
|
const uint32_t heapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex;
|
|
for(uint32_t blockVectorType = 0; blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorType)
|
|
{
|
|
const VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex][blockVectorType];
|
|
VMA_ASSERT(pBlockVector);
|
|
pBlockVector->AddStats(pStats, memTypeIndex, heapIndex);
|
|
}
|
|
}
|
|
|
|
VmaPostprocessCalcStatInfo(pStats->total);
|
|
for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
|
|
VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
|
|
for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
|
|
VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
|
|
}
|
|
|
|
static const uint32_t VMA_VENDOR_ID_AMD = 4098;
|
|
|
|
void VmaAllocator_T::UnmapPersistentlyMappedMemory()
|
|
{
|
|
if(m_UnmapPersistentlyMappedMemoryCounter++ == 0)
|
|
{
|
|
if(m_PhysicalDeviceProperties.vendorID == VMA_VENDOR_ID_AMD)
|
|
{
|
|
for(size_t memTypeIndex = m_MemProps.memoryTypeCount; memTypeIndex--; )
|
|
{
|
|
const VkMemoryPropertyFlags memFlags = m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
|
|
if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0 &&
|
|
(memFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
|
|
{
|
|
// Process OwnAllocations.
|
|
{
|
|
VmaMutexLock lock(m_OwnAllocationsMutex[memTypeIndex]);
|
|
AllocationVectorType* pOwnAllocationsVector = m_pOwnAllocations[memTypeIndex][VMA_BLOCK_VECTOR_TYPE_MAPPED];
|
|
for(size_t ownAllocIndex = pOwnAllocationsVector->size(); ownAllocIndex--; )
|
|
{
|
|
VmaAllocation hAlloc = (*pOwnAllocationsVector)[ownAllocIndex];
|
|
hAlloc->OwnAllocUnmapPersistentlyMappedMemory(m_hDevice);
|
|
}
|
|
}
|
|
|
|
// Process normal Allocations.
|
|
{
|
|
VmaMutexLock lock(m_BlocksMutex[memTypeIndex]);
|
|
VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex][VMA_BLOCK_VECTOR_TYPE_MAPPED];
|
|
pBlockVector->UnmapPersistentlyMappedMemory();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::MapPersistentlyMappedMemory()
|
|
{
|
|
VMA_ASSERT(m_UnmapPersistentlyMappedMemoryCounter > 0);
|
|
if(--m_UnmapPersistentlyMappedMemoryCounter == 0)
|
|
{
|
|
VkResult finalResult = VK_SUCCESS;
|
|
if(m_PhysicalDeviceProperties.vendorID == VMA_VENDOR_ID_AMD)
|
|
{
|
|
for(size_t memTypeIndex = 0; memTypeIndex < m_MemProps.memoryTypeCount; ++memTypeIndex)
|
|
{
|
|
const VkMemoryPropertyFlags memFlags = m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
|
|
if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0 &&
|
|
(memFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
|
|
{
|
|
// Process OwnAllocations.
|
|
{
|
|
VmaMutexLock lock(m_OwnAllocationsMutex[memTypeIndex]);
|
|
AllocationVectorType* pAllocationsVector = m_pOwnAllocations[memTypeIndex][VMA_BLOCK_VECTOR_TYPE_MAPPED];
|
|
for(size_t ownAllocIndex = 0, ownAllocCount = pAllocationsVector->size(); ownAllocIndex < ownAllocCount; ++ownAllocIndex)
|
|
{
|
|
VmaAllocation hAlloc = (*pAllocationsVector)[ownAllocIndex];
|
|
hAlloc->OwnAllocMapPersistentlyMappedMemory(m_hDevice);
|
|
}
|
|
}
|
|
|
|
// Process normal Allocations.
|
|
{
|
|
VmaMutexLock lock(m_BlocksMutex[memTypeIndex]);
|
|
VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex][VMA_BLOCK_VECTOR_TYPE_MAPPED];
|
|
VkResult localResult = pBlockVector->MapPersistentlyMappedMemory();
|
|
if(localResult != VK_SUCCESS)
|
|
{
|
|
finalResult = localResult;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return finalResult;
|
|
}
|
|
else
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::Defragment(
|
|
VmaAllocation* pAllocations,
|
|
size_t allocationCount,
|
|
VkBool32* pAllocationsChanged,
|
|
const VmaDefragmentationInfo* pDefragmentationInfo,
|
|
VmaDefragmentationStats* pDefragmentationStats)
|
|
{
|
|
if(pAllocationsChanged != VMA_NULL)
|
|
{
|
|
memset(pAllocationsChanged, 0, sizeof(*pAllocationsChanged));
|
|
}
|
|
if(pDefragmentationStats != VMA_NULL)
|
|
{
|
|
memset(pDefragmentationStats, 0, sizeof(*pDefragmentationStats));
|
|
}
|
|
|
|
if(m_UnmapPersistentlyMappedMemoryCounter > 0)
|
|
{
|
|
VMA_DEBUG_LOG("ERROR: Cannot defragment when inside vmaUnmapPersistentlyMappedMemory.");
|
|
return VK_ERROR_MEMORY_MAP_FAILED;
|
|
}
|
|
|
|
// Initialize defragmentators per memory type.
|
|
const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
|
|
VmaDefragmentator* pDefragmentators[VK_MAX_MEMORY_TYPES][VMA_BLOCK_VECTOR_TYPE_COUNT];
|
|
memset(pDefragmentators, 0, sizeof(pDefragmentators));
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
// Only HOST_VISIBLE memory types can be defragmented.
|
|
if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
{
|
|
for(uint32_t blockVectorType = 0; blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorType)
|
|
{
|
|
pDefragmentators[memTypeIndex][blockVectorType] = vma_new(this, VmaDefragmentator)(
|
|
m_hDevice,
|
|
GetAllocationCallbacks(),
|
|
bufferImageGranularity,
|
|
memTypeIndex,
|
|
(VMA_BLOCK_VECTOR_TYPE)blockVectorType);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Dispatch pAllocations among defragmentators.
|
|
for(size_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
VmaAllocation hAlloc = pAllocations[allocIndex];
|
|
VMA_ASSERT(hAlloc);
|
|
if(hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK)
|
|
{
|
|
const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
|
|
// Only HOST_VISIBLE memory types can be defragmented.
|
|
if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
{
|
|
const VMA_BLOCK_VECTOR_TYPE blockVectorType = hAlloc->GetBlockVectorType();
|
|
VkBool32* pChanged = (pAllocationsChanged != VMA_NULL) ?
|
|
&pAllocationsChanged[allocIndex] : VMA_NULL;
|
|
pDefragmentators[memTypeIndex][blockVectorType]->AddAllocation(hAlloc, pChanged);
|
|
}
|
|
// else: skip this allocation, cannot move it.
|
|
}
|
|
// else ALLOCATION_TYPE_OWN: skip this allocation, nothing to defragment.
|
|
}
|
|
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
// Main processing.
|
|
VkDeviceSize maxBytesToMove = SIZE_MAX;
|
|
uint32_t maxAllocationsToMove = UINT32_MAX;
|
|
if(pDefragmentationInfo != VMA_NULL)
|
|
{
|
|
maxBytesToMove = pDefragmentationInfo->maxBytesToMove;
|
|
maxAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
|
|
}
|
|
for(uint32_t memTypeIndex = 0;
|
|
(memTypeIndex < GetMemoryTypeCount()) && (result == VK_SUCCESS);
|
|
++memTypeIndex)
|
|
{
|
|
// Only HOST_VISIBLE memory types can be defragmented.
|
|
if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
{
|
|
VmaMutexLock lock(m_BlocksMutex[memTypeIndex]);
|
|
|
|
for(uint32_t blockVectorType = 0;
|
|
(blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT) && (result == VK_SUCCESS);
|
|
++blockVectorType)
|
|
{
|
|
VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex][blockVectorType];
|
|
|
|
// Defragment.
|
|
result = pDefragmentators[memTypeIndex][blockVectorType]->Defragment(pBlockVector, maxBytesToMove, maxAllocationsToMove);
|
|
|
|
// Accumulate statistics.
|
|
if(pDefragmentationStats != VMA_NULL)
|
|
{
|
|
const VkDeviceSize bytesMoved = pDefragmentators[memTypeIndex][blockVectorType]->GetBytesMoved();
|
|
const uint32_t allocationsMoved = pDefragmentators[memTypeIndex][blockVectorType]->GetAllocationsMoved();
|
|
pDefragmentationStats->bytesMoved += bytesMoved;
|
|
pDefragmentationStats->allocationsMoved += allocationsMoved;
|
|
VMA_ASSERT(bytesMoved <= maxBytesToMove);
|
|
VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
|
|
maxBytesToMove -= bytesMoved;
|
|
maxAllocationsToMove -= allocationsMoved;
|
|
}
|
|
|
|
// Free empty blocks.
|
|
for(size_t blockIndex = pBlockVector->m_Blocks.size(); blockIndex--; )
|
|
{
|
|
VmaBlock* pBlock = pBlockVector->m_Blocks[blockIndex];
|
|
if(pBlock->IsEmpty())
|
|
{
|
|
if(pDefragmentationStats != VMA_NULL)
|
|
{
|
|
++pDefragmentationStats->deviceMemoryBlocksFreed;
|
|
pDefragmentationStats->bytesFreed += pBlock->m_Size;
|
|
}
|
|
|
|
VectorRemove(pBlockVector->m_Blocks, blockIndex);
|
|
pBlock->Destroy(this);
|
|
vma_delete(this, pBlock);
|
|
}
|
|
}
|
|
|
|
// All block vector types processed: we can be sure that all empty allocations have been freed.
|
|
if(blockVectorType == VMA_BLOCK_VECTOR_TYPE_COUNT - 1)
|
|
{
|
|
m_HasEmptyBlock[memTypeIndex] = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Destroy defragmentators.
|
|
for(uint32_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
|
|
{
|
|
for(size_t blockVectorType = VMA_BLOCK_VECTOR_TYPE_COUNT; blockVectorType--; )
|
|
{
|
|
vma_delete(this, pDefragmentators[memTypeIndex][blockVectorType]);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
|
|
pAllocationInfo->deviceMemory = hAllocation->GetMemory();
|
|
pAllocationInfo->offset = hAllocation->GetOffset();
|
|
pAllocationInfo->size = hAllocation->GetSize();
|
|
pAllocationInfo->pMappedData = hAllocation->GetMappedData();
|
|
pAllocationInfo->pUserData = hAllocation->GetUserData();
|
|
}
|
|
|
|
void VmaAllocator_T::FreeOwnMemory(VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_OWN);
|
|
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
{
|
|
VmaMutexLock lock(m_OwnAllocationsMutex[memTypeIndex]);
|
|
AllocationVectorType* const pOwnAllocations = m_pOwnAllocations[memTypeIndex][allocation->GetBlockVectorType()];
|
|
VMA_ASSERT(pOwnAllocations);
|
|
VmaAllocation* const pOwnAllocationsBeg = pOwnAllocations->data();
|
|
VmaAllocation* const pOwnAllocationsEnd = pOwnAllocationsBeg + pOwnAllocations->size();
|
|
VmaAllocation* const pOwnAllocationIt = VmaBinaryFindFirstNotLess(
|
|
pOwnAllocationsBeg,
|
|
pOwnAllocationsEnd,
|
|
allocation,
|
|
VmaPointerLess());
|
|
if(pOwnAllocationIt != pOwnAllocationsEnd)
|
|
{
|
|
const size_t ownAllocationIndex = pOwnAllocationIt - pOwnAllocationsBeg;
|
|
VectorRemove(*pOwnAllocations, ownAllocationIndex);
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
VkDeviceMemory hMemory = allocation->GetMemory();
|
|
|
|
// Callback.
|
|
if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
|
|
{
|
|
(*m_DeviceMemoryCallbacks.pfnFree)(this, memTypeIndex, hMemory, allocation->GetSize());
|
|
}
|
|
|
|
if(allocation->GetMappedData() != VMA_NULL)
|
|
{
|
|
vkUnmapMemory(m_hDevice, hMemory);
|
|
}
|
|
|
|
vkFreeMemory(m_hDevice, hMemory, GetAllocationCallbacks());
|
|
|
|
VMA_DEBUG_LOG(" Freed OwnMemory MemoryTypeIndex=%u", memTypeIndex);
|
|
|
|
vma_delete(this, allocation);
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaAllocator_T::PrintDetailedMap(VmaStringBuilder& sb)
|
|
{
|
|
bool ownAllocationsStarted = false;
|
|
for(size_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaMutexLock ownAllocationsLock(m_OwnAllocationsMutex[memTypeIndex]);
|
|
for(uint32_t blockVectorType = 0; blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorType)
|
|
{
|
|
AllocationVectorType* const pOwnAllocVector = m_pOwnAllocations[memTypeIndex][blockVectorType];
|
|
VMA_ASSERT(pOwnAllocVector);
|
|
if(pOwnAllocVector->empty() == false)
|
|
{
|
|
if(ownAllocationsStarted)
|
|
sb.Add(",\n\t\"Type ");
|
|
else
|
|
{
|
|
sb.Add(",\n\"OwnAllocations\": {\n\t\"Type ");
|
|
ownAllocationsStarted = true;
|
|
}
|
|
sb.AddNumber(memTypeIndex);
|
|
if(blockVectorType == VMA_BLOCK_VECTOR_TYPE_MAPPED)
|
|
{
|
|
sb.Add(" Mapped");
|
|
}
|
|
sb.Add("\": [");
|
|
|
|
for(size_t i = 0; i < pOwnAllocVector->size(); ++i)
|
|
{
|
|
const VmaAllocation hAlloc = (*pOwnAllocVector)[i];
|
|
if(i > 0)
|
|
sb.Add(",\n\t\t{ \"Size\": ");
|
|
else
|
|
sb.Add("\n\t\t{ \"Size\": ");
|
|
sb.AddNumber(hAlloc->GetSize());
|
|
sb.Add(", \"Type\": ");
|
|
sb.AddString(VMA_SUBALLOCATION_TYPE_NAMES[hAlloc->GetSuballocationType()]);
|
|
sb.Add(" }");
|
|
}
|
|
|
|
sb.Add("\n\t]");
|
|
}
|
|
}
|
|
}
|
|
if(ownAllocationsStarted)
|
|
sb.Add("\n}");
|
|
|
|
{
|
|
bool allocationsStarted = false;
|
|
for(size_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaMutexLock globalAllocationsLock(m_BlocksMutex[memTypeIndex]);
|
|
for(uint32_t blockVectorType = 0; blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorType)
|
|
{
|
|
if(m_pBlockVectors[memTypeIndex][blockVectorType]->IsEmpty() == false)
|
|
{
|
|
if(allocationsStarted)
|
|
sb.Add(",\n\t\"Type ");
|
|
else
|
|
{
|
|
sb.Add(",\n\"Allocations\": {\n\t\"Type ");
|
|
allocationsStarted = true;
|
|
}
|
|
sb.AddNumber(memTypeIndex);
|
|
if(blockVectorType == VMA_BLOCK_VECTOR_TYPE_MAPPED)
|
|
{
|
|
sb.Add(" Mapped");
|
|
}
|
|
sb.Add("\": [");
|
|
|
|
m_pBlockVectors[memTypeIndex][blockVectorType]->PrintDetailedMap(sb);
|
|
|
|
sb.Add("\n\t]");
|
|
}
|
|
}
|
|
}
|
|
if(allocationsStarted)
|
|
sb.Add("\n}");
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
static VkResult AllocateMemoryForImage(
|
|
VmaAllocator allocator,
|
|
VkImage image,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
VMA_ASSERT(allocator && (image != VK_NULL_HANDLE) && pMemoryRequirements && pAllocation);
|
|
|
|
VkMemoryRequirements vkMemReq = {};
|
|
vkGetImageMemoryRequirements(allocator->m_hDevice, image, &vkMemReq);
|
|
|
|
return allocator->AllocateMemory(
|
|
vkMemReq,
|
|
*pMemoryRequirements,
|
|
suballocType,
|
|
pAllocation);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Public interface
|
|
|
|
VkResult vmaCreateAllocator(
|
|
const VmaAllocatorCreateInfo* pCreateInfo,
|
|
VmaAllocator* pAllocator)
|
|
{
|
|
VMA_ASSERT(pCreateInfo && pAllocator);
|
|
VMA_DEBUG_LOG("vmaCreateAllocator");
|
|
*pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void vmaDestroyAllocator(
|
|
VmaAllocator allocator)
|
|
{
|
|
if(allocator != VK_NULL_HANDLE)
|
|
{
|
|
VMA_DEBUG_LOG("vmaDestroyAllocator");
|
|
VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
|
|
vma_delete(&allocationCallbacks, allocator);
|
|
}
|
|
}
|
|
|
|
void vmaGetPhysicalDeviceProperties(
|
|
VmaAllocator allocator,
|
|
const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
|
|
{
|
|
VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
|
|
*ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
|
|
}
|
|
|
|
void vmaGetMemoryProperties(
|
|
VmaAllocator allocator,
|
|
const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
|
|
{
|
|
VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
|
|
*ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
|
|
}
|
|
|
|
void vmaGetMemoryTypeProperties(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeIndex,
|
|
VkMemoryPropertyFlags* pFlags)
|
|
{
|
|
VMA_ASSERT(allocator && pFlags);
|
|
VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
|
|
*pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
|
|
}
|
|
|
|
void vmaCalculateStats(
|
|
VmaAllocator allocator,
|
|
VmaStats* pStats)
|
|
{
|
|
VMA_ASSERT(allocator && pStats);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
allocator->CalculateStats(pStats);
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void vmaBuildStatsString(
|
|
VmaAllocator allocator,
|
|
char** ppStatsString,
|
|
VkBool32 detailedMap)
|
|
{
|
|
VMA_ASSERT(allocator && ppStatsString);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VmaStringBuilder sb(allocator);
|
|
{
|
|
VmaStats stats;
|
|
allocator->CalculateStats(&stats);
|
|
|
|
sb.Add("{\n\"Total\": ");
|
|
VmaPrintStatInfo(sb, stats.total);
|
|
|
|
for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
|
|
{
|
|
sb.Add(",\n\"Heap ");
|
|
sb.AddNumber(heapIndex);
|
|
sb.Add("\": {\n\t\"Size\": ");
|
|
sb.AddNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
|
|
sb.Add(",\n\t\"Flags\": ");
|
|
if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
|
|
sb.AddString("DEVICE_LOCAL");
|
|
else
|
|
sb.AddString("");
|
|
if(stats.memoryHeap[heapIndex].AllocationCount > 0)
|
|
{
|
|
sb.Add(",\n\t\"Stats:\": ");
|
|
VmaPrintStatInfo(sb, stats.memoryHeap[heapIndex]);
|
|
}
|
|
|
|
for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
|
|
{
|
|
if(allocator->m_MemProps.memoryTypes[typeIndex].heapIndex == heapIndex)
|
|
{
|
|
sb.Add(",\n\t\"Type ");
|
|
sb.AddNumber(typeIndex);
|
|
sb.Add("\": {\n\t\t\"Flags\": \"");
|
|
VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
|
|
if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
|
|
sb.Add(" DEVICE_LOCAL");
|
|
if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
sb.Add(" HOST_VISIBLE");
|
|
if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
|
|
sb.Add(" HOST_COHERENT");
|
|
if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
|
|
sb.Add(" HOST_CACHED");
|
|
if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
|
|
sb.Add(" LAZILY_ALLOCATED");
|
|
sb.Add("\"");
|
|
if(stats.memoryType[typeIndex].AllocationCount > 0)
|
|
{
|
|
sb.Add(",\n\t\t\"Stats\": ");
|
|
VmaPrintStatInfo(sb, stats.memoryType[typeIndex]);
|
|
}
|
|
sb.Add("\n\t}");
|
|
}
|
|
}
|
|
sb.Add("\n}");
|
|
}
|
|
if(detailedMap == VK_TRUE)
|
|
allocator->PrintDetailedMap(sb);
|
|
sb.Add("\n}\n");
|
|
}
|
|
|
|
const size_t len = sb.GetLength();
|
|
char* const pChars = vma_new_array(allocator, char, len + 1);
|
|
if(len > 0)
|
|
memcpy(pChars, sb.GetData(), len);
|
|
pChars[len] = '\0';
|
|
*ppStatsString = pChars;
|
|
}
|
|
|
|
void vmaFreeStatsString(
|
|
VmaAllocator allocator,
|
|
char* pStatsString)
|
|
{
|
|
if(pStatsString != VMA_NULL)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
size_t len = strlen(pStatsString);
|
|
vma_delete_array(allocator, pStatsString, len + 1);
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
/** This function is not protected by any mutex because it just reads immutable data.
|
|
*/
|
|
VkResult vmaFindMemoryTypeIndex(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeBits,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
uint32_t* pMemoryTypeIndex)
|
|
{
|
|
VMA_ASSERT(allocator != VK_NULL_HANDLE);
|
|
VMA_ASSERT(pMemoryRequirements != VMA_NULL);
|
|
VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
|
|
|
|
uint32_t requiredFlags = pMemoryRequirements->requiredFlags;
|
|
uint32_t preferredFlags = pMemoryRequirements->preferredFlags;
|
|
if(preferredFlags == 0)
|
|
preferredFlags = requiredFlags;
|
|
// preferredFlags, if not 0, must be subset of requiredFlags.
|
|
VMA_ASSERT((requiredFlags & ~preferredFlags) == 0);
|
|
|
|
// Convert usage to requiredFlags and preferredFlags.
|
|
switch(pMemoryRequirements->usage)
|
|
{
|
|
case VMA_MEMORY_USAGE_UNKNOWN:
|
|
break;
|
|
case VMA_MEMORY_USAGE_GPU_ONLY:
|
|
preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_CPU_ONLY:
|
|
requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_CPU_TO_GPU:
|
|
requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_GPU_TO_CPU:
|
|
requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if((pMemoryRequirements->flags & VMA_MEMORY_REQUIREMENT_PERSISTENT_MAP_BIT) != 0)
|
|
requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
|
|
*pMemoryTypeIndex = UINT32_MAX;
|
|
uint32_t minCost = UINT32_MAX;
|
|
for(uint32_t memTypeIndex = 0, memTypeBit = 1;
|
|
memTypeIndex < allocator->GetMemoryTypeCount();
|
|
++memTypeIndex, memTypeBit <<= 1)
|
|
{
|
|
// This memory type is acceptable according to memoryTypeBits bitmask.
|
|
if((memTypeBit & memoryTypeBits) != 0)
|
|
{
|
|
const VkMemoryPropertyFlags currFlags =
|
|
allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
|
|
// This memory type contains requiredFlags.
|
|
if((requiredFlags & ~currFlags) == 0)
|
|
{
|
|
// Calculate cost as number of bits from preferredFlags not present in this memory type.
|
|
uint32_t currCost = CountBitsSet(preferredFlags & ~currFlags);
|
|
// Remember memory type with lowest cost.
|
|
if(currCost < minCost)
|
|
{
|
|
*pMemoryTypeIndex = memTypeIndex;
|
|
if(currCost == 0)
|
|
return VK_SUCCESS;
|
|
minCost = currCost;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
VkResult vmaAllocateMemory(
|
|
VmaAllocator allocator,
|
|
const VkMemoryRequirements* pVkMemoryRequirements,
|
|
const VmaMemoryRequirements* pVmaMemoryRequirements,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pVkMemoryRequirements && pVmaMemoryRequirements && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->AllocateMemory(
|
|
*pVkMemoryRequirements,
|
|
*pVmaMemoryRequirements,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN,
|
|
pAllocation);
|
|
|
|
if(pAllocationInfo)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
}
|
|
|
|
VkResult vmaAllocateMemoryForBuffer(
|
|
VmaAllocator allocator,
|
|
VkBuffer buffer,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pMemoryRequirements && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkMemoryRequirements vkMemReq = {};
|
|
vkGetBufferMemoryRequirements(allocator->m_hDevice, buffer, &vkMemReq);
|
|
|
|
return allocator->AllocateMemory(
|
|
vkMemReq,
|
|
*pMemoryRequirements,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
pAllocation);
|
|
|
|
if(pAllocationInfo)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
}
|
|
|
|
VkResult vmaAllocateMemoryForImage(
|
|
VmaAllocator allocator,
|
|
VkImage image,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pMemoryRequirements && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return AllocateMemoryForImage(
|
|
allocator,
|
|
image,
|
|
pMemoryRequirements,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
|
|
pAllocation);
|
|
|
|
if(pAllocationInfo)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
}
|
|
|
|
void vmaFreeMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_LOG("vmaFreeMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->FreeMemory(allocation);
|
|
}
|
|
|
|
void vmaGetAllocationInfo(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && pAllocationInfo);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->GetAllocationInfo(allocation, pAllocationInfo);
|
|
}
|
|
|
|
void vmaSetAllocationUserData(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
void* pUserData)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocation->SetUserData(pUserData);
|
|
}
|
|
|
|
VkResult vmaMapMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
void** ppData)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && ppData);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return vkMapMemory(allocator->m_hDevice, allocation->GetMemory(),
|
|
allocation->GetOffset(), allocation->GetSize(), 0, ppData);
|
|
}
|
|
|
|
void vmaUnmapMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
vkUnmapMemory(allocator->m_hDevice, allocation->GetMemory());
|
|
}
|
|
|
|
void vmaUnmapPersistentlyMappedMemory(VmaAllocator allocator)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->UnmapPersistentlyMappedMemory();
|
|
}
|
|
|
|
VkResult vmaMapPersistentlyMappedMemory(VmaAllocator allocator)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->MapPersistentlyMappedMemory();
|
|
}
|
|
|
|
VkResult vmaDefragment(
|
|
VmaAllocator allocator,
|
|
VmaAllocation* pAllocations,
|
|
size_t allocationCount,
|
|
VkBool32* pAllocationsChanged,
|
|
const VmaDefragmentationInfo *pDefragmentationInfo,
|
|
VmaDefragmentationStats* pDefragmentationStats)
|
|
{
|
|
VMA_ASSERT(allocator && pAllocations);
|
|
|
|
VMA_DEBUG_LOG("vmaDefragment");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->Defragment(pAllocations, allocationCount, pAllocationsChanged, pDefragmentationInfo, pDefragmentationStats);
|
|
}
|
|
|
|
VkResult vmaCreateBuffer(
|
|
VmaAllocator allocator,
|
|
const VkBufferCreateInfo* pCreateInfo,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VkBuffer* pBuffer,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pCreateInfo && pMemoryRequirements && pBuffer && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaCreateBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
// 1. Create VkBuffer.
|
|
VkResult res = vkCreateBuffer(allocator->m_hDevice, pCreateInfo, allocator->GetAllocationCallbacks(), pBuffer);
|
|
if(res >= 0)
|
|
{
|
|
// 2. vkGetBufferMemoryRequirements.
|
|
VkMemoryRequirements vkMemReq = {};
|
|
vkGetBufferMemoryRequirements(allocator->m_hDevice, *pBuffer, &vkMemReq);
|
|
|
|
// 3. Allocate memory using allocator.
|
|
res = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
*pMemoryRequirements,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
pAllocation);
|
|
if(res >= 0)
|
|
{
|
|
// 3. Bind buffer with memory.
|
|
res = vkBindBufferMemory(allocator->m_hDevice, *pBuffer, (*pAllocation)->GetMemory(), (*pAllocation)->GetOffset());
|
|
if(res >= 0)
|
|
{
|
|
// All steps succeeded.
|
|
if(pAllocationInfo != VMA_NULL)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
allocator->FreeMemory(*pAllocation);
|
|
return res;
|
|
}
|
|
vkDestroyBuffer(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
return res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void vmaDestroyBuffer(
|
|
VmaAllocator allocator,
|
|
VkBuffer buffer,
|
|
VmaAllocation allocation)
|
|
{
|
|
if(buffer != VK_NULL_HANDLE)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_LOG("vmaDestroyBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
vkDestroyBuffer(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
|
|
|
|
allocator->FreeMemory(allocation);
|
|
}
|
|
}
|
|
|
|
VkResult vmaCreateImage(
|
|
VmaAllocator allocator,
|
|
const VkImageCreateInfo* pCreateInfo,
|
|
const VmaMemoryRequirements* pMemoryRequirements,
|
|
VkImage* pImage,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pCreateInfo && pMemoryRequirements && pImage && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaCreateImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
// 1. Create VkImage.
|
|
VkResult res = vkCreateImage(allocator->m_hDevice, pCreateInfo, allocator->GetAllocationCallbacks(), pImage);
|
|
if(res >= 0)
|
|
{
|
|
VkMappedMemoryRange mem = {};
|
|
VmaSuballocationType suballocType = pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
|
|
|
|
// 2. Allocate memory using allocator.
|
|
res = AllocateMemoryForImage(allocator, *pImage, pMemoryRequirements, suballocType, pAllocation);
|
|
if(res >= 0)
|
|
{
|
|
// 3. Bind image with memory.
|
|
res = vkBindImageMemory(allocator->m_hDevice, *pImage, (*pAllocation)->GetMemory(), (*pAllocation)->GetOffset());
|
|
if(res >= 0)
|
|
{
|
|
// All steps succeeded.
|
|
if(pAllocationInfo != VMA_NULL)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
allocator->FreeMemory(*pAllocation);
|
|
return res;
|
|
}
|
|
vkDestroyImage(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
|
|
return res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void vmaDestroyImage(
|
|
VmaAllocator allocator,
|
|
VkImage image,
|
|
VmaAllocation allocation)
|
|
{
|
|
if(image != VK_NULL_HANDLE)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_LOG("vmaDestroyImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
vkDestroyImage(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
|
|
|
|
allocator->FreeMemory(allocation);
|
|
}
|
|
}
|
|
|
|
#endif // #ifdef VMA_IMPLEMENTATION
|