mirror of
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
synced 2024-11-05 04:10:06 +00:00
e833b3ec95
Also added test for it. Fixes #407 - thanks @matusfedorko
18565 lines
690 KiB
C++
18565 lines
690 KiB
C++
//
|
|
// Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
//
|
|
|
|
#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
#define AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
|
/** \mainpage Vulkan Memory Allocator
|
|
|
|
<b>Version 3.1.0-development</b>
|
|
|
|
Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved. \n
|
|
License: MIT \n
|
|
See also: [product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/),
|
|
[repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
|
|
|
|
|
|
<b>API documentation divided into groups:</b> [Topics](topics.html)
|
|
|
|
<b>General documentation chapters:</b>
|
|
|
|
- <b>User guide</b>
|
|
- \subpage quick_start
|
|
- [Project setup](@ref quick_start_project_setup)
|
|
- [Initialization](@ref quick_start_initialization)
|
|
- [Resource allocation](@ref quick_start_resource_allocation)
|
|
- \subpage choosing_memory_type
|
|
- [Usage](@ref choosing_memory_type_usage)
|
|
- [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
|
|
- [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
|
|
- [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
|
|
- [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
|
|
- \subpage memory_mapping
|
|
- [Copy functions](@ref memory_mapping_copy_functions)
|
|
- [Mapping functions](@ref memory_mapping_mapping_functions)
|
|
- [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
|
|
- [Cache flush and invalidate](@ref memory_mapping_cache_control)
|
|
- \subpage staying_within_budget
|
|
- [Querying for budget](@ref staying_within_budget_querying_for_budget)
|
|
- [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
|
|
- \subpage resource_aliasing
|
|
- \subpage custom_memory_pools
|
|
- [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
|
|
- [When not to use custom pools](@ref custom_memory_pools_when_not_use)
|
|
- [Linear allocation algorithm](@ref linear_algorithm)
|
|
- [Free-at-once](@ref linear_algorithm_free_at_once)
|
|
- [Stack](@ref linear_algorithm_stack)
|
|
- [Double stack](@ref linear_algorithm_double_stack)
|
|
- [Ring buffer](@ref linear_algorithm_ring_buffer)
|
|
- \subpage defragmentation
|
|
- \subpage statistics
|
|
- [Numeric statistics](@ref statistics_numeric_statistics)
|
|
- [JSON dump](@ref statistics_json_dump)
|
|
- \subpage allocation_annotation
|
|
- [Allocation user data](@ref allocation_user_data)
|
|
- [Allocation names](@ref allocation_names)
|
|
- \subpage virtual_allocator
|
|
- \subpage debugging_memory_usage
|
|
- [Memory initialization](@ref debugging_memory_usage_initialization)
|
|
- [Margins](@ref debugging_memory_usage_margins)
|
|
- [Corruption detection](@ref debugging_memory_usage_corruption_detection)
|
|
- [Leak detection features](@ref debugging_memory_usage_leak_detection)
|
|
- \subpage other_api_interop
|
|
- \subpage usage_patterns
|
|
- [GPU-only resource](@ref usage_patterns_gpu_only)
|
|
- [Staging copy for upload](@ref usage_patterns_staging_copy_upload)
|
|
- [Readback](@ref usage_patterns_readback)
|
|
- [Advanced data uploading](@ref usage_patterns_advanced_data_uploading)
|
|
- [Other use cases](@ref usage_patterns_other_use_cases)
|
|
- \subpage configuration
|
|
- [Pointers to Vulkan functions](@ref config_Vulkan_functions)
|
|
- [Custom host memory allocator](@ref custom_memory_allocator)
|
|
- [Device memory allocation callbacks](@ref allocation_callbacks)
|
|
- [Device heap memory limit](@ref heap_memory_limit)
|
|
- <b>Extension support</b>
|
|
- \subpage vk_khr_dedicated_allocation
|
|
- \subpage enabling_buffer_device_address
|
|
- \subpage vk_ext_memory_priority
|
|
- \subpage vk_amd_device_coherent_memory
|
|
- \subpage general_considerations
|
|
- [Thread safety](@ref general_considerations_thread_safety)
|
|
- [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility)
|
|
- [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
|
|
- [Allocation algorithm](@ref general_considerations_allocation_algorithm)
|
|
- [Features not supported](@ref general_considerations_features_not_supported)
|
|
|
|
\defgroup group_init Library initialization
|
|
|
|
\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object.
|
|
|
|
\defgroup group_alloc Memory allocation
|
|
|
|
\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images.
|
|
Most basic ones being: vmaCreateBuffer(), vmaCreateImage().
|
|
|
|
\defgroup group_virtual Virtual allocator
|
|
|
|
\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm
|
|
for user-defined purpose without allocating any real GPU memory.
|
|
|
|
\defgroup group_stats Statistics
|
|
|
|
\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format.
|
|
See documentation chapter: \ref statistics.
|
|
*/
|
|
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <vulkan/vulkan.h>
|
|
|
|
#if !defined(VMA_VULKAN_VERSION)
|
|
#if defined(VK_VERSION_1_3)
|
|
#define VMA_VULKAN_VERSION 1003000
|
|
#elif defined(VK_VERSION_1_2)
|
|
#define VMA_VULKAN_VERSION 1002000
|
|
#elif defined(VK_VERSION_1_1)
|
|
#define VMA_VULKAN_VERSION 1001000
|
|
#else
|
|
#define VMA_VULKAN_VERSION 1000000
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS
|
|
extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
|
|
extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;
|
|
extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
|
|
extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
|
|
extern PFN_vkAllocateMemory vkAllocateMemory;
|
|
extern PFN_vkFreeMemory vkFreeMemory;
|
|
extern PFN_vkMapMemory vkMapMemory;
|
|
extern PFN_vkUnmapMemory vkUnmapMemory;
|
|
extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
|
|
extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
|
|
extern PFN_vkBindBufferMemory vkBindBufferMemory;
|
|
extern PFN_vkBindImageMemory vkBindImageMemory;
|
|
extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
|
|
extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
|
|
extern PFN_vkCreateBuffer vkCreateBuffer;
|
|
extern PFN_vkDestroyBuffer vkDestroyBuffer;
|
|
extern PFN_vkCreateImage vkCreateImage;
|
|
extern PFN_vkDestroyImage vkDestroyImage;
|
|
extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;
|
|
extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;
|
|
extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;
|
|
extern PFN_vkBindImageMemory2 vkBindImageMemory2;
|
|
extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;
|
|
#endif // #if VMA_VULKAN_VERSION >= 1001000
|
|
#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES
|
|
|
|
#if !defined(VMA_DEDICATED_ALLOCATION)
|
|
#if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
|
|
#define VMA_DEDICATED_ALLOCATION 1
|
|
#else
|
|
#define VMA_DEDICATED_ALLOCATION 0
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(VMA_BIND_MEMORY2)
|
|
#if VK_KHR_bind_memory2
|
|
#define VMA_BIND_MEMORY2 1
|
|
#else
|
|
#define VMA_BIND_MEMORY2 0
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(VMA_MEMORY_BUDGET)
|
|
#if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
|
|
#define VMA_MEMORY_BUDGET 1
|
|
#else
|
|
#define VMA_MEMORY_BUDGET 0
|
|
#endif
|
|
#endif
|
|
|
|
// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.
|
|
#if !defined(VMA_BUFFER_DEVICE_ADDRESS)
|
|
#if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000
|
|
#define VMA_BUFFER_DEVICE_ADDRESS 1
|
|
#else
|
|
#define VMA_BUFFER_DEVICE_ADDRESS 0
|
|
#endif
|
|
#endif
|
|
|
|
// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers.
|
|
#if !defined(VMA_MEMORY_PRIORITY)
|
|
#if VK_EXT_memory_priority
|
|
#define VMA_MEMORY_PRIORITY 1
|
|
#else
|
|
#define VMA_MEMORY_PRIORITY 0
|
|
#endif
|
|
#endif
|
|
|
|
// Defined to 1 when VK_KHR_maintenance4 device extension is defined in Vulkan headers.
|
|
#if !defined(VMA_KHR_MAINTENANCE4)
|
|
#if VK_KHR_maintenance4
|
|
#define VMA_KHR_MAINTENANCE4 1
|
|
#else
|
|
#define VMA_KHR_MAINTENANCE4 0
|
|
#endif
|
|
#endif
|
|
|
|
|
|
// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers.
|
|
#if !defined(VMA_EXTERNAL_MEMORY)
|
|
#if VK_KHR_external_memory
|
|
#define VMA_EXTERNAL_MEMORY 1
|
|
#else
|
|
#define VMA_EXTERNAL_MEMORY 0
|
|
#endif
|
|
#endif
|
|
|
|
// Define these macros to decorate all public functions with additional code,
|
|
// before and after returned type, appropriately. This may be useful for
|
|
// exporting the functions when compiling VMA as a separate library. Example:
|
|
// #define VMA_CALL_PRE __declspec(dllexport)
|
|
// #define VMA_CALL_POST __cdecl
|
|
#ifndef VMA_CALL_PRE
|
|
#define VMA_CALL_PRE
|
|
#endif
|
|
#ifndef VMA_CALL_POST
|
|
#define VMA_CALL_POST
|
|
#endif
|
|
|
|
// Define this macro to decorate pNext pointers with an attribute specifying the Vulkan
|
|
// structure that will be extended via the pNext chain.
|
|
#ifndef VMA_EXTENDS_VK_STRUCT
|
|
#define VMA_EXTENDS_VK_STRUCT(vkStruct)
|
|
#endif
|
|
|
|
// Define this macro to decorate pointers with an attribute specifying the
|
|
// length of the array they point to if they are not null.
|
|
//
|
|
// The length may be one of
|
|
// - The name of another parameter in the argument list where the pointer is declared
|
|
// - The name of another member in the struct where the pointer is declared
|
|
// - The name of a member of a struct type, meaning the value of that member in
|
|
// the context of the call. For example
|
|
// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),
|
|
// this means the number of memory heaps available in the device associated
|
|
// with the VmaAllocator being dealt with.
|
|
#ifndef VMA_LEN_IF_NOT_NULL
|
|
#define VMA_LEN_IF_NOT_NULL(len)
|
|
#endif
|
|
|
|
// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.
|
|
// see: https://clang.llvm.org/docs/AttributeReference.html#nullable
|
|
#ifndef VMA_NULLABLE
|
|
#ifdef __clang__
|
|
#define VMA_NULLABLE _Nullable
|
|
#else
|
|
#define VMA_NULLABLE
|
|
#endif
|
|
#endif
|
|
|
|
// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.
|
|
// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull
|
|
#ifndef VMA_NOT_NULL
|
|
#ifdef __clang__
|
|
#define VMA_NOT_NULL _Nonnull
|
|
#else
|
|
#define VMA_NOT_NULL
|
|
#endif
|
|
#endif
|
|
|
|
// If non-dispatchable handles are represented as pointers then we can give
|
|
// then nullability annotations
|
|
#ifndef VMA_NOT_NULL_NON_DISPATCHABLE
|
|
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
|
|
#define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL
|
|
#else
|
|
#define VMA_NOT_NULL_NON_DISPATCHABLE
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_NULLABLE_NON_DISPATCHABLE
|
|
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
|
|
#define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE
|
|
#else
|
|
#define VMA_NULLABLE_NON_DISPATCHABLE
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_STATS_STRING_ENABLED
|
|
#define VMA_STATS_STRING_ENABLED 1
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// INTERFACE
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE.
|
|
#ifndef _VMA_ENUM_DECLARATIONS
|
|
|
|
/**
|
|
\addtogroup group_init
|
|
@{
|
|
*/
|
|
|
|
/// Flags for created #VmaAllocator.
|
|
typedef enum VmaAllocatorCreateFlagBits
|
|
{
|
|
/** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
|
|
|
|
Using this flag may increase performance because internal mutexes are not used.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
|
|
/** \brief Enables usage of VK_KHR_dedicated_allocation extension.
|
|
|
|
The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
|
|
When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
|
|
|
|
Using this extension will automatically allocate dedicated blocks of memory for
|
|
some buffers and images instead of suballocating place for them out of bigger
|
|
memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
|
|
flag) when it is recommended by the driver. It may improve performance on some
|
|
GPUs.
|
|
|
|
You may set this flag only if you found out that following device extensions are
|
|
supported, you enabled them while creating Vulkan device passed as
|
|
VmaAllocatorCreateInfo::device, and you want them to be used internally by this
|
|
library:
|
|
|
|
- VK_KHR_get_memory_requirements2 (device extension)
|
|
- VK_KHR_dedicated_allocation (device extension)
|
|
|
|
When this flag is set, you can experience following warnings reported by Vulkan
|
|
validation layer. You can ignore them.
|
|
|
|
> vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
|
|
/**
|
|
Enables usage of VK_KHR_bind_memory2 extension.
|
|
|
|
The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
|
|
When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
|
|
|
|
You may set this flag only if you found out that this device extension is supported,
|
|
you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
|
|
and you want it to be used internally by this library.
|
|
|
|
The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
|
|
which allow to pass a chain of `pNext` structures while binding.
|
|
This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
|
|
/**
|
|
Enables usage of VK_EXT_memory_budget extension.
|
|
|
|
You may set this flag only if you found out that this device extension is supported,
|
|
you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
|
|
and you want it to be used internally by this library, along with another instance extension
|
|
VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
|
|
|
|
The extension provides query for current memory usage and budget, which will probably
|
|
be more accurate than an estimation used by the library otherwise.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
|
|
/**
|
|
Enables usage of VK_AMD_device_coherent_memory extension.
|
|
|
|
You may set this flag only if you:
|
|
|
|
- found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
|
|
- checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,
|
|
- want it to be used internally by this library.
|
|
|
|
The extension and accompanying device feature provide access to memory types with
|
|
`VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.
|
|
They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.
|
|
|
|
When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.
|
|
To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,
|
|
returning `VK_ERROR_FEATURE_NOT_PRESENT`.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,
|
|
/**
|
|
Enables usage of "buffer device address" feature, which allows you to use function
|
|
`vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.
|
|
|
|
You may set this flag only if you:
|
|
|
|
1. (For Vulkan version < 1.2) Found as available and enabled device extension
|
|
VK_KHR_buffer_device_address.
|
|
This extension is promoted to core Vulkan 1.2.
|
|
2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`.
|
|
|
|
When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA.
|
|
The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to
|
|
allocated memory blocks wherever it might be needed.
|
|
|
|
For more information, see documentation chapter \ref enabling_buffer_device_address.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,
|
|
/**
|
|
Enables usage of VK_EXT_memory_priority extension in the library.
|
|
|
|
You may set this flag only if you found available and enabled this device extension,
|
|
along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`,
|
|
while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
|
|
|
|
When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority
|
|
are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored.
|
|
|
|
A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
|
|
Larger values are higher priority. The granularity of the priorities is implementation-dependent.
|
|
It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`.
|
|
The value to be used for default priority is 0.5.
|
|
For more details, see the documentation of the VK_EXT_memory_priority extension.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040,
|
|
/**
|
|
Enables usage of VK_KHR_maintenance4 extension in the library.
|
|
|
|
You may set this flag only if you found available and enabled this device extension,
|
|
while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT = 0x00000080,
|
|
|
|
VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaAllocatorCreateFlagBits;
|
|
/// See #VmaAllocatorCreateFlagBits.
|
|
typedef VkFlags VmaAllocatorCreateFlags;
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_alloc
|
|
@{
|
|
*/
|
|
|
|
/// \brief Intended usage of the allocated memory.
|
|
typedef enum VmaMemoryUsage
|
|
{
|
|
/** No intended memory usage specified.
|
|
Use other members of VmaAllocationCreateInfo to specify your requirements.
|
|
*/
|
|
VMA_MEMORY_USAGE_UNKNOWN = 0,
|
|
/**
|
|
\deprecated Obsolete, preserved for backward compatibility.
|
|
Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
|
|
*/
|
|
VMA_MEMORY_USAGE_GPU_ONLY = 1,
|
|
/**
|
|
\deprecated Obsolete, preserved for backward compatibility.
|
|
Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`.
|
|
*/
|
|
VMA_MEMORY_USAGE_CPU_ONLY = 2,
|
|
/**
|
|
\deprecated Obsolete, preserved for backward compatibility.
|
|
Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
|
|
*/
|
|
VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
|
|
/**
|
|
\deprecated Obsolete, preserved for backward compatibility.
|
|
Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
|
|
*/
|
|
VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
|
|
/**
|
|
\deprecated Obsolete, preserved for backward compatibility.
|
|
Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
|
|
*/
|
|
VMA_MEMORY_USAGE_CPU_COPY = 5,
|
|
/**
|
|
Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
|
|
Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
|
|
|
|
Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
|
|
|
|
Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
*/
|
|
VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
|
|
/**
|
|
Selects best memory type automatically.
|
|
This flag is recommended for most common use cases.
|
|
|
|
When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
|
|
you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
|
|
in VmaAllocationCreateInfo::flags.
|
|
|
|
It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
|
|
vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
|
|
and not with generic memory allocation functions.
|
|
*/
|
|
VMA_MEMORY_USAGE_AUTO = 7,
|
|
/**
|
|
Selects best memory type automatically with preference for GPU (device) memory.
|
|
|
|
When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
|
|
you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
|
|
in VmaAllocationCreateInfo::flags.
|
|
|
|
It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
|
|
vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
|
|
and not with generic memory allocation functions.
|
|
*/
|
|
VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8,
|
|
/**
|
|
Selects best memory type automatically with preference for CPU (host) memory.
|
|
|
|
When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
|
|
you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
|
|
in VmaAllocationCreateInfo::flags.
|
|
|
|
It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
|
|
vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
|
|
and not with generic memory allocation functions.
|
|
*/
|
|
VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9,
|
|
|
|
VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaMemoryUsage;
|
|
|
|
/// Flags to be passed as VmaAllocationCreateInfo::flags.
|
|
typedef enum VmaAllocationCreateFlagBits
|
|
{
|
|
/** \brief Set this flag if the allocation should have its own memory block.
|
|
|
|
Use it for special, big resources, like fullscreen images used as attachments.
|
|
|
|
If you use this flag while creating a buffer or an image, `VkMemoryDedicatedAllocateInfo`
|
|
structure is applied if possible.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
|
|
|
|
/** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
|
|
|
|
If new allocation cannot be placed in any of the existing blocks, allocation
|
|
fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
|
|
|
|
You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
|
|
#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
|
|
/** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
|
|
|
|
Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
|
|
|
|
It is valid to use this flag for allocation made from memory type that is not
|
|
`HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
|
|
useful if you need an allocation that is efficient to use on GPU
|
|
(`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
|
|
support it (e.g. Intel GPU).
|
|
*/
|
|
VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
|
|
/** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead.
|
|
|
|
Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
|
|
null-terminated string. Instead of copying pointer value, a local copy of the
|
|
string is made and stored in allocation's `pName`. The string is automatically
|
|
freed together with the allocation. It is also used in vmaBuildStatsString().
|
|
*/
|
|
VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
|
|
/** Allocation will be created from upper stack in a double stack pool.
|
|
|
|
This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
|
|
/** Create both buffer/image and allocation, but don't bind them together.
|
|
It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
|
|
The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
|
|
Otherwise it is ignored.
|
|
|
|
If you want to make sure the new buffer/image is not tied to the new memory allocation
|
|
through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block,
|
|
use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
|
|
/** Create allocation only if additional device memory required for it, if any, won't exceed
|
|
memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
|
|
/** \brief Set this flag if the allocated memory will have aliasing resources.
|
|
|
|
Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified.
|
|
Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200,
|
|
/**
|
|
Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
|
|
|
|
- If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
|
|
you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
|
|
- If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
|
|
This includes allocations created in \ref custom_memory_pools.
|
|
|
|
Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number,
|
|
never read or accessed randomly, so a memory type can be selected that is uncached and write-combined.
|
|
|
|
\warning Violating this declaration may work correctly, but will likely be very slow.
|
|
Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;`
|
|
Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400,
|
|
/**
|
|
Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
|
|
|
|
- If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
|
|
you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
|
|
- If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
|
|
This includes allocations created in \ref custom_memory_pools.
|
|
|
|
Declares that mapped memory can be read, written, and accessed in random order,
|
|
so a `HOST_CACHED` memory type is preferred.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800,
|
|
/**
|
|
Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT,
|
|
it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected
|
|
if it may improve performance.
|
|
|
|
By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type
|
|
(e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and
|
|
issue an explicit transfer to write/read your data.
|
|
To prepare for this possibility, don't forget to add appropriate flags like
|
|
`VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000,
|
|
/** Allocation strategy that chooses smallest possible free range for the allocation
|
|
to minimize memory usage and fragmentation, possibly at the expense of allocation time.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000,
|
|
/** Allocation strategy that chooses first suitable free range for the allocation -
|
|
not necessarily in terms of the smallest offset but the one that is easiest and fastest to find
|
|
to minimize allocation time, possibly at the expense of allocation quality.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000,
|
|
/** Allocation strategy that chooses always the lowest offset in available space.
|
|
This is not the most efficient strategy but achieves highly packed data.
|
|
Used internally by defragmentation, not recommended in typical usage.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = 0x00040000,
|
|
/** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
|
|
/** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
|
|
/** A bit mask to extract only `STRATEGY` bits from entire set of flags.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MASK =
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT |
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT |
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
|
|
|
|
VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaAllocationCreateFlagBits;
|
|
/// See #VmaAllocationCreateFlagBits.
|
|
typedef VkFlags VmaAllocationCreateFlags;
|
|
|
|
/// Flags to be passed as VmaPoolCreateInfo::flags.
|
|
typedef enum VmaPoolCreateFlagBits
|
|
{
|
|
/** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
|
|
|
|
This is an optional optimization flag.
|
|
|
|
If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
|
|
vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
|
|
knows exact type of your allocations so it can handle Buffer-Image Granularity
|
|
in the optimal way.
|
|
|
|
If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
|
|
exact type of such allocations is not known, so allocator must be conservative
|
|
in handling Buffer-Image Granularity, which can lead to suboptimal allocation
|
|
(wasted memory). In that case, if you can make sure you always allocate only
|
|
buffers and linear images or only optimal images out of this pool, use this flag
|
|
to make allocator disregard Buffer-Image Granularity and so make allocations
|
|
faster and more optimal.
|
|
*/
|
|
VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
|
|
|
|
/** \brief Enables alternative, linear allocation algorithm in this pool.
|
|
|
|
Specify this flag to enable linear allocation algorithm, which always creates
|
|
new allocations after last one and doesn't reuse space from allocations freed in
|
|
between. It trades memory consumption for simplified algorithm and data
|
|
structure, which has better performance and uses less memory for metadata.
|
|
|
|
By using this flag, you can achieve behavior of free-at-once, stack,
|
|
ring buffer, and double stack.
|
|
For details, see documentation chapter \ref linear_algorithm.
|
|
*/
|
|
VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
|
|
|
|
/** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
|
|
*/
|
|
VMA_POOL_CREATE_ALGORITHM_MASK =
|
|
VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT,
|
|
|
|
VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaPoolCreateFlagBits;
|
|
/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits.
|
|
typedef VkFlags VmaPoolCreateFlags;
|
|
|
|
/// Flags to be passed as VmaDefragmentationInfo::flags.
|
|
typedef enum VmaDefragmentationFlagBits
|
|
{
|
|
/* \brief Use simple but fast algorithm for defragmentation.
|
|
May not achieve best results but will require least time to compute and least allocations to copy.
|
|
*/
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1,
|
|
/* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified.
|
|
Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved.
|
|
*/
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2,
|
|
/* \brief Perform full defragmentation of memory.
|
|
Can result in notably more time to compute and allocations to copy, but will achieve best memory packing.
|
|
*/
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4,
|
|
/** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make.
|
|
Only available when bufferImageGranularity is greater than 1, since it aims to reduce
|
|
alignment issues between different types of resources.
|
|
Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT.
|
|
*/
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8,
|
|
|
|
/// A bit mask to extract only `ALGORITHM` bits from entire set of flags.
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK =
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT |
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT |
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT |
|
|
VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT,
|
|
|
|
VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaDefragmentationFlagBits;
|
|
/// See #VmaDefragmentationFlagBits.
|
|
typedef VkFlags VmaDefragmentationFlags;
|
|
|
|
/// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove.
|
|
typedef enum VmaDefragmentationMoveOperation
|
|
{
|
|
/// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass().
|
|
VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0,
|
|
/// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged.
|
|
VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1,
|
|
/// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed.
|
|
VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2,
|
|
} VmaDefragmentationMoveOperation;
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_virtual
|
|
@{
|
|
*/
|
|
|
|
/// Flags to be passed as VmaVirtualBlockCreateInfo::flags.
|
|
typedef enum VmaVirtualBlockCreateFlagBits
|
|
{
|
|
/** \brief Enables alternative, linear allocation algorithm in this virtual block.
|
|
|
|
Specify this flag to enable linear allocation algorithm, which always creates
|
|
new allocations after last one and doesn't reuse space from allocations freed in
|
|
between. It trades memory consumption for simplified algorithm and data
|
|
structure, which has better performance and uses less memory for metadata.
|
|
|
|
By using this flag, you can achieve behavior of free-at-once, stack,
|
|
ring buffer, and double stack.
|
|
For details, see documentation chapter \ref linear_algorithm.
|
|
*/
|
|
VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001,
|
|
|
|
/** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags.
|
|
*/
|
|
VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK =
|
|
VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT,
|
|
|
|
VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaVirtualBlockCreateFlagBits;
|
|
/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits.
|
|
typedef VkFlags VmaVirtualBlockCreateFlags;
|
|
|
|
/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags.
|
|
typedef enum VmaVirtualAllocationCreateFlagBits
|
|
{
|
|
/** \brief Allocation will be created from upper stack in a double stack pool.
|
|
|
|
This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT,
|
|
/** \brief Allocation strategy that tries to minimize memory usage.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
|
|
/** \brief Allocation strategy that tries to minimize allocation time.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
|
|
/** Allocation strategy that chooses always the lowest offset in available space.
|
|
This is not the most efficient strategy but achieves highly packed data.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
|
|
/** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags.
|
|
|
|
These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK,
|
|
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaVirtualAllocationCreateFlagBits;
|
|
/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits.
|
|
typedef VkFlags VmaVirtualAllocationCreateFlags;
|
|
|
|
/** @} */
|
|
|
|
#endif // _VMA_ENUM_DECLARATIONS
|
|
|
|
#ifndef _VMA_DATA_TYPES_DECLARATIONS
|
|
|
|
/**
|
|
\addtogroup group_init
|
|
@{ */
|
|
|
|
/** \struct VmaAllocator
|
|
\brief Represents main object of this library initialized.
|
|
|
|
Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
|
|
Call function vmaDestroyAllocator() to destroy it.
|
|
|
|
It is recommended to create just one object of this type per `VkDevice` object,
|
|
right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaAllocator)
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_alloc
|
|
@{
|
|
*/
|
|
|
|
/** \struct VmaPool
|
|
\brief Represents custom memory pool
|
|
|
|
Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
|
|
Call function vmaDestroyPool() to destroy it.
|
|
|
|
For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaPool)
|
|
|
|
/** \struct VmaAllocation
|
|
\brief Represents single memory allocation.
|
|
|
|
It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
|
|
plus unique offset.
|
|
|
|
There are multiple ways to create such object.
|
|
You need to fill structure VmaAllocationCreateInfo.
|
|
For more information see [Choosing memory type](@ref choosing_memory_type).
|
|
|
|
Although the library provides convenience functions that create Vulkan buffer or image,
|
|
allocate memory for it and bind them together,
|
|
binding of the allocation to a buffer or an image is out of scope of the allocation itself.
|
|
Allocation object can exist without buffer/image bound,
|
|
binding can be done manually by the user, and destruction of it can be done
|
|
independently of destruction of the allocation.
|
|
|
|
The object also remembers its size and some other information.
|
|
To retrieve this information, use function vmaGetAllocationInfo() and inspect
|
|
returned structure VmaAllocationInfo.
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaAllocation)
|
|
|
|
/** \struct VmaDefragmentationContext
|
|
\brief An opaque object that represents started defragmentation process.
|
|
|
|
Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it.
|
|
Call function vmaEndDefragmentation() to destroy it.
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaDefragmentationContext)
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_virtual
|
|
@{
|
|
*/
|
|
|
|
/** \struct VmaVirtualAllocation
|
|
\brief Represents single memory allocation done inside VmaVirtualBlock.
|
|
|
|
Use it as a unique identifier to virtual allocation within the single block.
|
|
|
|
Use value `VK_NULL_HANDLE` to represent a null/invalid allocation.
|
|
*/
|
|
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation)
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_virtual
|
|
@{
|
|
*/
|
|
|
|
/** \struct VmaVirtualBlock
|
|
\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory.
|
|
|
|
Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it.
|
|
For more information, see documentation chapter \ref virtual_allocator.
|
|
|
|
This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally.
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaVirtualBlock)
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_init
|
|
@{
|
|
*/
|
|
|
|
/// Callback function called after successful vkAllocateMemory.
|
|
typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryType,
|
|
VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
|
|
VkDeviceSize size,
|
|
void* VMA_NULLABLE pUserData);
|
|
|
|
/// Callback function called before vkFreeMemory.
|
|
typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryType,
|
|
VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
|
|
VkDeviceSize size,
|
|
void* VMA_NULLABLE pUserData);
|
|
|
|
/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
|
|
|
|
Provided for informative purpose, e.g. to gather statistics about number of
|
|
allocations or total amount of memory allocated in Vulkan.
|
|
|
|
Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
|
|
*/
|
|
typedef struct VmaDeviceMemoryCallbacks
|
|
{
|
|
/// Optional, can be null.
|
|
PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;
|
|
/// Optional, can be null.
|
|
PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;
|
|
/// Optional, can be null.
|
|
void* VMA_NULLABLE pUserData;
|
|
} VmaDeviceMemoryCallbacks;
|
|
|
|
/** \brief Pointers to some Vulkan functions - a subset used by the library.
|
|
|
|
Used in VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
*/
|
|
typedef struct VmaVulkanFunctions
|
|
{
|
|
/// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
|
|
PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr;
|
|
/// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
|
|
PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr;
|
|
PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;
|
|
PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;
|
|
PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;
|
|
PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;
|
|
PFN_vkMapMemory VMA_NULLABLE vkMapMemory;
|
|
PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;
|
|
PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;
|
|
PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;
|
|
PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;
|
|
PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;
|
|
PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;
|
|
PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;
|
|
PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;
|
|
PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;
|
|
PFN_vkCreateImage VMA_NULLABLE vkCreateImage;
|
|
PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;
|
|
PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
/// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
|
|
PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;
|
|
/// Fetch "vkGetImageMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
|
|
PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;
|
|
#endif
|
|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
|
|
/// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension.
|
|
PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;
|
|
/// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension.
|
|
PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;
|
|
#endif
|
|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
|
|
PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;
|
|
#endif
|
|
#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
|
|
/// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
|
|
PFN_vkGetDeviceBufferMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceBufferMemoryRequirements;
|
|
/// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
|
|
PFN_vkGetDeviceImageMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceImageMemoryRequirements;
|
|
#endif
|
|
} VmaVulkanFunctions;
|
|
|
|
/// Description of a Allocator to be created.
|
|
typedef struct VmaAllocatorCreateInfo
|
|
{
|
|
/// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
|
|
VmaAllocatorCreateFlags flags;
|
|
/// Vulkan physical device.
|
|
/** It must be valid throughout whole lifetime of created allocator. */
|
|
VkPhysicalDevice VMA_NOT_NULL physicalDevice;
|
|
/// Vulkan device.
|
|
/** It must be valid throughout whole lifetime of created allocator. */
|
|
VkDevice VMA_NOT_NULL device;
|
|
/// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
|
|
/** Set to 0 to use default, which is currently 256 MiB. */
|
|
VkDeviceSize preferredLargeHeapBlockSize;
|
|
/// Custom CPU memory allocation callbacks. Optional.
|
|
/** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
|
|
const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
|
|
/// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
|
|
/** Optional, can be null. */
|
|
const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;
|
|
/** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
|
|
|
|
If not NULL, it must be a pointer to an array of
|
|
`VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
|
|
maximum number of bytes that can be allocated out of particular Vulkan memory
|
|
heap.
|
|
|
|
Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
|
|
heap. This is also the default in case of `pHeapSizeLimit` = NULL.
|
|
|
|
If there is a limit defined for a heap:
|
|
|
|
- If user tries to allocate more memory from that heap using this allocator,
|
|
the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
- If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
|
|
value of this limit will be reported instead when using vmaGetMemoryProperties().
|
|
|
|
Warning! Using this feature may not be equivalent to installing a GPU with
|
|
smaller amount of memory, because graphics driver doesn't necessary fail new
|
|
allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
|
|
exceeded. It may return success and just silently migrate some device memory
|
|
blocks to system RAM. This driver behavior can also be controlled using
|
|
VK_AMD_memory_overallocation_behavior extension.
|
|
*/
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;
|
|
|
|
/** \brief Pointers to Vulkan functions. Can be null.
|
|
|
|
For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).
|
|
*/
|
|
const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;
|
|
/** \brief Handle to Vulkan instance object.
|
|
|
|
Starting from version 3.0.0 this member is no longer optional, it must be set!
|
|
*/
|
|
VkInstance VMA_NOT_NULL instance;
|
|
/** \brief Optional. Vulkan version that the application uses.
|
|
|
|
It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
|
|
The patch version number specified is ignored. Only the major and minor versions are considered.
|
|
Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation.
|
|
Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
|
|
It must match the Vulkan version used by the application and supported on the selected physical device,
|
|
so it must be no higher than `VkApplicationInfo::apiVersion` passed to `vkCreateInstance`
|
|
and no higher than `VkPhysicalDeviceProperties::apiVersion` found on the physical device used.
|
|
*/
|
|
uint32_t vulkanApiVersion;
|
|
#if VMA_EXTERNAL_MEMORY
|
|
/** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type.
|
|
|
|
If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount`
|
|
elements, defining external memory handle types of particular Vulkan memory type,
|
|
to be passed using `VkExportMemoryAllocateInfoKHR`.
|
|
|
|
Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type.
|
|
This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL.
|
|
*/
|
|
const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes;
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
} VmaAllocatorCreateInfo;
|
|
|
|
/// Information about existing #VmaAllocator object.
|
|
typedef struct VmaAllocatorInfo
|
|
{
|
|
/** \brief Handle to Vulkan instance object.
|
|
|
|
This is the same value as has been passed through VmaAllocatorCreateInfo::instance.
|
|
*/
|
|
VkInstance VMA_NOT_NULL instance;
|
|
/** \brief Handle to Vulkan physical device object.
|
|
|
|
This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.
|
|
*/
|
|
VkPhysicalDevice VMA_NOT_NULL physicalDevice;
|
|
/** \brief Handle to Vulkan device object.
|
|
|
|
This is the same value as has been passed through VmaAllocatorCreateInfo::device.
|
|
*/
|
|
VkDevice VMA_NOT_NULL device;
|
|
} VmaAllocatorInfo;
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_stats
|
|
@{
|
|
*/
|
|
|
|
/** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total.
|
|
|
|
These are fast to calculate.
|
|
See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics().
|
|
*/
|
|
typedef struct VmaStatistics
|
|
{
|
|
/** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated.
|
|
*/
|
|
uint32_t blockCount;
|
|
/** \brief Number of #VmaAllocation objects allocated.
|
|
|
|
Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`.
|
|
*/
|
|
uint32_t allocationCount;
|
|
/** \brief Number of bytes allocated in `VkDeviceMemory` blocks.
|
|
|
|
\note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object
|
|
(e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls
|
|
"allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image.
|
|
*/
|
|
VkDeviceSize blockBytes;
|
|
/** \brief Total number of bytes occupied by all #VmaAllocation objects.
|
|
|
|
Always less or equal than `blockBytes`.
|
|
Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan
|
|
but unused by any #VmaAllocation.
|
|
*/
|
|
VkDeviceSize allocationBytes;
|
|
} VmaStatistics;
|
|
|
|
/** \brief More detailed statistics than #VmaStatistics.
|
|
|
|
These are slower to calculate. Use for debugging purposes.
|
|
See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics().
|
|
|
|
Previous version of the statistics API provided averages, but they have been removed
|
|
because they can be easily calculated as:
|
|
|
|
\code
|
|
VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount;
|
|
VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes;
|
|
VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount;
|
|
\endcode
|
|
*/
|
|
typedef struct VmaDetailedStatistics
|
|
{
|
|
/// Basic statistics.
|
|
VmaStatistics statistics;
|
|
/// Number of free ranges of memory between allocations.
|
|
uint32_t unusedRangeCount;
|
|
/// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations.
|
|
VkDeviceSize allocationSizeMin;
|
|
/// Largest allocation size. 0 if there are 0 allocations.
|
|
VkDeviceSize allocationSizeMax;
|
|
/// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges.
|
|
VkDeviceSize unusedRangeSizeMin;
|
|
/// Largest empty range size. 0 if there are 0 empty ranges.
|
|
VkDeviceSize unusedRangeSizeMax;
|
|
} VmaDetailedStatistics;
|
|
|
|
/** \brief General statistics from current state of the Allocator -
|
|
total memory usage across all memory heaps and types.
|
|
|
|
These are slower to calculate. Use for debugging purposes.
|
|
See function vmaCalculateStatistics().
|
|
*/
|
|
typedef struct VmaTotalStatistics
|
|
{
|
|
VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES];
|
|
VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS];
|
|
VmaDetailedStatistics total;
|
|
} VmaTotalStatistics;
|
|
|
|
/** \brief Statistics of current memory usage and available budget for a specific memory heap.
|
|
|
|
These are fast to calculate.
|
|
See function vmaGetHeapBudgets().
|
|
*/
|
|
typedef struct VmaBudget
|
|
{
|
|
/** \brief Statistics fetched from the library.
|
|
*/
|
|
VmaStatistics statistics;
|
|
/** \brief Estimated current memory usage of the program, in bytes.
|
|
|
|
Fetched from system using VK_EXT_memory_budget extension if enabled.
|
|
|
|
It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects
|
|
also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
|
|
`VkDeviceMemory` blocks allocated outside of this library, if any.
|
|
*/
|
|
VkDeviceSize usage;
|
|
/** \brief Estimated amount of memory available to the program, in bytes.
|
|
|
|
Fetched from system using VK_EXT_memory_budget extension if enabled.
|
|
|
|
It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
|
|
external to the program, decided by the operating system.
|
|
Difference `budget - usage` is the amount of additional memory that can probably
|
|
be allocated without problems. Exceeding the budget may result in various problems.
|
|
*/
|
|
VkDeviceSize budget;
|
|
} VmaBudget;
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_alloc
|
|
@{
|
|
*/
|
|
|
|
/** \brief Parameters of new #VmaAllocation.
|
|
|
|
To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others.
|
|
*/
|
|
typedef struct VmaAllocationCreateInfo
|
|
{
|
|
/// Use #VmaAllocationCreateFlagBits enum.
|
|
VmaAllocationCreateFlags flags;
|
|
/** \brief Intended usage of memory.
|
|
|
|
You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
|
|
If `pool` is not null, this member is ignored.
|
|
*/
|
|
VmaMemoryUsage usage;
|
|
/** \brief Flags that must be set in a Memory Type chosen for an allocation.
|
|
|
|
Leave 0 if you specify memory requirements in other way. \n
|
|
If `pool` is not null, this member is ignored.*/
|
|
VkMemoryPropertyFlags requiredFlags;
|
|
/** \brief Flags that preferably should be set in a memory type chosen for an allocation.
|
|
|
|
Set to 0 if no additional flags are preferred. \n
|
|
If `pool` is not null, this member is ignored. */
|
|
VkMemoryPropertyFlags preferredFlags;
|
|
/** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
|
|
|
|
Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
|
|
it meets other requirements specified by this structure, with no further
|
|
restrictions on memory type index. \n
|
|
If `pool` is not null, this member is ignored.
|
|
*/
|
|
uint32_t memoryTypeBits;
|
|
/** \brief Pool that this allocation should be created in.
|
|
|
|
Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
|
|
`usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
|
|
*/
|
|
VmaPool VMA_NULLABLE pool;
|
|
/** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
|
|
|
|
If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
|
|
null or pointer to a null-terminated string. The string will be then copied to
|
|
internal buffer, so it doesn't need to be valid after allocation call.
|
|
*/
|
|
void* VMA_NULLABLE pUserData;
|
|
/** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
|
|
|
|
It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object
|
|
and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
Otherwise, it has the priority of a memory block where it is placed and this variable is ignored.
|
|
*/
|
|
float priority;
|
|
} VmaAllocationCreateInfo;
|
|
|
|
/// Describes parameter of created #VmaPool.
|
|
typedef struct VmaPoolCreateInfo
|
|
{
|
|
/** \brief Vulkan memory type index to allocate this pool from.
|
|
*/
|
|
uint32_t memoryTypeIndex;
|
|
/** \brief Use combination of #VmaPoolCreateFlagBits.
|
|
*/
|
|
VmaPoolCreateFlags flags;
|
|
/** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
|
|
|
|
Specify nonzero to set explicit, constant size of memory blocks used by this
|
|
pool.
|
|
|
|
Leave 0 to use default and let the library manage block sizes automatically.
|
|
Sizes of particular blocks may vary.
|
|
In this case, the pool will also support dedicated allocations.
|
|
*/
|
|
VkDeviceSize blockSize;
|
|
/** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
|
|
|
|
Set to 0 to have no preallocated blocks and allow the pool be completely empty.
|
|
*/
|
|
size_t minBlockCount;
|
|
/** \brief Maximum number of blocks that can be allocated in this pool. Optional.
|
|
|
|
Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
|
|
|
|
Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
|
|
throughout whole lifetime of this pool.
|
|
*/
|
|
size_t maxBlockCount;
|
|
/** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations.
|
|
|
|
It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object.
|
|
Otherwise, this variable is ignored.
|
|
*/
|
|
float priority;
|
|
/** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0.
|
|
|
|
Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two.
|
|
It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough,
|
|
e.g. when doing interop with OpenGL.
|
|
*/
|
|
VkDeviceSize minAllocationAlignment;
|
|
/** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional.
|
|
|
|
Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`.
|
|
It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`.
|
|
Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool.
|
|
|
|
Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`,
|
|
can be attached automatically by this library when using other, more convenient of its features.
|
|
*/
|
|
void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkMemoryAllocateInfo) pMemoryAllocateNext;
|
|
} VmaPoolCreateInfo;
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_alloc
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
|
|
|
|
There is also an extended version of this structure that carries additional parameters: #VmaAllocationInfo2.
|
|
*/
|
|
typedef struct VmaAllocationInfo
|
|
{
|
|
/** \brief Memory type index that this allocation was allocated from.
|
|
|
|
It never changes.
|
|
*/
|
|
uint32_t memoryType;
|
|
/** \brief Handle to Vulkan memory object.
|
|
|
|
Same memory object can be shared by multiple allocations.
|
|
|
|
It can change after the allocation is moved during \ref defragmentation.
|
|
*/
|
|
VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;
|
|
/** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation.
|
|
|
|
You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function
|
|
vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image,
|
|
not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation
|
|
and apply this offset automatically.
|
|
|
|
It can change after the allocation is moved during \ref defragmentation.
|
|
*/
|
|
VkDeviceSize offset;
|
|
/** \brief Size of this allocation, in bytes.
|
|
|
|
It never changes.
|
|
|
|
\note Allocation size returned in this variable may be greater than the size
|
|
requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the
|
|
allocation is accessible for operations on memory e.g. using a pointer after
|
|
mapping with vmaMapMemory(), but operations on the resource e.g. using
|
|
`vkCmdCopyBuffer` must be limited to the size of the resource.
|
|
*/
|
|
VkDeviceSize size;
|
|
/** \brief Pointer to the beginning of this allocation as mapped data.
|
|
|
|
If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
|
|
created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.
|
|
|
|
It can change after call to vmaMapMemory(), vmaUnmapMemory().
|
|
It can also change after the allocation is moved during \ref defragmentation.
|
|
*/
|
|
void* VMA_NULLABLE pMappedData;
|
|
/** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
|
|
|
|
It can change after call to vmaSetAllocationUserData() for this allocation.
|
|
*/
|
|
void* VMA_NULLABLE pUserData;
|
|
/** \brief Custom allocation name that was set with vmaSetAllocationName().
|
|
|
|
It can change after call to vmaSetAllocationName() for this allocation.
|
|
|
|
Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with
|
|
additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED].
|
|
*/
|
|
const char* VMA_NULLABLE pName;
|
|
} VmaAllocationInfo;
|
|
|
|
/// Extended parameters of a #VmaAllocation object that can be retrieved using function vmaGetAllocationInfo2().
|
|
typedef struct VmaAllocationInfo2
|
|
{
|
|
/** \brief Basic parameters of the allocation.
|
|
|
|
If you need only these, you can use function vmaGetAllocationInfo() and structure #VmaAllocationInfo instead.
|
|
*/
|
|
VmaAllocationInfo allocationInfo;
|
|
/** \brief Size of the `VkDeviceMemory` block that the allocation belongs to.
|
|
|
|
In case of an allocation with dedicated memory, it will be equal to `allocationInfo.size`.
|
|
*/
|
|
VkDeviceSize blockSize;
|
|
/** \brief `VK_TRUE` if the allocation has dedicated memory, `VK_FALSE` if it was placed as part of a larger memory block.
|
|
|
|
When `VK_TRUE`, it also means `VkMemoryDedicatedAllocateInfo` was used when creating the allocation
|
|
(if VK_KHR_dedicated_allocation extension or Vulkan version >= 1.1 is enabled).
|
|
*/
|
|
VkBool32 dedicatedMemory;
|
|
} VmaAllocationInfo2;
|
|
|
|
/** Callback function called during vmaBeginDefragmentation() to check custom criterion about ending current defragmentation pass.
|
|
|
|
Should return true if the defragmentation needs to stop current pass.
|
|
*/
|
|
typedef VkBool32 (VKAPI_PTR* PFN_vmaCheckDefragmentationBreakFunction)(void* VMA_NULLABLE pUserData);
|
|
|
|
/** \brief Parameters for defragmentation.
|
|
|
|
To be used with function vmaBeginDefragmentation().
|
|
*/
|
|
typedef struct VmaDefragmentationInfo
|
|
{
|
|
/// \brief Use combination of #VmaDefragmentationFlagBits.
|
|
VmaDefragmentationFlags flags;
|
|
/** \brief Custom pool to be defragmented.
|
|
|
|
If null then default pools will undergo defragmentation process.
|
|
*/
|
|
VmaPool VMA_NULLABLE pool;
|
|
/** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places.
|
|
|
|
`0` means no limit.
|
|
*/
|
|
VkDeviceSize maxBytesPerPass;
|
|
/** \brief Maximum number of allocations that can be moved during single pass to a different place.
|
|
|
|
`0` means no limit.
|
|
*/
|
|
uint32_t maxAllocationsPerPass;
|
|
/** \brief Optional custom callback for stopping vmaBeginDefragmentation().
|
|
|
|
Have to return true for breaking current defragmentation pass.
|
|
*/
|
|
PFN_vmaCheckDefragmentationBreakFunction VMA_NULLABLE pfnBreakCallback;
|
|
/// \brief Optional data to pass to custom callback for stopping pass of defragmentation.
|
|
void* VMA_NULLABLE pBreakCallbackUserData;
|
|
} VmaDefragmentationInfo;
|
|
|
|
/// Single move of an allocation to be done for defragmentation.
|
|
typedef struct VmaDefragmentationMove
|
|
{
|
|
/// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it.
|
|
VmaDefragmentationMoveOperation operation;
|
|
/// Allocation that should be moved.
|
|
VmaAllocation VMA_NOT_NULL srcAllocation;
|
|
/** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`.
|
|
|
|
\warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass,
|
|
to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory().
|
|
vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory.
|
|
*/
|
|
VmaAllocation VMA_NOT_NULL dstTmpAllocation;
|
|
} VmaDefragmentationMove;
|
|
|
|
/** \brief Parameters for incremental defragmentation steps.
|
|
|
|
To be used with function vmaBeginDefragmentationPass().
|
|
*/
|
|
typedef struct VmaDefragmentationPassMoveInfo
|
|
{
|
|
/// Number of elements in the `pMoves` array.
|
|
uint32_t moveCount;
|
|
/** \brief Array of moves to be performed by the user in the current defragmentation pass.
|
|
|
|
Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass().
|
|
|
|
For each element, you should:
|
|
|
|
1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset.
|
|
2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`.
|
|
3. Make sure these commands finished executing on the GPU.
|
|
4. Destroy the old buffer/image.
|
|
|
|
Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass().
|
|
After this call, the allocation will point to the new place in memory.
|
|
|
|
Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
|
|
|
|
Alternatively, if you decide you want to completely remove the allocation:
|
|
|
|
1. Destroy its buffer/image.
|
|
2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
|
|
|
|
Then, after vmaEndDefragmentationPass() the allocation will be freed.
|
|
*/
|
|
VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves;
|
|
} VmaDefragmentationPassMoveInfo;
|
|
|
|
/// Statistics returned for defragmentation process in function vmaEndDefragmentation().
|
|
typedef struct VmaDefragmentationStats
|
|
{
|
|
/// Total number of bytes that have been copied while moving allocations to different places.
|
|
VkDeviceSize bytesMoved;
|
|
/// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
|
|
VkDeviceSize bytesFreed;
|
|
/// Number of allocations that have been moved to different places.
|
|
uint32_t allocationsMoved;
|
|
/// Number of empty `VkDeviceMemory` objects that have been released to the system.
|
|
uint32_t deviceMemoryBlocksFreed;
|
|
} VmaDefragmentationStats;
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_virtual
|
|
@{
|
|
*/
|
|
|
|
/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock().
|
|
typedef struct VmaVirtualBlockCreateInfo
|
|
{
|
|
/** \brief Total size of the virtual block.
|
|
|
|
Sizes can be expressed in bytes or any units you want as long as you are consistent in using them.
|
|
For example, if you allocate from some array of structures, 1 can mean single instance of entire structure.
|
|
*/
|
|
VkDeviceSize size;
|
|
|
|
/** \brief Use combination of #VmaVirtualBlockCreateFlagBits.
|
|
*/
|
|
VmaVirtualBlockCreateFlags flags;
|
|
|
|
/** \brief Custom CPU memory allocation callbacks. Optional.
|
|
|
|
Optional, can be null. When specified, they will be used for all CPU-side memory allocations.
|
|
*/
|
|
const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
|
|
} VmaVirtualBlockCreateInfo;
|
|
|
|
/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate().
|
|
typedef struct VmaVirtualAllocationCreateInfo
|
|
{
|
|
/** \brief Size of the allocation.
|
|
|
|
Cannot be zero.
|
|
*/
|
|
VkDeviceSize size;
|
|
/** \brief Required alignment of the allocation. Optional.
|
|
|
|
Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset.
|
|
*/
|
|
VkDeviceSize alignment;
|
|
/** \brief Use combination of #VmaVirtualAllocationCreateFlagBits.
|
|
*/
|
|
VmaVirtualAllocationCreateFlags flags;
|
|
/** \brief Custom pointer to be associated with the allocation. Optional.
|
|
|
|
It can be any value and can be used for user-defined purposes. It can be fetched or changed later.
|
|
*/
|
|
void* VMA_NULLABLE pUserData;
|
|
} VmaVirtualAllocationCreateInfo;
|
|
|
|
/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo().
|
|
typedef struct VmaVirtualAllocationInfo
|
|
{
|
|
/** \brief Offset of the allocation.
|
|
|
|
Offset at which the allocation was made.
|
|
*/
|
|
VkDeviceSize offset;
|
|
/** \brief Size of the allocation.
|
|
|
|
Same value as passed in VmaVirtualAllocationCreateInfo::size.
|
|
*/
|
|
VkDeviceSize size;
|
|
/** \brief Custom pointer associated with the allocation.
|
|
|
|
Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData().
|
|
*/
|
|
void* VMA_NULLABLE pUserData;
|
|
} VmaVirtualAllocationInfo;
|
|
|
|
/** @} */
|
|
|
|
#endif // _VMA_DATA_TYPES_DECLARATIONS
|
|
|
|
#ifndef _VMA_FUNCTION_HEADERS
|
|
|
|
/**
|
|
\addtogroup group_init
|
|
@{
|
|
*/
|
|
|
|
/// Creates #VmaAllocator object.
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
|
|
const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator);
|
|
|
|
/// Destroys allocator object.
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
|
|
VmaAllocator VMA_NULLABLE allocator);
|
|
|
|
/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.
|
|
|
|
It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to
|
|
`VkPhysicalDevice`, `VkDevice` etc. every time using this function.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);
|
|
|
|
/**
|
|
PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
|
|
You can access it here, without fetching it again on your own.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties);
|
|
|
|
/**
|
|
PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
|
|
You can access it here, without fetching it again on your own.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);
|
|
|
|
/**
|
|
\brief Given Memory Type Index, returns Property Flags of this memory type.
|
|
|
|
This is just a convenience function. Same information can be obtained using
|
|
vmaGetMemoryProperties().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryTypeIndex,
|
|
VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
|
|
|
|
/** \brief Sets index of the current frame.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t frameIndex);
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_stats
|
|
@{
|
|
*/
|
|
|
|
/** \brief Retrieves statistics from current state of the Allocator.
|
|
|
|
This function is called "calculate" not "get" because it has to traverse all
|
|
internal data structures, so it may be quite slow. Use it for debugging purposes.
|
|
For faster but more brief statistics suitable to be called every frame or every allocation,
|
|
use vmaGetHeapBudgets().
|
|
|
|
Note that when using allocator from multiple threads, returned information may immediately
|
|
become outdated.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaTotalStatistics* VMA_NOT_NULL pStats);
|
|
|
|
/** \brief Retrieves information about current memory usage and budget for all memory heaps.
|
|
|
|
\param allocator
|
|
\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used.
|
|
|
|
This function is called "get" not "calculate" because it is very fast, suitable to be called
|
|
every frame or every allocation. For more detailed statistics use vmaCalculateStatistics().
|
|
|
|
Note that when using allocator from multiple threads, returned information may immediately
|
|
become outdated.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets);
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_alloc
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
|
|
|
|
This algorithm tries to find a memory type that:
|
|
|
|
- Is allowed by memoryTypeBits.
|
|
- Contains all the flags from pAllocationCreateInfo->requiredFlags.
|
|
- Matches intended usage.
|
|
- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
|
|
|
|
\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
|
|
from this function or any other allocating function probably means that your
|
|
device doesn't support any memory type with requested features for the specific
|
|
type of resource you want to use it for. Please check parameters of your
|
|
resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryTypeBits,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
|
|
|
|
/**
|
|
\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
|
|
|
|
It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
|
|
It internally creates a temporary, dummy buffer that never has memory bound.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
|
|
|
|
/**
|
|
\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
|
|
|
|
It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
|
|
It internally creates a temporary, dummy image that never has memory bound.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
|
|
|
|
/** \brief Allocates Vulkan device memory and creates #VmaPool object.
|
|
|
|
\param allocator Allocator object.
|
|
\param pCreateInfo Parameters of pool to create.
|
|
\param[out] pPool Handle to created pool.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool);
|
|
|
|
/** \brief Destroys #VmaPool object and frees Vulkan device memory.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NULLABLE pool);
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_stats
|
|
@{
|
|
*/
|
|
|
|
/** \brief Retrieves statistics of existing #VmaPool object.
|
|
|
|
\param allocator Allocator object.
|
|
\param pool Pool object.
|
|
\param[out] pPoolStats Statistics of specified pool.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool,
|
|
VmaStatistics* VMA_NOT_NULL pPoolStats);
|
|
|
|
/** \brief Retrieves detailed statistics of existing #VmaPool object.
|
|
|
|
\param allocator Allocator object.
|
|
\param pool Pool object.
|
|
\param[out] pPoolStats Statistics of specified pool.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool,
|
|
VmaDetailedStatistics* VMA_NOT_NULL pPoolStats);
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_alloc
|
|
@{
|
|
*/
|
|
|
|
/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
|
|
|
|
Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
|
|
`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
|
|
`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
|
|
|
|
Possible return values:
|
|
|
|
- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
|
|
- `VK_SUCCESS` - corruption detection has been performed and succeeded.
|
|
- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
|
|
`VMA_ASSERT` is also fired in that case.
|
|
- Other value: Error returned by Vulkan, e.g. memory mapping failure.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool);
|
|
|
|
/** \brief Retrieves name of a custom pool.
|
|
|
|
After the call `ppName` is either null or points to an internally-owned null-terminated string
|
|
containing name of the pool that was previously set. The pointer becomes invalid when the pool is
|
|
destroyed or its name is changed using vmaSetPoolName().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool,
|
|
const char* VMA_NULLABLE* VMA_NOT_NULL ppName);
|
|
|
|
/** \brief Sets name of a custom pool.
|
|
|
|
`pName` can be either null or pointer to a null-terminated string with new name for the pool.
|
|
Function makes internal copy of the string, so it can be changed or freed immediately after this call.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool,
|
|
const char* VMA_NULLABLE pName);
|
|
|
|
/** \brief General purpose memory allocation.
|
|
|
|
\param allocator
|
|
\param pVkMemoryRequirements
|
|
\param pCreateInfo
|
|
\param[out] pAllocation Handle to allocated memory.
|
|
\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
|
You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
|
|
|
|
It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
|
|
vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief General purpose memory allocation for multiple allocation objects at once.
|
|
|
|
\param allocator Allocator object.
|
|
\param pVkMemoryRequirements Memory requirements for each allocation.
|
|
\param pCreateInfo Creation parameters for each allocation.
|
|
\param allocationCount Number of allocations to make.
|
|
\param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
|
|
\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
|
|
|
|
You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
|
|
|
|
Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
|
|
It is just a general purpose allocation function able to make multiple allocations at once.
|
|
It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
|
|
|
|
All allocations are made using same parameters. All of them are created out of the same memory pool and type.
|
|
If any allocation fails, all allocations already made within this function call are also freed, so that when
|
|
returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo,
|
|
size_t allocationCount,
|
|
VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
|
|
VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);
|
|
|
|
/** \brief Allocates memory suitable for given `VkBuffer`.
|
|
|
|
\param allocator
|
|
\param buffer
|
|
\param pCreateInfo
|
|
\param[out] pAllocation Handle to allocated memory.
|
|
\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
|
It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory().
|
|
|
|
This is a special-purpose function. In most cases you should use vmaCreateBuffer().
|
|
|
|
You must free the allocation using vmaFreeMemory() when no longer needed.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief Allocates memory suitable for given `VkImage`.
|
|
|
|
\param allocator
|
|
\param image
|
|
\param pCreateInfo
|
|
\param[out] pAllocation Handle to allocated memory.
|
|
\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
|
It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory().
|
|
|
|
This is a special-purpose function. In most cases you should use vmaCreateImage().
|
|
|
|
You must free the allocation using vmaFreeMemory() when no longer needed.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
|
|
|
|
Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VmaAllocation VMA_NULLABLE allocation);
|
|
|
|
/** \brief Frees memory and destroys multiple allocations.
|
|
|
|
Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
|
|
It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
|
|
vmaAllocateMemoryPages() and other functions.
|
|
It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
|
|
|
|
Allocations in `pAllocations` array can come from any memory pools and types.
|
|
Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
size_t allocationCount,
|
|
const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);
|
|
|
|
/** \brief Returns current information about specified allocation.
|
|
|
|
Current parameters of given allocation are returned in `pAllocationInfo`.
|
|
|
|
Although this function doesn't lock any mutex, so it should be quite efficient,
|
|
you should avoid calling it too often.
|
|
You can retrieve same VmaAllocationInfo structure while creating your resource, from function
|
|
vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
|
|
(e.g. due to defragmentation).
|
|
|
|
There is also a new function vmaGetAllocationInfo2() that offers extended information
|
|
about the allocation, returned using new structure #VmaAllocationInfo2.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);
|
|
|
|
/** \brief Returns extended information about specified allocation.
|
|
|
|
Current parameters of given allocation are returned in `pAllocationInfo`.
|
|
Extended parameters in structure #VmaAllocationInfo2 include memory block size
|
|
and a flag telling whether the allocation has dedicated memory.
|
|
It can be useful e.g. for interop with OpenGL.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VmaAllocationInfo2* VMA_NOT_NULL pAllocationInfo);
|
|
|
|
/** \brief Sets pUserData in given allocation to new value.
|
|
|
|
The value of pointer `pUserData` is copied to allocation's `pUserData`.
|
|
It is opaque, so you can use it however you want - e.g.
|
|
as a pointer, ordinal number or some handle to you own data.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
void* VMA_NULLABLE pUserData);
|
|
|
|
/** \brief Sets pName in given allocation to new value.
|
|
|
|
`pName` must be either null, or pointer to a null-terminated string. The function
|
|
makes local copy of the string and sets it as allocation's `pName`. String
|
|
passed as pName doesn't need to be valid for whole lifetime of the allocation -
|
|
you can free it after this call. String previously pointed by allocation's
|
|
`pName` is freed from memory.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
const char* VMA_NULLABLE pName);
|
|
|
|
/**
|
|
\brief Given an allocation, returns Property Flags of its memory type.
|
|
|
|
This is just a convenience function. Same information can be obtained using
|
|
vmaGetAllocationInfo() + vmaGetMemoryProperties().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
|
|
|
|
/** \brief Maps memory represented by given allocation and returns pointer to it.
|
|
|
|
Maps memory represented by given allocation to make it accessible to CPU code.
|
|
When succeeded, `*ppData` contains pointer to first byte of this memory.
|
|
|
|
\warning
|
|
If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is
|
|
correctly offsetted to the beginning of region assigned to this particular allocation.
|
|
Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block.
|
|
You should not add VmaAllocationInfo::offset to it!
|
|
|
|
Mapping is internally reference-counted and synchronized, so despite raw Vulkan
|
|
function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
|
|
multiple times simultaneously, it is safe to call this function on allocations
|
|
assigned to the same memory block. Actual Vulkan memory will be mapped on first
|
|
mapping and unmapped on last unmapping.
|
|
|
|
If the function succeeded, you must call vmaUnmapMemory() to unmap the
|
|
allocation when mapping is no longer needed or before freeing the allocation, at
|
|
the latest.
|
|
|
|
It also safe to call this function multiple times on the same allocation. You
|
|
must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
|
|
|
|
It is also safe to call this function on allocation created with
|
|
#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
|
|
You must still call vmaUnmapMemory() same number of times as you called
|
|
vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
|
|
"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
|
|
|
|
This function fails when used on allocation made in memory type that is not
|
|
`HOST_VISIBLE`.
|
|
|
|
This function doesn't automatically flush or invalidate caches.
|
|
If the allocation is made from a memory types that is not `HOST_COHERENT`,
|
|
you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
void* VMA_NULLABLE* VMA_NOT_NULL ppData);
|
|
|
|
/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
|
|
|
|
For details, see description of vmaMapMemory().
|
|
|
|
This function doesn't automatically flush or invalidate caches.
|
|
If the allocation is made from a memory types that is not `HOST_COHERENT`,
|
|
you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation);
|
|
|
|
/** \brief Flushes memory of given allocation.
|
|
|
|
Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
|
|
It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
|
|
Unmap operation doesn't do that automatically.
|
|
|
|
- `offset` must be relative to the beginning of allocation.
|
|
- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
|
|
- `offset` and `size` don't have to be aligned.
|
|
They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
|
|
- If `size` is 0, this call is ignored.
|
|
- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
|
|
this call is ignored.
|
|
|
|
Warning! `offset` and `size` are relative to the contents of given `allocation`.
|
|
If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
|
|
Do not pass allocation's offset as `offset`!!!
|
|
|
|
This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
|
|
called, otherwise `VK_SUCCESS`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size);
|
|
|
|
/** \brief Invalidates memory of given allocation.
|
|
|
|
Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
|
|
It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
|
|
Map operation doesn't do that automatically.
|
|
|
|
- `offset` must be relative to the beginning of allocation.
|
|
- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
|
|
- `offset` and `size` don't have to be aligned.
|
|
They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
|
|
- If `size` is 0, this call is ignored.
|
|
- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
|
|
this call is ignored.
|
|
|
|
Warning! `offset` and `size` are relative to the contents of given `allocation`.
|
|
If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
|
|
Do not pass allocation's offset as `offset`!!!
|
|
|
|
This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if
|
|
it is called, otherwise `VK_SUCCESS`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size);
|
|
|
|
/** \brief Flushes memory of given set of allocations.
|
|
|
|
Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations.
|
|
For more information, see documentation of vmaFlushAllocation().
|
|
|
|
\param allocator
|
|
\param allocationCount
|
|
\param allocations
|
|
\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
|
|
\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
|
|
|
|
This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
|
|
called, otherwise `VK_SUCCESS`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t allocationCount,
|
|
const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
|
|
|
|
/** \brief Invalidates memory of given set of allocations.
|
|
|
|
Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations.
|
|
For more information, see documentation of vmaInvalidateAllocation().
|
|
|
|
\param allocator
|
|
\param allocationCount
|
|
\param allocations
|
|
\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
|
|
\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
|
|
|
|
This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is
|
|
called, otherwise `VK_SUCCESS`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t allocationCount,
|
|
const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
|
|
|
|
/** \brief Maps the allocation temporarily if needed, copies data from specified host pointer to it, and flushes the memory from the host caches if needed.
|
|
|
|
\param allocator
|
|
\param pSrcHostPointer Pointer to the host data that become source of the copy.
|
|
\param dstAllocation Handle to the allocation that becomes destination of the copy.
|
|
\param dstAllocationLocalOffset Offset within `dstAllocation` where to write copied data, in bytes.
|
|
\param size Number of bytes to copy.
|
|
|
|
This is a convenience function that allows to copy data from a host pointer to an allocation easily.
|
|
Same behavior can be achieved by calling vmaMapMemory(), `memcpy()`, vmaUnmapMemory(), vmaFlushAllocation().
|
|
|
|
This function can be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
|
|
It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or
|
|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
|
|
Otherwise, the function will fail and generate a Validation Layers error.
|
|
|
|
`dstAllocationLocalOffset` is relative to the contents of given `dstAllocation`.
|
|
If you mean whole allocation, you should pass 0.
|
|
Do not pass allocation's offset within device memory block this parameter!
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pSrcHostPointer,
|
|
VmaAllocation VMA_NOT_NULL dstAllocation,
|
|
VkDeviceSize dstAllocationLocalOffset,
|
|
VkDeviceSize size);
|
|
|
|
/** \brief Invalidates memory in the host caches if needed, maps the allocation temporarily if needed, and copies data from it to a specified host pointer.
|
|
|
|
\param allocator
|
|
\param srcAllocation Handle to the allocation that becomes source of the copy.
|
|
\param srcAllocationLocalOffset Offset within `srcAllocation` where to read copied data, in bytes.
|
|
\param pDstHostPointer Pointer to the host memory that become destination of the copy.
|
|
\param size Number of bytes to copy.
|
|
|
|
This is a convenience function that allows to copy data from an allocation to a host pointer easily.
|
|
Same behavior can be achieved by calling vmaInvalidateAllocation(), vmaMapMemory(), `memcpy()`, vmaUnmapMemory().
|
|
|
|
This function should be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
|
|
and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT` flag.
|
|
It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
|
|
Otherwise, the function may fail and generate a Validation Layers error.
|
|
It may also work very slowly when reading from an uncached memory.
|
|
|
|
`srcAllocationLocalOffset` is relative to the contents of given `srcAllocation`.
|
|
If you mean whole allocation, you should pass 0.
|
|
Do not pass allocation's offset within device memory block as this parameter!
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL srcAllocation,
|
|
VkDeviceSize srcAllocationLocalOffset,
|
|
void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pDstHostPointer,
|
|
VkDeviceSize size);
|
|
|
|
/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
|
|
|
|
\param allocator
|
|
\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
|
|
|
|
Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
|
|
`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
|
|
`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
|
|
|
|
Possible return values:
|
|
|
|
- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
|
|
- `VK_SUCCESS` - corruption detection has been performed and succeeded.
|
|
- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
|
|
`VMA_ASSERT` is also fired in that case.
|
|
- Other value: Error returned by Vulkan, e.g. memory mapping failure.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryTypeBits);
|
|
|
|
/** \brief Begins defragmentation process.
|
|
|
|
\param allocator Allocator object.
|
|
\param pInfo Structure filled with parameters of defragmentation.
|
|
\param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation.
|
|
\returns
|
|
- `VK_SUCCESS` if defragmentation can begin.
|
|
- `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported.
|
|
|
|
For more information about defragmentation, see documentation chapter:
|
|
[Defragmentation](@ref defragmentation).
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VmaDefragmentationInfo* VMA_NOT_NULL pInfo,
|
|
VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext);
|
|
|
|
/** \brief Ends defragmentation process.
|
|
|
|
\param allocator Allocator object.
|
|
\param context Context object that has been created by vmaBeginDefragmentation().
|
|
\param[out] pStats Optional stats for the defragmentation. Can be null.
|
|
|
|
Use this function to finish defragmentation started by vmaBeginDefragmentation().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaDefragmentationContext VMA_NOT_NULL context,
|
|
VmaDefragmentationStats* VMA_NULLABLE pStats);
|
|
|
|
/** \brief Starts single defragmentation pass.
|
|
|
|
\param allocator Allocator object.
|
|
\param context Context object that has been created by vmaBeginDefragmentation().
|
|
\param[out] pPassInfo Computed information for current pass.
|
|
\returns
|
|
- `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation.
|
|
- `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(),
|
|
and then preferably try another pass with vmaBeginDefragmentationPass().
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaDefragmentationContext VMA_NOT_NULL context,
|
|
VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
|
|
|
|
/** \brief Ends single defragmentation pass.
|
|
|
|
\param allocator Allocator object.
|
|
\param context Context object that has been created by vmaBeginDefragmentation().
|
|
\param pPassInfo Computed information for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you.
|
|
|
|
Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible.
|
|
|
|
Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`.
|
|
After this call:
|
|
|
|
- Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY
|
|
(which is the default) will be pointing to the new destination place.
|
|
- Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY
|
|
will be freed.
|
|
|
|
If no more moves are possible you can end whole defragmentation.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaDefragmentationContext VMA_NOT_NULL context,
|
|
VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
|
|
|
|
/** \brief Binds buffer to allocation.
|
|
|
|
Binds specified buffer to region of memory represented by specified allocation.
|
|
Gets `VkDeviceMemory` handle and offset from the allocation.
|
|
If you want to create a buffer, allocate memory for it and bind them together separately,
|
|
you should use this function for binding instead of standard `vkBindBufferMemory()`,
|
|
because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
|
|
allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
|
|
(which is illegal in Vulkan).
|
|
|
|
It is recommended to use function vmaCreateBuffer() instead of this one.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);
|
|
|
|
/** \brief Binds buffer to allocation with additional parameters.
|
|
|
|
\param allocator
|
|
\param allocation
|
|
\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
|
|
\param buffer
|
|
\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
|
|
|
|
This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
|
|
|
|
If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
|
|
or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
|
|
const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindBufferMemoryInfoKHR) pNext);
|
|
|
|
/** \brief Binds image to allocation.
|
|
|
|
Binds specified image to region of memory represented by specified allocation.
|
|
Gets `VkDeviceMemory` handle and offset from the allocation.
|
|
If you want to create an image, allocate memory for it and bind them together separately,
|
|
you should use this function for binding instead of standard `vkBindImageMemory()`,
|
|
because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
|
|
allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
|
|
(which is illegal in Vulkan).
|
|
|
|
It is recommended to use function vmaCreateImage() instead of this one.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);
|
|
|
|
/** \brief Binds image to allocation with additional parameters.
|
|
|
|
\param allocator
|
|
\param allocation
|
|
\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
|
|
\param image
|
|
\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
|
|
|
|
This function is similar to vmaBindImageMemory(), but it provides additional parameters.
|
|
|
|
If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
|
|
or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
|
|
const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindImageMemoryInfoKHR) pNext);
|
|
|
|
/** \brief Creates a new `VkBuffer`, allocates and binds memory for it.
|
|
|
|
\param allocator
|
|
\param pBufferCreateInfo
|
|
\param pAllocationCreateInfo
|
|
\param[out] pBuffer Buffer that was created.
|
|
\param[out] pAllocation Allocation that was created.
|
|
\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
|
This function automatically:
|
|
|
|
-# Creates buffer.
|
|
-# Allocates appropriate memory for it.
|
|
-# Binds the buffer with the memory.
|
|
|
|
If any of these operations fail, buffer and allocation are not created,
|
|
returned value is negative error code, `*pBuffer` and `*pAllocation` are null.
|
|
|
|
If the function succeeded, you must destroy both buffer and allocation when you
|
|
no longer need them using either convenience function vmaDestroyBuffer() or
|
|
separately, using `vkDestroyBuffer()` and vmaFreeMemory().
|
|
|
|
If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
|
|
VK_KHR_dedicated_allocation extension is used internally to query driver whether
|
|
it requires or prefers the new buffer to have dedicated allocation. If yes,
|
|
and if dedicated allocation is possible
|
|
(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
|
|
allocation for this buffer, just like when using
|
|
#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
|
|
\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer,
|
|
although recommended as a good practice, is out of scope of this library and could be implemented
|
|
by the user as a higher-level logic on top of VMA.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
|
|
VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief Creates a buffer with additional minimum alignment.
|
|
|
|
Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom,
|
|
minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g.
|
|
for interop with OpenGL.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
VkDeviceSize minAlignment,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
|
|
VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief Creates a new `VkBuffer`, binds already created memory for it.
|
|
|
|
\param allocator
|
|
\param allocation Allocation that provides memory to be used for binding new buffer to it.
|
|
\param pBufferCreateInfo
|
|
\param[out] pBuffer Buffer that was created.
|
|
|
|
This function automatically:
|
|
|
|
-# Creates buffer.
|
|
-# Binds the buffer with the supplied memory.
|
|
|
|
If any of these operations fail, buffer is not created,
|
|
returned value is negative error code and `*pBuffer` is null.
|
|
|
|
If the function succeeded, you must destroy the buffer when you
|
|
no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
|
|
allocation you can use convenience function vmaDestroyBuffer().
|
|
|
|
\note There is a new version of this function augmented with parameter `allocationLocalOffset` - see vmaCreateAliasingBuffer2().
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
|
|
|
|
/** \brief Creates a new `VkBuffer`, binds already created memory for it.
|
|
|
|
\param allocator
|
|
\param allocation Allocation that provides memory to be used for binding new buffer to it.
|
|
\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the allocation. Normally it should be 0.
|
|
\param pBufferCreateInfo
|
|
\param[out] pBuffer Buffer that was created.
|
|
|
|
This function automatically:
|
|
|
|
-# Creates buffer.
|
|
-# Binds the buffer with the supplied memory.
|
|
|
|
If any of these operations fail, buffer is not created,
|
|
returned value is negative error code and `*pBuffer` is null.
|
|
|
|
If the function succeeded, you must destroy the buffer when you
|
|
no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
|
|
allocation you can use convenience function vmaDestroyBuffer().
|
|
|
|
\note This is a new version of the function augmented with parameter `allocationLocalOffset`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
|
|
|
|
/** \brief Destroys Vulkan buffer and frees allocated memory.
|
|
|
|
This is just a convenience function equivalent to:
|
|
|
|
\code
|
|
vkDestroyBuffer(device, buffer, allocationCallbacks);
|
|
vmaFreeMemory(allocator, allocation);
|
|
\endcode
|
|
|
|
It is safe to pass null as buffer and/or allocation.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,
|
|
VmaAllocation VMA_NULLABLE allocation);
|
|
|
|
/// Function similar to vmaCreateBuffer().
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage,
|
|
VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/// Function similar to vmaCreateAliasingBuffer() but for images.
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
|
|
|
|
/// Function similar to vmaCreateAliasingBuffer2() but for images.
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
|
|
|
|
/** \brief Destroys Vulkan image and frees allocated memory.
|
|
|
|
This is just a convenience function equivalent to:
|
|
|
|
\code
|
|
vkDestroyImage(device, image, allocationCallbacks);
|
|
vmaFreeMemory(allocator, allocation);
|
|
\endcode
|
|
|
|
It is safe to pass null as image and/or allocation.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
|
|
VmaAllocation VMA_NULLABLE allocation);
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
\addtogroup group_virtual
|
|
@{
|
|
*/
|
|
|
|
/** \brief Creates new #VmaVirtualBlock object.
|
|
|
|
\param pCreateInfo Parameters for creation.
|
|
\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
|
|
const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock);
|
|
|
|
/** \brief Destroys #VmaVirtualBlock object.
|
|
|
|
Please note that you should consciously handle virtual allocations that could remain unfreed in the block.
|
|
You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock()
|
|
if you are sure this is what you want. If you do neither, an assert is called.
|
|
|
|
If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`,
|
|
don't forget to free them.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(
|
|
VmaVirtualBlock VMA_NULLABLE virtualBlock);
|
|
|
|
/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations.
|
|
*/
|
|
VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock);
|
|
|
|
/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo);
|
|
|
|
/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock.
|
|
|
|
If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned
|
|
(despite the function doesn't ever allocate actual GPU memory).
|
|
`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`.
|
|
|
|
\param virtualBlock Virtual block
|
|
\param pCreateInfo Parameters for the allocation
|
|
\param[out] pAllocation Returned handle of the new allocation
|
|
\param[out] pOffset Returned offset of the new allocation. Optional, can be null.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
|
|
VkDeviceSize* VMA_NULLABLE pOffset);
|
|
|
|
/** \brief Frees virtual allocation inside given #VmaVirtualBlock.
|
|
|
|
It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation);
|
|
|
|
/** \brief Frees all virtual allocations inside given #VmaVirtualBlock.
|
|
|
|
You must either call this function or free each virtual allocation individually with vmaVirtualFree()
|
|
before destroying a virtual block. Otherwise, an assert is called.
|
|
|
|
If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`,
|
|
don't forget to free it as well.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock);
|
|
|
|
/** \brief Changes custom pointer associated with given virtual allocation.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation,
|
|
void* VMA_NULLABLE pUserData);
|
|
|
|
/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
|
|
|
|
This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaStatistics* VMA_NOT_NULL pStats);
|
|
|
|
/** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
|
|
|
|
This function is slow to call. Use for debugging purposes.
|
|
For less detailed statistics, see vmaGetVirtualBlockStatistics().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaDetailedStatistics* VMA_NOT_NULL pStats);
|
|
|
|
/** @} */
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
/**
|
|
\addtogroup group_stats
|
|
@{
|
|
*/
|
|
|
|
/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock.
|
|
\param virtualBlock Virtual block.
|
|
\param[out] ppStatsString Returned string.
|
|
\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces.
|
|
|
|
Returned string must be freed using vmaFreeVirtualBlockStatsString().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
|
|
VkBool32 detailedMap);
|
|
|
|
/// Frees a string returned by vmaBuildVirtualBlockStatsString().
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(
|
|
VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
char* VMA_NULLABLE pStatsString);
|
|
|
|
/** \brief Builds and returns statistics as a null-terminated string in JSON format.
|
|
\param allocator
|
|
\param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
|
|
\param detailedMap
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
|
|
VkBool32 detailedMap);
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
char* VMA_NULLABLE pStatsString);
|
|
|
|
/** @} */
|
|
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
|
|
#endif // _VMA_FUNCTION_HEADERS
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPLEMENTATION
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// For Visual Studio IntelliSense.
|
|
#if defined(__cplusplus) && defined(__INTELLISENSE__)
|
|
#define VMA_IMPLEMENTATION
|
|
#endif
|
|
|
|
#ifdef VMA_IMPLEMENTATION
|
|
#undef VMA_IMPLEMENTATION
|
|
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <cinttypes>
|
|
#include <utility>
|
|
#include <type_traits>
|
|
|
|
#if !defined(VMA_CPP20)
|
|
#if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20
|
|
#define VMA_CPP20 1
|
|
#else
|
|
#define VMA_CPP20 0
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#include <intrin.h> // For functions like __popcnt, _BitScanForward etc.
|
|
#endif
|
|
#if VMA_CPP20
|
|
#include <bit>
|
|
#endif
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
#include <cstdio> // For snprintf
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
CONFIGURATION SECTION
|
|
|
|
Define some of these macros before each #include of this header or change them
|
|
here if you need other then default behavior depending on your environment.
|
|
*/
|
|
#ifndef _VMA_CONFIGURATION
|
|
|
|
/*
|
|
Define this macro to 1 to make the library fetch pointers to Vulkan functions
|
|
internally, like:
|
|
|
|
vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
|
|
*/
|
|
#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
|
|
#define VMA_STATIC_VULKAN_FUNCTIONS 1
|
|
#endif
|
|
|
|
/*
|
|
Define this macro to 1 to make the library fetch pointers to Vulkan functions
|
|
internally, like:
|
|
|
|
vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory");
|
|
|
|
To use this feature in new versions of VMA you now have to pass
|
|
VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as
|
|
VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null.
|
|
*/
|
|
#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)
|
|
#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
|
|
#endif
|
|
|
|
#ifndef VMA_USE_STL_SHARED_MUTEX
|
|
#if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
|
|
#define VMA_USE_STL_SHARED_MUTEX 1
|
|
// Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
|
|
// Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
|
|
#elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
|
|
#define VMA_USE_STL_SHARED_MUTEX 1
|
|
#else
|
|
#define VMA_USE_STL_SHARED_MUTEX 0
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
Define this macro to include custom header files without having to edit this file directly, e.g.:
|
|
|
|
// Inside of "my_vma_configuration_user_includes.h":
|
|
|
|
#include "my_custom_assert.h" // for MY_CUSTOM_ASSERT
|
|
#include "my_custom_min.h" // for my_custom_min
|
|
#include <algorithm>
|
|
#include <mutex>
|
|
|
|
// Inside a different file, which includes "vk_mem_alloc.h":
|
|
|
|
#define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h"
|
|
#define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr)
|
|
#define VMA_MIN(v1, v2) (my_custom_min(v1, v2))
|
|
#include "vk_mem_alloc.h"
|
|
...
|
|
|
|
The following headers are used in this CONFIGURATION section only, so feel free to
|
|
remove them if not needed.
|
|
*/
|
|
#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H)
|
|
#include <cassert> // for assert
|
|
#include <algorithm> // for min, max
|
|
#include <mutex>
|
|
#else
|
|
#include VMA_CONFIGURATION_USER_INCLUDES_H
|
|
#endif
|
|
|
|
#ifndef VMA_NULL
|
|
// Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
|
|
#define VMA_NULL nullptr
|
|
#endif
|
|
|
|
#ifndef VMA_FALLTHROUGH
|
|
#if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
|
|
#define VMA_FALLTHROUGH [[fallthrough]]
|
|
#else
|
|
#define VMA_FALLTHROUGH
|
|
#endif
|
|
#endif
|
|
|
|
// Normal assert to check for programmer's errors, especially in Debug configuration.
|
|
#ifndef VMA_ASSERT
|
|
#ifdef NDEBUG
|
|
#define VMA_ASSERT(expr)
|
|
#else
|
|
#define VMA_ASSERT(expr) assert(expr)
|
|
#endif
|
|
#endif
|
|
|
|
// Assert that will be called very often, like inside data structures e.g. operator[].
|
|
// Making it non-empty can make program slow.
|
|
#ifndef VMA_HEAVY_ASSERT
|
|
#ifdef NDEBUG
|
|
#define VMA_HEAVY_ASSERT(expr)
|
|
#else
|
|
#define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
|
|
#endif
|
|
#endif
|
|
|
|
// Assert used for reporting memory leaks - unfreed allocations.
|
|
#ifndef VMA_ASSERT_LEAK
|
|
#define VMA_ASSERT_LEAK(expr) VMA_ASSERT(expr)
|
|
#endif
|
|
|
|
// If your compiler is not compatible with C++17 and definition of
|
|
// aligned_alloc() function is missing, uncommenting following line may help:
|
|
|
|
//#include <malloc.h>
|
|
|
|
#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
|
|
#include <cstdlib>
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
// alignment must be >= sizeof(void*)
|
|
if(alignment < sizeof(void*))
|
|
{
|
|
alignment = sizeof(void*);
|
|
}
|
|
|
|
return memalign(alignment, size);
|
|
}
|
|
#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
|
|
#include <cstdlib>
|
|
|
|
#if defined(__APPLE__)
|
|
#include <AvailabilityMacros.h>
|
|
#endif
|
|
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
// Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4)
|
|
// Therefore, for now disable this specific exception until a proper solution is found.
|
|
//#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0))
|
|
//#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0
|
|
// // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only
|
|
// // with the MacOSX11.0 SDK in Xcode 12 (which is what adds
|
|
// // MAC_OS_X_VERSION_10_16), even though the function is marked
|
|
// // available for 10.15. That is why the preprocessor checks for 10.16 but
|
|
// // the __builtin_available checks for 10.15.
|
|
// // People who use C++17 could call aligned_alloc with the 10.15 SDK already.
|
|
// if (__builtin_available(macOS 10.15, iOS 13, *))
|
|
// return aligned_alloc(alignment, size);
|
|
//#endif
|
|
//#endif
|
|
|
|
// alignment must be >= sizeof(void*)
|
|
if(alignment < sizeof(void*))
|
|
{
|
|
alignment = sizeof(void*);
|
|
}
|
|
|
|
void *pointer;
|
|
if(posix_memalign(&pointer, alignment, size) == 0)
|
|
return pointer;
|
|
return VMA_NULL;
|
|
}
|
|
#elif defined(_WIN32)
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
return _aligned_malloc(size, alignment);
|
|
}
|
|
#elif __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
return aligned_alloc(alignment, size);
|
|
}
|
|
#else
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
VMA_ASSERT(0 && "Could not implement aligned_alloc automatically. Please enable C++17 or later in your compiler or provide custom implementation of macro VMA_SYSTEM_ALIGNED_MALLOC (and VMA_SYSTEM_ALIGNED_FREE if needed) using the API of your system.");
|
|
return VMA_NULL;
|
|
}
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
static void vma_aligned_free(void* ptr)
|
|
{
|
|
_aligned_free(ptr);
|
|
}
|
|
#else
|
|
static void vma_aligned_free(void* VMA_NULLABLE ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
#endif
|
|
|
|
#ifndef VMA_ALIGN_OF
|
|
#define VMA_ALIGN_OF(type) (alignof(type))
|
|
#endif
|
|
|
|
#ifndef VMA_SYSTEM_ALIGNED_MALLOC
|
|
#define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size))
|
|
#endif
|
|
|
|
#ifndef VMA_SYSTEM_ALIGNED_FREE
|
|
// VMA_SYSTEM_FREE is the old name, but might have been defined by the user
|
|
#if defined(VMA_SYSTEM_FREE)
|
|
#define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr)
|
|
#else
|
|
#define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_COUNT_BITS_SET
|
|
// Returns number of bits set to 1 in (v)
|
|
#define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v)
|
|
#endif
|
|
|
|
#ifndef VMA_BITSCAN_LSB
|
|
// Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX
|
|
#define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask)
|
|
#endif
|
|
|
|
#ifndef VMA_BITSCAN_MSB
|
|
// Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX
|
|
#define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask)
|
|
#endif
|
|
|
|
#ifndef VMA_MIN
|
|
#define VMA_MIN(v1, v2) ((std::min)((v1), (v2)))
|
|
#endif
|
|
|
|
#ifndef VMA_MAX
|
|
#define VMA_MAX(v1, v2) ((std::max)((v1), (v2)))
|
|
#endif
|
|
|
|
#ifndef VMA_SWAP
|
|
#define VMA_SWAP(v1, v2) std::swap((v1), (v2))
|
|
#endif
|
|
|
|
#ifndef VMA_SORT
|
|
#define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_LOG_FORMAT
|
|
#define VMA_DEBUG_LOG_FORMAT(format, ...)
|
|
/*
|
|
#define VMA_DEBUG_LOG_FORMAT(format, ...) do { \
|
|
printf((format), __VA_ARGS__); \
|
|
printf("\n"); \
|
|
} while(false)
|
|
*/
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_LOG
|
|
#define VMA_DEBUG_LOG(str) VMA_DEBUG_LOG_FORMAT("%s", (str))
|
|
#endif
|
|
|
|
#ifndef VMA_LEAK_LOG_FORMAT
|
|
#define VMA_LEAK_LOG_FORMAT(format, ...) VMA_DEBUG_LOG_FORMAT(format, __VA_ARGS__)
|
|
#endif
|
|
|
|
#ifndef VMA_CLASS_NO_COPY
|
|
#define VMA_CLASS_NO_COPY(className) \
|
|
private: \
|
|
className(const className&) = delete; \
|
|
className& operator=(const className&) = delete;
|
|
#endif
|
|
#ifndef VMA_CLASS_NO_COPY_NO_MOVE
|
|
#define VMA_CLASS_NO_COPY_NO_MOVE(className) \
|
|
private: \
|
|
className(const className&) = delete; \
|
|
className(className&&) = delete; \
|
|
className& operator=(const className&) = delete; \
|
|
className& operator=(className&&) = delete;
|
|
#endif
|
|
|
|
// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num)
|
|
{
|
|
snprintf(outStr, strLen, "%" PRIu32, num);
|
|
}
|
|
static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num)
|
|
{
|
|
snprintf(outStr, strLen, "%" PRIu64, num);
|
|
}
|
|
static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr)
|
|
{
|
|
snprintf(outStr, strLen, "%p", ptr);
|
|
}
|
|
#endif
|
|
|
|
#ifndef VMA_MUTEX
|
|
class VmaMutex
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaMutex)
|
|
public:
|
|
VmaMutex() { }
|
|
void Lock() { m_Mutex.lock(); }
|
|
void Unlock() { m_Mutex.unlock(); }
|
|
bool TryLock() { return m_Mutex.try_lock(); }
|
|
private:
|
|
std::mutex m_Mutex;
|
|
};
|
|
#define VMA_MUTEX VmaMutex
|
|
#endif
|
|
|
|
// Read-write mutex, where "read" is shared access, "write" is exclusive access.
|
|
#ifndef VMA_RW_MUTEX
|
|
#if VMA_USE_STL_SHARED_MUTEX
|
|
// Use std::shared_mutex from C++17.
|
|
#include <shared_mutex>
|
|
class VmaRWMutex
|
|
{
|
|
public:
|
|
void LockRead() { m_Mutex.lock_shared(); }
|
|
void UnlockRead() { m_Mutex.unlock_shared(); }
|
|
bool TryLockRead() { return m_Mutex.try_lock_shared(); }
|
|
void LockWrite() { m_Mutex.lock(); }
|
|
void UnlockWrite() { m_Mutex.unlock(); }
|
|
bool TryLockWrite() { return m_Mutex.try_lock(); }
|
|
private:
|
|
std::shared_mutex m_Mutex;
|
|
};
|
|
#define VMA_RW_MUTEX VmaRWMutex
|
|
#elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
|
|
// Use SRWLOCK from WinAPI.
|
|
// Minimum supported client = Windows Vista, server = Windows Server 2008.
|
|
class VmaRWMutex
|
|
{
|
|
public:
|
|
VmaRWMutex() { InitializeSRWLock(&m_Lock); }
|
|
void LockRead() { AcquireSRWLockShared(&m_Lock); }
|
|
void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
|
|
bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }
|
|
void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
|
|
void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
|
|
bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }
|
|
private:
|
|
SRWLOCK m_Lock;
|
|
};
|
|
#define VMA_RW_MUTEX VmaRWMutex
|
|
#else
|
|
// Less efficient fallback: Use normal mutex.
|
|
class VmaRWMutex
|
|
{
|
|
public:
|
|
void LockRead() { m_Mutex.Lock(); }
|
|
void UnlockRead() { m_Mutex.Unlock(); }
|
|
bool TryLockRead() { return m_Mutex.TryLock(); }
|
|
void LockWrite() { m_Mutex.Lock(); }
|
|
void UnlockWrite() { m_Mutex.Unlock(); }
|
|
bool TryLockWrite() { return m_Mutex.TryLock(); }
|
|
private:
|
|
VMA_MUTEX m_Mutex;
|
|
};
|
|
#define VMA_RW_MUTEX VmaRWMutex
|
|
#endif // #if VMA_USE_STL_SHARED_MUTEX
|
|
#endif // #ifndef VMA_RW_MUTEX
|
|
|
|
/*
|
|
If providing your own implementation, you need to implement a subset of std::atomic.
|
|
*/
|
|
#ifndef VMA_ATOMIC_UINT32
|
|
#include <atomic>
|
|
#define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
|
|
#endif
|
|
|
|
#ifndef VMA_ATOMIC_UINT64
|
|
#include <atomic>
|
|
#define VMA_ATOMIC_UINT64 std::atomic<uint64_t>
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
|
|
/**
|
|
Every allocation will have its own memory block.
|
|
Define to 1 for debugging purposes only.
|
|
*/
|
|
#define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
|
|
#endif
|
|
|
|
#ifndef VMA_MIN_ALIGNMENT
|
|
/**
|
|
Minimum alignment of all allocations, in bytes.
|
|
Set to more than 1 for debugging purposes. Must be power of two.
|
|
*/
|
|
#ifdef VMA_DEBUG_ALIGNMENT // Old name
|
|
#define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT
|
|
#else
|
|
#define VMA_MIN_ALIGNMENT (1)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_MARGIN
|
|
/**
|
|
Minimum margin after every allocation, in bytes.
|
|
Set nonzero for debugging purposes only.
|
|
*/
|
|
#define VMA_DEBUG_MARGIN (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
|
|
/**
|
|
Define this macro to 1 to automatically fill new allocations and destroyed
|
|
allocations with some bit pattern.
|
|
*/
|
|
#define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_DETECT_CORRUPTION
|
|
/**
|
|
Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
|
|
enable writing magic value to the margin after every allocation and
|
|
validating it, so that memory corruptions (out-of-bounds writes) are detected.
|
|
*/
|
|
#define VMA_DEBUG_DETECT_CORRUPTION (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_GLOBAL_MUTEX
|
|
/**
|
|
Set this to 1 for debugging purposes only, to enable single mutex protecting all
|
|
entry calls to the library. Can be useful for debugging multithreading issues.
|
|
*/
|
|
#define VMA_DEBUG_GLOBAL_MUTEX (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
|
|
/**
|
|
Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
|
|
Set to more than 1 for debugging purposes only. Must be power of two.
|
|
*/
|
|
#define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
|
|
/*
|
|
Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount
|
|
and return error instead of leaving up to Vulkan implementation what to do in such cases.
|
|
*/
|
|
#define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0)
|
|
#endif
|
|
|
|
#ifndef VMA_SMALL_HEAP_MAX_SIZE
|
|
/// Maximum size of a memory heap in Vulkan to consider it "small".
|
|
#define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
|
|
#endif
|
|
|
|
#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
|
|
/// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
|
|
#define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
|
|
#endif
|
|
|
|
/*
|
|
Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called
|
|
or a persistently mapped allocation is created and destroyed several times in a row.
|
|
It keeps additional +1 mapping of a device memory block to prevent calling actual
|
|
vkMapMemory/vkUnmapMemory too many times, which may improve performance and help
|
|
tools like RenderDoc.
|
|
*/
|
|
#ifndef VMA_MAPPING_HYSTERESIS_ENABLED
|
|
#define VMA_MAPPING_HYSTERESIS_ENABLED 1
|
|
#endif
|
|
|
|
#define VMA_VALIDATE(cond) do { if(!(cond)) { \
|
|
VMA_ASSERT(0 && "Validation failed: " #cond); \
|
|
return false; \
|
|
} } while(false)
|
|
|
|
/*******************************************************************************
|
|
END OF CONFIGURATION
|
|
*/
|
|
#endif // _VMA_CONFIGURATION
|
|
|
|
|
|
static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
|
|
static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
|
|
// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
|
|
static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
|
|
|
|
// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.
|
|
static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;
|
|
static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;
|
|
static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;
|
|
static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200;
|
|
static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000;
|
|
static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
|
|
static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
|
|
static const uint32_t VMA_VENDOR_ID_AMD = 4098;
|
|
|
|
// This one is tricky. Vulkan specification defines this code as available since
|
|
// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131.
|
|
// See pull request #207.
|
|
#define VK_ERROR_UNKNOWN_COPY ((VkResult)-13)
|
|
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
// Correspond to values of enum VmaSuballocationType.
|
|
static const char* VMA_SUBALLOCATION_TYPE_NAMES[] =
|
|
{
|
|
"FREE",
|
|
"UNKNOWN",
|
|
"BUFFER",
|
|
"IMAGE_UNKNOWN",
|
|
"IMAGE_LINEAR",
|
|
"IMAGE_OPTIMAL",
|
|
};
|
|
#endif
|
|
|
|
static VkAllocationCallbacks VmaEmptyAllocationCallbacks =
|
|
{ VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
|
|
|
|
|
|
#ifndef _VMA_ENUM_DECLARATIONS
|
|
|
|
enum VmaSuballocationType
|
|
{
|
|
VMA_SUBALLOCATION_TYPE_FREE = 0,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER = 2,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
|
|
VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
|
|
};
|
|
|
|
enum VMA_CACHE_OPERATION
|
|
{
|
|
VMA_CACHE_FLUSH,
|
|
VMA_CACHE_INVALIDATE
|
|
};
|
|
|
|
enum class VmaAllocationRequestType
|
|
{
|
|
Normal,
|
|
TLSF,
|
|
// Used by "Linear" algorithm.
|
|
UpperAddress,
|
|
EndOf1st,
|
|
EndOf2nd,
|
|
};
|
|
|
|
#endif // _VMA_ENUM_DECLARATIONS
|
|
|
|
#ifndef _VMA_FORWARD_DECLARATIONS
|
|
// Opaque handle used by allocation algorithms to identify single allocation in any conforming way.
|
|
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle);
|
|
|
|
struct VmaMutexLock;
|
|
struct VmaMutexLockRead;
|
|
struct VmaMutexLockWrite;
|
|
|
|
template<typename T>
|
|
struct AtomicTransactionalIncrement;
|
|
|
|
template<typename T>
|
|
struct VmaStlAllocator;
|
|
|
|
template<typename T, typename AllocatorT>
|
|
class VmaVector;
|
|
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
class VmaSmallVector;
|
|
|
|
template<typename T>
|
|
class VmaPoolAllocator;
|
|
|
|
template<typename T>
|
|
struct VmaListItem;
|
|
|
|
template<typename T>
|
|
class VmaRawList;
|
|
|
|
template<typename T, typename AllocatorT>
|
|
class VmaList;
|
|
|
|
template<typename ItemTypeTraits>
|
|
class VmaIntrusiveLinkedList;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
class VmaStringBuilder;
|
|
class VmaJsonWriter;
|
|
#endif
|
|
|
|
class VmaDeviceMemoryBlock;
|
|
|
|
struct VmaDedicatedAllocationListItemTraits;
|
|
class VmaDedicatedAllocationList;
|
|
|
|
struct VmaSuballocation;
|
|
struct VmaSuballocationOffsetLess;
|
|
struct VmaSuballocationOffsetGreater;
|
|
struct VmaSuballocationItemSizeLess;
|
|
|
|
typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> VmaSuballocationList;
|
|
|
|
struct VmaAllocationRequest;
|
|
|
|
class VmaBlockMetadata;
|
|
class VmaBlockMetadata_Linear;
|
|
class VmaBlockMetadata_TLSF;
|
|
|
|
class VmaBlockVector;
|
|
|
|
struct VmaPoolListItemTraits;
|
|
|
|
struct VmaCurrentBudgetData;
|
|
|
|
class VmaAllocationObjectAllocator;
|
|
|
|
#endif // _VMA_FORWARD_DECLARATIONS
|
|
|
|
|
|
#ifndef _VMA_FUNCTIONS
|
|
|
|
/*
|
|
Returns number of bits set to 1 in (v).
|
|
|
|
On specific platforms and compilers you can use instrinsics like:
|
|
|
|
Visual Studio:
|
|
return __popcnt(v);
|
|
GCC, Clang:
|
|
return static_cast<uint32_t>(__builtin_popcount(v));
|
|
|
|
Define macro VMA_COUNT_BITS_SET to provide your optimized implementation.
|
|
But you need to check in runtime whether user's CPU supports these, as some old processors don't.
|
|
*/
|
|
static inline uint32_t VmaCountBitsSet(uint32_t v)
|
|
{
|
|
#if VMA_CPP20
|
|
return std::popcount(v);
|
|
#else
|
|
uint32_t c = v - ((v >> 1) & 0x55555555);
|
|
c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
|
|
c = ((c >> 4) + c) & 0x0F0F0F0F;
|
|
c = ((c >> 8) + c) & 0x00FF00FF;
|
|
c = ((c >> 16) + c) & 0x0000FFFF;
|
|
return c;
|
|
#endif
|
|
}
|
|
|
|
static inline uint8_t VmaBitScanLSB(uint64_t mask)
|
|
{
|
|
#if defined(_MSC_VER) && defined(_WIN64)
|
|
unsigned long pos;
|
|
if (_BitScanForward64(&pos, mask))
|
|
return static_cast<uint8_t>(pos);
|
|
return UINT8_MAX;
|
|
#elif VMA_CPP20
|
|
if(mask)
|
|
return static_cast<uint8_t>(std::countr_zero(mask));
|
|
return UINT8_MAX;
|
|
#elif defined __GNUC__ || defined __clang__
|
|
return static_cast<uint8_t>(__builtin_ffsll(mask)) - 1U;
|
|
#else
|
|
uint8_t pos = 0;
|
|
uint64_t bit = 1;
|
|
do
|
|
{
|
|
if (mask & bit)
|
|
return pos;
|
|
bit <<= 1;
|
|
} while (pos++ < 63);
|
|
return UINT8_MAX;
|
|
#endif
|
|
}
|
|
|
|
static inline uint8_t VmaBitScanLSB(uint32_t mask)
|
|
{
|
|
#ifdef _MSC_VER
|
|
unsigned long pos;
|
|
if (_BitScanForward(&pos, mask))
|
|
return static_cast<uint8_t>(pos);
|
|
return UINT8_MAX;
|
|
#elif VMA_CPP20
|
|
if(mask)
|
|
return static_cast<uint8_t>(std::countr_zero(mask));
|
|
return UINT8_MAX;
|
|
#elif defined __GNUC__ || defined __clang__
|
|
return static_cast<uint8_t>(__builtin_ffs(mask)) - 1U;
|
|
#else
|
|
uint8_t pos = 0;
|
|
uint32_t bit = 1;
|
|
do
|
|
{
|
|
if (mask & bit)
|
|
return pos;
|
|
bit <<= 1;
|
|
} while (pos++ < 31);
|
|
return UINT8_MAX;
|
|
#endif
|
|
}
|
|
|
|
static inline uint8_t VmaBitScanMSB(uint64_t mask)
|
|
{
|
|
#if defined(_MSC_VER) && defined(_WIN64)
|
|
unsigned long pos;
|
|
if (_BitScanReverse64(&pos, mask))
|
|
return static_cast<uint8_t>(pos);
|
|
#elif VMA_CPP20
|
|
if(mask)
|
|
return 63 - static_cast<uint8_t>(std::countl_zero(mask));
|
|
#elif defined __GNUC__ || defined __clang__
|
|
if (mask)
|
|
return 63 - static_cast<uint8_t>(__builtin_clzll(mask));
|
|
#else
|
|
uint8_t pos = 63;
|
|
uint64_t bit = 1ULL << 63;
|
|
do
|
|
{
|
|
if (mask & bit)
|
|
return pos;
|
|
bit >>= 1;
|
|
} while (pos-- > 0);
|
|
#endif
|
|
return UINT8_MAX;
|
|
}
|
|
|
|
static inline uint8_t VmaBitScanMSB(uint32_t mask)
|
|
{
|
|
#ifdef _MSC_VER
|
|
unsigned long pos;
|
|
if (_BitScanReverse(&pos, mask))
|
|
return static_cast<uint8_t>(pos);
|
|
#elif VMA_CPP20
|
|
if(mask)
|
|
return 31 - static_cast<uint8_t>(std::countl_zero(mask));
|
|
#elif defined __GNUC__ || defined __clang__
|
|
if (mask)
|
|
return 31 - static_cast<uint8_t>(__builtin_clz(mask));
|
|
#else
|
|
uint8_t pos = 31;
|
|
uint32_t bit = 1UL << 31;
|
|
do
|
|
{
|
|
if (mask & bit)
|
|
return pos;
|
|
bit >>= 1;
|
|
} while (pos-- > 0);
|
|
#endif
|
|
return UINT8_MAX;
|
|
}
|
|
|
|
/*
|
|
Returns true if given number is a power of two.
|
|
T must be unsigned integer number or signed integer but always nonnegative.
|
|
For 0 returns true.
|
|
*/
|
|
template <typename T>
|
|
inline bool VmaIsPow2(T x)
|
|
{
|
|
return (x & (x - 1)) == 0;
|
|
}
|
|
|
|
// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
|
|
// Use types like uint32_t, uint64_t as T.
|
|
template <typename T>
|
|
static inline T VmaAlignUp(T val, T alignment)
|
|
{
|
|
VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
|
|
return (val + alignment - 1) & ~(alignment - 1);
|
|
}
|
|
|
|
// Aligns given value down to nearest multiply of align value. For example: VmaAlignDown(11, 8) = 8.
|
|
// Use types like uint32_t, uint64_t as T.
|
|
template <typename T>
|
|
static inline T VmaAlignDown(T val, T alignment)
|
|
{
|
|
VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
|
|
return val & ~(alignment - 1);
|
|
}
|
|
|
|
// Division with mathematical rounding to nearest number.
|
|
template <typename T>
|
|
static inline T VmaRoundDiv(T x, T y)
|
|
{
|
|
return (x + (y / (T)2)) / y;
|
|
}
|
|
|
|
// Divide by 'y' and round up to nearest integer.
|
|
template <typename T>
|
|
static inline T VmaDivideRoundingUp(T x, T y)
|
|
{
|
|
return (x + y - (T)1) / y;
|
|
}
|
|
|
|
// Returns smallest power of 2 greater or equal to v.
|
|
static inline uint32_t VmaNextPow2(uint32_t v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v++;
|
|
return v;
|
|
}
|
|
|
|
static inline uint64_t VmaNextPow2(uint64_t v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v |= v >> 32;
|
|
v++;
|
|
return v;
|
|
}
|
|
|
|
// Returns largest power of 2 less or equal to v.
|
|
static inline uint32_t VmaPrevPow2(uint32_t v)
|
|
{
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v = v ^ (v >> 1);
|
|
return v;
|
|
}
|
|
|
|
static inline uint64_t VmaPrevPow2(uint64_t v)
|
|
{
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v |= v >> 32;
|
|
v = v ^ (v >> 1);
|
|
return v;
|
|
}
|
|
|
|
static inline bool VmaStrIsEmpty(const char* pStr)
|
|
{
|
|
return pStr == VMA_NULL || *pStr == '\0';
|
|
}
|
|
|
|
/*
|
|
Returns true if two memory blocks occupy overlapping pages.
|
|
ResourceA must be in less memory offset than ResourceB.
|
|
|
|
Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
|
|
chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
|
|
*/
|
|
static inline bool VmaBlocksOnSamePage(
|
|
VkDeviceSize resourceAOffset,
|
|
VkDeviceSize resourceASize,
|
|
VkDeviceSize resourceBOffset,
|
|
VkDeviceSize pageSize)
|
|
{
|
|
VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
|
|
VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
|
|
VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
|
|
VkDeviceSize resourceBStart = resourceBOffset;
|
|
VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
|
|
return resourceAEndPage == resourceBStartPage;
|
|
}
|
|
|
|
/*
|
|
Returns true if given suballocation types could conflict and must respect
|
|
VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
|
|
or linear image and another one is optimal image. If type is unknown, behave
|
|
conservatively.
|
|
*/
|
|
static inline bool VmaIsBufferImageGranularityConflict(
|
|
VmaSuballocationType suballocType1,
|
|
VmaSuballocationType suballocType2)
|
|
{
|
|
if (suballocType1 > suballocType2)
|
|
{
|
|
VMA_SWAP(suballocType1, suballocType2);
|
|
}
|
|
|
|
switch (suballocType1)
|
|
{
|
|
case VMA_SUBALLOCATION_TYPE_FREE:
|
|
return false;
|
|
case VMA_SUBALLOCATION_TYPE_UNKNOWN:
|
|
return true;
|
|
case VMA_SUBALLOCATION_TYPE_BUFFER:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
|
|
return false;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
|
|
{
|
|
#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
|
|
uint32_t* pDst = (uint32_t*)((char*)pData + offset);
|
|
const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
|
|
for (size_t i = 0; i < numberCount; ++i, ++pDst)
|
|
{
|
|
*pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
|
|
}
|
|
#else
|
|
// no-op
|
|
#endif
|
|
}
|
|
|
|
static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
|
|
{
|
|
#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
|
|
const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
|
|
const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
|
|
for (size_t i = 0; i < numberCount; ++i, ++pSrc)
|
|
{
|
|
if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Fills structure with parameters of an example buffer to be used for transfers
|
|
during GPU memory defragmentation.
|
|
*/
|
|
static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
|
|
{
|
|
memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
|
|
outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
|
|
}
|
|
|
|
|
|
/*
|
|
Performs binary search and returns iterator to first element that is greater or
|
|
equal to (key), according to comparison (cmp).
|
|
|
|
Cmp should return true if first argument is less than second argument.
|
|
|
|
Returned value is the found element, if present in the collection or place where
|
|
new element with value (key) should be inserted.
|
|
*/
|
|
template <typename CmpLess, typename IterT, typename KeyT>
|
|
static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp)
|
|
{
|
|
size_t down = 0, up = size_t(end - beg);
|
|
while (down < up)
|
|
{
|
|
const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation
|
|
if (cmp(*(beg + mid), key))
|
|
{
|
|
down = mid + 1;
|
|
}
|
|
else
|
|
{
|
|
up = mid;
|
|
}
|
|
}
|
|
return beg + down;
|
|
}
|
|
|
|
template<typename CmpLess, typename IterT, typename KeyT>
|
|
IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
|
|
{
|
|
IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
|
|
beg, end, value, cmp);
|
|
if (it == end ||
|
|
(!cmp(*it, value) && !cmp(value, *it)))
|
|
{
|
|
return it;
|
|
}
|
|
return end;
|
|
}
|
|
|
|
/*
|
|
Returns true if all pointers in the array are not-null and unique.
|
|
Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
|
|
T must be pointer type, e.g. VmaAllocation, VmaPool.
|
|
*/
|
|
template<typename T>
|
|
static bool VmaValidatePointerArray(uint32_t count, const T* arr)
|
|
{
|
|
for (uint32_t i = 0; i < count; ++i)
|
|
{
|
|
const T iPtr = arr[i];
|
|
if (iPtr == VMA_NULL)
|
|
{
|
|
return false;
|
|
}
|
|
for (uint32_t j = i + 1; j < count; ++j)
|
|
{
|
|
if (iPtr == arr[j])
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<typename MainT, typename NewT>
|
|
static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)
|
|
{
|
|
newStruct->pNext = mainStruct->pNext;
|
|
mainStruct->pNext = newStruct;
|
|
}
|
|
|
|
// This is the main algorithm that guides the selection of a memory type best for an allocation -
|
|
// converts usage to required/preferred/not preferred flags.
|
|
static bool FindMemoryPreferences(
|
|
bool isIntegratedGPU,
|
|
const VmaAllocationCreateInfo& allocCreateInfo,
|
|
VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown.
|
|
VkMemoryPropertyFlags& outRequiredFlags,
|
|
VkMemoryPropertyFlags& outPreferredFlags,
|
|
VkMemoryPropertyFlags& outNotPreferredFlags)
|
|
{
|
|
outRequiredFlags = allocCreateInfo.requiredFlags;
|
|
outPreferredFlags = allocCreateInfo.preferredFlags;
|
|
outNotPreferredFlags = 0;
|
|
|
|
switch(allocCreateInfo.usage)
|
|
{
|
|
case VMA_MEMORY_USAGE_UNKNOWN:
|
|
break;
|
|
case VMA_MEMORY_USAGE_GPU_ONLY:
|
|
if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
|
|
{
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
}
|
|
break;
|
|
case VMA_MEMORY_USAGE_CPU_ONLY:
|
|
outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_CPU_TO_GPU:
|
|
outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
|
|
{
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
}
|
|
break;
|
|
case VMA_MEMORY_USAGE_GPU_TO_CPU:
|
|
outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_CPU_COPY:
|
|
outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
|
|
outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_AUTO:
|
|
case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE:
|
|
case VMA_MEMORY_USAGE_AUTO_PREFER_HOST:
|
|
{
|
|
if(bufImgUsage == UINT32_MAX)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known.");
|
|
return false;
|
|
}
|
|
// This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same VK_BUFFER_IMAGE_TRANSFER*.
|
|
const bool deviceAccess = (bufImgUsage & ~static_cast<VkFlags>(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0;
|
|
const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0;
|
|
const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0;
|
|
const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0;
|
|
const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
|
|
const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST;
|
|
|
|
// CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU.
|
|
if(hostAccessRandom)
|
|
{
|
|
// Prefer cached. Cannot require it, because some platforms don't have it (e.g. Raspberry Pi - see #362)!
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
|
|
if (!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
|
|
{
|
|
// Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL.
|
|
// Omitting HOST_VISIBLE here is intentional.
|
|
// In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one.
|
|
// Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list.
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
}
|
|
else
|
|
{
|
|
// Always CPU memory.
|
|
outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
}
|
|
}
|
|
// CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined.
|
|
else if(hostAccessSequentialWrite)
|
|
{
|
|
// Want uncached and write-combined.
|
|
outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
|
|
if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
|
|
{
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
}
|
|
else
|
|
{
|
|
outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
// Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame)
|
|
if(deviceAccess)
|
|
{
|
|
// Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory.
|
|
if(preferHost)
|
|
outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
else
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
}
|
|
// GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU)
|
|
else
|
|
{
|
|
// Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory.
|
|
if(preferDevice)
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
else
|
|
outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
}
|
|
}
|
|
}
|
|
// No CPU access
|
|
else
|
|
{
|
|
// if(deviceAccess)
|
|
//
|
|
// GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory,
|
|
// unless there is a clear preference from the user not to do so.
|
|
//
|
|
// else:
|
|
//
|
|
// No direct GPU access, no CPU access, just transfers.
|
|
// It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or
|
|
// a "swap file" copy to free some GPU memory (then better CPU memory).
|
|
// Up to the user to decide. If no preferece, assume the former and choose GPU memory.
|
|
|
|
if(preferHost)
|
|
outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
else
|
|
outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
// Avoid DEVICE_COHERENT unless explicitly requested.
|
|
if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) &
|
|
(VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)
|
|
{
|
|
outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Memory allocation
|
|
|
|
static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
|
|
{
|
|
void* result = VMA_NULL;
|
|
if ((pAllocationCallbacks != VMA_NULL) &&
|
|
(pAllocationCallbacks->pfnAllocation != VMA_NULL))
|
|
{
|
|
result = (*pAllocationCallbacks->pfnAllocation)(
|
|
pAllocationCallbacks->pUserData,
|
|
size,
|
|
alignment,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
}
|
|
else
|
|
{
|
|
result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
|
|
}
|
|
VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed.");
|
|
return result;
|
|
}
|
|
|
|
static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
|
|
{
|
|
if ((pAllocationCallbacks != VMA_NULL) &&
|
|
(pAllocationCallbacks->pfnFree != VMA_NULL))
|
|
{
|
|
(*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
|
|
}
|
|
else
|
|
{
|
|
VMA_SYSTEM_ALIGNED_FREE(ptr);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
|
|
{
|
|
return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
|
|
{
|
|
return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
|
|
|
|
#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
|
|
|
|
template<typename T>
|
|
static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
|
|
{
|
|
ptr->~T();
|
|
VmaFree(pAllocationCallbacks, ptr);
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
|
|
{
|
|
if (ptr != VMA_NULL)
|
|
{
|
|
for (size_t i = count; i--; )
|
|
{
|
|
ptr[i].~T();
|
|
}
|
|
VmaFree(pAllocationCallbacks, ptr);
|
|
}
|
|
}
|
|
|
|
static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
|
|
{
|
|
if (srcStr != VMA_NULL)
|
|
{
|
|
const size_t len = strlen(srcStr);
|
|
char* const result = vma_new_array(allocs, char, len + 1);
|
|
memcpy(result, srcStr, len + 1);
|
|
return result;
|
|
}
|
|
return VMA_NULL;
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen)
|
|
{
|
|
if (srcStr != VMA_NULL)
|
|
{
|
|
char* const result = vma_new_array(allocs, char, strLen + 1);
|
|
memcpy(result, srcStr, strLen);
|
|
result[strLen] = '\0';
|
|
return result;
|
|
}
|
|
return VMA_NULL;
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
|
|
static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
|
|
{
|
|
if (str != VMA_NULL)
|
|
{
|
|
const size_t len = strlen(str);
|
|
vma_delete_array(allocs, str, len + 1);
|
|
}
|
|
}
|
|
|
|
template<typename CmpLess, typename VectorT>
|
|
size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
|
|
{
|
|
const size_t indexToInsert = VmaBinaryFindFirstNotLess(
|
|
vector.data(),
|
|
vector.data() + vector.size(),
|
|
value,
|
|
CmpLess()) - vector.data();
|
|
VmaVectorInsert(vector, indexToInsert, value);
|
|
return indexToInsert;
|
|
}
|
|
|
|
template<typename CmpLess, typename VectorT>
|
|
bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
|
|
{
|
|
CmpLess comparator;
|
|
typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
|
|
vector.begin(),
|
|
vector.end(),
|
|
value,
|
|
comparator);
|
|
if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
|
|
{
|
|
size_t indexToRemove = it - vector.begin();
|
|
VmaVectorRemove(vector, indexToRemove);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
#endif // _VMA_FUNCTIONS
|
|
|
|
#ifndef _VMA_STATISTICS_FUNCTIONS
|
|
|
|
static void VmaClearStatistics(VmaStatistics& outStats)
|
|
{
|
|
outStats.blockCount = 0;
|
|
outStats.allocationCount = 0;
|
|
outStats.blockBytes = 0;
|
|
outStats.allocationBytes = 0;
|
|
}
|
|
|
|
static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src)
|
|
{
|
|
inoutStats.blockCount += src.blockCount;
|
|
inoutStats.allocationCount += src.allocationCount;
|
|
inoutStats.blockBytes += src.blockBytes;
|
|
inoutStats.allocationBytes += src.allocationBytes;
|
|
}
|
|
|
|
static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats)
|
|
{
|
|
VmaClearStatistics(outStats.statistics);
|
|
outStats.unusedRangeCount = 0;
|
|
outStats.allocationSizeMin = VK_WHOLE_SIZE;
|
|
outStats.allocationSizeMax = 0;
|
|
outStats.unusedRangeSizeMin = VK_WHOLE_SIZE;
|
|
outStats.unusedRangeSizeMax = 0;
|
|
}
|
|
|
|
static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
|
|
{
|
|
inoutStats.statistics.allocationCount++;
|
|
inoutStats.statistics.allocationBytes += size;
|
|
inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size);
|
|
inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size);
|
|
}
|
|
|
|
static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
|
|
{
|
|
inoutStats.unusedRangeCount++;
|
|
inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size);
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size);
|
|
}
|
|
|
|
static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src)
|
|
{
|
|
VmaAddStatistics(inoutStats.statistics, src.statistics);
|
|
inoutStats.unusedRangeCount += src.unusedRangeCount;
|
|
inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin);
|
|
inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax);
|
|
inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin);
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax);
|
|
}
|
|
|
|
#endif // _VMA_STATISTICS_FUNCTIONS
|
|
|
|
#ifndef _VMA_MUTEX_LOCK
|
|
// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
|
|
struct VmaMutexLock
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLock)
|
|
public:
|
|
VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
|
|
m_pMutex(useMutex ? &mutex : VMA_NULL)
|
|
{
|
|
if (m_pMutex) { m_pMutex->Lock(); }
|
|
}
|
|
~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } }
|
|
|
|
private:
|
|
VMA_MUTEX* m_pMutex;
|
|
};
|
|
|
|
// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
|
|
struct VmaMutexLockRead
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockRead)
|
|
public:
|
|
VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
|
|
m_pMutex(useMutex ? &mutex : VMA_NULL)
|
|
{
|
|
if (m_pMutex) { m_pMutex->LockRead(); }
|
|
}
|
|
~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } }
|
|
|
|
private:
|
|
VMA_RW_MUTEX* m_pMutex;
|
|
};
|
|
|
|
// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
|
|
struct VmaMutexLockWrite
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockWrite)
|
|
public:
|
|
VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex)
|
|
: m_pMutex(useMutex ? &mutex : VMA_NULL)
|
|
{
|
|
if (m_pMutex) { m_pMutex->LockWrite(); }
|
|
}
|
|
~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } }
|
|
|
|
private:
|
|
VMA_RW_MUTEX* m_pMutex;
|
|
};
|
|
|
|
#if VMA_DEBUG_GLOBAL_MUTEX
|
|
static VMA_MUTEX gDebugGlobalMutex;
|
|
#define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
|
|
#else
|
|
#define VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
#endif
|
|
#endif // _VMA_MUTEX_LOCK
|
|
|
|
#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
|
|
// An object that increments given atomic but decrements it back in the destructor unless Commit() is called.
|
|
template<typename AtomicT>
|
|
struct AtomicTransactionalIncrement
|
|
{
|
|
public:
|
|
using T = decltype(AtomicT().load());
|
|
|
|
~AtomicTransactionalIncrement()
|
|
{
|
|
if(m_Atomic)
|
|
--(*m_Atomic);
|
|
}
|
|
|
|
void Commit() { m_Atomic = VMA_NULL; }
|
|
T Increment(AtomicT* atomic)
|
|
{
|
|
m_Atomic = atomic;
|
|
return m_Atomic->fetch_add(1);
|
|
}
|
|
|
|
private:
|
|
AtomicT* m_Atomic = VMA_NULL;
|
|
};
|
|
#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
|
|
|
|
#ifndef _VMA_STL_ALLOCATOR
|
|
// STL-compatible allocator.
|
|
template<typename T>
|
|
struct VmaStlAllocator
|
|
{
|
|
const VkAllocationCallbacks* const m_pCallbacks;
|
|
typedef T value_type;
|
|
|
|
VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {}
|
|
template<typename U>
|
|
VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) {}
|
|
VmaStlAllocator(const VmaStlAllocator&) = default;
|
|
VmaStlAllocator& operator=(const VmaStlAllocator&) = delete;
|
|
|
|
T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
|
|
void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
|
|
|
|
template<typename U>
|
|
bool operator==(const VmaStlAllocator<U>& rhs) const
|
|
{
|
|
return m_pCallbacks == rhs.m_pCallbacks;
|
|
}
|
|
template<typename U>
|
|
bool operator!=(const VmaStlAllocator<U>& rhs) const
|
|
{
|
|
return m_pCallbacks != rhs.m_pCallbacks;
|
|
}
|
|
};
|
|
#endif // _VMA_STL_ALLOCATOR
|
|
|
|
#ifndef _VMA_VECTOR
|
|
/* Class with interface compatible with subset of std::vector.
|
|
T must be POD because constructors and destructors are not called and memcpy is
|
|
used for these objects. */
|
|
template<typename T, typename AllocatorT>
|
|
class VmaVector
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
typedef T* iterator;
|
|
typedef const T* const_iterator;
|
|
|
|
VmaVector(const AllocatorT& allocator);
|
|
VmaVector(size_t count, const AllocatorT& allocator);
|
|
// This version of the constructor is here for compatibility with pre-C++14 std::vector.
|
|
// value is unused.
|
|
VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {}
|
|
VmaVector(const VmaVector<T, AllocatorT>& src);
|
|
VmaVector& operator=(const VmaVector& rhs);
|
|
~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); }
|
|
|
|
bool empty() const { return m_Count == 0; }
|
|
size_t size() const { return m_Count; }
|
|
T* data() { return m_pArray; }
|
|
T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
|
|
T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
|
|
const T* data() const { return m_pArray; }
|
|
const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
|
|
const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
|
|
|
|
iterator begin() { return m_pArray; }
|
|
iterator end() { return m_pArray + m_Count; }
|
|
const_iterator cbegin() const { return m_pArray; }
|
|
const_iterator cend() const { return m_pArray + m_Count; }
|
|
const_iterator begin() const { return cbegin(); }
|
|
const_iterator end() const { return cend(); }
|
|
|
|
void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
|
|
void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
|
|
void push_front(const T& src) { insert(0, src); }
|
|
|
|
void push_back(const T& src);
|
|
void reserve(size_t newCapacity, bool freeMemory = false);
|
|
void resize(size_t newCount);
|
|
void clear() { resize(0); }
|
|
void shrink_to_fit();
|
|
void insert(size_t index, const T& src);
|
|
void remove(size_t index);
|
|
|
|
T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
|
|
const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
|
|
|
|
private:
|
|
AllocatorT m_Allocator;
|
|
T* m_pArray;
|
|
size_t m_Count;
|
|
size_t m_Capacity;
|
|
};
|
|
|
|
#ifndef _VMA_VECTOR_FUNCTIONS
|
|
template<typename T, typename AllocatorT>
|
|
VmaVector<T, AllocatorT>::VmaVector(const AllocatorT& allocator)
|
|
: m_Allocator(allocator),
|
|
m_pArray(VMA_NULL),
|
|
m_Count(0),
|
|
m_Capacity(0) {}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
VmaVector<T, AllocatorT>::VmaVector(size_t count, const AllocatorT& allocator)
|
|
: m_Allocator(allocator),
|
|
m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
|
|
m_Count(count),
|
|
m_Capacity(count) {}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
VmaVector<T, AllocatorT>::VmaVector(const VmaVector& src)
|
|
: m_Allocator(src.m_Allocator),
|
|
m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
|
|
m_Count(src.m_Count),
|
|
m_Capacity(src.m_Count)
|
|
{
|
|
if (m_Count != 0)
|
|
{
|
|
memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
|
|
}
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
VmaVector<T, AllocatorT>& VmaVector<T, AllocatorT>::operator=(const VmaVector& rhs)
|
|
{
|
|
if (&rhs != this)
|
|
{
|
|
resize(rhs.m_Count);
|
|
if (m_Count != 0)
|
|
{
|
|
memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
void VmaVector<T, AllocatorT>::push_back(const T& src)
|
|
{
|
|
const size_t newIndex = size();
|
|
resize(newIndex + 1);
|
|
m_pArray[newIndex] = src;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
void VmaVector<T, AllocatorT>::reserve(size_t newCapacity, bool freeMemory)
|
|
{
|
|
newCapacity = VMA_MAX(newCapacity, m_Count);
|
|
|
|
if ((newCapacity < m_Capacity) && !freeMemory)
|
|
{
|
|
newCapacity = m_Capacity;
|
|
}
|
|
|
|
if (newCapacity != m_Capacity)
|
|
{
|
|
T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
|
|
if (m_Count != 0)
|
|
{
|
|
memcpy(newArray, m_pArray, m_Count * sizeof(T));
|
|
}
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
m_Capacity = newCapacity;
|
|
m_pArray = newArray;
|
|
}
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
void VmaVector<T, AllocatorT>::resize(size_t newCount)
|
|
{
|
|
size_t newCapacity = m_Capacity;
|
|
if (newCount > m_Capacity)
|
|
{
|
|
newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
|
|
}
|
|
|
|
if (newCapacity != m_Capacity)
|
|
{
|
|
T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
|
|
const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
|
|
if (elementsToCopy != 0)
|
|
{
|
|
memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
|
|
}
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
m_Capacity = newCapacity;
|
|
m_pArray = newArray;
|
|
}
|
|
|
|
m_Count = newCount;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
void VmaVector<T, AllocatorT>::shrink_to_fit()
|
|
{
|
|
if (m_Capacity > m_Count)
|
|
{
|
|
T* newArray = VMA_NULL;
|
|
if (m_Count > 0)
|
|
{
|
|
newArray = VmaAllocateArray<T>(m_Allocator.m_pCallbacks, m_Count);
|
|
memcpy(newArray, m_pArray, m_Count * sizeof(T));
|
|
}
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
m_Capacity = m_Count;
|
|
m_pArray = newArray;
|
|
}
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
void VmaVector<T, AllocatorT>::insert(size_t index, const T& src)
|
|
{
|
|
VMA_HEAVY_ASSERT(index <= m_Count);
|
|
const size_t oldCount = size();
|
|
resize(oldCount + 1);
|
|
if (index < oldCount)
|
|
{
|
|
memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
|
|
}
|
|
m_pArray[index] = src;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
void VmaVector<T, AllocatorT>::remove(size_t index)
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
const size_t oldCount = size();
|
|
if (index < oldCount - 1)
|
|
{
|
|
memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
|
|
}
|
|
resize(oldCount - 1);
|
|
}
|
|
#endif // _VMA_VECTOR_FUNCTIONS
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
|
|
{
|
|
vec.insert(index, item);
|
|
}
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
|
|
{
|
|
vec.remove(index);
|
|
}
|
|
#endif // _VMA_VECTOR
|
|
|
|
#ifndef _VMA_SMALL_VECTOR
|
|
/*
|
|
This is a vector (a variable-sized array), optimized for the case when the array is small.
|
|
|
|
It contains some number of elements in-place, which allows it to avoid heap allocation
|
|
when the actual number of elements is below that threshold. This allows normal "small"
|
|
cases to be fast without losing generality for large inputs.
|
|
*/
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
class VmaSmallVector
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
typedef T* iterator;
|
|
|
|
VmaSmallVector(const AllocatorT& allocator);
|
|
VmaSmallVector(size_t count, const AllocatorT& allocator);
|
|
template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
|
|
VmaSmallVector(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
|
|
template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
|
|
VmaSmallVector<T, AllocatorT, N>& operator=(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
|
|
~VmaSmallVector() = default;
|
|
|
|
bool empty() const { return m_Count == 0; }
|
|
size_t size() const { return m_Count; }
|
|
T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
|
|
T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
|
|
T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
|
|
const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
|
|
const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
|
|
const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
|
|
|
|
iterator begin() { return data(); }
|
|
iterator end() { return data() + m_Count; }
|
|
|
|
void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
|
|
void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
|
|
void push_front(const T& src) { insert(0, src); }
|
|
|
|
void push_back(const T& src);
|
|
void resize(size_t newCount, bool freeMemory = false);
|
|
void clear(bool freeMemory = false);
|
|
void insert(size_t index, const T& src);
|
|
void remove(size_t index);
|
|
|
|
T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
|
|
const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
|
|
|
|
private:
|
|
size_t m_Count;
|
|
T m_StaticArray[N]; // Used when m_Size <= N
|
|
VmaVector<T, AllocatorT> m_DynamicArray; // Used when m_Size > N
|
|
};
|
|
|
|
#ifndef _VMA_SMALL_VECTOR_FUNCTIONS
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(const AllocatorT& allocator)
|
|
: m_Count(0),
|
|
m_DynamicArray(allocator) {}
|
|
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(size_t count, const AllocatorT& allocator)
|
|
: m_Count(count),
|
|
m_DynamicArray(count > N ? count : 0, allocator) {}
|
|
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
void VmaSmallVector<T, AllocatorT, N>::push_back(const T& src)
|
|
{
|
|
const size_t newIndex = size();
|
|
resize(newIndex + 1);
|
|
data()[newIndex] = src;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
void VmaSmallVector<T, AllocatorT, N>::resize(size_t newCount, bool freeMemory)
|
|
{
|
|
if (newCount > N && m_Count > N)
|
|
{
|
|
// Any direction, staying in m_DynamicArray
|
|
m_DynamicArray.resize(newCount);
|
|
if (freeMemory)
|
|
{
|
|
m_DynamicArray.shrink_to_fit();
|
|
}
|
|
}
|
|
else if (newCount > N && m_Count <= N)
|
|
{
|
|
// Growing, moving from m_StaticArray to m_DynamicArray
|
|
m_DynamicArray.resize(newCount);
|
|
if (m_Count > 0)
|
|
{
|
|
memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T));
|
|
}
|
|
}
|
|
else if (newCount <= N && m_Count > N)
|
|
{
|
|
// Shrinking, moving from m_DynamicArray to m_StaticArray
|
|
if (newCount > 0)
|
|
{
|
|
memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T));
|
|
}
|
|
m_DynamicArray.resize(0);
|
|
if (freeMemory)
|
|
{
|
|
m_DynamicArray.shrink_to_fit();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Any direction, staying in m_StaticArray - nothing to do here
|
|
}
|
|
m_Count = newCount;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
void VmaSmallVector<T, AllocatorT, N>::clear(bool freeMemory)
|
|
{
|
|
m_DynamicArray.clear();
|
|
if (freeMemory)
|
|
{
|
|
m_DynamicArray.shrink_to_fit();
|
|
}
|
|
m_Count = 0;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
void VmaSmallVector<T, AllocatorT, N>::insert(size_t index, const T& src)
|
|
{
|
|
VMA_HEAVY_ASSERT(index <= m_Count);
|
|
const size_t oldCount = size();
|
|
resize(oldCount + 1);
|
|
T* const dataPtr = data();
|
|
if (index < oldCount)
|
|
{
|
|
// I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray.
|
|
memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T));
|
|
}
|
|
dataPtr[index] = src;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
void VmaSmallVector<T, AllocatorT, N>::remove(size_t index)
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
const size_t oldCount = size();
|
|
if (index < oldCount - 1)
|
|
{
|
|
// I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray.
|
|
T* const dataPtr = data();
|
|
memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T));
|
|
}
|
|
resize(oldCount - 1);
|
|
}
|
|
#endif // _VMA_SMALL_VECTOR_FUNCTIONS
|
|
#endif // _VMA_SMALL_VECTOR
|
|
|
|
#ifndef _VMA_POOL_ALLOCATOR
|
|
/*
|
|
Allocator for objects of type T using a list of arrays (pools) to speed up
|
|
allocation. Number of elements that can be allocated is not bounded because
|
|
allocator can create multiple blocks.
|
|
*/
|
|
template<typename T>
|
|
class VmaPoolAllocator
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaPoolAllocator)
|
|
public:
|
|
VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
|
|
~VmaPoolAllocator();
|
|
template<typename... Types> T* Alloc(Types&&... args);
|
|
void Free(T* ptr);
|
|
|
|
private:
|
|
union Item
|
|
{
|
|
uint32_t NextFreeIndex;
|
|
alignas(T) char Value[sizeof(T)];
|
|
};
|
|
struct ItemBlock
|
|
{
|
|
Item* pItems;
|
|
uint32_t Capacity;
|
|
uint32_t FirstFreeIndex;
|
|
};
|
|
|
|
const VkAllocationCallbacks* m_pAllocationCallbacks;
|
|
const uint32_t m_FirstBlockCapacity;
|
|
VmaVector<ItemBlock, VmaStlAllocator<ItemBlock>> m_ItemBlocks;
|
|
|
|
ItemBlock& CreateNewBlock();
|
|
};
|
|
|
|
#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS
|
|
template<typename T>
|
|
VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity)
|
|
: m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_FirstBlockCapacity(firstBlockCapacity),
|
|
m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
|
|
{
|
|
VMA_ASSERT(m_FirstBlockCapacity > 1);
|
|
}
|
|
|
|
template<typename T>
|
|
VmaPoolAllocator<T>::~VmaPoolAllocator()
|
|
{
|
|
for (size_t i = m_ItemBlocks.size(); i--;)
|
|
vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
|
|
m_ItemBlocks.clear();
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types&&... args)
|
|
{
|
|
for (size_t i = m_ItemBlocks.size(); i--; )
|
|
{
|
|
ItemBlock& block = m_ItemBlocks[i];
|
|
// This block has some free items: Use first one.
|
|
if (block.FirstFreeIndex != UINT32_MAX)
|
|
{
|
|
Item* const pItem = &block.pItems[block.FirstFreeIndex];
|
|
block.FirstFreeIndex = pItem->NextFreeIndex;
|
|
T* result = (T*)&pItem->Value;
|
|
new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// No block has free item: Create new one and use it.
|
|
ItemBlock& newBlock = CreateNewBlock();
|
|
Item* const pItem = &newBlock.pItems[0];
|
|
newBlock.FirstFreeIndex = pItem->NextFreeIndex;
|
|
T* result = (T*)&pItem->Value;
|
|
new(result) T(std::forward<Types>(args)...); // Explicit constructor call.
|
|
return result;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaPoolAllocator<T>::Free(T* ptr)
|
|
{
|
|
// Search all memory blocks to find ptr.
|
|
for (size_t i = m_ItemBlocks.size(); i--; )
|
|
{
|
|
ItemBlock& block = m_ItemBlocks[i];
|
|
|
|
// Casting to union.
|
|
Item* pItemPtr;
|
|
memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
|
|
|
|
// Check if pItemPtr is in address range of this block.
|
|
if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
|
|
{
|
|
ptr->~T(); // Explicit destructor call.
|
|
const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
|
|
pItemPtr->NextFreeIndex = block.FirstFreeIndex;
|
|
block.FirstFreeIndex = index;
|
|
return;
|
|
}
|
|
}
|
|
VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
|
|
}
|
|
|
|
template<typename T>
|
|
typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
|
|
{
|
|
const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
|
|
m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
|
|
|
|
const ItemBlock newBlock =
|
|
{
|
|
vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
|
|
newBlockCapacity,
|
|
0
|
|
};
|
|
|
|
m_ItemBlocks.push_back(newBlock);
|
|
|
|
// Setup singly-linked list of all free items in this block.
|
|
for (uint32_t i = 0; i < newBlockCapacity - 1; ++i)
|
|
newBlock.pItems[i].NextFreeIndex = i + 1;
|
|
newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
|
|
return m_ItemBlocks.back();
|
|
}
|
|
#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS
|
|
#endif // _VMA_POOL_ALLOCATOR
|
|
|
|
#ifndef _VMA_RAW_LIST
|
|
template<typename T>
|
|
struct VmaListItem
|
|
{
|
|
VmaListItem* pPrev;
|
|
VmaListItem* pNext;
|
|
T Value;
|
|
};
|
|
|
|
// Doubly linked list.
|
|
template<typename T>
|
|
class VmaRawList
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaRawList)
|
|
public:
|
|
typedef VmaListItem<T> ItemType;
|
|
|
|
VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
|
|
// Intentionally not calling Clear, because that would be unnecessary
|
|
// computations to return all items to m_ItemAllocator as free.
|
|
~VmaRawList() = default;
|
|
|
|
size_t GetCount() const { return m_Count; }
|
|
bool IsEmpty() const { return m_Count == 0; }
|
|
|
|
ItemType* Front() { return m_pFront; }
|
|
ItemType* Back() { return m_pBack; }
|
|
const ItemType* Front() const { return m_pFront; }
|
|
const ItemType* Back() const { return m_pBack; }
|
|
|
|
ItemType* PushFront();
|
|
ItemType* PushBack();
|
|
ItemType* PushFront(const T& value);
|
|
ItemType* PushBack(const T& value);
|
|
void PopFront();
|
|
void PopBack();
|
|
|
|
// Item can be null - it means PushBack.
|
|
ItemType* InsertBefore(ItemType* pItem);
|
|
// Item can be null - it means PushFront.
|
|
ItemType* InsertAfter(ItemType* pItem);
|
|
ItemType* InsertBefore(ItemType* pItem, const T& value);
|
|
ItemType* InsertAfter(ItemType* pItem, const T& value);
|
|
|
|
void Clear();
|
|
void Remove(ItemType* pItem);
|
|
|
|
private:
|
|
const VkAllocationCallbacks* const m_pAllocationCallbacks;
|
|
VmaPoolAllocator<ItemType> m_ItemAllocator;
|
|
ItemType* m_pFront;
|
|
ItemType* m_pBack;
|
|
size_t m_Count;
|
|
};
|
|
|
|
#ifndef _VMA_RAW_LIST_FUNCTIONS
|
|
template<typename T>
|
|
VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks)
|
|
: m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_ItemAllocator(pAllocationCallbacks, 128),
|
|
m_pFront(VMA_NULL),
|
|
m_pBack(VMA_NULL),
|
|
m_Count(0) {}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushFront()
|
|
{
|
|
ItemType* const pNewItem = m_ItemAllocator.Alloc();
|
|
pNewItem->pPrev = VMA_NULL;
|
|
if (IsEmpty())
|
|
{
|
|
pNewItem->pNext = VMA_NULL;
|
|
m_pFront = pNewItem;
|
|
m_pBack = pNewItem;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
pNewItem->pNext = m_pFront;
|
|
m_pFront->pPrev = pNewItem;
|
|
m_pFront = pNewItem;
|
|
++m_Count;
|
|
}
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushBack()
|
|
{
|
|
ItemType* const pNewItem = m_ItemAllocator.Alloc();
|
|
pNewItem->pNext = VMA_NULL;
|
|
if(IsEmpty())
|
|
{
|
|
pNewItem->pPrev = VMA_NULL;
|
|
m_pFront = pNewItem;
|
|
m_pBack = pNewItem;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
pNewItem->pPrev = m_pBack;
|
|
m_pBack->pNext = pNewItem;
|
|
m_pBack = pNewItem;
|
|
++m_Count;
|
|
}
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
|
|
{
|
|
ItemType* const pNewItem = PushFront();
|
|
pNewItem->Value = value;
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
|
|
{
|
|
ItemType* const pNewItem = PushBack();
|
|
pNewItem->Value = value;
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::PopFront()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const pFrontItem = m_pFront;
|
|
ItemType* const pNextItem = pFrontItem->pNext;
|
|
if (pNextItem != VMA_NULL)
|
|
{
|
|
pNextItem->pPrev = VMA_NULL;
|
|
}
|
|
m_pFront = pNextItem;
|
|
m_ItemAllocator.Free(pFrontItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::PopBack()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const pBackItem = m_pBack;
|
|
ItemType* const pPrevItem = pBackItem->pPrev;
|
|
if(pPrevItem != VMA_NULL)
|
|
{
|
|
pPrevItem->pNext = VMA_NULL;
|
|
}
|
|
m_pBack = pPrevItem;
|
|
m_ItemAllocator.Free(pBackItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::Clear()
|
|
{
|
|
if (IsEmpty() == false)
|
|
{
|
|
ItemType* pItem = m_pBack;
|
|
while (pItem != VMA_NULL)
|
|
{
|
|
ItemType* const pPrevItem = pItem->pPrev;
|
|
m_ItemAllocator.Free(pItem);
|
|
pItem = pPrevItem;
|
|
}
|
|
m_pFront = VMA_NULL;
|
|
m_pBack = VMA_NULL;
|
|
m_Count = 0;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::Remove(ItemType* pItem)
|
|
{
|
|
VMA_HEAVY_ASSERT(pItem != VMA_NULL);
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
|
if(pItem->pPrev != VMA_NULL)
|
|
{
|
|
pItem->pPrev->pNext = pItem->pNext;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pFront == pItem);
|
|
m_pFront = pItem->pNext;
|
|
}
|
|
|
|
if(pItem->pNext != VMA_NULL)
|
|
{
|
|
pItem->pNext->pPrev = pItem->pPrev;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pBack == pItem);
|
|
m_pBack = pItem->pPrev;
|
|
}
|
|
|
|
m_ItemAllocator.Free(pItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
|
|
{
|
|
if(pItem != VMA_NULL)
|
|
{
|
|
ItemType* const prevItem = pItem->pPrev;
|
|
ItemType* const newItem = m_ItemAllocator.Alloc();
|
|
newItem->pPrev = prevItem;
|
|
newItem->pNext = pItem;
|
|
pItem->pPrev = newItem;
|
|
if(prevItem != VMA_NULL)
|
|
{
|
|
prevItem->pNext = newItem;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pFront == pItem);
|
|
m_pFront = newItem;
|
|
}
|
|
++m_Count;
|
|
return newItem;
|
|
}
|
|
else
|
|
return PushBack();
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
|
|
{
|
|
if(pItem != VMA_NULL)
|
|
{
|
|
ItemType* const nextItem = pItem->pNext;
|
|
ItemType* const newItem = m_ItemAllocator.Alloc();
|
|
newItem->pNext = nextItem;
|
|
newItem->pPrev = pItem;
|
|
pItem->pNext = newItem;
|
|
if(nextItem != VMA_NULL)
|
|
{
|
|
nextItem->pPrev = newItem;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pBack == pItem);
|
|
m_pBack = newItem;
|
|
}
|
|
++m_Count;
|
|
return newItem;
|
|
}
|
|
else
|
|
return PushFront();
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
|
|
{
|
|
ItemType* const newItem = InsertBefore(pItem);
|
|
newItem->Value = value;
|
|
return newItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
|
|
{
|
|
ItemType* const newItem = InsertAfter(pItem);
|
|
newItem->Value = value;
|
|
return newItem;
|
|
}
|
|
#endif // _VMA_RAW_LIST_FUNCTIONS
|
|
#endif // _VMA_RAW_LIST
|
|
|
|
#ifndef _VMA_LIST
|
|
template<typename T, typename AllocatorT>
|
|
class VmaList
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaList)
|
|
public:
|
|
class reverse_iterator;
|
|
class const_iterator;
|
|
class const_reverse_iterator;
|
|
|
|
class iterator
|
|
{
|
|
friend class const_iterator;
|
|
friend class VmaList<T, AllocatorT>;
|
|
public:
|
|
iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
|
|
iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
|
|
|
|
T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
|
|
T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
|
|
|
|
bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
|
|
bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
|
|
|
|
iterator operator++(int) { iterator result = *this; ++*this; return result; }
|
|
iterator operator--(int) { iterator result = *this; --*this; return result; }
|
|
|
|
iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
|
|
iterator& operator--();
|
|
|
|
private:
|
|
VmaRawList<T>* m_pList;
|
|
VmaListItem<T>* m_pItem;
|
|
|
|
iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
|
|
};
|
|
class reverse_iterator
|
|
{
|
|
friend class const_reverse_iterator;
|
|
friend class VmaList<T, AllocatorT>;
|
|
public:
|
|
reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
|
|
reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
|
|
|
|
T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
|
|
T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
|
|
|
|
bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
|
|
bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
|
|
|
|
reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; }
|
|
reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; }
|
|
|
|
reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
|
|
reverse_iterator& operator--();
|
|
|
|
private:
|
|
VmaRawList<T>* m_pList;
|
|
VmaListItem<T>* m_pItem;
|
|
|
|
reverse_iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
|
|
};
|
|
class const_iterator
|
|
{
|
|
friend class VmaList<T, AllocatorT>;
|
|
public:
|
|
const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
|
|
const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
|
|
const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
|
|
|
|
iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
|
|
|
|
const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
|
|
const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
|
|
|
|
bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
|
|
bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
|
|
|
|
const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; }
|
|
const_iterator operator--(int) { const_iterator result = *this; --* this; return result; }
|
|
|
|
const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
|
|
const_iterator& operator--();
|
|
|
|
private:
|
|
const VmaRawList<T>* m_pList;
|
|
const VmaListItem<T>* m_pItem;
|
|
|
|
const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
|
|
};
|
|
class const_reverse_iterator
|
|
{
|
|
friend class VmaList<T, AllocatorT>;
|
|
public:
|
|
const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
|
|
const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
|
|
const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
|
|
|
|
reverse_iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
|
|
|
|
const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
|
|
const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
|
|
|
|
bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
|
|
bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
|
|
|
|
const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; }
|
|
const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; }
|
|
|
|
const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
|
|
const_reverse_iterator& operator--();
|
|
|
|
private:
|
|
const VmaRawList<T>* m_pList;
|
|
const VmaListItem<T>* m_pItem;
|
|
|
|
const_reverse_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
|
|
};
|
|
|
|
VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {}
|
|
|
|
bool empty() const { return m_RawList.IsEmpty(); }
|
|
size_t size() const { return m_RawList.GetCount(); }
|
|
|
|
iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
|
|
iterator end() { return iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
|
|
const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_iterator begin() const { return cbegin(); }
|
|
const_iterator end() const { return cend(); }
|
|
|
|
reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); }
|
|
reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); }
|
|
const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_reverse_iterator rbegin() const { return crbegin(); }
|
|
const_reverse_iterator rend() const { return crend(); }
|
|
|
|
void push_back(const T& value) { m_RawList.PushBack(value); }
|
|
iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
|
|
|
|
void clear() { m_RawList.Clear(); }
|
|
void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
|
|
|
|
private:
|
|
VmaRawList<T> m_RawList;
|
|
};
|
|
|
|
#ifndef _VMA_LIST_FUNCTIONS
|
|
template<typename T, typename AllocatorT>
|
|
typename VmaList<T, AllocatorT>::iterator& VmaList<T, AllocatorT>::iterator::operator--()
|
|
{
|
|
if (m_pItem != VMA_NULL)
|
|
{
|
|
m_pItem = m_pItem->pPrev;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Back();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
typename VmaList<T, AllocatorT>::reverse_iterator& VmaList<T, AllocatorT>::reverse_iterator::operator--()
|
|
{
|
|
if (m_pItem != VMA_NULL)
|
|
{
|
|
m_pItem = m_pItem->pNext;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Front();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
typename VmaList<T, AllocatorT>::const_iterator& VmaList<T, AllocatorT>::const_iterator::operator--()
|
|
{
|
|
if (m_pItem != VMA_NULL)
|
|
{
|
|
m_pItem = m_pItem->pPrev;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Back();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
typename VmaList<T, AllocatorT>::const_reverse_iterator& VmaList<T, AllocatorT>::const_reverse_iterator::operator--()
|
|
{
|
|
if (m_pItem != VMA_NULL)
|
|
{
|
|
m_pItem = m_pItem->pNext;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Back();
|
|
}
|
|
return *this;
|
|
}
|
|
#endif // _VMA_LIST_FUNCTIONS
|
|
#endif // _VMA_LIST
|
|
|
|
#ifndef _VMA_INTRUSIVE_LINKED_LIST
|
|
/*
|
|
Expected interface of ItemTypeTraits:
|
|
struct MyItemTypeTraits
|
|
{
|
|
typedef MyItem ItemType;
|
|
static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; }
|
|
static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; }
|
|
static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; }
|
|
static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; }
|
|
};
|
|
*/
|
|
template<typename ItemTypeTraits>
|
|
class VmaIntrusiveLinkedList
|
|
{
|
|
public:
|
|
typedef typename ItemTypeTraits::ItemType ItemType;
|
|
static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); }
|
|
static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); }
|
|
|
|
// Movable, not copyable.
|
|
VmaIntrusiveLinkedList() = default;
|
|
VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src);
|
|
VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete;
|
|
VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src);
|
|
VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete;
|
|
~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); }
|
|
|
|
size_t GetCount() const { return m_Count; }
|
|
bool IsEmpty() const { return m_Count == 0; }
|
|
ItemType* Front() { return m_Front; }
|
|
ItemType* Back() { return m_Back; }
|
|
const ItemType* Front() const { return m_Front; }
|
|
const ItemType* Back() const { return m_Back; }
|
|
|
|
void PushBack(ItemType* item);
|
|
void PushFront(ItemType* item);
|
|
ItemType* PopBack();
|
|
ItemType* PopFront();
|
|
|
|
// MyItem can be null - it means PushBack.
|
|
void InsertBefore(ItemType* existingItem, ItemType* newItem);
|
|
// MyItem can be null - it means PushFront.
|
|
void InsertAfter(ItemType* existingItem, ItemType* newItem);
|
|
void Remove(ItemType* item);
|
|
void RemoveAll();
|
|
|
|
private:
|
|
ItemType* m_Front = VMA_NULL;
|
|
ItemType* m_Back = VMA_NULL;
|
|
size_t m_Count = 0;
|
|
};
|
|
|
|
#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
|
|
template<typename ItemTypeTraits>
|
|
VmaIntrusiveLinkedList<ItemTypeTraits>::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src)
|
|
: m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count)
|
|
{
|
|
src.m_Front = src.m_Back = VMA_NULL;
|
|
src.m_Count = 0;
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
VmaIntrusiveLinkedList<ItemTypeTraits>& VmaIntrusiveLinkedList<ItemTypeTraits>::operator=(VmaIntrusiveLinkedList&& src)
|
|
{
|
|
if (&src != this)
|
|
{
|
|
VMA_HEAVY_ASSERT(IsEmpty());
|
|
m_Front = src.m_Front;
|
|
m_Back = src.m_Back;
|
|
m_Count = src.m_Count;
|
|
src.m_Front = src.m_Back = VMA_NULL;
|
|
src.m_Count = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
void VmaIntrusiveLinkedList<ItemTypeTraits>::PushBack(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
|
|
if (IsEmpty())
|
|
{
|
|
m_Front = item;
|
|
m_Back = item;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
ItemTypeTraits::AccessPrev(item) = m_Back;
|
|
ItemTypeTraits::AccessNext(m_Back) = item;
|
|
m_Back = item;
|
|
++m_Count;
|
|
}
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
void VmaIntrusiveLinkedList<ItemTypeTraits>::PushFront(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
|
|
if (IsEmpty())
|
|
{
|
|
m_Front = item;
|
|
m_Back = item;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
ItemTypeTraits::AccessNext(item) = m_Front;
|
|
ItemTypeTraits::AccessPrev(m_Front) = item;
|
|
m_Front = item;
|
|
++m_Count;
|
|
}
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopBack()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const backItem = m_Back;
|
|
ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem);
|
|
if (prevItem != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessNext(prevItem) = VMA_NULL;
|
|
}
|
|
m_Back = prevItem;
|
|
--m_Count;
|
|
ItemTypeTraits::AccessPrev(backItem) = VMA_NULL;
|
|
ItemTypeTraits::AccessNext(backItem) = VMA_NULL;
|
|
return backItem;
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopFront()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const frontItem = m_Front;
|
|
ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem);
|
|
if (nextItem != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL;
|
|
}
|
|
m_Front = nextItem;
|
|
--m_Count;
|
|
ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL;
|
|
ItemTypeTraits::AccessNext(frontItem) = VMA_NULL;
|
|
return frontItem;
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertBefore(ItemType* existingItem, ItemType* newItem)
|
|
{
|
|
VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
|
|
if (existingItem != VMA_NULL)
|
|
{
|
|
ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem);
|
|
ItemTypeTraits::AccessPrev(newItem) = prevItem;
|
|
ItemTypeTraits::AccessNext(newItem) = existingItem;
|
|
ItemTypeTraits::AccessPrev(existingItem) = newItem;
|
|
if (prevItem != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessNext(prevItem) = newItem;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Front == existingItem);
|
|
m_Front = newItem;
|
|
}
|
|
++m_Count;
|
|
}
|
|
else
|
|
PushBack(newItem);
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertAfter(ItemType* existingItem, ItemType* newItem)
|
|
{
|
|
VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
|
|
if (existingItem != VMA_NULL)
|
|
{
|
|
ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem);
|
|
ItemTypeTraits::AccessNext(newItem) = nextItem;
|
|
ItemTypeTraits::AccessPrev(newItem) = existingItem;
|
|
ItemTypeTraits::AccessNext(existingItem) = newItem;
|
|
if (nextItem != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessPrev(nextItem) = newItem;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Back == existingItem);
|
|
m_Back = newItem;
|
|
}
|
|
++m_Count;
|
|
}
|
|
else
|
|
return PushFront(newItem);
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
void VmaIntrusiveLinkedList<ItemTypeTraits>::Remove(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0);
|
|
if (ItemTypeTraits::GetPrev(item) != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item);
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Front == item);
|
|
m_Front = ItemTypeTraits::GetNext(item);
|
|
}
|
|
|
|
if (ItemTypeTraits::GetNext(item) != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item);
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Back == item);
|
|
m_Back = ItemTypeTraits::GetPrev(item);
|
|
}
|
|
ItemTypeTraits::AccessPrev(item) = VMA_NULL;
|
|
ItemTypeTraits::AccessNext(item) = VMA_NULL;
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename ItemTypeTraits>
|
|
void VmaIntrusiveLinkedList<ItemTypeTraits>::RemoveAll()
|
|
{
|
|
if (!IsEmpty())
|
|
{
|
|
ItemType* item = m_Back;
|
|
while (item != VMA_NULL)
|
|
{
|
|
ItemType* const prevItem = ItemTypeTraits::AccessPrev(item);
|
|
ItemTypeTraits::AccessPrev(item) = VMA_NULL;
|
|
ItemTypeTraits::AccessNext(item) = VMA_NULL;
|
|
item = prevItem;
|
|
}
|
|
m_Front = VMA_NULL;
|
|
m_Back = VMA_NULL;
|
|
m_Count = 0;
|
|
}
|
|
}
|
|
#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
|
|
#endif // _VMA_INTRUSIVE_LINKED_LIST
|
|
|
|
#if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED
|
|
class VmaStringBuilder
|
|
{
|
|
public:
|
|
VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator<char>(allocationCallbacks)) {}
|
|
~VmaStringBuilder() = default;
|
|
|
|
size_t GetLength() const { return m_Data.size(); }
|
|
const char* GetData() const { return m_Data.data(); }
|
|
void AddNewLine() { Add('\n'); }
|
|
void Add(char ch) { m_Data.push_back(ch); }
|
|
|
|
void Add(const char* pStr);
|
|
void AddNumber(uint32_t num);
|
|
void AddNumber(uint64_t num);
|
|
void AddPointer(const void* ptr);
|
|
|
|
private:
|
|
VmaVector<char, VmaStlAllocator<char>> m_Data;
|
|
};
|
|
|
|
#ifndef _VMA_STRING_BUILDER_FUNCTIONS
|
|
void VmaStringBuilder::Add(const char* pStr)
|
|
{
|
|
const size_t strLen = strlen(pStr);
|
|
if (strLen > 0)
|
|
{
|
|
const size_t oldCount = m_Data.size();
|
|
m_Data.resize(oldCount + strLen);
|
|
memcpy(m_Data.data() + oldCount, pStr, strLen);
|
|
}
|
|
}
|
|
|
|
void VmaStringBuilder::AddNumber(uint32_t num)
|
|
{
|
|
char buf[11];
|
|
buf[10] = '\0';
|
|
char* p = &buf[10];
|
|
do
|
|
{
|
|
*--p = '0' + (char)(num % 10);
|
|
num /= 10;
|
|
} while (num);
|
|
Add(p);
|
|
}
|
|
|
|
void VmaStringBuilder::AddNumber(uint64_t num)
|
|
{
|
|
char buf[21];
|
|
buf[20] = '\0';
|
|
char* p = &buf[20];
|
|
do
|
|
{
|
|
*--p = '0' + (char)(num % 10);
|
|
num /= 10;
|
|
} while (num);
|
|
Add(p);
|
|
}
|
|
|
|
void VmaStringBuilder::AddPointer(const void* ptr)
|
|
{
|
|
char buf[21];
|
|
VmaPtrToStr(buf, sizeof(buf), ptr);
|
|
Add(buf);
|
|
}
|
|
#endif //_VMA_STRING_BUILDER_FUNCTIONS
|
|
#endif // _VMA_STRING_BUILDER
|
|
|
|
#if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED
|
|
/*
|
|
Allows to conveniently build a correct JSON document to be written to the
|
|
VmaStringBuilder passed to the constructor.
|
|
*/
|
|
class VmaJsonWriter
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaJsonWriter)
|
|
public:
|
|
// sb - string builder to write the document to. Must remain alive for the whole lifetime of this object.
|
|
VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
|
|
~VmaJsonWriter();
|
|
|
|
// Begins object by writing "{".
|
|
// Inside an object, you must call pairs of WriteString and a value, e.g.:
|
|
// j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject();
|
|
// Will write: { "A": 1, "B": 2 }
|
|
void BeginObject(bool singleLine = false);
|
|
// Ends object by writing "}".
|
|
void EndObject();
|
|
|
|
// Begins array by writing "[".
|
|
// Inside an array, you can write a sequence of any values.
|
|
void BeginArray(bool singleLine = false);
|
|
// Ends array by writing "[".
|
|
void EndArray();
|
|
|
|
// Writes a string value inside "".
|
|
// pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped.
|
|
void WriteString(const char* pStr);
|
|
|
|
// Begins writing a string value.
|
|
// Call BeginString, ContinueString, ContinueString, ..., EndString instead of
|
|
// WriteString to conveniently build the string content incrementally, made of
|
|
// parts including numbers.
|
|
void BeginString(const char* pStr = VMA_NULL);
|
|
// Posts next part of an open string.
|
|
void ContinueString(const char* pStr);
|
|
// Posts next part of an open string. The number is converted to decimal characters.
|
|
void ContinueString(uint32_t n);
|
|
void ContinueString(uint64_t n);
|
|
// Posts next part of an open string. Pointer value is converted to characters
|
|
// using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00
|
|
void ContinueString_Pointer(const void* ptr);
|
|
// Ends writing a string value by writing '"'.
|
|
void EndString(const char* pStr = VMA_NULL);
|
|
|
|
// Writes a number value.
|
|
void WriteNumber(uint32_t n);
|
|
void WriteNumber(uint64_t n);
|
|
// Writes a boolean value - false or true.
|
|
void WriteBool(bool b);
|
|
// Writes a null value.
|
|
void WriteNull();
|
|
|
|
private:
|
|
enum COLLECTION_TYPE
|
|
{
|
|
COLLECTION_TYPE_OBJECT,
|
|
COLLECTION_TYPE_ARRAY,
|
|
};
|
|
struct StackItem
|
|
{
|
|
COLLECTION_TYPE type;
|
|
uint32_t valueCount;
|
|
bool singleLineMode;
|
|
};
|
|
|
|
static const char* const INDENT;
|
|
|
|
VmaStringBuilder& m_SB;
|
|
VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
|
|
bool m_InsideString;
|
|
|
|
void BeginValue(bool isString);
|
|
void WriteIndent(bool oneLess = false);
|
|
};
|
|
const char* const VmaJsonWriter::INDENT = " ";
|
|
|
|
#ifndef _VMA_JSON_WRITER_FUNCTIONS
|
|
VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb)
|
|
: m_SB(sb),
|
|
m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
|
|
m_InsideString(false) {}
|
|
|
|
VmaJsonWriter::~VmaJsonWriter()
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
VMA_ASSERT(m_Stack.empty());
|
|
}
|
|
|
|
void VmaJsonWriter::BeginObject(bool singleLine)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
BeginValue(false);
|
|
m_SB.Add('{');
|
|
|
|
StackItem item;
|
|
item.type = COLLECTION_TYPE_OBJECT;
|
|
item.valueCount = 0;
|
|
item.singleLineMode = singleLine;
|
|
m_Stack.push_back(item);
|
|
}
|
|
|
|
void VmaJsonWriter::EndObject()
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
WriteIndent(true);
|
|
m_SB.Add('}');
|
|
|
|
VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
|
|
m_Stack.pop_back();
|
|
}
|
|
|
|
void VmaJsonWriter::BeginArray(bool singleLine)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
BeginValue(false);
|
|
m_SB.Add('[');
|
|
|
|
StackItem item;
|
|
item.type = COLLECTION_TYPE_ARRAY;
|
|
item.valueCount = 0;
|
|
item.singleLineMode = singleLine;
|
|
m_Stack.push_back(item);
|
|
}
|
|
|
|
void VmaJsonWriter::EndArray()
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
WriteIndent(true);
|
|
m_SB.Add(']');
|
|
|
|
VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
|
|
m_Stack.pop_back();
|
|
}
|
|
|
|
void VmaJsonWriter::WriteString(const char* pStr)
|
|
{
|
|
BeginString(pStr);
|
|
EndString();
|
|
}
|
|
|
|
void VmaJsonWriter::BeginString(const char* pStr)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
BeginValue(true);
|
|
m_SB.Add('"');
|
|
m_InsideString = true;
|
|
if (pStr != VMA_NULL && pStr[0] != '\0')
|
|
{
|
|
ContinueString(pStr);
|
|
}
|
|
}
|
|
|
|
void VmaJsonWriter::ContinueString(const char* pStr)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
|
|
const size_t strLen = strlen(pStr);
|
|
for (size_t i = 0; i < strLen; ++i)
|
|
{
|
|
char ch = pStr[i];
|
|
if (ch == '\\')
|
|
{
|
|
m_SB.Add("\\\\");
|
|
}
|
|
else if (ch == '"')
|
|
{
|
|
m_SB.Add("\\\"");
|
|
}
|
|
else if ((uint8_t)ch >= 32)
|
|
{
|
|
m_SB.Add(ch);
|
|
}
|
|
else switch (ch)
|
|
{
|
|
case '\b':
|
|
m_SB.Add("\\b");
|
|
break;
|
|
case '\f':
|
|
m_SB.Add("\\f");
|
|
break;
|
|
case '\n':
|
|
m_SB.Add("\\n");
|
|
break;
|
|
case '\r':
|
|
m_SB.Add("\\r");
|
|
break;
|
|
case '\t':
|
|
m_SB.Add("\\t");
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0 && "Character not currently supported.");
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaJsonWriter::ContinueString(uint32_t n)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
m_SB.AddNumber(n);
|
|
}
|
|
|
|
void VmaJsonWriter::ContinueString(uint64_t n)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
m_SB.AddNumber(n);
|
|
}
|
|
|
|
void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
m_SB.AddPointer(ptr);
|
|
}
|
|
|
|
void VmaJsonWriter::EndString(const char* pStr)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
if (pStr != VMA_NULL && pStr[0] != '\0')
|
|
{
|
|
ContinueString(pStr);
|
|
}
|
|
m_SB.Add('"');
|
|
m_InsideString = false;
|
|
}
|
|
|
|
void VmaJsonWriter::WriteNumber(uint32_t n)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
BeginValue(false);
|
|
m_SB.AddNumber(n);
|
|
}
|
|
|
|
void VmaJsonWriter::WriteNumber(uint64_t n)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
BeginValue(false);
|
|
m_SB.AddNumber(n);
|
|
}
|
|
|
|
void VmaJsonWriter::WriteBool(bool b)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
BeginValue(false);
|
|
m_SB.Add(b ? "true" : "false");
|
|
}
|
|
|
|
void VmaJsonWriter::WriteNull()
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
BeginValue(false);
|
|
m_SB.Add("null");
|
|
}
|
|
|
|
void VmaJsonWriter::BeginValue(bool isString)
|
|
{
|
|
if (!m_Stack.empty())
|
|
{
|
|
StackItem& currItem = m_Stack.back();
|
|
if (currItem.type == COLLECTION_TYPE_OBJECT &&
|
|
currItem.valueCount % 2 == 0)
|
|
{
|
|
VMA_ASSERT(isString);
|
|
}
|
|
|
|
if (currItem.type == COLLECTION_TYPE_OBJECT &&
|
|
currItem.valueCount % 2 != 0)
|
|
{
|
|
m_SB.Add(": ");
|
|
}
|
|
else if (currItem.valueCount > 0)
|
|
{
|
|
m_SB.Add(", ");
|
|
WriteIndent();
|
|
}
|
|
else
|
|
{
|
|
WriteIndent();
|
|
}
|
|
++currItem.valueCount;
|
|
}
|
|
}
|
|
|
|
void VmaJsonWriter::WriteIndent(bool oneLess)
|
|
{
|
|
if (!m_Stack.empty() && !m_Stack.back().singleLineMode)
|
|
{
|
|
m_SB.AddNewLine();
|
|
|
|
size_t count = m_Stack.size();
|
|
if (count > 0 && oneLess)
|
|
{
|
|
--count;
|
|
}
|
|
for (size_t i = 0; i < count; ++i)
|
|
{
|
|
m_SB.Add(INDENT);
|
|
}
|
|
}
|
|
}
|
|
#endif // _VMA_JSON_WRITER_FUNCTIONS
|
|
|
|
static void VmaPrintDetailedStatistics(VmaJsonWriter& json, const VmaDetailedStatistics& stat)
|
|
{
|
|
json.BeginObject();
|
|
|
|
json.WriteString("BlockCount");
|
|
json.WriteNumber(stat.statistics.blockCount);
|
|
json.WriteString("BlockBytes");
|
|
json.WriteNumber(stat.statistics.blockBytes);
|
|
json.WriteString("AllocationCount");
|
|
json.WriteNumber(stat.statistics.allocationCount);
|
|
json.WriteString("AllocationBytes");
|
|
json.WriteNumber(stat.statistics.allocationBytes);
|
|
json.WriteString("UnusedRangeCount");
|
|
json.WriteNumber(stat.unusedRangeCount);
|
|
|
|
if (stat.statistics.allocationCount > 1)
|
|
{
|
|
json.WriteString("AllocationSizeMin");
|
|
json.WriteNumber(stat.allocationSizeMin);
|
|
json.WriteString("AllocationSizeMax");
|
|
json.WriteNumber(stat.allocationSizeMax);
|
|
}
|
|
if (stat.unusedRangeCount > 1)
|
|
{
|
|
json.WriteString("UnusedRangeSizeMin");
|
|
json.WriteNumber(stat.unusedRangeSizeMin);
|
|
json.WriteString("UnusedRangeSizeMax");
|
|
json.WriteNumber(stat.unusedRangeSizeMax);
|
|
}
|
|
json.EndObject();
|
|
}
|
|
#endif // _VMA_JSON_WRITER
|
|
|
|
#ifndef _VMA_MAPPING_HYSTERESIS
|
|
|
|
class VmaMappingHysteresis
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaMappingHysteresis)
|
|
public:
|
|
VmaMappingHysteresis() = default;
|
|
|
|
uint32_t GetExtraMapping() const { return m_ExtraMapping; }
|
|
|
|
// Call when Map was called.
|
|
// Returns true if switched to extra +1 mapping reference count.
|
|
bool PostMap()
|
|
{
|
|
#if VMA_MAPPING_HYSTERESIS_ENABLED
|
|
if(m_ExtraMapping == 0)
|
|
{
|
|
++m_MajorCounter;
|
|
if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING)
|
|
{
|
|
m_ExtraMapping = 1;
|
|
m_MajorCounter = 0;
|
|
m_MinorCounter = 0;
|
|
return true;
|
|
}
|
|
}
|
|
else // m_ExtraMapping == 1
|
|
PostMinorCounter();
|
|
#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
|
|
return false;
|
|
}
|
|
|
|
// Call when Unmap was called.
|
|
void PostUnmap()
|
|
{
|
|
#if VMA_MAPPING_HYSTERESIS_ENABLED
|
|
if(m_ExtraMapping == 0)
|
|
++m_MajorCounter;
|
|
else // m_ExtraMapping == 1
|
|
PostMinorCounter();
|
|
#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
|
|
}
|
|
|
|
// Call when allocation was made from the memory block.
|
|
void PostAlloc()
|
|
{
|
|
#if VMA_MAPPING_HYSTERESIS_ENABLED
|
|
if(m_ExtraMapping == 1)
|
|
++m_MajorCounter;
|
|
else // m_ExtraMapping == 0
|
|
PostMinorCounter();
|
|
#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
|
|
}
|
|
|
|
// Call when allocation was freed from the memory block.
|
|
// Returns true if switched to extra -1 mapping reference count.
|
|
bool PostFree()
|
|
{
|
|
#if VMA_MAPPING_HYSTERESIS_ENABLED
|
|
if(m_ExtraMapping == 1)
|
|
{
|
|
++m_MajorCounter;
|
|
if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING &&
|
|
m_MajorCounter > m_MinorCounter + 1)
|
|
{
|
|
m_ExtraMapping = 0;
|
|
m_MajorCounter = 0;
|
|
m_MinorCounter = 0;
|
|
return true;
|
|
}
|
|
}
|
|
else // m_ExtraMapping == 0
|
|
PostMinorCounter();
|
|
#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7;
|
|
|
|
uint32_t m_MinorCounter = 0;
|
|
uint32_t m_MajorCounter = 0;
|
|
uint32_t m_ExtraMapping = 0; // 0 or 1.
|
|
|
|
void PostMinorCounter()
|
|
{
|
|
if(m_MinorCounter < m_MajorCounter)
|
|
{
|
|
++m_MinorCounter;
|
|
}
|
|
else if(m_MajorCounter > 0)
|
|
{
|
|
--m_MajorCounter;
|
|
--m_MinorCounter;
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif // _VMA_MAPPING_HYSTERESIS
|
|
|
|
#ifndef _VMA_DEVICE_MEMORY_BLOCK
|
|
/*
|
|
Represents a single block of device memory (`VkDeviceMemory`) with all the
|
|
data about its regions (aka suballocations, #VmaAllocation), assigned and free.
|
|
|
|
Thread-safety:
|
|
- Access to m_pMetadata must be externally synchronized.
|
|
- Map, Unmap, Bind* are synchronized internally.
|
|
*/
|
|
class VmaDeviceMemoryBlock
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaDeviceMemoryBlock)
|
|
public:
|
|
VmaBlockMetadata* m_pMetadata;
|
|
|
|
VmaDeviceMemoryBlock(VmaAllocator hAllocator);
|
|
~VmaDeviceMemoryBlock();
|
|
|
|
// Always call after construction.
|
|
void Init(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hParentPool,
|
|
uint32_t newMemoryTypeIndex,
|
|
VkDeviceMemory newMemory,
|
|
VkDeviceSize newSize,
|
|
uint32_t id,
|
|
uint32_t algorithm,
|
|
VkDeviceSize bufferImageGranularity);
|
|
// Always call before destruction.
|
|
void Destroy(VmaAllocator allocator);
|
|
|
|
VmaPool GetParentPool() const { return m_hParentPool; }
|
|
VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
|
|
uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
|
|
uint32_t GetId() const { return m_Id; }
|
|
void* GetMappedData() const { return m_pMappedData; }
|
|
uint32_t GetMapRefCount() const { return m_MapCount; }
|
|
|
|
// Call when allocation/free was made from m_pMetadata.
|
|
// Used for m_MappingHysteresis.
|
|
void PostAlloc(VmaAllocator hAllocator);
|
|
void PostFree(VmaAllocator hAllocator);
|
|
|
|
// Validates all data structures inside this object. If not valid, returns false.
|
|
bool Validate() const;
|
|
VkResult CheckCorruption(VmaAllocator hAllocator);
|
|
|
|
// ppData can be null.
|
|
VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
|
|
void Unmap(VmaAllocator hAllocator, uint32_t count);
|
|
|
|
VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
|
|
VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
|
|
|
|
VkResult BindBufferMemory(
|
|
const VmaAllocator hAllocator,
|
|
const VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer hBuffer,
|
|
const void* pNext);
|
|
VkResult BindImageMemory(
|
|
const VmaAllocator hAllocator,
|
|
const VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage hImage,
|
|
const void* pNext);
|
|
|
|
private:
|
|
VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
|
|
uint32_t m_MemoryTypeIndex;
|
|
uint32_t m_Id;
|
|
VkDeviceMemory m_hMemory;
|
|
|
|
/*
|
|
Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
|
|
Also protects m_MapCount, m_pMappedData.
|
|
Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
|
|
*/
|
|
VMA_MUTEX m_MapAndBindMutex;
|
|
VmaMappingHysteresis m_MappingHysteresis;
|
|
uint32_t m_MapCount;
|
|
void* m_pMappedData;
|
|
};
|
|
#endif // _VMA_DEVICE_MEMORY_BLOCK
|
|
|
|
#ifndef _VMA_ALLOCATION_T
|
|
struct VmaAllocation_T
|
|
{
|
|
friend struct VmaDedicatedAllocationListItemTraits;
|
|
|
|
enum FLAGS
|
|
{
|
|
FLAG_PERSISTENT_MAP = 0x01,
|
|
FLAG_MAPPING_ALLOWED = 0x02,
|
|
};
|
|
|
|
public:
|
|
enum ALLOCATION_TYPE
|
|
{
|
|
ALLOCATION_TYPE_NONE,
|
|
ALLOCATION_TYPE_BLOCK,
|
|
ALLOCATION_TYPE_DEDICATED,
|
|
};
|
|
|
|
// This struct is allocated using VmaPoolAllocator.
|
|
VmaAllocation_T(bool mappingAllowed);
|
|
~VmaAllocation_T();
|
|
|
|
void InitBlockAllocation(
|
|
VmaDeviceMemoryBlock* block,
|
|
VmaAllocHandle allocHandle,
|
|
VkDeviceSize alignment,
|
|
VkDeviceSize size,
|
|
uint32_t memoryTypeIndex,
|
|
VmaSuballocationType suballocationType,
|
|
bool mapped);
|
|
// pMappedData not null means allocation is created with MAPPED flag.
|
|
void InitDedicatedAllocation(
|
|
VmaPool hParentPool,
|
|
uint32_t memoryTypeIndex,
|
|
VkDeviceMemory hMemory,
|
|
VmaSuballocationType suballocationType,
|
|
void* pMappedData,
|
|
VkDeviceSize size);
|
|
|
|
ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
|
|
VkDeviceSize GetAlignment() const { return m_Alignment; }
|
|
VkDeviceSize GetSize() const { return m_Size; }
|
|
void* GetUserData() const { return m_pUserData; }
|
|
const char* GetName() const { return m_pName; }
|
|
VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
|
|
|
|
VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; }
|
|
uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
|
|
bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; }
|
|
bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; }
|
|
|
|
void SetUserData(VmaAllocator hAllocator, void* pUserData) { m_pUserData = pUserData; }
|
|
void SetName(VmaAllocator hAllocator, const char* pName);
|
|
void FreeName(VmaAllocator hAllocator);
|
|
uint8_t SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation);
|
|
VmaAllocHandle GetAllocHandle() const;
|
|
VkDeviceSize GetOffset() const;
|
|
VmaPool GetParentPool() const;
|
|
VkDeviceMemory GetMemory() const;
|
|
void* GetMappedData() const;
|
|
|
|
void BlockAllocMap();
|
|
void BlockAllocUnmap();
|
|
VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
|
|
void DedicatedAllocUnmap(VmaAllocator hAllocator);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }
|
|
|
|
void InitBufferImageUsage(uint32_t bufferImageUsage);
|
|
void PrintParameters(class VmaJsonWriter& json) const;
|
|
#endif
|
|
|
|
private:
|
|
// Allocation out of VmaDeviceMemoryBlock.
|
|
struct BlockAllocation
|
|
{
|
|
VmaDeviceMemoryBlock* m_Block;
|
|
VmaAllocHandle m_AllocHandle;
|
|
};
|
|
// Allocation for an object that has its own private VkDeviceMemory.
|
|
struct DedicatedAllocation
|
|
{
|
|
VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
|
|
VkDeviceMemory m_hMemory;
|
|
void* m_pMappedData; // Not null means memory is mapped.
|
|
VmaAllocation_T* m_Prev;
|
|
VmaAllocation_T* m_Next;
|
|
};
|
|
union
|
|
{
|
|
// Allocation out of VmaDeviceMemoryBlock.
|
|
BlockAllocation m_BlockAllocation;
|
|
// Allocation for an object that has its own private VkDeviceMemory.
|
|
DedicatedAllocation m_DedicatedAllocation;
|
|
};
|
|
|
|
VkDeviceSize m_Alignment;
|
|
VkDeviceSize m_Size;
|
|
void* m_pUserData;
|
|
char* m_pName;
|
|
uint32_t m_MemoryTypeIndex;
|
|
uint8_t m_Type; // ALLOCATION_TYPE
|
|
uint8_t m_SuballocationType; // VmaSuballocationType
|
|
// Reference counter for vmaMapMemory()/vmaUnmapMemory().
|
|
uint8_t m_MapCount;
|
|
uint8_t m_Flags; // enum FLAGS
|
|
#if VMA_STATS_STRING_ENABLED
|
|
uint32_t m_BufferImageUsage; // 0 if unknown.
|
|
#endif
|
|
};
|
|
#endif // _VMA_ALLOCATION_T
|
|
|
|
#ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
|
|
struct VmaDedicatedAllocationListItemTraits
|
|
{
|
|
typedef VmaAllocation_T ItemType;
|
|
|
|
static ItemType* GetPrev(const ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
return item->m_DedicatedAllocation.m_Prev;
|
|
}
|
|
static ItemType* GetNext(const ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
return item->m_DedicatedAllocation.m_Next;
|
|
}
|
|
static ItemType*& AccessPrev(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
return item->m_DedicatedAllocation.m_Prev;
|
|
}
|
|
static ItemType*& AccessNext(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
return item->m_DedicatedAllocation.m_Next;
|
|
}
|
|
};
|
|
#endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
|
|
|
|
#ifndef _VMA_DEDICATED_ALLOCATION_LIST
|
|
/*
|
|
Stores linked list of VmaAllocation_T objects.
|
|
Thread-safe, synchronized internally.
|
|
*/
|
|
class VmaDedicatedAllocationList
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaDedicatedAllocationList)
|
|
public:
|
|
VmaDedicatedAllocationList() {}
|
|
~VmaDedicatedAllocationList();
|
|
|
|
void Init(bool useMutex) { m_UseMutex = useMutex; }
|
|
bool Validate();
|
|
|
|
void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
|
|
void AddStatistics(VmaStatistics& inoutStats);
|
|
#if VMA_STATS_STRING_ENABLED
|
|
// Writes JSON array with the list of allocations.
|
|
void BuildStatsString(VmaJsonWriter& json);
|
|
#endif
|
|
|
|
bool IsEmpty();
|
|
void Register(VmaAllocation alloc);
|
|
void Unregister(VmaAllocation alloc);
|
|
|
|
private:
|
|
typedef VmaIntrusiveLinkedList<VmaDedicatedAllocationListItemTraits> DedicatedAllocationLinkedList;
|
|
|
|
bool m_UseMutex = true;
|
|
VMA_RW_MUTEX m_Mutex;
|
|
DedicatedAllocationLinkedList m_AllocationList;
|
|
};
|
|
|
|
#ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
|
|
|
|
VmaDedicatedAllocationList::~VmaDedicatedAllocationList()
|
|
{
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
|
|
if (!m_AllocationList.IsEmpty())
|
|
{
|
|
VMA_ASSERT_LEAK(false && "Unfreed dedicated allocations found!");
|
|
}
|
|
}
|
|
|
|
bool VmaDedicatedAllocationList::Validate()
|
|
{
|
|
const size_t declaredCount = m_AllocationList.GetCount();
|
|
size_t actualCount = 0;
|
|
VmaMutexLockRead lock(m_Mutex, m_UseMutex);
|
|
for (VmaAllocation alloc = m_AllocationList.Front();
|
|
alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
|
|
{
|
|
++actualCount;
|
|
}
|
|
VMA_VALIDATE(actualCount == declaredCount);
|
|
|
|
return true;
|
|
}
|
|
|
|
void VmaDedicatedAllocationList::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
|
|
{
|
|
for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item))
|
|
{
|
|
const VkDeviceSize size = item->GetSize();
|
|
inoutStats.statistics.blockCount++;
|
|
inoutStats.statistics.blockBytes += size;
|
|
VmaAddDetailedStatisticsAllocation(inoutStats, item->GetSize());
|
|
}
|
|
}
|
|
|
|
void VmaDedicatedAllocationList::AddStatistics(VmaStatistics& inoutStats)
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_UseMutex);
|
|
|
|
const uint32_t allocCount = (uint32_t)m_AllocationList.GetCount();
|
|
inoutStats.blockCount += allocCount;
|
|
inoutStats.allocationCount += allocCount;
|
|
|
|
for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item))
|
|
{
|
|
const VkDeviceSize size = item->GetSize();
|
|
inoutStats.blockBytes += size;
|
|
inoutStats.allocationBytes += size;
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json)
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_UseMutex);
|
|
json.BeginArray();
|
|
for (VmaAllocation alloc = m_AllocationList.Front();
|
|
alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
|
|
{
|
|
json.BeginObject(true);
|
|
alloc->PrintParameters(json);
|
|
json.EndObject();
|
|
}
|
|
json.EndArray();
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
|
|
bool VmaDedicatedAllocationList::IsEmpty()
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_UseMutex);
|
|
return m_AllocationList.IsEmpty();
|
|
}
|
|
|
|
void VmaDedicatedAllocationList::Register(VmaAllocation alloc)
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
|
|
m_AllocationList.PushBack(alloc);
|
|
}
|
|
|
|
void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc)
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
|
|
m_AllocationList.Remove(alloc);
|
|
}
|
|
#endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
|
|
#endif // _VMA_DEDICATED_ALLOCATION_LIST
|
|
|
|
#ifndef _VMA_SUBALLOCATION
|
|
/*
|
|
Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
|
|
allocated memory block or free.
|
|
*/
|
|
struct VmaSuballocation
|
|
{
|
|
VkDeviceSize offset;
|
|
VkDeviceSize size;
|
|
void* userData;
|
|
VmaSuballocationType type;
|
|
};
|
|
|
|
// Comparator for offsets.
|
|
struct VmaSuballocationOffsetLess
|
|
{
|
|
bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
|
|
{
|
|
return lhs.offset < rhs.offset;
|
|
}
|
|
};
|
|
|
|
struct VmaSuballocationOffsetGreater
|
|
{
|
|
bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
|
|
{
|
|
return lhs.offset > rhs.offset;
|
|
}
|
|
};
|
|
|
|
struct VmaSuballocationItemSizeLess
|
|
{
|
|
bool operator()(const VmaSuballocationList::iterator lhs,
|
|
const VmaSuballocationList::iterator rhs) const
|
|
{
|
|
return lhs->size < rhs->size;
|
|
}
|
|
|
|
bool operator()(const VmaSuballocationList::iterator lhs,
|
|
VkDeviceSize rhsSize) const
|
|
{
|
|
return lhs->size < rhsSize;
|
|
}
|
|
};
|
|
#endif // _VMA_SUBALLOCATION
|
|
|
|
#ifndef _VMA_ALLOCATION_REQUEST
|
|
/*
|
|
Parameters of planned allocation inside a VmaDeviceMemoryBlock.
|
|
item points to a FREE suballocation.
|
|
*/
|
|
struct VmaAllocationRequest
|
|
{
|
|
VmaAllocHandle allocHandle;
|
|
VkDeviceSize size;
|
|
VmaSuballocationList::iterator item;
|
|
void* customData;
|
|
uint64_t algorithmData;
|
|
VmaAllocationRequestType type;
|
|
};
|
|
#endif // _VMA_ALLOCATION_REQUEST
|
|
|
|
#ifndef _VMA_BLOCK_METADATA
|
|
/*
|
|
Data structure used for bookkeeping of allocations and unused ranges of memory
|
|
in a single VkDeviceMemory block.
|
|
*/
|
|
class VmaBlockMetadata
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata)
|
|
public:
|
|
// pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object.
|
|
VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
|
|
VkDeviceSize bufferImageGranularity, bool isVirtual);
|
|
virtual ~VmaBlockMetadata() = default;
|
|
|
|
virtual void Init(VkDeviceSize size) { m_Size = size; }
|
|
bool IsVirtual() const { return m_IsVirtual; }
|
|
VkDeviceSize GetSize() const { return m_Size; }
|
|
|
|
// Validates all data structures inside this object. If not valid, returns false.
|
|
virtual bool Validate() const = 0;
|
|
virtual size_t GetAllocationCount() const = 0;
|
|
virtual size_t GetFreeRegionsCount() const = 0;
|
|
virtual VkDeviceSize GetSumFreeSize() const = 0;
|
|
// Returns true if this block is empty - contains only single free suballocation.
|
|
virtual bool IsEmpty() const = 0;
|
|
virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0;
|
|
virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0;
|
|
virtual void* GetAllocationUserData(VmaAllocHandle allocHandle) const = 0;
|
|
|
|
virtual VmaAllocHandle GetAllocationListBegin() const = 0;
|
|
virtual VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const = 0;
|
|
virtual VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const = 0;
|
|
|
|
// Shouldn't modify blockCount.
|
|
virtual void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const = 0;
|
|
virtual void AddStatistics(VmaStatistics& inoutStats) const = 0;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
|
|
#endif
|
|
|
|
// Tries to find a place for suballocation with given parameters inside this block.
|
|
// If succeeded, fills pAllocationRequest and returns true.
|
|
// If failed, returns false.
|
|
virtual bool CreateAllocationRequest(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
// Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest) = 0;
|
|
|
|
virtual VkResult CheckCorruption(const void* pBlockData) = 0;
|
|
|
|
// Makes actual allocation based on request. Request must already be checked and valid.
|
|
virtual void Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData) = 0;
|
|
|
|
// Frees suballocation assigned to given memory region.
|
|
virtual void Free(VmaAllocHandle allocHandle) = 0;
|
|
|
|
// Frees all allocations.
|
|
// Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations!
|
|
virtual void Clear() = 0;
|
|
|
|
virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0;
|
|
virtual void DebugLogAllAllocations() const = 0;
|
|
|
|
protected:
|
|
const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
|
|
VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
|
|
VkDeviceSize GetDebugMargin() const { return VkDeviceSize(IsVirtual() ? 0 : VMA_DEBUG_MARGIN); }
|
|
|
|
void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const;
|
|
#if VMA_STATS_STRING_ENABLED
|
|
// mapRefCount == UINT32_MAX means unspecified.
|
|
void PrintDetailedMap_Begin(class VmaJsonWriter& json,
|
|
VkDeviceSize unusedBytes,
|
|
size_t allocationCount,
|
|
size_t unusedRangeCount) const;
|
|
void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
|
|
VkDeviceSize offset, VkDeviceSize size, void* userData) const;
|
|
void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size) const;
|
|
void PrintDetailedMap_End(class VmaJsonWriter& json) const;
|
|
#endif
|
|
|
|
private:
|
|
VkDeviceSize m_Size;
|
|
const VkAllocationCallbacks* m_pAllocationCallbacks;
|
|
const VkDeviceSize m_BufferImageGranularity;
|
|
const bool m_IsVirtual;
|
|
};
|
|
|
|
#ifndef _VMA_BLOCK_METADATA_FUNCTIONS
|
|
VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
|
|
VkDeviceSize bufferImageGranularity, bool isVirtual)
|
|
: m_Size(0),
|
|
m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_BufferImageGranularity(bufferImageGranularity),
|
|
m_IsVirtual(isVirtual) {}
|
|
|
|
void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const
|
|
{
|
|
if (IsVirtual())
|
|
{
|
|
VMA_LEAK_LOG_FORMAT("UNFREED VIRTUAL ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p", offset, size, userData);
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(userData != VMA_NULL);
|
|
VmaAllocation allocation = reinterpret_cast<VmaAllocation>(userData);
|
|
|
|
userData = allocation->GetUserData();
|
|
const char* name = allocation->GetName();
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %s; Usage: %" PRIu32,
|
|
offset, size, userData, name ? name : "vma_empty",
|
|
VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()],
|
|
allocation->GetBufferImageUsage());
|
|
#else
|
|
VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %u",
|
|
offset, size, userData, name ? name : "vma_empty",
|
|
(unsigned)allocation->GetSuballocationType());
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
}
|
|
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
|
|
VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const
|
|
{
|
|
json.WriteString("TotalBytes");
|
|
json.WriteNumber(GetSize());
|
|
|
|
json.WriteString("UnusedBytes");
|
|
json.WriteNumber(unusedBytes);
|
|
|
|
json.WriteString("Allocations");
|
|
json.WriteNumber((uint64_t)allocationCount);
|
|
|
|
json.WriteString("UnusedRanges");
|
|
json.WriteNumber((uint64_t)unusedRangeCount);
|
|
|
|
json.WriteString("Suballocations");
|
|
json.BeginArray();
|
|
}
|
|
|
|
void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
|
|
VkDeviceSize offset, VkDeviceSize size, void* userData) const
|
|
{
|
|
json.BeginObject(true);
|
|
|
|
json.WriteString("Offset");
|
|
json.WriteNumber(offset);
|
|
|
|
if (IsVirtual())
|
|
{
|
|
json.WriteString("Size");
|
|
json.WriteNumber(size);
|
|
if (userData)
|
|
{
|
|
json.WriteString("CustomData");
|
|
json.BeginString();
|
|
json.ContinueString_Pointer(userData);
|
|
json.EndString();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
((VmaAllocation)userData)->PrintParameters(json);
|
|
}
|
|
|
|
json.EndObject();
|
|
}
|
|
|
|
void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
|
|
VkDeviceSize offset, VkDeviceSize size) const
|
|
{
|
|
json.BeginObject(true);
|
|
|
|
json.WriteString("Offset");
|
|
json.WriteNumber(offset);
|
|
|
|
json.WriteString("Type");
|
|
json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
|
|
|
|
json.WriteString("Size");
|
|
json.WriteNumber(size);
|
|
|
|
json.EndObject();
|
|
}
|
|
|
|
void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
|
|
{
|
|
json.EndArray();
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
#endif // _VMA_BLOCK_METADATA_FUNCTIONS
|
|
#endif // _VMA_BLOCK_METADATA
|
|
|
|
#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
|
|
// Before deleting object of this class remember to call 'Destroy()'
|
|
class VmaBlockBufferImageGranularity final
|
|
{
|
|
public:
|
|
struct ValidationContext
|
|
{
|
|
const VkAllocationCallbacks* allocCallbacks;
|
|
uint16_t* pageAllocs;
|
|
};
|
|
|
|
VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity);
|
|
~VmaBlockBufferImageGranularity();
|
|
|
|
bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; }
|
|
|
|
void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size);
|
|
// Before destroying object you must call free it's memory
|
|
void Destroy(const VkAllocationCallbacks* pAllocationCallbacks);
|
|
|
|
void RoundupAllocRequest(VmaSuballocationType allocType,
|
|
VkDeviceSize& inOutAllocSize,
|
|
VkDeviceSize& inOutAllocAlignment) const;
|
|
|
|
bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize blockOffset,
|
|
VkDeviceSize blockSize,
|
|
VmaSuballocationType allocType) const;
|
|
|
|
void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size);
|
|
void FreePages(VkDeviceSize offset, VkDeviceSize size);
|
|
void Clear();
|
|
|
|
ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks,
|
|
bool isVirutal) const;
|
|
bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const;
|
|
bool FinishValidation(ValidationContext& ctx) const;
|
|
|
|
private:
|
|
static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256;
|
|
|
|
struct RegionInfo
|
|
{
|
|
uint8_t allocType;
|
|
uint16_t allocCount;
|
|
};
|
|
|
|
VkDeviceSize m_BufferImageGranularity;
|
|
uint32_t m_RegionCount;
|
|
RegionInfo* m_RegionInfo;
|
|
|
|
uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); }
|
|
uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); }
|
|
|
|
uint32_t OffsetToPageIndex(VkDeviceSize offset) const;
|
|
void AllocPage(RegionInfo& page, uint8_t allocType);
|
|
};
|
|
|
|
#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
|
|
VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity)
|
|
: m_BufferImageGranularity(bufferImageGranularity),
|
|
m_RegionCount(0),
|
|
m_RegionInfo(VMA_NULL) {}
|
|
|
|
VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity()
|
|
{
|
|
VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!");
|
|
}
|
|
|
|
void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size)
|
|
{
|
|
if (IsEnabled())
|
|
{
|
|
m_RegionCount = static_cast<uint32_t>(VmaDivideRoundingUp(size, m_BufferImageGranularity));
|
|
m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount);
|
|
memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
|
|
}
|
|
}
|
|
|
|
void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks)
|
|
{
|
|
if (m_RegionInfo)
|
|
{
|
|
vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount);
|
|
m_RegionInfo = VMA_NULL;
|
|
}
|
|
}
|
|
|
|
void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType,
|
|
VkDeviceSize& inOutAllocSize,
|
|
VkDeviceSize& inOutAllocAlignment) const
|
|
{
|
|
if (m_BufferImageGranularity > 1 &&
|
|
m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY)
|
|
{
|
|
if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
|
|
allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
|
|
{
|
|
inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity);
|
|
inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize blockOffset,
|
|
VkDeviceSize blockSize,
|
|
VmaSuballocationType allocType) const
|
|
{
|
|
if (IsEnabled())
|
|
{
|
|
uint32_t startPage = GetStartPage(inOutAllocOffset);
|
|
if (m_RegionInfo[startPage].allocCount > 0 &&
|
|
VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[startPage].allocType), allocType))
|
|
{
|
|
inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity);
|
|
if (blockSize < allocSize + inOutAllocOffset - blockOffset)
|
|
return true;
|
|
++startPage;
|
|
}
|
|
uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize);
|
|
if (endPage != startPage &&
|
|
m_RegionInfo[endPage].allocCount > 0 &&
|
|
VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[endPage].allocType), allocType))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size)
|
|
{
|
|
if (IsEnabled())
|
|
{
|
|
uint32_t startPage = GetStartPage(offset);
|
|
AllocPage(m_RegionInfo[startPage], allocType);
|
|
|
|
uint32_t endPage = GetEndPage(offset, size);
|
|
if (startPage != endPage)
|
|
AllocPage(m_RegionInfo[endPage], allocType);
|
|
}
|
|
}
|
|
|
|
void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size)
|
|
{
|
|
if (IsEnabled())
|
|
{
|
|
uint32_t startPage = GetStartPage(offset);
|
|
--m_RegionInfo[startPage].allocCount;
|
|
if (m_RegionInfo[startPage].allocCount == 0)
|
|
m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
|
|
uint32_t endPage = GetEndPage(offset, size);
|
|
if (startPage != endPage)
|
|
{
|
|
--m_RegionInfo[endPage].allocCount;
|
|
if (m_RegionInfo[endPage].allocCount == 0)
|
|
m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaBlockBufferImageGranularity::Clear()
|
|
{
|
|
if (m_RegionInfo)
|
|
memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
|
|
}
|
|
|
|
VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation(
|
|
const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const
|
|
{
|
|
ValidationContext ctx{ pAllocationCallbacks, VMA_NULL };
|
|
if (!isVirutal && IsEnabled())
|
|
{
|
|
ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount);
|
|
memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t));
|
|
}
|
|
return ctx;
|
|
}
|
|
|
|
bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx,
|
|
VkDeviceSize offset, VkDeviceSize size) const
|
|
{
|
|
if (IsEnabled())
|
|
{
|
|
uint32_t start = GetStartPage(offset);
|
|
++ctx.pageAllocs[start];
|
|
VMA_VALIDATE(m_RegionInfo[start].allocCount > 0);
|
|
|
|
uint32_t end = GetEndPage(offset, size);
|
|
if (start != end)
|
|
{
|
|
++ctx.pageAllocs[end];
|
|
VMA_VALIDATE(m_RegionInfo[end].allocCount > 0);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const
|
|
{
|
|
// Check proper page structure
|
|
if (IsEnabled())
|
|
{
|
|
VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!");
|
|
|
|
for (uint32_t page = 0; page < m_RegionCount; ++page)
|
|
{
|
|
VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount);
|
|
}
|
|
vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount);
|
|
ctx.pageAllocs = VMA_NULL;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const
|
|
{
|
|
return static_cast<uint32_t>(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity));
|
|
}
|
|
|
|
void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType)
|
|
{
|
|
// When current alloc type is free then it can be overridden by new type
|
|
if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE))
|
|
page.allocType = allocType;
|
|
|
|
++page.allocCount;
|
|
}
|
|
#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
|
|
#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
|
|
|
|
#ifndef _VMA_BLOCK_METADATA_LINEAR
|
|
/*
|
|
Allocations and their references in internal data structure look like this:
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
|
|
|
|
0 +-------+
|
|
| |
|
|
| |
|
|
| |
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount]
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount + 1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 1st[1st.size() - 1]
|
|
+-------+
|
|
| |
|
|
| |
|
|
| |
|
|
GetSize() +-------+
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
|
|
|
|
0 +-------+
|
|
| Alloc | 2nd[0]
|
|
+-------+
|
|
| Alloc | 2nd[1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 2nd[2nd.size() - 1]
|
|
+-------+
|
|
| |
|
|
| |
|
|
| |
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount]
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount + 1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 1st[1st.size() - 1]
|
|
+-------+
|
|
| |
|
|
GetSize() +-------+
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
|
|
|
|
0 +-------+
|
|
| |
|
|
| |
|
|
| |
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount]
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount + 1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 1st[1st.size() - 1]
|
|
+-------+
|
|
| |
|
|
| |
|
|
| |
|
|
+-------+
|
|
| Alloc | 2nd[2nd.size() - 1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 2nd[1]
|
|
+-------+
|
|
| Alloc | 2nd[0]
|
|
GetSize() +-------+
|
|
|
|
*/
|
|
class VmaBlockMetadata_Linear : public VmaBlockMetadata
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_Linear)
|
|
public:
|
|
VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
|
|
VkDeviceSize bufferImageGranularity, bool isVirtual);
|
|
virtual ~VmaBlockMetadata_Linear() = default;
|
|
|
|
VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; }
|
|
bool IsEmpty() const override { return GetAllocationCount() == 0; }
|
|
VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }
|
|
|
|
void Init(VkDeviceSize size) override;
|
|
bool Validate() const override;
|
|
size_t GetAllocationCount() const override;
|
|
size_t GetFreeRegionsCount() const override;
|
|
|
|
void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
|
|
void AddStatistics(VmaStatistics& inoutStats) const override;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaJsonWriter& json) const override;
|
|
#endif
|
|
|
|
bool CreateAllocationRequest(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest) override;
|
|
|
|
VkResult CheckCorruption(const void* pBlockData) override;
|
|
|
|
void Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData) override;
|
|
|
|
void Free(VmaAllocHandle allocHandle) override;
|
|
void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
|
|
void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
|
|
VmaAllocHandle GetAllocationListBegin() const override;
|
|
VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
|
|
VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
|
|
void Clear() override;
|
|
void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
|
|
void DebugLogAllAllocations() const override;
|
|
|
|
private:
|
|
/*
|
|
There are two suballocation vectors, used in ping-pong way.
|
|
The one with index m_1stVectorIndex is called 1st.
|
|
The one with index (m_1stVectorIndex ^ 1) is called 2nd.
|
|
2nd can be non-empty only when 1st is not empty.
|
|
When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
|
|
*/
|
|
typedef VmaVector<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> SuballocationVectorType;
|
|
|
|
enum SECOND_VECTOR_MODE
|
|
{
|
|
SECOND_VECTOR_EMPTY,
|
|
/*
|
|
Suballocations in 2nd vector are created later than the ones in 1st, but they
|
|
all have smaller offset.
|
|
*/
|
|
SECOND_VECTOR_RING_BUFFER,
|
|
/*
|
|
Suballocations in 2nd vector are upper side of double stack.
|
|
They all have offsets higher than those in 1st vector.
|
|
Top of this stack means smaller offsets, but higher indices in this vector.
|
|
*/
|
|
SECOND_VECTOR_DOUBLE_STACK,
|
|
};
|
|
|
|
VkDeviceSize m_SumFreeSize;
|
|
SuballocationVectorType m_Suballocations0, m_Suballocations1;
|
|
uint32_t m_1stVectorIndex;
|
|
SECOND_VECTOR_MODE m_2ndVectorMode;
|
|
// Number of items in 1st vector with hAllocation = null at the beginning.
|
|
size_t m_1stNullItemsBeginCount;
|
|
// Number of other items in 1st vector with hAllocation = null somewhere in the middle.
|
|
size_t m_1stNullItemsMiddleCount;
|
|
// Number of items in 2nd vector with hAllocation = null.
|
|
size_t m_2ndNullItemsCount;
|
|
|
|
SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
|
|
SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
|
|
const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
|
|
const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
|
|
|
|
VmaSuballocation& FindSuballocation(VkDeviceSize offset) const;
|
|
bool ShouldCompact1st() const;
|
|
void CleanupAfterFree();
|
|
|
|
bool CreateAllocationRequest_LowerAddress(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
bool CreateAllocationRequest_UpperAddress(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
};
|
|
|
|
#ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
|
|
VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
|
|
VkDeviceSize bufferImageGranularity, bool isVirtual)
|
|
: VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
|
|
m_SumFreeSize(0),
|
|
m_Suballocations0(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
|
|
m_Suballocations1(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
|
|
m_1stVectorIndex(0),
|
|
m_2ndVectorMode(SECOND_VECTOR_EMPTY),
|
|
m_1stNullItemsBeginCount(0),
|
|
m_1stNullItemsMiddleCount(0),
|
|
m_2ndNullItemsCount(0) {}
|
|
|
|
void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
|
|
{
|
|
VmaBlockMetadata::Init(size);
|
|
m_SumFreeSize = size;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::Validate() const
|
|
{
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
|
|
VMA_VALIDATE(!suballocations1st.empty() ||
|
|
suballocations2nd.empty() ||
|
|
m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
|
|
|
|
if (!suballocations1st.empty())
|
|
{
|
|
// Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
|
|
VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE);
|
|
// Null item at the end should be just pop_back().
|
|
VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE);
|
|
}
|
|
if (!suballocations2nd.empty())
|
|
{
|
|
// Null item at the end should be just pop_back().
|
|
VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE);
|
|
}
|
|
|
|
VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
|
|
VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
|
|
|
|
VkDeviceSize sumUsedSize = 0;
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
VkDeviceSize offset = 0;
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
size_t nullItem2ndCount = 0;
|
|
for (size_t i = 0; i < suballoc2ndCount; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[i];
|
|
const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if (!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
|
|
}
|
|
VMA_VALIDATE(suballoc.offset >= offset);
|
|
|
|
if (!currFree)
|
|
{
|
|
if (!IsVirtual())
|
|
{
|
|
VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
|
|
VMA_VALIDATE(alloc->GetSize() == suballoc.size);
|
|
}
|
|
sumUsedSize += suballoc.size;
|
|
}
|
|
else
|
|
{
|
|
++nullItem2ndCount;
|
|
}
|
|
|
|
offset = suballoc.offset + suballoc.size + debugMargin;
|
|
}
|
|
|
|
VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
|
|
}
|
|
|
|
for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[i];
|
|
VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
|
|
suballoc.userData == VMA_NULL);
|
|
}
|
|
|
|
size_t nullItem1stCount = m_1stNullItemsBeginCount;
|
|
|
|
for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[i];
|
|
const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if (!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
|
|
}
|
|
VMA_VALIDATE(suballoc.offset >= offset);
|
|
VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
|
|
|
|
if (!currFree)
|
|
{
|
|
if (!IsVirtual())
|
|
{
|
|
VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
|
|
VMA_VALIDATE(alloc->GetSize() == suballoc.size);
|
|
}
|
|
sumUsedSize += suballoc.size;
|
|
}
|
|
else
|
|
{
|
|
++nullItem1stCount;
|
|
}
|
|
|
|
offset = suballoc.offset + suballoc.size + debugMargin;
|
|
}
|
|
VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
size_t nullItem2ndCount = 0;
|
|
for (size_t i = suballoc2ndCount; i--; )
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[i];
|
|
const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if (!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
|
|
}
|
|
VMA_VALIDATE(suballoc.offset >= offset);
|
|
|
|
if (!currFree)
|
|
{
|
|
if (!IsVirtual())
|
|
{
|
|
VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
|
|
VMA_VALIDATE(alloc->GetSize() == suballoc.size);
|
|
}
|
|
sumUsedSize += suballoc.size;
|
|
}
|
|
else
|
|
{
|
|
++nullItem2ndCount;
|
|
}
|
|
|
|
offset = suballoc.offset + suballoc.size + debugMargin;
|
|
}
|
|
|
|
VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
|
|
}
|
|
|
|
VMA_VALIDATE(offset <= GetSize());
|
|
VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t VmaBlockMetadata_Linear::GetAllocationCount() const
|
|
{
|
|
return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount +
|
|
AccessSuballocations2nd().size() - m_2ndNullItemsCount;
|
|
}
|
|
|
|
size_t VmaBlockMetadata_Linear::GetFreeRegionsCount() const
|
|
{
|
|
// Function only used for defragmentation, which is disabled for this algorithm
|
|
VMA_ASSERT(0);
|
|
return SIZE_MAX;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
|
|
{
|
|
const VkDeviceSize size = GetSize();
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
|
|
inoutStats.statistics.blockCount++;
|
|
inoutStats.statistics.blockBytes += size;
|
|
|
|
VkDeviceSize lastOffset = 0;
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
|
|
size_t nextAlloc2ndIndex = 0;
|
|
while (lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while (nextAlloc2ndIndex < suballoc2ndCount &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc2ndIndex < suballoc2ndCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// There is free space from lastOffset to freeSpace2ndTo1stEnd.
|
|
if (lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
|
|
VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace2ndTo1stEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
|
|
const VkDeviceSize freeSpace1stTo2ndEnd =
|
|
m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
|
|
while (lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while (nextAlloc1stIndex < suballoc1stCount &&
|
|
suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc1stIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc1stIndex < suballoc1stCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc1stIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// There is free space from lastOffset to freeSpace1stTo2ndEnd.
|
|
if (lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
|
|
VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace1stTo2ndEnd;
|
|
}
|
|
}
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
|
|
while (lastOffset < size)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while (nextAlloc2ndIndex != SIZE_MAX &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc2ndIndex != SIZE_MAX)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// There is free space from lastOffset to size.
|
|
if (lastOffset < size)
|
|
{
|
|
const VkDeviceSize unusedRangeSize = size - lastOffset;
|
|
VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::AddStatistics(VmaStatistics& inoutStats) const
|
|
{
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
const VkDeviceSize size = GetSize();
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
|
|
inoutStats.blockCount++;
|
|
inoutStats.blockBytes += size;
|
|
inoutStats.allocationBytes += size - m_SumFreeSize;
|
|
|
|
VkDeviceSize lastOffset = 0;
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
|
|
size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
|
|
while (lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while (nextAlloc2ndIndex < suballoc2ndCount &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc2ndIndex < suballoc2ndCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++inoutStats.allocationCount;
|
|
|
|
// Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// End of loop.
|
|
lastOffset = freeSpace2ndTo1stEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
|
|
const VkDeviceSize freeSpace1stTo2ndEnd =
|
|
m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
|
|
while (lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while (nextAlloc1stIndex < suballoc1stCount &&
|
|
suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc1stIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc1stIndex < suballoc1stCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
|
|
|
|
// Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++inoutStats.allocationCount;
|
|
|
|
// Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc1stIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// End of loop.
|
|
lastOffset = freeSpace1stTo2ndEnd;
|
|
}
|
|
}
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
|
|
while (lastOffset < size)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while (nextAlloc2ndIndex != SIZE_MAX &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc2ndIndex != SIZE_MAX)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++inoutStats.allocationCount;
|
|
|
|
// Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// End of loop.
|
|
lastOffset = size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
|
|
{
|
|
const VkDeviceSize size = GetSize();
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
|
|
// FIRST PASS
|
|
|
|
size_t unusedRangeCount = 0;
|
|
VkDeviceSize usedBytes = 0;
|
|
|
|
VkDeviceSize lastOffset = 0;
|
|
|
|
size_t alloc2ndCount = 0;
|
|
if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
|
|
size_t nextAlloc2ndIndex = 0;
|
|
while (lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while (nextAlloc2ndIndex < suballoc2ndCount &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc2ndIndex < suballoc2ndCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++alloc2ndCount;
|
|
usedBytes += suballoc.size;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if (lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace2ndTo1stEnd.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace2ndTo1stEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
|
|
size_t alloc1stCount = 0;
|
|
const VkDeviceSize freeSpace1stTo2ndEnd =
|
|
m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
|
|
while (lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while (nextAlloc1stIndex < suballoc1stCount &&
|
|
suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc1stIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc1stIndex < suballoc1stCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++alloc1stCount;
|
|
usedBytes += suballoc.size;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc1stIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if (lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace1stTo2ndEnd.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace1stTo2ndEnd;
|
|
}
|
|
}
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
|
|
while (lastOffset < size)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while (nextAlloc2ndIndex != SIZE_MAX &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc2ndIndex != SIZE_MAX)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++alloc2ndCount;
|
|
usedBytes += suballoc.size;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if (lastOffset < size)
|
|
{
|
|
// There is free space from lastOffset to size.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = size;
|
|
}
|
|
}
|
|
}
|
|
|
|
const VkDeviceSize unusedBytes = size - usedBytes;
|
|
PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
|
|
|
|
// SECOND PASS
|
|
lastOffset = 0;
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
|
|
size_t nextAlloc2ndIndex = 0;
|
|
while (lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while (nextAlloc2ndIndex < suballoc2ndCount &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc2ndIndex < suballoc2ndCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if (lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace2ndTo1stEnd.
|
|
const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace2ndTo1stEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
nextAlloc1stIndex = m_1stNullItemsBeginCount;
|
|
while (lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while (nextAlloc1stIndex < suballoc1stCount &&
|
|
suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc1stIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc1stIndex < suballoc1stCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc1stIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if (lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace1stTo2ndEnd.
|
|
const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace1stTo2ndEnd;
|
|
}
|
|
}
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
|
|
while (lastOffset < size)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while (nextAlloc2ndIndex != SIZE_MAX &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if (nextAlloc2ndIndex != SIZE_MAX)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if (lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if (lastOffset < size)
|
|
{
|
|
// There is free space from lastOffset to size.
|
|
const VkDeviceSize unusedRangeSize = size - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = size;
|
|
}
|
|
}
|
|
}
|
|
|
|
PrintDetailedMap_End(json);
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
|
|
bool VmaBlockMetadata_Linear::CreateAllocationRequest(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(allocSize > 0);
|
|
VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(pAllocationRequest != VMA_NULL);
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
pAllocationRequest->size = allocSize;
|
|
return upperAddress ?
|
|
CreateAllocationRequest_UpperAddress(
|
|
allocSize, allocAlignment, allocType, strategy, pAllocationRequest) :
|
|
CreateAllocationRequest_LowerAddress(
|
|
allocSize, allocAlignment, allocType, strategy, pAllocationRequest);
|
|
}
|
|
|
|
VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[i];
|
|
if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN_COPY;
|
|
}
|
|
}
|
|
}
|
|
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[i];
|
|
if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN_COPY;
|
|
}
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData)
|
|
{
|
|
const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1;
|
|
const VmaSuballocation newSuballoc = { offset, request.size, userData, type };
|
|
|
|
switch (request.type)
|
|
{
|
|
case VmaAllocationRequestType::UpperAddress:
|
|
{
|
|
VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
|
|
"CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
suballocations2nd.push_back(newSuballoc);
|
|
m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
|
|
}
|
|
break;
|
|
case VmaAllocationRequestType::EndOf1st:
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
|
|
VMA_ASSERT(suballocations1st.empty() ||
|
|
offset >= suballocations1st.back().offset + suballocations1st.back().size);
|
|
// Check if it fits before the end of the block.
|
|
VMA_ASSERT(offset + request.size <= GetSize());
|
|
|
|
suballocations1st.push_back(newSuballoc);
|
|
}
|
|
break;
|
|
case VmaAllocationRequestType::EndOf2nd:
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
// New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
|
|
VMA_ASSERT(!suballocations1st.empty() &&
|
|
offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset);
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
switch (m_2ndVectorMode)
|
|
{
|
|
case SECOND_VECTOR_EMPTY:
|
|
// First allocation from second part ring buffer.
|
|
VMA_ASSERT(suballocations2nd.empty());
|
|
m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
|
|
break;
|
|
case SECOND_VECTOR_RING_BUFFER:
|
|
// 2-part ring buffer is already started.
|
|
VMA_ASSERT(!suballocations2nd.empty());
|
|
break;
|
|
case SECOND_VECTOR_DOUBLE_STACK:
|
|
VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
suballocations2nd.push_back(newSuballoc);
|
|
}
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
|
|
}
|
|
|
|
m_SumFreeSize -= newSuballoc.size;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle)
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
VkDeviceSize offset = (VkDeviceSize)allocHandle - 1;
|
|
|
|
if (!suballocations1st.empty())
|
|
{
|
|
// First allocation: Mark it as next empty at the beginning.
|
|
VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
|
|
if (firstSuballoc.offset == offset)
|
|
{
|
|
firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
firstSuballoc.userData = VMA_NULL;
|
|
m_SumFreeSize += firstSuballoc.size;
|
|
++m_1stNullItemsBeginCount;
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Last allocation in 2-part ring buffer or top of upper stack (same logic).
|
|
if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
|
|
m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
VmaSuballocation& lastSuballoc = suballocations2nd.back();
|
|
if (lastSuballoc.offset == offset)
|
|
{
|
|
m_SumFreeSize += lastSuballoc.size;
|
|
suballocations2nd.pop_back();
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
// Last allocation in 1st vector.
|
|
else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY)
|
|
{
|
|
VmaSuballocation& lastSuballoc = suballocations1st.back();
|
|
if (lastSuballoc.offset == offset)
|
|
{
|
|
m_SumFreeSize += lastSuballoc.size;
|
|
suballocations1st.pop_back();
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
|
|
VmaSuballocation refSuballoc;
|
|
refSuballoc.offset = offset;
|
|
// Rest of members stays uninitialized intentionally for better performance.
|
|
|
|
// Item from the middle of 1st vector.
|
|
{
|
|
const SuballocationVectorType::iterator it = VmaBinaryFindSorted(
|
|
suballocations1st.begin() + m_1stNullItemsBeginCount,
|
|
suballocations1st.end(),
|
|
refSuballoc,
|
|
VmaSuballocationOffsetLess());
|
|
if (it != suballocations1st.end())
|
|
{
|
|
it->type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
it->userData = VMA_NULL;
|
|
++m_1stNullItemsMiddleCount;
|
|
m_SumFreeSize += it->size;
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
|
|
{
|
|
// Item from the middle of 2nd vector.
|
|
const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
|
|
VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
|
|
VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
|
|
if (it != suballocations2nd.end())
|
|
{
|
|
it->type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
it->userData = VMA_NULL;
|
|
++m_2ndNullItemsCount;
|
|
m_SumFreeSize += it->size;
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
|
|
VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
|
|
{
|
|
outInfo.offset = (VkDeviceSize)allocHandle - 1;
|
|
VmaSuballocation& suballoc = FindSuballocation(outInfo.offset);
|
|
outInfo.size = suballoc.size;
|
|
outInfo.pUserData = suballoc.userData;
|
|
}
|
|
|
|
void* VmaBlockMetadata_Linear::GetAllocationUserData(VmaAllocHandle allocHandle) const
|
|
{
|
|
return FindSuballocation((VkDeviceSize)allocHandle - 1).userData;
|
|
}
|
|
|
|
VmaAllocHandle VmaBlockMetadata_Linear::GetAllocationListBegin() const
|
|
{
|
|
// Function only used for defragmentation, which is disabled for this algorithm
|
|
VMA_ASSERT(0);
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
VmaAllocHandle VmaBlockMetadata_Linear::GetNextAllocation(VmaAllocHandle prevAlloc) const
|
|
{
|
|
// Function only used for defragmentation, which is disabled for this algorithm
|
|
VMA_ASSERT(0);
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
VkDeviceSize VmaBlockMetadata_Linear::GetNextFreeRegionSize(VmaAllocHandle alloc) const
|
|
{
|
|
// Function only used for defragmentation, which is disabled for this algorithm
|
|
VMA_ASSERT(0);
|
|
return 0;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::Clear()
|
|
{
|
|
m_SumFreeSize = GetSize();
|
|
m_Suballocations0.clear();
|
|
m_Suballocations1.clear();
|
|
// Leaving m_1stVectorIndex unchanged - it doesn't matter.
|
|
m_2ndVectorMode = SECOND_VECTOR_EMPTY;
|
|
m_1stNullItemsBeginCount = 0;
|
|
m_1stNullItemsMiddleCount = 0;
|
|
m_2ndNullItemsCount = 0;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
|
|
{
|
|
VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1);
|
|
suballoc.userData = userData;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::DebugLogAllAllocations() const
|
|
{
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it)
|
|
if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
DebugLogAllocation(it->offset, it->size, it->userData);
|
|
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it)
|
|
if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
DebugLogAllocation(it->offset, it->size, it->userData);
|
|
}
|
|
|
|
VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) const
|
|
{
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
VmaSuballocation refSuballoc;
|
|
refSuballoc.offset = offset;
|
|
// Rest of members stays uninitialized intentionally for better performance.
|
|
|
|
// Item from the 1st vector.
|
|
{
|
|
SuballocationVectorType::const_iterator it = VmaBinaryFindSorted(
|
|
suballocations1st.begin() + m_1stNullItemsBeginCount,
|
|
suballocations1st.end(),
|
|
refSuballoc,
|
|
VmaSuballocationOffsetLess());
|
|
if (it != suballocations1st.end())
|
|
{
|
|
return const_cast<VmaSuballocation&>(*it);
|
|
}
|
|
}
|
|
|
|
if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
|
|
{
|
|
// Rest of members stays uninitialized intentionally for better performance.
|
|
SuballocationVectorType::const_iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
|
|
VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
|
|
VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
|
|
if (it != suballocations2nd.end())
|
|
{
|
|
return const_cast<VmaSuballocation&>(*it);
|
|
}
|
|
}
|
|
|
|
VMA_ASSERT(0 && "Allocation not found in linear allocator!");
|
|
return const_cast<VmaSuballocation&>(suballocations1st.back()); // Should never occur.
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::ShouldCompact1st() const
|
|
{
|
|
const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
|
|
const size_t suballocCount = AccessSuballocations1st().size();
|
|
return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::CleanupAfterFree()
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
if (IsEmpty())
|
|
{
|
|
suballocations1st.clear();
|
|
suballocations2nd.clear();
|
|
m_1stNullItemsBeginCount = 0;
|
|
m_1stNullItemsMiddleCount = 0;
|
|
m_2ndNullItemsCount = 0;
|
|
m_2ndVectorMode = SECOND_VECTOR_EMPTY;
|
|
}
|
|
else
|
|
{
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
|
|
VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
|
|
|
|
// Find more null items at the beginning of 1st vector.
|
|
while (m_1stNullItemsBeginCount < suballoc1stCount &&
|
|
suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
++m_1stNullItemsBeginCount;
|
|
--m_1stNullItemsMiddleCount;
|
|
}
|
|
|
|
// Find more null items at the end of 1st vector.
|
|
while (m_1stNullItemsMiddleCount > 0 &&
|
|
suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
--m_1stNullItemsMiddleCount;
|
|
suballocations1st.pop_back();
|
|
}
|
|
|
|
// Find more null items at the end of 2nd vector.
|
|
while (m_2ndNullItemsCount > 0 &&
|
|
suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
--m_2ndNullItemsCount;
|
|
suballocations2nd.pop_back();
|
|
}
|
|
|
|
// Find more null items at the beginning of 2nd vector.
|
|
while (m_2ndNullItemsCount > 0 &&
|
|
suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
--m_2ndNullItemsCount;
|
|
VmaVectorRemove(suballocations2nd, 0);
|
|
}
|
|
|
|
if (ShouldCompact1st())
|
|
{
|
|
const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
|
|
size_t srcIndex = m_1stNullItemsBeginCount;
|
|
for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
|
|
{
|
|
while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
++srcIndex;
|
|
}
|
|
if (dstIndex != srcIndex)
|
|
{
|
|
suballocations1st[dstIndex] = suballocations1st[srcIndex];
|
|
}
|
|
++srcIndex;
|
|
}
|
|
suballocations1st.resize(nonNullItemCount);
|
|
m_1stNullItemsBeginCount = 0;
|
|
m_1stNullItemsMiddleCount = 0;
|
|
}
|
|
|
|
// 2nd vector became empty.
|
|
if (suballocations2nd.empty())
|
|
{
|
|
m_2ndVectorMode = SECOND_VECTOR_EMPTY;
|
|
}
|
|
|
|
// 1st vector became empty.
|
|
if (suballocations1st.size() - m_1stNullItemsBeginCount == 0)
|
|
{
|
|
suballocations1st.clear();
|
|
m_1stNullItemsBeginCount = 0;
|
|
|
|
if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
// Swap 1st with 2nd. Now 2nd is empty.
|
|
m_2ndVectorMode = SECOND_VECTOR_EMPTY;
|
|
m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
|
|
while (m_1stNullItemsBeginCount < suballocations2nd.size() &&
|
|
suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
++m_1stNullItemsBeginCount;
|
|
--m_1stNullItemsMiddleCount;
|
|
}
|
|
m_2ndNullItemsCount = 0;
|
|
m_1stVectorIndex ^= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
const VkDeviceSize blockSize = GetSize();
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
// Try to allocate at the end of 1st vector.
|
|
|
|
VkDeviceSize resultBaseOffset = 0;
|
|
if (!suballocations1st.empty())
|
|
{
|
|
const VmaSuballocation& lastSuballoc = suballocations1st.back();
|
|
resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
|
|
}
|
|
|
|
// Start from offset equal to beginning of free space.
|
|
VkDeviceSize resultOffset = resultBaseOffset;
|
|
|
|
// Apply alignment.
|
|
resultOffset = VmaAlignUp(resultOffset, allocAlignment);
|
|
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty())
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
|
|
if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
|
|
{
|
|
if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if (bufferImageGranularityConflict)
|
|
{
|
|
resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
|
|
}
|
|
}
|
|
|
|
const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
|
|
suballocations2nd.back().offset : blockSize;
|
|
|
|
// There is enough free space at the end after alignment.
|
|
if (resultOffset + allocSize + debugMargin <= freeSpaceEnd)
|
|
{
|
|
// Check next suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, allocation cannot be made here.
|
|
if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
|
|
if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All tests passed: Success.
|
|
pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
|
|
// pAllocationRequest->item, customData unused.
|
|
pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Wrap-around to end of 2nd vector. Try to allocate there, watching for the
|
|
// beginning of 1st vector as the end of free space.
|
|
if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
VMA_ASSERT(!suballocations1st.empty());
|
|
|
|
VkDeviceSize resultBaseOffset = 0;
|
|
if (!suballocations2nd.empty())
|
|
{
|
|
const VmaSuballocation& lastSuballoc = suballocations2nd.back();
|
|
resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
|
|
}
|
|
|
|
// Start from offset equal to beginning of free space.
|
|
VkDeviceSize resultOffset = resultBaseOffset;
|
|
|
|
// Apply alignment.
|
|
resultOffset = VmaAlignUp(resultOffset, allocAlignment);
|
|
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
|
|
if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
|
|
{
|
|
if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if (bufferImageGranularityConflict)
|
|
{
|
|
resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
|
|
}
|
|
}
|
|
|
|
size_t index1st = m_1stNullItemsBeginCount;
|
|
|
|
// There is enough free space at the end after alignment.
|
|
if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) ||
|
|
(index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset))
|
|
{
|
|
// Check next suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, allocation cannot be made here.
|
|
if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity)
|
|
{
|
|
for (size_t nextSuballocIndex = index1st;
|
|
nextSuballocIndex < suballocations1st.size();
|
|
nextSuballocIndex++)
|
|
{
|
|
const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
|
|
if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on next page.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All tests passed: Success.
|
|
pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
|
|
pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
|
|
// pAllocationRequest->item, customData unused.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
const VkDeviceSize blockSize = GetSize();
|
|
const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
|
|
return false;
|
|
}
|
|
|
|
// Try to allocate before 2nd.back(), or end of block if 2nd.empty().
|
|
if (allocSize > blockSize)
|
|
{
|
|
return false;
|
|
}
|
|
VkDeviceSize resultBaseOffset = blockSize - allocSize;
|
|
if (!suballocations2nd.empty())
|
|
{
|
|
const VmaSuballocation& lastSuballoc = suballocations2nd.back();
|
|
resultBaseOffset = lastSuballoc.offset - allocSize;
|
|
if (allocSize > lastSuballoc.offset)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Start from offset equal to end of free space.
|
|
VkDeviceSize resultOffset = resultBaseOffset;
|
|
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
|
|
// Apply debugMargin at the end.
|
|
if (debugMargin > 0)
|
|
{
|
|
if (resultOffset < debugMargin)
|
|
{
|
|
return false;
|
|
}
|
|
resultOffset -= debugMargin;
|
|
}
|
|
|
|
// Apply alignment.
|
|
resultOffset = VmaAlignDown(resultOffset, allocAlignment);
|
|
|
|
// Check next suballocations from 2nd for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
|
|
if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if (bufferImageGranularityConflict)
|
|
{
|
|
resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
|
|
}
|
|
}
|
|
|
|
// There is enough free space.
|
|
const VkDeviceSize endOf1st = !suballocations1st.empty() ?
|
|
suballocations1st.back().offset + suballocations1st.back().size :
|
|
0;
|
|
if (endOf1st + debugMargin <= resultOffset)
|
|
{
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, allocation cannot be made here.
|
|
if (bufferImageGranularity > 1)
|
|
{
|
|
for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
|
|
if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
|
|
{
|
|
if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on next page.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All tests passed: Success.
|
|
pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
|
|
// pAllocationRequest->item unused.
|
|
pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
|
|
#endif // _VMA_BLOCK_METADATA_LINEAR
|
|
|
|
#ifndef _VMA_BLOCK_METADATA_TLSF
|
|
// To not search current larger region if first allocation won't succeed and skip to smaller range
|
|
// use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest().
|
|
// When fragmentation and reusal of previous blocks doesn't matter then use with
|
|
// VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible.
|
|
class VmaBlockMetadata_TLSF : public VmaBlockMetadata
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_TLSF)
|
|
public:
|
|
VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
|
|
VkDeviceSize bufferImageGranularity, bool isVirtual);
|
|
virtual ~VmaBlockMetadata_TLSF();
|
|
|
|
size_t GetAllocationCount() const override { return m_AllocCount; }
|
|
size_t GetFreeRegionsCount() const override { return m_BlocksFreeCount + 1; }
|
|
VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; }
|
|
bool IsEmpty() const override { return m_NullBlock->offset == 0; }
|
|
VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; }
|
|
|
|
void Init(VkDeviceSize size) override;
|
|
bool Validate() const override;
|
|
|
|
void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
|
|
void AddStatistics(VmaStatistics& inoutStats) const override;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaJsonWriter& json) const override;
|
|
#endif
|
|
|
|
bool CreateAllocationRequest(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest) override;
|
|
|
|
VkResult CheckCorruption(const void* pBlockData) override;
|
|
void Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData) override;
|
|
|
|
void Free(VmaAllocHandle allocHandle) override;
|
|
void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
|
|
void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
|
|
VmaAllocHandle GetAllocationListBegin() const override;
|
|
VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
|
|
VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
|
|
void Clear() override;
|
|
void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
|
|
void DebugLogAllAllocations() const override;
|
|
|
|
private:
|
|
// According to original paper it should be preferable 4 or 5:
|
|
// M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems"
|
|
// http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf
|
|
static const uint8_t SECOND_LEVEL_INDEX = 5;
|
|
static const uint16_t SMALL_BUFFER_SIZE = 256;
|
|
static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16;
|
|
static const uint8_t MEMORY_CLASS_SHIFT = 7;
|
|
static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT;
|
|
|
|
class Block
|
|
{
|
|
public:
|
|
VkDeviceSize offset;
|
|
VkDeviceSize size;
|
|
Block* prevPhysical;
|
|
Block* nextPhysical;
|
|
|
|
void MarkFree() { prevFree = VMA_NULL; }
|
|
void MarkTaken() { prevFree = this; }
|
|
bool IsFree() const { return prevFree != this; }
|
|
void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; }
|
|
Block*& PrevFree() { return prevFree; }
|
|
Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; }
|
|
|
|
private:
|
|
Block* prevFree; // Address of the same block here indicates that block is taken
|
|
union
|
|
{
|
|
Block* nextFree;
|
|
void* userData;
|
|
};
|
|
};
|
|
|
|
size_t m_AllocCount;
|
|
// Total number of free blocks besides null block
|
|
size_t m_BlocksFreeCount;
|
|
// Total size of free blocks excluding null block
|
|
VkDeviceSize m_BlocksFreeSize;
|
|
uint32_t m_IsFreeBitmap;
|
|
uint8_t m_MemoryClasses;
|
|
uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES];
|
|
uint32_t m_ListsCount;
|
|
/*
|
|
* 0: 0-3 lists for small buffers
|
|
* 1+: 0-(2^SLI-1) lists for normal buffers
|
|
*/
|
|
Block** m_FreeList;
|
|
VmaPoolAllocator<Block> m_BlockAllocator;
|
|
Block* m_NullBlock;
|
|
VmaBlockBufferImageGranularity m_GranularityHandler;
|
|
|
|
uint8_t SizeToMemoryClass(VkDeviceSize size) const;
|
|
uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const;
|
|
uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const;
|
|
uint32_t GetListIndex(VkDeviceSize size) const;
|
|
|
|
void RemoveFreeBlock(Block* block);
|
|
void InsertFreeBlock(Block* block);
|
|
void MergeBlock(Block* block, Block* prev);
|
|
|
|
Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const;
|
|
bool CheckBlock(
|
|
Block& block,
|
|
uint32_t listIndex,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
};
|
|
|
|
#ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
|
|
VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
|
|
VkDeviceSize bufferImageGranularity, bool isVirtual)
|
|
: VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
|
|
m_AllocCount(0),
|
|
m_BlocksFreeCount(0),
|
|
m_BlocksFreeSize(0),
|
|
m_IsFreeBitmap(0),
|
|
m_MemoryClasses(0),
|
|
m_ListsCount(0),
|
|
m_FreeList(VMA_NULL),
|
|
m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT),
|
|
m_NullBlock(VMA_NULL),
|
|
m_GranularityHandler(bufferImageGranularity) {}
|
|
|
|
VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF()
|
|
{
|
|
if (m_FreeList)
|
|
vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount);
|
|
m_GranularityHandler.Destroy(GetAllocationCallbacks());
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::Init(VkDeviceSize size)
|
|
{
|
|
VmaBlockMetadata::Init(size);
|
|
|
|
if (!IsVirtual())
|
|
m_GranularityHandler.Init(GetAllocationCallbacks(), size);
|
|
|
|
m_NullBlock = m_BlockAllocator.Alloc();
|
|
m_NullBlock->size = size;
|
|
m_NullBlock->offset = 0;
|
|
m_NullBlock->prevPhysical = VMA_NULL;
|
|
m_NullBlock->nextPhysical = VMA_NULL;
|
|
m_NullBlock->MarkFree();
|
|
m_NullBlock->NextFree() = VMA_NULL;
|
|
m_NullBlock->PrevFree() = VMA_NULL;
|
|
uint8_t memoryClass = SizeToMemoryClass(size);
|
|
uint16_t sli = SizeToSecondIndex(size, memoryClass);
|
|
m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1;
|
|
if (IsVirtual())
|
|
m_ListsCount += 1UL << SECOND_LEVEL_INDEX;
|
|
else
|
|
m_ListsCount += 4;
|
|
|
|
m_MemoryClasses = memoryClass + uint8_t(2);
|
|
memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t));
|
|
|
|
m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount);
|
|
memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
|
|
}
|
|
|
|
bool VmaBlockMetadata_TLSF::Validate() const
|
|
{
|
|
VMA_VALIDATE(GetSumFreeSize() <= GetSize());
|
|
|
|
VkDeviceSize calculatedSize = m_NullBlock->size;
|
|
VkDeviceSize calculatedFreeSize = m_NullBlock->size;
|
|
size_t allocCount = 0;
|
|
size_t freeCount = 0;
|
|
|
|
// Check integrity of free lists
|
|
for (uint32_t list = 0; list < m_ListsCount; ++list)
|
|
{
|
|
Block* block = m_FreeList[list];
|
|
if (block != VMA_NULL)
|
|
{
|
|
VMA_VALIDATE(block->IsFree());
|
|
VMA_VALIDATE(block->PrevFree() == VMA_NULL);
|
|
while (block->NextFree())
|
|
{
|
|
VMA_VALIDATE(block->NextFree()->IsFree());
|
|
VMA_VALIDATE(block->NextFree()->PrevFree() == block);
|
|
block = block->NextFree();
|
|
}
|
|
}
|
|
}
|
|
|
|
VkDeviceSize nextOffset = m_NullBlock->offset;
|
|
auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual());
|
|
|
|
VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL);
|
|
if (m_NullBlock->prevPhysical)
|
|
{
|
|
VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock);
|
|
}
|
|
// Check all blocks
|
|
for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical)
|
|
{
|
|
VMA_VALIDATE(prev->offset + prev->size == nextOffset);
|
|
nextOffset = prev->offset;
|
|
calculatedSize += prev->size;
|
|
|
|
uint32_t listIndex = GetListIndex(prev->size);
|
|
if (prev->IsFree())
|
|
{
|
|
++freeCount;
|
|
// Check if free block belongs to free list
|
|
Block* freeBlock = m_FreeList[listIndex];
|
|
VMA_VALIDATE(freeBlock != VMA_NULL);
|
|
|
|
bool found = false;
|
|
do
|
|
{
|
|
if (freeBlock == prev)
|
|
found = true;
|
|
|
|
freeBlock = freeBlock->NextFree();
|
|
} while (!found && freeBlock != VMA_NULL);
|
|
|
|
VMA_VALIDATE(found);
|
|
calculatedFreeSize += prev->size;
|
|
}
|
|
else
|
|
{
|
|
++allocCount;
|
|
// Check if taken block is not on a free list
|
|
Block* freeBlock = m_FreeList[listIndex];
|
|
while (freeBlock)
|
|
{
|
|
VMA_VALIDATE(freeBlock != prev);
|
|
freeBlock = freeBlock->NextFree();
|
|
}
|
|
|
|
if (!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size));
|
|
}
|
|
}
|
|
|
|
if (prev->prevPhysical)
|
|
{
|
|
VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev);
|
|
}
|
|
}
|
|
|
|
if (!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx));
|
|
}
|
|
|
|
VMA_VALIDATE(nextOffset == 0);
|
|
VMA_VALIDATE(calculatedSize == GetSize());
|
|
VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize());
|
|
VMA_VALIDATE(allocCount == m_AllocCount);
|
|
VMA_VALIDATE(freeCount == m_BlocksFreeCount);
|
|
|
|
return true;
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
|
|
{
|
|
inoutStats.statistics.blockCount++;
|
|
inoutStats.statistics.blockBytes += GetSize();
|
|
if (m_NullBlock->size > 0)
|
|
VmaAddDetailedStatisticsUnusedRange(inoutStats, m_NullBlock->size);
|
|
|
|
for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
|
|
{
|
|
if (block->IsFree())
|
|
VmaAddDetailedStatisticsUnusedRange(inoutStats, block->size);
|
|
else
|
|
VmaAddDetailedStatisticsAllocation(inoutStats, block->size);
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::AddStatistics(VmaStatistics& inoutStats) const
|
|
{
|
|
inoutStats.blockCount++;
|
|
inoutStats.allocationCount += (uint32_t)m_AllocCount;
|
|
inoutStats.blockBytes += GetSize();
|
|
inoutStats.allocationBytes += GetSize() - GetSumFreeSize();
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const
|
|
{
|
|
size_t blockCount = m_AllocCount + m_BlocksFreeCount;
|
|
VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
|
|
VmaVector<Block*, VmaStlAllocator<Block*>> blockList(blockCount, allocator);
|
|
|
|
size_t i = blockCount;
|
|
for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
|
|
{
|
|
blockList[--i] = block;
|
|
}
|
|
VMA_ASSERT(i == 0);
|
|
|
|
VmaDetailedStatistics stats;
|
|
VmaClearDetailedStatistics(stats);
|
|
AddDetailedStatistics(stats);
|
|
|
|
PrintDetailedMap_Begin(json,
|
|
stats.statistics.blockBytes - stats.statistics.allocationBytes,
|
|
stats.statistics.allocationCount,
|
|
stats.unusedRangeCount);
|
|
|
|
for (; i < blockCount; ++i)
|
|
{
|
|
Block* block = blockList[i];
|
|
if (block->IsFree())
|
|
PrintDetailedMap_UnusedRange(json, block->offset, block->size);
|
|
else
|
|
PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData());
|
|
}
|
|
if (m_NullBlock->size > 0)
|
|
PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size);
|
|
|
|
PrintDetailedMap_End(json);
|
|
}
|
|
#endif
|
|
|
|
bool VmaBlockMetadata_TLSF::CreateAllocationRequest(
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!");
|
|
VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
|
|
|
|
// For small granularity round up
|
|
if (!IsVirtual())
|
|
m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment);
|
|
|
|
allocSize += GetDebugMargin();
|
|
// Quick check for too small pool
|
|
if (allocSize > GetSumFreeSize())
|
|
return false;
|
|
|
|
// If no free blocks in pool then check only null block
|
|
if (m_BlocksFreeCount == 0)
|
|
return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest);
|
|
|
|
// Round up to the next block
|
|
VkDeviceSize sizeForNextList = allocSize;
|
|
VkDeviceSize smallSizeStep = VkDeviceSize(SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4));
|
|
if (allocSize > SMALL_BUFFER_SIZE)
|
|
{
|
|
sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX));
|
|
}
|
|
else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep)
|
|
sizeForNextList = SMALL_BUFFER_SIZE + 1;
|
|
else
|
|
sizeForNextList += smallSizeStep;
|
|
|
|
uint32_t nextListIndex = m_ListsCount;
|
|
uint32_t prevListIndex = m_ListsCount;
|
|
Block* nextListBlock = VMA_NULL;
|
|
Block* prevListBlock = VMA_NULL;
|
|
|
|
// Check blocks according to strategies
|
|
if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT)
|
|
{
|
|
// Quick check for larger block first
|
|
nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
|
|
if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
|
|
// If not fitted then null block
|
|
if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
|
|
// Null block failed, search larger bucket
|
|
while (nextListBlock)
|
|
{
|
|
if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
nextListBlock = nextListBlock->NextFree();
|
|
}
|
|
|
|
// Failed again, check best fit bucket
|
|
prevListBlock = FindFreeBlock(allocSize, prevListIndex);
|
|
while (prevListBlock)
|
|
{
|
|
if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
prevListBlock = prevListBlock->NextFree();
|
|
}
|
|
}
|
|
else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT)
|
|
{
|
|
// Check best fit bucket
|
|
prevListBlock = FindFreeBlock(allocSize, prevListIndex);
|
|
while (prevListBlock)
|
|
{
|
|
if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
prevListBlock = prevListBlock->NextFree();
|
|
}
|
|
|
|
// If failed check null block
|
|
if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
|
|
// Check larger bucket
|
|
nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
|
|
while (nextListBlock)
|
|
{
|
|
if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
nextListBlock = nextListBlock->NextFree();
|
|
}
|
|
}
|
|
else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT )
|
|
{
|
|
// Perform search from the start
|
|
VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
|
|
VmaVector<Block*, VmaStlAllocator<Block*>> blockList(m_BlocksFreeCount, allocator);
|
|
|
|
size_t i = m_BlocksFreeCount;
|
|
for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
|
|
{
|
|
if (block->IsFree() && block->size >= allocSize)
|
|
blockList[--i] = block;
|
|
}
|
|
|
|
for (; i < m_BlocksFreeCount; ++i)
|
|
{
|
|
Block& block = *blockList[i];
|
|
if (CheckBlock(block, GetListIndex(block.size), allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
}
|
|
|
|
// If failed check null block
|
|
if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
|
|
// Whole range searched, no more memory
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// Check larger bucket
|
|
nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
|
|
while (nextListBlock)
|
|
{
|
|
if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
nextListBlock = nextListBlock->NextFree();
|
|
}
|
|
|
|
// If failed check null block
|
|
if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
|
|
// Check best fit bucket
|
|
prevListBlock = FindFreeBlock(allocSize, prevListIndex);
|
|
while (prevListBlock)
|
|
{
|
|
if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
prevListBlock = prevListBlock->NextFree();
|
|
}
|
|
}
|
|
|
|
// Worst case, full search has to be done
|
|
while (++nextListIndex < m_ListsCount)
|
|
{
|
|
nextListBlock = m_FreeList[nextListIndex];
|
|
while (nextListBlock)
|
|
{
|
|
if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
|
|
return true;
|
|
nextListBlock = nextListBlock->NextFree();
|
|
}
|
|
}
|
|
|
|
// No more memory sadly
|
|
return false;
|
|
}
|
|
|
|
VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData)
|
|
{
|
|
for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
|
|
{
|
|
if (!block->IsFree())
|
|
{
|
|
if (!VmaValidateMagicValue(pBlockData, block->offset + block->size))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN_COPY;
|
|
}
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData)
|
|
{
|
|
VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF);
|
|
|
|
// Get block and pop it from the free list
|
|
Block* currentBlock = (Block*)request.allocHandle;
|
|
VkDeviceSize offset = request.algorithmData;
|
|
VMA_ASSERT(currentBlock != VMA_NULL);
|
|
VMA_ASSERT(currentBlock->offset <= offset);
|
|
|
|
if (currentBlock != m_NullBlock)
|
|
RemoveFreeBlock(currentBlock);
|
|
|
|
VkDeviceSize debugMargin = GetDebugMargin();
|
|
VkDeviceSize misssingAlignment = offset - currentBlock->offset;
|
|
|
|
// Append missing alignment to prev block or create new one
|
|
if (misssingAlignment)
|
|
{
|
|
Block* prevBlock = currentBlock->prevPhysical;
|
|
VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!");
|
|
|
|
if (prevBlock->IsFree() && prevBlock->size != debugMargin)
|
|
{
|
|
uint32_t oldList = GetListIndex(prevBlock->size);
|
|
prevBlock->size += misssingAlignment;
|
|
// Check if new size crosses list bucket
|
|
if (oldList != GetListIndex(prevBlock->size))
|
|
{
|
|
prevBlock->size -= misssingAlignment;
|
|
RemoveFreeBlock(prevBlock);
|
|
prevBlock->size += misssingAlignment;
|
|
InsertFreeBlock(prevBlock);
|
|
}
|
|
else
|
|
m_BlocksFreeSize += misssingAlignment;
|
|
}
|
|
else
|
|
{
|
|
Block* newBlock = m_BlockAllocator.Alloc();
|
|
currentBlock->prevPhysical = newBlock;
|
|
prevBlock->nextPhysical = newBlock;
|
|
newBlock->prevPhysical = prevBlock;
|
|
newBlock->nextPhysical = currentBlock;
|
|
newBlock->size = misssingAlignment;
|
|
newBlock->offset = currentBlock->offset;
|
|
newBlock->MarkTaken();
|
|
|
|
InsertFreeBlock(newBlock);
|
|
}
|
|
|
|
currentBlock->size -= misssingAlignment;
|
|
currentBlock->offset += misssingAlignment;
|
|
}
|
|
|
|
VkDeviceSize size = request.size + debugMargin;
|
|
if (currentBlock->size == size)
|
|
{
|
|
if (currentBlock == m_NullBlock)
|
|
{
|
|
// Setup new null block
|
|
m_NullBlock = m_BlockAllocator.Alloc();
|
|
m_NullBlock->size = 0;
|
|
m_NullBlock->offset = currentBlock->offset + size;
|
|
m_NullBlock->prevPhysical = currentBlock;
|
|
m_NullBlock->nextPhysical = VMA_NULL;
|
|
m_NullBlock->MarkFree();
|
|
m_NullBlock->PrevFree() = VMA_NULL;
|
|
m_NullBlock->NextFree() = VMA_NULL;
|
|
currentBlock->nextPhysical = m_NullBlock;
|
|
currentBlock->MarkTaken();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!");
|
|
|
|
// Create new free block
|
|
Block* newBlock = m_BlockAllocator.Alloc();
|
|
newBlock->size = currentBlock->size - size;
|
|
newBlock->offset = currentBlock->offset + size;
|
|
newBlock->prevPhysical = currentBlock;
|
|
newBlock->nextPhysical = currentBlock->nextPhysical;
|
|
currentBlock->nextPhysical = newBlock;
|
|
currentBlock->size = size;
|
|
|
|
if (currentBlock == m_NullBlock)
|
|
{
|
|
m_NullBlock = newBlock;
|
|
m_NullBlock->MarkFree();
|
|
m_NullBlock->NextFree() = VMA_NULL;
|
|
m_NullBlock->PrevFree() = VMA_NULL;
|
|
currentBlock->MarkTaken();
|
|
}
|
|
else
|
|
{
|
|
newBlock->nextPhysical->prevPhysical = newBlock;
|
|
newBlock->MarkTaken();
|
|
InsertFreeBlock(newBlock);
|
|
}
|
|
}
|
|
currentBlock->UserData() = userData;
|
|
|
|
if (debugMargin > 0)
|
|
{
|
|
currentBlock->size -= debugMargin;
|
|
Block* newBlock = m_BlockAllocator.Alloc();
|
|
newBlock->size = debugMargin;
|
|
newBlock->offset = currentBlock->offset + currentBlock->size;
|
|
newBlock->prevPhysical = currentBlock;
|
|
newBlock->nextPhysical = currentBlock->nextPhysical;
|
|
newBlock->MarkTaken();
|
|
currentBlock->nextPhysical->prevPhysical = newBlock;
|
|
currentBlock->nextPhysical = newBlock;
|
|
InsertFreeBlock(newBlock);
|
|
}
|
|
|
|
if (!IsVirtual())
|
|
m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData,
|
|
currentBlock->offset, currentBlock->size);
|
|
++m_AllocCount;
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle)
|
|
{
|
|
Block* block = (Block*)allocHandle;
|
|
Block* next = block->nextPhysical;
|
|
VMA_ASSERT(!block->IsFree() && "Block is already free!");
|
|
|
|
if (!IsVirtual())
|
|
m_GranularityHandler.FreePages(block->offset, block->size);
|
|
--m_AllocCount;
|
|
|
|
VkDeviceSize debugMargin = GetDebugMargin();
|
|
if (debugMargin > 0)
|
|
{
|
|
RemoveFreeBlock(next);
|
|
MergeBlock(next, block);
|
|
block = next;
|
|
next = next->nextPhysical;
|
|
}
|
|
|
|
// Try merging
|
|
Block* prev = block->prevPhysical;
|
|
if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin)
|
|
{
|
|
RemoveFreeBlock(prev);
|
|
MergeBlock(block, prev);
|
|
}
|
|
|
|
if (!next->IsFree())
|
|
InsertFreeBlock(block);
|
|
else if (next == m_NullBlock)
|
|
MergeBlock(m_NullBlock, block);
|
|
else
|
|
{
|
|
RemoveFreeBlock(next);
|
|
MergeBlock(next, block);
|
|
InsertFreeBlock(next);
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
|
|
{
|
|
Block* block = (Block*)allocHandle;
|
|
VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!");
|
|
outInfo.offset = block->offset;
|
|
outInfo.size = block->size;
|
|
outInfo.pUserData = block->UserData();
|
|
}
|
|
|
|
void* VmaBlockMetadata_TLSF::GetAllocationUserData(VmaAllocHandle allocHandle) const
|
|
{
|
|
Block* block = (Block*)allocHandle;
|
|
VMA_ASSERT(!block->IsFree() && "Cannot get user data for free block!");
|
|
return block->UserData();
|
|
}
|
|
|
|
VmaAllocHandle VmaBlockMetadata_TLSF::GetAllocationListBegin() const
|
|
{
|
|
if (m_AllocCount == 0)
|
|
return VK_NULL_HANDLE;
|
|
|
|
for (Block* block = m_NullBlock->prevPhysical; block; block = block->prevPhysical)
|
|
{
|
|
if (!block->IsFree())
|
|
return (VmaAllocHandle)block;
|
|
}
|
|
VMA_ASSERT(false && "If m_AllocCount > 0 then should find any allocation!");
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
VmaAllocHandle VmaBlockMetadata_TLSF::GetNextAllocation(VmaAllocHandle prevAlloc) const
|
|
{
|
|
Block* startBlock = (Block*)prevAlloc;
|
|
VMA_ASSERT(!startBlock->IsFree() && "Incorrect block!");
|
|
|
|
for (Block* block = startBlock->prevPhysical; block; block = block->prevPhysical)
|
|
{
|
|
if (!block->IsFree())
|
|
return (VmaAllocHandle)block;
|
|
}
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
VkDeviceSize VmaBlockMetadata_TLSF::GetNextFreeRegionSize(VmaAllocHandle alloc) const
|
|
{
|
|
Block* block = (Block*)alloc;
|
|
VMA_ASSERT(!block->IsFree() && "Incorrect block!");
|
|
|
|
if (block->prevPhysical)
|
|
return block->prevPhysical->IsFree() ? block->prevPhysical->size : 0;
|
|
return 0;
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::Clear()
|
|
{
|
|
m_AllocCount = 0;
|
|
m_BlocksFreeCount = 0;
|
|
m_BlocksFreeSize = 0;
|
|
m_IsFreeBitmap = 0;
|
|
m_NullBlock->offset = 0;
|
|
m_NullBlock->size = GetSize();
|
|
Block* block = m_NullBlock->prevPhysical;
|
|
m_NullBlock->prevPhysical = VMA_NULL;
|
|
while (block)
|
|
{
|
|
Block* prev = block->prevPhysical;
|
|
m_BlockAllocator.Free(block);
|
|
block = prev;
|
|
}
|
|
memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
|
|
memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t));
|
|
m_GranularityHandler.Clear();
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
|
|
{
|
|
Block* block = (Block*)allocHandle;
|
|
VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!");
|
|
block->UserData() = userData;
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const
|
|
{
|
|
for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
|
|
if (!block->IsFree())
|
|
DebugLogAllocation(block->offset, block->size, block->UserData());
|
|
}
|
|
|
|
uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const
|
|
{
|
|
if (size > SMALL_BUFFER_SIZE)
|
|
return uint8_t(VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const
|
|
{
|
|
if (memoryClass == 0)
|
|
{
|
|
if (IsVirtual())
|
|
return static_cast<uint16_t>((size - 1) / 8);
|
|
else
|
|
return static_cast<uint16_t>((size - 1) / 64);
|
|
}
|
|
return static_cast<uint16_t>((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX));
|
|
}
|
|
|
|
uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const
|
|
{
|
|
if (memoryClass == 0)
|
|
return secondIndex;
|
|
|
|
const uint32_t index = static_cast<uint32_t>(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex;
|
|
if (IsVirtual())
|
|
return index + (1 << SECOND_LEVEL_INDEX);
|
|
else
|
|
return index + 4;
|
|
}
|
|
|
|
uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const
|
|
{
|
|
uint8_t memoryClass = SizeToMemoryClass(size);
|
|
return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass));
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block)
|
|
{
|
|
VMA_ASSERT(block != m_NullBlock);
|
|
VMA_ASSERT(block->IsFree());
|
|
|
|
if (block->NextFree() != VMA_NULL)
|
|
block->NextFree()->PrevFree() = block->PrevFree();
|
|
if (block->PrevFree() != VMA_NULL)
|
|
block->PrevFree()->NextFree() = block->NextFree();
|
|
else
|
|
{
|
|
uint8_t memClass = SizeToMemoryClass(block->size);
|
|
uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
|
|
uint32_t index = GetListIndex(memClass, secondIndex);
|
|
VMA_ASSERT(m_FreeList[index] == block);
|
|
m_FreeList[index] = block->NextFree();
|
|
if (block->NextFree() == VMA_NULL)
|
|
{
|
|
m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex);
|
|
if (m_InnerIsFreeBitmap[memClass] == 0)
|
|
m_IsFreeBitmap &= ~(1UL << memClass);
|
|
}
|
|
}
|
|
block->MarkTaken();
|
|
block->UserData() = VMA_NULL;
|
|
--m_BlocksFreeCount;
|
|
m_BlocksFreeSize -= block->size;
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block)
|
|
{
|
|
VMA_ASSERT(block != m_NullBlock);
|
|
VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!");
|
|
|
|
uint8_t memClass = SizeToMemoryClass(block->size);
|
|
uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
|
|
uint32_t index = GetListIndex(memClass, secondIndex);
|
|
VMA_ASSERT(index < m_ListsCount);
|
|
block->PrevFree() = VMA_NULL;
|
|
block->NextFree() = m_FreeList[index];
|
|
m_FreeList[index] = block;
|
|
if (block->NextFree() != VMA_NULL)
|
|
block->NextFree()->PrevFree() = block;
|
|
else
|
|
{
|
|
m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex;
|
|
m_IsFreeBitmap |= 1UL << memClass;
|
|
}
|
|
++m_BlocksFreeCount;
|
|
m_BlocksFreeSize += block->size;
|
|
}
|
|
|
|
void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev)
|
|
{
|
|
VMA_ASSERT(block->prevPhysical == prev && "Cannot merge separate physical regions!");
|
|
VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!");
|
|
|
|
block->offset = prev->offset;
|
|
block->size += prev->size;
|
|
block->prevPhysical = prev->prevPhysical;
|
|
if (block->prevPhysical)
|
|
block->prevPhysical->nextPhysical = block;
|
|
m_BlockAllocator.Free(prev);
|
|
}
|
|
|
|
VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const
|
|
{
|
|
uint8_t memoryClass = SizeToMemoryClass(size);
|
|
uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass));
|
|
if (!innerFreeMap)
|
|
{
|
|
// Check higher levels for available blocks
|
|
uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1));
|
|
if (!freeMap)
|
|
return VMA_NULL; // No more memory available
|
|
|
|
// Find lowest free region
|
|
memoryClass = VMA_BITSCAN_LSB(freeMap);
|
|
innerFreeMap = m_InnerIsFreeBitmap[memoryClass];
|
|
VMA_ASSERT(innerFreeMap != 0);
|
|
}
|
|
// Find lowest free subregion
|
|
listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap));
|
|
VMA_ASSERT(m_FreeList[listIndex]);
|
|
return m_FreeList[listIndex];
|
|
}
|
|
|
|
bool VmaBlockMetadata_TLSF::CheckBlock(
|
|
Block& block,
|
|
uint32_t listIndex,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(block.IsFree() && "Block is already taken!");
|
|
|
|
VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment);
|
|
if (block.size < allocSize + alignedOffset - block.offset)
|
|
return false;
|
|
|
|
// Check for granularity conflicts
|
|
if (!IsVirtual() &&
|
|
m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType))
|
|
return false;
|
|
|
|
// Alloc successful
|
|
pAllocationRequest->type = VmaAllocationRequestType::TLSF;
|
|
pAllocationRequest->allocHandle = (VmaAllocHandle)█
|
|
pAllocationRequest->size = allocSize - GetDebugMargin();
|
|
pAllocationRequest->customData = (void*)allocType;
|
|
pAllocationRequest->algorithmData = alignedOffset;
|
|
|
|
// Place block at the start of list if it's normal block
|
|
if (listIndex != m_ListsCount && block.PrevFree())
|
|
{
|
|
block.PrevFree()->NextFree() = block.NextFree();
|
|
if (block.NextFree())
|
|
block.NextFree()->PrevFree() = block.PrevFree();
|
|
block.PrevFree() = VMA_NULL;
|
|
block.NextFree() = m_FreeList[listIndex];
|
|
m_FreeList[listIndex] = █
|
|
if (block.NextFree())
|
|
block.NextFree()->PrevFree() = █
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
|
|
#endif // _VMA_BLOCK_METADATA_TLSF
|
|
|
|
#ifndef _VMA_BLOCK_VECTOR
|
|
/*
|
|
Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
|
|
Vulkan memory type.
|
|
|
|
Synchronized internally with a mutex.
|
|
*/
|
|
class VmaBlockVector
|
|
{
|
|
friend struct VmaDefragmentationContext_T;
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockVector)
|
|
public:
|
|
VmaBlockVector(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hParentPool,
|
|
uint32_t memoryTypeIndex,
|
|
VkDeviceSize preferredBlockSize,
|
|
size_t minBlockCount,
|
|
size_t maxBlockCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
bool explicitBlockSize,
|
|
uint32_t algorithm,
|
|
float priority,
|
|
VkDeviceSize minAllocationAlignment,
|
|
void* pMemoryAllocateNext);
|
|
~VmaBlockVector();
|
|
|
|
VmaAllocator GetAllocator() const { return m_hAllocator; }
|
|
VmaPool GetParentPool() const { return m_hParentPool; }
|
|
bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }
|
|
uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
|
|
VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
|
|
VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
|
|
uint32_t GetAlgorithm() const { return m_Algorithm; }
|
|
bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; }
|
|
float GetPriority() const { return m_Priority; }
|
|
const void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; }
|
|
// To be used only while the m_Mutex is locked. Used during defragmentation.
|
|
size_t GetBlockCount() const { return m_Blocks.size(); }
|
|
// To be used only while the m_Mutex is locked. Used during defragmentation.
|
|
VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
|
|
VMA_RW_MUTEX &GetMutex() { return m_Mutex; }
|
|
|
|
VkResult CreateMinBlocks();
|
|
void AddStatistics(VmaStatistics& inoutStats);
|
|
void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
|
|
bool IsEmpty();
|
|
bool IsCorruptionDetectionEnabled() const;
|
|
|
|
VkResult Allocate(
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations);
|
|
|
|
void Free(const VmaAllocation hAllocation);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaJsonWriter& json);
|
|
#endif
|
|
|
|
VkResult CheckCorruption();
|
|
|
|
private:
|
|
const VmaAllocator m_hAllocator;
|
|
const VmaPool m_hParentPool;
|
|
const uint32_t m_MemoryTypeIndex;
|
|
const VkDeviceSize m_PreferredBlockSize;
|
|
const size_t m_MinBlockCount;
|
|
const size_t m_MaxBlockCount;
|
|
const VkDeviceSize m_BufferImageGranularity;
|
|
const bool m_ExplicitBlockSize;
|
|
const uint32_t m_Algorithm;
|
|
const float m_Priority;
|
|
const VkDeviceSize m_MinAllocationAlignment;
|
|
|
|
void* const m_pMemoryAllocateNext;
|
|
VMA_RW_MUTEX m_Mutex;
|
|
// Incrementally sorted by sumFreeSize, ascending.
|
|
VmaVector<VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*>> m_Blocks;
|
|
uint32_t m_NextBlockId;
|
|
bool m_IncrementalSort = true;
|
|
|
|
void SetIncrementalSort(bool val) { m_IncrementalSort = val; }
|
|
|
|
VkDeviceSize CalcMaxBlockSize() const;
|
|
// Finds and removes given block from vector.
|
|
void Remove(VmaDeviceMemoryBlock* pBlock);
|
|
// Performs single step in sorting m_Blocks. They may not be fully sorted
|
|
// after this call.
|
|
void IncrementallySortBlocks();
|
|
void SortByFreeSize();
|
|
|
|
VkResult AllocatePage(
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation);
|
|
|
|
VkResult AllocateFromBlock(
|
|
VmaDeviceMemoryBlock* pBlock,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
VmaAllocationCreateFlags allocFlags,
|
|
void* pUserData,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t strategy,
|
|
VmaAllocation* pAllocation);
|
|
|
|
VkResult CommitAllocationRequest(
|
|
VmaAllocationRequest& allocRequest,
|
|
VmaDeviceMemoryBlock* pBlock,
|
|
VkDeviceSize alignment,
|
|
VmaAllocationCreateFlags allocFlags,
|
|
void* pUserData,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation);
|
|
|
|
VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
|
|
bool HasEmptyBlock();
|
|
};
|
|
#endif // _VMA_BLOCK_VECTOR
|
|
|
|
#ifndef _VMA_DEFRAGMENTATION_CONTEXT
|
|
struct VmaDefragmentationContext_T
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaDefragmentationContext_T)
|
|
public:
|
|
VmaDefragmentationContext_T(
|
|
VmaAllocator hAllocator,
|
|
const VmaDefragmentationInfo& info);
|
|
~VmaDefragmentationContext_T();
|
|
|
|
void GetStats(VmaDefragmentationStats& outStats) { outStats = m_GlobalStats; }
|
|
|
|
VkResult DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo);
|
|
VkResult DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo);
|
|
|
|
private:
|
|
// Max number of allocations to ignore due to size constraints before ending single pass
|
|
static const uint8_t MAX_ALLOCS_TO_IGNORE = 16;
|
|
enum class CounterStatus { Pass, Ignore, End };
|
|
|
|
struct FragmentedBlock
|
|
{
|
|
uint32_t data;
|
|
VmaDeviceMemoryBlock* block;
|
|
};
|
|
struct StateBalanced
|
|
{
|
|
VkDeviceSize avgFreeSize = 0;
|
|
VkDeviceSize avgAllocSize = UINT64_MAX;
|
|
};
|
|
struct StateExtensive
|
|
{
|
|
enum class Operation : uint8_t
|
|
{
|
|
FindFreeBlockBuffer, FindFreeBlockTexture, FindFreeBlockAll,
|
|
MoveBuffers, MoveTextures, MoveAll,
|
|
Cleanup, Done
|
|
};
|
|
|
|
Operation operation = Operation::FindFreeBlockTexture;
|
|
size_t firstFreeBlock = SIZE_MAX;
|
|
};
|
|
struct MoveAllocationData
|
|
{
|
|
VkDeviceSize size;
|
|
VkDeviceSize alignment;
|
|
VmaSuballocationType type;
|
|
VmaAllocationCreateFlags flags;
|
|
VmaDefragmentationMove move = {};
|
|
};
|
|
|
|
const VkDeviceSize m_MaxPassBytes;
|
|
const uint32_t m_MaxPassAllocations;
|
|
const PFN_vmaCheckDefragmentationBreakFunction m_BreakCallback;
|
|
void* m_BreakCallbackUserData;
|
|
|
|
VmaStlAllocator<VmaDefragmentationMove> m_MoveAllocator;
|
|
VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove>> m_Moves;
|
|
|
|
uint8_t m_IgnoredAllocs = 0;
|
|
uint32_t m_Algorithm;
|
|
uint32_t m_BlockVectorCount;
|
|
VmaBlockVector* m_PoolBlockVector;
|
|
VmaBlockVector** m_pBlockVectors;
|
|
size_t m_ImmovableBlockCount = 0;
|
|
VmaDefragmentationStats m_GlobalStats = { 0 };
|
|
VmaDefragmentationStats m_PassStats = { 0 };
|
|
void* m_AlgorithmState = VMA_NULL;
|
|
|
|
static MoveAllocationData GetMoveData(VmaAllocHandle handle, VmaBlockMetadata* metadata);
|
|
CounterStatus CheckCounters(VkDeviceSize bytes);
|
|
bool IncrementCounters(VkDeviceSize bytes);
|
|
bool ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block);
|
|
bool AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector);
|
|
|
|
bool ComputeDefragmentation(VmaBlockVector& vector, size_t index);
|
|
bool ComputeDefragmentation_Fast(VmaBlockVector& vector);
|
|
bool ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update);
|
|
bool ComputeDefragmentation_Full(VmaBlockVector& vector);
|
|
bool ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index);
|
|
|
|
void UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state);
|
|
bool MoveDataToFreeBlocks(VmaSuballocationType currentType,
|
|
VmaBlockVector& vector, size_t firstFreeBlock,
|
|
bool& texturePresent, bool& bufferPresent, bool& otherPresent);
|
|
};
|
|
#endif // _VMA_DEFRAGMENTATION_CONTEXT
|
|
|
|
#ifndef _VMA_POOL_T
|
|
struct VmaPool_T
|
|
{
|
|
friend struct VmaPoolListItemTraits;
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaPool_T)
|
|
public:
|
|
VmaBlockVector m_BlockVector;
|
|
VmaDedicatedAllocationList m_DedicatedAllocations;
|
|
|
|
VmaPool_T(
|
|
VmaAllocator hAllocator,
|
|
const VmaPoolCreateInfo& createInfo,
|
|
VkDeviceSize preferredBlockSize);
|
|
~VmaPool_T();
|
|
|
|
uint32_t GetId() const { return m_Id; }
|
|
void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
|
|
|
|
const char* GetName() const { return m_Name; }
|
|
void SetName(const char* pName);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
//void PrintDetailedMap(class VmaStringBuilder& sb);
|
|
#endif
|
|
|
|
private:
|
|
uint32_t m_Id;
|
|
char* m_Name;
|
|
VmaPool_T* m_PrevPool = VMA_NULL;
|
|
VmaPool_T* m_NextPool = VMA_NULL;
|
|
};
|
|
|
|
struct VmaPoolListItemTraits
|
|
{
|
|
typedef VmaPool_T ItemType;
|
|
|
|
static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; }
|
|
static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; }
|
|
static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; }
|
|
static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; }
|
|
};
|
|
#endif // _VMA_POOL_T
|
|
|
|
#ifndef _VMA_CURRENT_BUDGET_DATA
|
|
struct VmaCurrentBudgetData
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaCurrentBudgetData)
|
|
public:
|
|
|
|
VMA_ATOMIC_UINT32 m_BlockCount[VK_MAX_MEMORY_HEAPS];
|
|
VMA_ATOMIC_UINT32 m_AllocationCount[VK_MAX_MEMORY_HEAPS];
|
|
VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];
|
|
VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;
|
|
VMA_RW_MUTEX m_BudgetMutex;
|
|
uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];
|
|
uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];
|
|
uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];
|
|
#endif // VMA_MEMORY_BUDGET
|
|
|
|
VmaCurrentBudgetData();
|
|
|
|
void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
|
|
void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
|
|
};
|
|
|
|
#ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
|
|
VmaCurrentBudgetData::VmaCurrentBudgetData()
|
|
{
|
|
for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)
|
|
{
|
|
m_BlockCount[heapIndex] = 0;
|
|
m_AllocationCount[heapIndex] = 0;
|
|
m_BlockBytes[heapIndex] = 0;
|
|
m_AllocationBytes[heapIndex] = 0;
|
|
#if VMA_MEMORY_BUDGET
|
|
m_VulkanUsage[heapIndex] = 0;
|
|
m_VulkanBudget[heapIndex] = 0;
|
|
m_BlockBytesAtBudgetFetch[heapIndex] = 0;
|
|
#endif
|
|
}
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
m_OperationsSinceBudgetFetch = 0;
|
|
#endif
|
|
}
|
|
|
|
void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
|
|
{
|
|
m_AllocationBytes[heapIndex] += allocationSize;
|
|
++m_AllocationCount[heapIndex];
|
|
#if VMA_MEMORY_BUDGET
|
|
++m_OperationsSinceBudgetFetch;
|
|
#endif
|
|
}
|
|
|
|
void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
|
|
{
|
|
VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize);
|
|
m_AllocationBytes[heapIndex] -= allocationSize;
|
|
VMA_ASSERT(m_AllocationCount[heapIndex] > 0);
|
|
--m_AllocationCount[heapIndex];
|
|
#if VMA_MEMORY_BUDGET
|
|
++m_OperationsSinceBudgetFetch;
|
|
#endif
|
|
}
|
|
#endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
|
|
#endif // _VMA_CURRENT_BUDGET_DATA
|
|
|
|
#ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR
|
|
/*
|
|
Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
|
|
*/
|
|
class VmaAllocationObjectAllocator
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocationObjectAllocator)
|
|
public:
|
|
VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks)
|
|
: m_Allocator(pAllocationCallbacks, 1024) {}
|
|
|
|
template<typename... Types> VmaAllocation Allocate(Types&&... args);
|
|
void Free(VmaAllocation hAlloc);
|
|
|
|
private:
|
|
VMA_MUTEX m_Mutex;
|
|
VmaPoolAllocator<VmaAllocation_T> m_Allocator;
|
|
};
|
|
|
|
template<typename... Types>
|
|
VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args)
|
|
{
|
|
VmaMutexLock mutexLock(m_Mutex);
|
|
return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...);
|
|
}
|
|
|
|
void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
|
|
{
|
|
VmaMutexLock mutexLock(m_Mutex);
|
|
m_Allocator.Free(hAlloc);
|
|
}
|
|
#endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR
|
|
|
|
#ifndef _VMA_VIRTUAL_BLOCK_T
|
|
struct VmaVirtualBlock_T
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaVirtualBlock_T)
|
|
public:
|
|
const bool m_AllocationCallbacksSpecified;
|
|
const VkAllocationCallbacks m_AllocationCallbacks;
|
|
|
|
VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo);
|
|
~VmaVirtualBlock_T();
|
|
|
|
VkResult Init() { return VK_SUCCESS; }
|
|
bool IsEmpty() const { return m_Metadata->IsEmpty(); }
|
|
void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); }
|
|
void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); }
|
|
void Clear() { m_Metadata->Clear(); }
|
|
|
|
const VkAllocationCallbacks* GetAllocationCallbacks() const;
|
|
void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo);
|
|
VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
|
|
VkDeviceSize* outOffset);
|
|
void GetStatistics(VmaStatistics& outStats) const;
|
|
void CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const;
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const;
|
|
#endif
|
|
|
|
private:
|
|
VmaBlockMetadata* m_Metadata;
|
|
};
|
|
|
|
#ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
|
|
VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo)
|
|
: m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL),
|
|
m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks)
|
|
{
|
|
const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK;
|
|
switch (algorithm)
|
|
{
|
|
case 0:
|
|
m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
|
|
break;
|
|
case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT:
|
|
m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
|
|
}
|
|
|
|
m_Metadata->Init(createInfo.size);
|
|
}
|
|
|
|
VmaVirtualBlock_T::~VmaVirtualBlock_T()
|
|
{
|
|
// Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT
|
|
// to receive the list of the unfreed allocations.
|
|
if (!m_Metadata->IsEmpty())
|
|
m_Metadata->DebugLogAllAllocations();
|
|
// This is the most important assert in the entire library.
|
|
// Hitting it means you have some memory leak - unreleased virtual allocations.
|
|
VMA_ASSERT_LEAK(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!");
|
|
|
|
vma_delete(GetAllocationCallbacks(), m_Metadata);
|
|
}
|
|
|
|
const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const
|
|
{
|
|
return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
|
|
}
|
|
|
|
void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo)
|
|
{
|
|
m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo);
|
|
}
|
|
|
|
VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
|
|
VkDeviceSize* outOffset)
|
|
{
|
|
VmaAllocationRequest request = {};
|
|
if (m_Metadata->CreateAllocationRequest(
|
|
createInfo.size, // allocSize
|
|
VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment
|
|
(createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant
|
|
createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy
|
|
&request))
|
|
{
|
|
m_Metadata->Alloc(request,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant
|
|
createInfo.pUserData);
|
|
outAllocation = (VmaVirtualAllocation)request.allocHandle;
|
|
if(outOffset)
|
|
*outOffset = m_Metadata->GetAllocationOffset(request.allocHandle);
|
|
return VK_SUCCESS;
|
|
}
|
|
outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE;
|
|
if (outOffset)
|
|
*outOffset = UINT64_MAX;
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
void VmaVirtualBlock_T::GetStatistics(VmaStatistics& outStats) const
|
|
{
|
|
VmaClearStatistics(outStats);
|
|
m_Metadata->AddStatistics(outStats);
|
|
}
|
|
|
|
void VmaVirtualBlock_T::CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const
|
|
{
|
|
VmaClearDetailedStatistics(outStats);
|
|
m_Metadata->AddDetailedStatistics(outStats);
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const
|
|
{
|
|
VmaJsonWriter json(GetAllocationCallbacks(), sb);
|
|
json.BeginObject();
|
|
|
|
VmaDetailedStatistics stats;
|
|
CalculateDetailedStatistics(stats);
|
|
|
|
json.WriteString("Stats");
|
|
VmaPrintDetailedStatistics(json, stats);
|
|
|
|
if (detailedMap)
|
|
{
|
|
json.WriteString("Details");
|
|
json.BeginObject();
|
|
m_Metadata->PrintDetailedMap(json);
|
|
json.EndObject();
|
|
}
|
|
|
|
json.EndObject();
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
#endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
|
|
#endif // _VMA_VIRTUAL_BLOCK_T
|
|
|
|
|
|
// Main allocator object.
|
|
struct VmaAllocator_T
|
|
{
|
|
VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocator_T)
|
|
public:
|
|
bool m_UseMutex;
|
|
uint32_t m_VulkanApiVersion;
|
|
bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
|
|
bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
|
|
bool m_UseExtMemoryBudget;
|
|
bool m_UseAmdDeviceCoherentMemory;
|
|
bool m_UseKhrBufferDeviceAddress;
|
|
bool m_UseExtMemoryPriority;
|
|
bool m_UseKhrMaintenance4;
|
|
VkDevice m_hDevice;
|
|
VkInstance m_hInstance;
|
|
bool m_AllocationCallbacksSpecified;
|
|
VkAllocationCallbacks m_AllocationCallbacks;
|
|
VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
|
|
VmaAllocationObjectAllocator m_AllocationObjectAllocator;
|
|
|
|
// Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.
|
|
uint32_t m_HeapSizeLimitMask;
|
|
|
|
VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
|
|
VkPhysicalDeviceMemoryProperties m_MemProps;
|
|
|
|
// Default pools.
|
|
VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
|
|
VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES];
|
|
|
|
VmaCurrentBudgetData m_Budget;
|
|
VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects.
|
|
|
|
VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
|
|
VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
|
|
~VmaAllocator_T();
|
|
|
|
const VkAllocationCallbacks* GetAllocationCallbacks() const
|
|
{
|
|
return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
|
|
}
|
|
const VmaVulkanFunctions& GetVulkanFunctions() const
|
|
{
|
|
return m_VulkanFunctions;
|
|
}
|
|
|
|
VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; }
|
|
|
|
VkDeviceSize GetBufferImageGranularity() const
|
|
{
|
|
return VMA_MAX(
|
|
static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
|
|
m_PhysicalDeviceProperties.limits.bufferImageGranularity);
|
|
}
|
|
|
|
uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
|
|
uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
|
|
|
|
uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
|
|
{
|
|
VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
|
|
return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
|
|
}
|
|
// True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
|
|
bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
|
|
{
|
|
return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
}
|
|
// Minimum alignment for all allocations in specific memory type.
|
|
VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
|
|
{
|
|
return IsMemoryTypeNonCoherent(memTypeIndex) ?
|
|
VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
|
|
(VkDeviceSize)VMA_MIN_ALIGNMENT;
|
|
}
|
|
|
|
bool IsIntegratedGpu() const
|
|
{
|
|
return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
|
|
}
|
|
|
|
uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; }
|
|
|
|
void GetBufferMemoryRequirements(
|
|
VkBuffer hBuffer,
|
|
VkMemoryRequirements& memReq,
|
|
bool& requiresDedicatedAllocation,
|
|
bool& prefersDedicatedAllocation) const;
|
|
void GetImageMemoryRequirements(
|
|
VkImage hImage,
|
|
VkMemoryRequirements& memReq,
|
|
bool& requiresDedicatedAllocation,
|
|
bool& prefersDedicatedAllocation) const;
|
|
VkResult FindMemoryTypeIndex(
|
|
uint32_t memoryTypeBits,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown.
|
|
uint32_t* pMemoryTypeIndex) const;
|
|
|
|
// Main allocation function.
|
|
VkResult AllocateMemory(
|
|
const VkMemoryRequirements& vkMemReq,
|
|
bool requiresDedicatedAllocation,
|
|
bool prefersDedicatedAllocation,
|
|
VkBuffer dedicatedBuffer,
|
|
VkImage dedicatedImage,
|
|
VkFlags dedicatedBufferImageUsage, // UINT32_MAX if unknown.
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations);
|
|
|
|
// Main deallocation function.
|
|
void FreeMemory(
|
|
size_t allocationCount,
|
|
const VmaAllocation* pAllocations);
|
|
|
|
void CalculateStatistics(VmaTotalStatistics* pStats);
|
|
|
|
void GetHeapBudgets(
|
|
VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaJsonWriter& json);
|
|
#endif
|
|
|
|
void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
|
|
void GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo);
|
|
|
|
VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
|
|
void DestroyPool(VmaPool pool);
|
|
void GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats);
|
|
void CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats);
|
|
|
|
void SetCurrentFrameIndex(uint32_t frameIndex);
|
|
uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
|
|
|
|
VkResult CheckPoolCorruption(VmaPool hPool);
|
|
VkResult CheckCorruption(uint32_t memoryTypeBits);
|
|
|
|
// Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
|
|
VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
|
|
// Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
|
|
void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
|
|
// Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
|
|
VkResult BindVulkanBuffer(
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset,
|
|
VkBuffer buffer,
|
|
const void* pNext);
|
|
// Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
|
|
VkResult BindVulkanImage(
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset,
|
|
VkImage image,
|
|
const void* pNext);
|
|
|
|
VkResult Map(VmaAllocation hAllocation, void** ppData);
|
|
void Unmap(VmaAllocation hAllocation);
|
|
|
|
VkResult BindBufferMemory(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer hBuffer,
|
|
const void* pNext);
|
|
VkResult BindImageMemory(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage hImage,
|
|
const void* pNext);
|
|
|
|
VkResult FlushOrInvalidateAllocation(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize offset, VkDeviceSize size,
|
|
VMA_CACHE_OPERATION op);
|
|
VkResult FlushOrInvalidateAllocations(
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* allocations,
|
|
const VkDeviceSize* offsets, const VkDeviceSize* sizes,
|
|
VMA_CACHE_OPERATION op);
|
|
|
|
VkResult CopyMemoryToAllocation(
|
|
const void* pSrcHostPointer,
|
|
VmaAllocation dstAllocation,
|
|
VkDeviceSize dstAllocationLocalOffset,
|
|
VkDeviceSize size);
|
|
VkResult CopyAllocationToMemory(
|
|
VmaAllocation srcAllocation,
|
|
VkDeviceSize srcAllocationLocalOffset,
|
|
void* pDstHostPointer,
|
|
VkDeviceSize size);
|
|
|
|
void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
|
|
|
|
/*
|
|
Returns bit mask of memory types that can support defragmentation on GPU as
|
|
they support creation of required buffer for copy operations.
|
|
*/
|
|
uint32_t GetGpuDefragmentationMemoryTypeBits();
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const
|
|
{
|
|
return m_TypeExternalMemoryHandleTypes[memTypeIndex];
|
|
}
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
private:
|
|
VkDeviceSize m_PreferredLargeHeapBlockSize;
|
|
|
|
VkPhysicalDevice m_PhysicalDevice;
|
|
VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
|
|
VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
|
|
#if VMA_EXTERNAL_MEMORY
|
|
VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES];
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
VMA_RW_MUTEX m_PoolsMutex;
|
|
typedef VmaIntrusiveLinkedList<VmaPoolListItemTraits> PoolList;
|
|
// Protected by m_PoolsMutex.
|
|
PoolList m_Pools;
|
|
uint32_t m_NextPoolId;
|
|
|
|
VmaVulkanFunctions m_VulkanFunctions;
|
|
|
|
// Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types.
|
|
uint32_t m_GlobalMemoryTypeBits;
|
|
|
|
void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
|
|
|
|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
void ImportVulkanFunctions_Static();
|
|
#endif
|
|
|
|
void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions);
|
|
|
|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
|
|
void ImportVulkanFunctions_Dynamic();
|
|
#endif
|
|
|
|
void ValidateVulkanFunctions();
|
|
|
|
VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
|
|
|
|
VkResult AllocateMemoryOfType(
|
|
VmaPool pool,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
bool dedicatedPreferred,
|
|
VkBuffer dedicatedBuffer,
|
|
VkImage dedicatedImage,
|
|
VkFlags dedicatedBufferImageUsage,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
uint32_t memTypeIndex,
|
|
VmaSuballocationType suballocType,
|
|
VmaDedicatedAllocationList& dedicatedAllocations,
|
|
VmaBlockVector& blockVector,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations);
|
|
|
|
// Helper function only to be used inside AllocateDedicatedMemory.
|
|
VkResult AllocateDedicatedMemoryPage(
|
|
VmaPool pool,
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t memTypeIndex,
|
|
const VkMemoryAllocateInfo& allocInfo,
|
|
bool map,
|
|
bool isUserDataString,
|
|
bool isMappingAllowed,
|
|
void* pUserData,
|
|
VmaAllocation* pAllocation);
|
|
|
|
// Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
|
|
VkResult AllocateDedicatedMemory(
|
|
VmaPool pool,
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
VmaDedicatedAllocationList& dedicatedAllocations,
|
|
uint32_t memTypeIndex,
|
|
bool map,
|
|
bool isUserDataString,
|
|
bool isMappingAllowed,
|
|
bool canAliasMemory,
|
|
void* pUserData,
|
|
float priority,
|
|
VkBuffer dedicatedBuffer,
|
|
VkImage dedicatedImage,
|
|
VkFlags dedicatedBufferImageUsage,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations,
|
|
const void* pNextChain = VMA_NULL);
|
|
|
|
void FreeDedicatedMemory(const VmaAllocation allocation);
|
|
|
|
VkResult CalcMemTypeParams(
|
|
VmaAllocationCreateInfo& outCreateInfo,
|
|
uint32_t memTypeIndex,
|
|
VkDeviceSize size,
|
|
size_t allocationCount);
|
|
VkResult CalcAllocationParams(
|
|
VmaAllocationCreateInfo& outCreateInfo,
|
|
bool dedicatedRequired,
|
|
bool dedicatedPreferred);
|
|
|
|
/*
|
|
Calculates and returns bit mask of memory types that can support defragmentation
|
|
on GPU as they support creation of required buffer for copy operations.
|
|
*/
|
|
uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
|
|
uint32_t CalculateGlobalMemoryTypeBits() const;
|
|
|
|
bool GetFlushOrInvalidateRange(
|
|
VmaAllocation allocation,
|
|
VkDeviceSize offset, VkDeviceSize size,
|
|
VkMappedMemoryRange& outRange) const;
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
void UpdateVulkanBudget();
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
};
|
|
|
|
|
|
#ifndef _VMA_MEMORY_FUNCTIONS
|
|
static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
|
|
{
|
|
return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
|
|
}
|
|
|
|
static void VmaFree(VmaAllocator hAllocator, void* ptr)
|
|
{
|
|
VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocate(VmaAllocator hAllocator)
|
|
{
|
|
return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
|
|
{
|
|
return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete(VmaAllocator hAllocator, T* ptr)
|
|
{
|
|
if(ptr != VMA_NULL)
|
|
{
|
|
ptr->~T();
|
|
VmaFree(hAllocator, ptr);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
|
|
{
|
|
if(ptr != VMA_NULL)
|
|
{
|
|
for(size_t i = count; i--; )
|
|
ptr[i].~T();
|
|
VmaFree(hAllocator, ptr);
|
|
}
|
|
}
|
|
#endif // _VMA_MEMORY_FUNCTIONS
|
|
|
|
#ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
|
|
VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator)
|
|
: m_pMetadata(VMA_NULL),
|
|
m_MemoryTypeIndex(UINT32_MAX),
|
|
m_Id(0),
|
|
m_hMemory(VK_NULL_HANDLE),
|
|
m_MapCount(0),
|
|
m_pMappedData(VMA_NULL) {}
|
|
|
|
VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock()
|
|
{
|
|
VMA_ASSERT_LEAK(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
|
|
VMA_ASSERT_LEAK(m_hMemory == VK_NULL_HANDLE);
|
|
}
|
|
|
|
void VmaDeviceMemoryBlock::Init(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hParentPool,
|
|
uint32_t newMemoryTypeIndex,
|
|
VkDeviceMemory newMemory,
|
|
VkDeviceSize newSize,
|
|
uint32_t id,
|
|
uint32_t algorithm,
|
|
VkDeviceSize bufferImageGranularity)
|
|
{
|
|
VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
|
|
|
|
m_hParentPool = hParentPool;
|
|
m_MemoryTypeIndex = newMemoryTypeIndex;
|
|
m_Id = id;
|
|
m_hMemory = newMemory;
|
|
|
|
switch (algorithm)
|
|
{
|
|
case 0:
|
|
m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
|
|
bufferImageGranularity, false); // isVirtual
|
|
break;
|
|
case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
|
|
m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(),
|
|
bufferImageGranularity, false); // isVirtual
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
|
|
bufferImageGranularity, false); // isVirtual
|
|
}
|
|
m_pMetadata->Init(newSize);
|
|
}
|
|
|
|
void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
|
|
{
|
|
// Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT
|
|
// to receive the list of the unfreed allocations.
|
|
if (!m_pMetadata->IsEmpty())
|
|
m_pMetadata->DebugLogAllAllocations();
|
|
// This is the most important assert in the entire library.
|
|
// Hitting it means you have some memory leak - unreleased VmaAllocation objects.
|
|
VMA_ASSERT_LEAK(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
|
|
|
|
VMA_ASSERT_LEAK(m_hMemory != VK_NULL_HANDLE);
|
|
allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
|
|
m_hMemory = VK_NULL_HANDLE;
|
|
|
|
vma_delete(allocator, m_pMetadata);
|
|
m_pMetadata = VMA_NULL;
|
|
}
|
|
|
|
void VmaDeviceMemoryBlock::PostAlloc(VmaAllocator hAllocator)
|
|
{
|
|
VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
|
|
m_MappingHysteresis.PostAlloc();
|
|
}
|
|
|
|
void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator)
|
|
{
|
|
VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
|
|
if(m_MappingHysteresis.PostFree())
|
|
{
|
|
VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0);
|
|
if (m_MapCount == 0)
|
|
{
|
|
m_pMappedData = VMA_NULL;
|
|
(*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VmaDeviceMemoryBlock::Validate() const
|
|
{
|
|
VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
|
|
(m_pMetadata->GetSize() != 0));
|
|
|
|
return m_pMetadata->Validate();
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
|
|
{
|
|
void* pData = VMA_NULL;
|
|
VkResult res = Map(hAllocator, 1, &pData);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
res = m_pMetadata->CheckCorruption(pData);
|
|
|
|
Unmap(hAllocator, 1);
|
|
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
|
|
{
|
|
if (count == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
|
|
const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
|
|
if (oldTotalMapCount != 0)
|
|
{
|
|
VMA_ASSERT(m_pMappedData != VMA_NULL);
|
|
m_MappingHysteresis.PostMap();
|
|
m_MapCount += count;
|
|
if (ppData != VMA_NULL)
|
|
{
|
|
*ppData = m_pMappedData;
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
|
|
hAllocator->m_hDevice,
|
|
m_hMemory,
|
|
0, // offset
|
|
VK_WHOLE_SIZE,
|
|
0, // flags
|
|
&m_pMappedData);
|
|
if (result == VK_SUCCESS)
|
|
{
|
|
VMA_ASSERT(m_pMappedData != VMA_NULL);
|
|
m_MappingHysteresis.PostMap();
|
|
m_MapCount = count;
|
|
if (ppData != VMA_NULL)
|
|
{
|
|
*ppData = m_pMappedData;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
|
|
{
|
|
if (count == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
|
|
if (m_MapCount >= count)
|
|
{
|
|
m_MapCount -= count;
|
|
const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
|
|
if (totalMapCount == 0)
|
|
{
|
|
m_pMappedData = VMA_NULL;
|
|
(*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
|
|
}
|
|
m_MappingHysteresis.PostUnmap();
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
|
|
}
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
|
|
{
|
|
VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
|
|
|
|
void* pData;
|
|
VkResult res = Map(hAllocator, 1, &pData);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
VmaWriteMagicValue(pData, allocOffset + allocSize);
|
|
|
|
Unmap(hAllocator, 1);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
|
|
{
|
|
VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
|
|
|
|
void* pData;
|
|
VkResult res = Map(hAllocator, 1, &pData);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
if (!VmaValidateMagicValue(pData, allocOffset + allocSize))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
|
|
}
|
|
|
|
Unmap(hAllocator, 1);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::BindBufferMemory(
|
|
const VmaAllocator hAllocator,
|
|
const VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer hBuffer,
|
|
const void* pNext)
|
|
{
|
|
VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
|
|
hAllocation->GetBlock() == this);
|
|
VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
|
|
"Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
|
|
const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
|
|
// This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
|
|
VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
|
|
return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::BindImageMemory(
|
|
const VmaAllocator hAllocator,
|
|
const VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage hImage,
|
|
const void* pNext)
|
|
{
|
|
VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
|
|
hAllocation->GetBlock() == this);
|
|
VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
|
|
"Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
|
|
const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
|
|
// This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
|
|
VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
|
|
return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
|
|
}
|
|
#endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
|
|
|
|
#ifndef _VMA_ALLOCATION_T_FUNCTIONS
|
|
VmaAllocation_T::VmaAllocation_T(bool mappingAllowed)
|
|
: m_Alignment{ 1 },
|
|
m_Size{ 0 },
|
|
m_pUserData{ VMA_NULL },
|
|
m_pName{ VMA_NULL },
|
|
m_MemoryTypeIndex{ 0 },
|
|
m_Type{ (uint8_t)ALLOCATION_TYPE_NONE },
|
|
m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN },
|
|
m_MapCount{ 0 },
|
|
m_Flags{ 0 }
|
|
{
|
|
if(mappingAllowed)
|
|
m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
m_BufferImageUsage = 0;
|
|
#endif
|
|
}
|
|
|
|
VmaAllocation_T::~VmaAllocation_T()
|
|
{
|
|
VMA_ASSERT_LEAK(m_MapCount == 0 && "Allocation was not unmapped before destruction.");
|
|
|
|
// Check if owned string was freed.
|
|
VMA_ASSERT(m_pName == VMA_NULL);
|
|
}
|
|
|
|
void VmaAllocation_T::InitBlockAllocation(
|
|
VmaDeviceMemoryBlock* block,
|
|
VmaAllocHandle allocHandle,
|
|
VkDeviceSize alignment,
|
|
VkDeviceSize size,
|
|
uint32_t memoryTypeIndex,
|
|
VmaSuballocationType suballocationType,
|
|
bool mapped)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
VMA_ASSERT(block != VMA_NULL);
|
|
m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
|
|
m_Alignment = alignment;
|
|
m_Size = size;
|
|
m_MemoryTypeIndex = memoryTypeIndex;
|
|
if(mapped)
|
|
{
|
|
VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
|
|
m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
|
|
}
|
|
m_SuballocationType = (uint8_t)suballocationType;
|
|
m_BlockAllocation.m_Block = block;
|
|
m_BlockAllocation.m_AllocHandle = allocHandle;
|
|
}
|
|
|
|
void VmaAllocation_T::InitDedicatedAllocation(
|
|
VmaPool hParentPool,
|
|
uint32_t memoryTypeIndex,
|
|
VkDeviceMemory hMemory,
|
|
VmaSuballocationType suballocationType,
|
|
void* pMappedData,
|
|
VkDeviceSize size)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
VMA_ASSERT(hMemory != VK_NULL_HANDLE);
|
|
m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
|
|
m_Alignment = 0;
|
|
m_Size = size;
|
|
m_MemoryTypeIndex = memoryTypeIndex;
|
|
m_SuballocationType = (uint8_t)suballocationType;
|
|
if(pMappedData != VMA_NULL)
|
|
{
|
|
VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
|
|
m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
|
|
}
|
|
m_DedicatedAllocation.m_hParentPool = hParentPool;
|
|
m_DedicatedAllocation.m_hMemory = hMemory;
|
|
m_DedicatedAllocation.m_pMappedData = pMappedData;
|
|
m_DedicatedAllocation.m_Prev = VMA_NULL;
|
|
m_DedicatedAllocation.m_Next = VMA_NULL;
|
|
}
|
|
|
|
void VmaAllocation_T::SetName(VmaAllocator hAllocator, const char* pName)
|
|
{
|
|
VMA_ASSERT(pName == VMA_NULL || pName != m_pName);
|
|
|
|
FreeName(hAllocator);
|
|
|
|
if (pName != VMA_NULL)
|
|
m_pName = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), pName);
|
|
}
|
|
|
|
uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocation != VMA_NULL);
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK);
|
|
|
|
if (m_MapCount != 0)
|
|
m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount);
|
|
|
|
m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation);
|
|
VMA_SWAP(m_BlockAllocation, allocation->m_BlockAllocation);
|
|
m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, this);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
VMA_SWAP(m_BufferImageUsage, allocation->m_BufferImageUsage);
|
|
#endif
|
|
return m_MapCount;
|
|
}
|
|
|
|
VmaAllocHandle VmaAllocation_T::GetAllocHandle() const
|
|
{
|
|
switch (m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
return m_BlockAllocation.m_AllocHandle;
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
return VK_NULL_HANDLE;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
VkDeviceSize VmaAllocation_T::GetOffset() const
|
|
{
|
|
switch (m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle);
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
return 0;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
VmaPool VmaAllocation_T::GetParentPool() const
|
|
{
|
|
switch (m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
return m_BlockAllocation.m_Block->GetParentPool();
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
return m_DedicatedAllocation.m_hParentPool;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
VkDeviceMemory VmaAllocation_T::GetMemory() const
|
|
{
|
|
switch (m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
return m_BlockAllocation.m_Block->GetDeviceMemory();
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
return m_DedicatedAllocation.m_hMemory;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void* VmaAllocation_T::GetMappedData() const
|
|
{
|
|
switch (m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
if (m_MapCount != 0 || IsPersistentMap())
|
|
{
|
|
void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
|
|
VMA_ASSERT(pBlockData != VMA_NULL);
|
|
return (char*)pBlockData + GetOffset();
|
|
}
|
|
else
|
|
{
|
|
return VMA_NULL;
|
|
}
|
|
break;
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0 || IsPersistentMap()));
|
|
return m_DedicatedAllocation.m_pMappedData;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VMA_NULL;
|
|
}
|
|
}
|
|
|
|
void VmaAllocation_T::BlockAllocMap()
|
|
{
|
|
VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
|
|
VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
|
|
|
|
if (m_MapCount < 0xFF)
|
|
{
|
|
++m_MapCount;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
|
|
}
|
|
}
|
|
|
|
void VmaAllocation_T::BlockAllocUnmap()
|
|
{
|
|
VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
|
|
|
|
if (m_MapCount > 0)
|
|
{
|
|
--m_MapCount;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
|
|
{
|
|
VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
|
|
VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
|
|
|
|
if (m_MapCount != 0 || IsPersistentMap())
|
|
{
|
|
if (m_MapCount < 0xFF)
|
|
{
|
|
VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
|
|
*ppData = m_DedicatedAllocation.m_pMappedData;
|
|
++m_MapCount;
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
|
|
return VK_ERROR_MEMORY_MAP_FAILED;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
|
|
hAllocator->m_hDevice,
|
|
m_DedicatedAllocation.m_hMemory,
|
|
0, // offset
|
|
VK_WHOLE_SIZE,
|
|
0, // flags
|
|
ppData);
|
|
if (result == VK_SUCCESS)
|
|
{
|
|
m_DedicatedAllocation.m_pMappedData = *ppData;
|
|
m_MapCount = 1;
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
|
|
{
|
|
VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
|
|
|
|
if (m_MapCount > 0)
|
|
{
|
|
--m_MapCount;
|
|
if (m_MapCount == 0 && !IsPersistentMap())
|
|
{
|
|
m_DedicatedAllocation.m_pMappedData = VMA_NULL;
|
|
(*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
|
|
hAllocator->m_hDevice,
|
|
m_DedicatedAllocation.m_hMemory);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaAllocation_T::InitBufferImageUsage(uint32_t bufferImageUsage)
|
|
{
|
|
VMA_ASSERT(m_BufferImageUsage == 0);
|
|
m_BufferImageUsage = bufferImageUsage;
|
|
}
|
|
|
|
void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
|
|
{
|
|
json.WriteString("Type");
|
|
json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
|
|
|
|
json.WriteString("Size");
|
|
json.WriteNumber(m_Size);
|
|
json.WriteString("Usage");
|
|
json.WriteNumber(m_BufferImageUsage);
|
|
|
|
if (m_pUserData != VMA_NULL)
|
|
{
|
|
json.WriteString("CustomData");
|
|
json.BeginString();
|
|
json.ContinueString_Pointer(m_pUserData);
|
|
json.EndString();
|
|
}
|
|
if (m_pName != VMA_NULL)
|
|
{
|
|
json.WriteString("Name");
|
|
json.WriteString(m_pName);
|
|
}
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaAllocation_T::FreeName(VmaAllocator hAllocator)
|
|
{
|
|
if(m_pName)
|
|
{
|
|
VmaFreeString(hAllocator->GetAllocationCallbacks(), m_pName);
|
|
m_pName = VMA_NULL;
|
|
}
|
|
}
|
|
#endif // _VMA_ALLOCATION_T_FUNCTIONS
|
|
|
|
#ifndef _VMA_BLOCK_VECTOR_FUNCTIONS
|
|
VmaBlockVector::VmaBlockVector(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hParentPool,
|
|
uint32_t memoryTypeIndex,
|
|
VkDeviceSize preferredBlockSize,
|
|
size_t minBlockCount,
|
|
size_t maxBlockCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
bool explicitBlockSize,
|
|
uint32_t algorithm,
|
|
float priority,
|
|
VkDeviceSize minAllocationAlignment,
|
|
void* pMemoryAllocateNext)
|
|
: m_hAllocator(hAllocator),
|
|
m_hParentPool(hParentPool),
|
|
m_MemoryTypeIndex(memoryTypeIndex),
|
|
m_PreferredBlockSize(preferredBlockSize),
|
|
m_MinBlockCount(minBlockCount),
|
|
m_MaxBlockCount(maxBlockCount),
|
|
m_BufferImageGranularity(bufferImageGranularity),
|
|
m_ExplicitBlockSize(explicitBlockSize),
|
|
m_Algorithm(algorithm),
|
|
m_Priority(priority),
|
|
m_MinAllocationAlignment(minAllocationAlignment),
|
|
m_pMemoryAllocateNext(pMemoryAllocateNext),
|
|
m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
|
|
m_NextBlockId(0) {}
|
|
|
|
VmaBlockVector::~VmaBlockVector()
|
|
{
|
|
for (size_t i = m_Blocks.size(); i--; )
|
|
{
|
|
m_Blocks[i]->Destroy(m_hAllocator);
|
|
vma_delete(m_hAllocator, m_Blocks[i]);
|
|
}
|
|
}
|
|
|
|
VkResult VmaBlockVector::CreateMinBlocks()
|
|
{
|
|
for (size_t i = 0; i < m_MinBlockCount; ++i)
|
|
{
|
|
VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaBlockVector::AddStatistics(VmaStatistics& inoutStats)
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
const size_t blockCount = m_Blocks.size();
|
|
for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pBlock);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
pBlock->m_pMetadata->AddStatistics(inoutStats);
|
|
}
|
|
}
|
|
|
|
void VmaBlockVector::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
const size_t blockCount = m_Blocks.size();
|
|
for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pBlock);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
pBlock->m_pMetadata->AddDetailedStatistics(inoutStats);
|
|
}
|
|
}
|
|
|
|
bool VmaBlockVector::IsEmpty()
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
return m_Blocks.empty();
|
|
}
|
|
|
|
bool VmaBlockVector::IsCorruptionDetectionEnabled() const
|
|
{
|
|
const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
|
return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
|
|
(VMA_DEBUG_MARGIN > 0) &&
|
|
(m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
|
|
(m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
|
|
}
|
|
|
|
VkResult VmaBlockVector::Allocate(
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations)
|
|
{
|
|
size_t allocIndex;
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
alignment = VMA_MAX(alignment, m_MinAllocationAlignment);
|
|
|
|
if (IsCorruptionDetectionEnabled())
|
|
{
|
|
size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
|
|
alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
|
|
}
|
|
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
res = AllocatePage(
|
|
size,
|
|
alignment,
|
|
createInfo,
|
|
suballocType,
|
|
pAllocations + allocIndex);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
// Free all already created allocations.
|
|
while (allocIndex--)
|
|
Free(pAllocations[allocIndex]);
|
|
memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaBlockVector::AllocatePage(
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
|
|
|
|
VkDeviceSize freeMemory;
|
|
{
|
|
const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
|
|
VmaBudget heapBudget = {};
|
|
m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
|
|
freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;
|
|
}
|
|
|
|
const bool canFallbackToDedicated = !HasExplicitBlockSize() &&
|
|
(createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0;
|
|
const bool canCreateNewBlock =
|
|
((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
|
|
(m_Blocks.size() < m_MaxBlockCount) &&
|
|
(freeMemory >= size || !canFallbackToDedicated);
|
|
uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
|
|
|
|
// Upper address can only be used with linear allocator and within single memory block.
|
|
if (isUpperAddress &&
|
|
(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
|
|
{
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
// Early reject: requested allocation size is larger that maximum block size for this block vector.
|
|
if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
// 1. Search existing allocations. Try to allocate.
|
|
if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
|
|
{
|
|
// Use only last block.
|
|
if (!m_Blocks.empty())
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
|
|
VMA_ASSERT(pCurrBlock);
|
|
VkResult res = AllocateFromBlock(
|
|
pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
|
|
if (res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG_FORMAT(" Returned from last block #%" PRIu32, pCurrBlock->GetId());
|
|
IncrementallySortBlocks();
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default
|
|
{
|
|
const bool isHostVisible =
|
|
(m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
|
|
if(isHostVisible)
|
|
{
|
|
const bool isMappingAllowed = (createInfo.flags &
|
|
(VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
|
|
/*
|
|
For non-mappable allocations, check blocks that are not mapped first.
|
|
For mappable allocations, check blocks that are already mapped first.
|
|
This way, having many blocks, we will separate mappable and non-mappable allocations,
|
|
hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc.
|
|
*/
|
|
for(size_t mappingI = 0; mappingI < 2; ++mappingI)
|
|
{
|
|
// Forward order in m_Blocks - prefer blocks with smallest amount of free space.
|
|
for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pCurrBlock);
|
|
const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL;
|
|
if((mappingI == 0) == (isMappingAllowed == isBlockMapped))
|
|
{
|
|
VkResult res = AllocateFromBlock(
|
|
pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
|
|
if (res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId());
|
|
IncrementallySortBlocks();
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Forward order in m_Blocks - prefer blocks with smallest amount of free space.
|
|
for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pCurrBlock);
|
|
VkResult res = AllocateFromBlock(
|
|
pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
|
|
if (res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId());
|
|
IncrementallySortBlocks();
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT
|
|
{
|
|
// Backward order in m_Blocks - prefer blocks with largest amount of free space.
|
|
for (size_t blockIndex = m_Blocks.size(); blockIndex--; )
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pCurrBlock);
|
|
VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
|
|
if (res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId());
|
|
IncrementallySortBlocks();
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2. Try to create new block.
|
|
if (canCreateNewBlock)
|
|
{
|
|
// Calculate optimal size for new block.
|
|
VkDeviceSize newBlockSize = m_PreferredBlockSize;
|
|
uint32_t newBlockSizeShift = 0;
|
|
const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
|
|
|
|
if (!m_ExplicitBlockSize)
|
|
{
|
|
// Allocate 1/8, 1/4, 1/2 as first blocks.
|
|
const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
|
|
for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
|
|
{
|
|
const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
|
|
if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
|
|
{
|
|
newBlockSize = smallerNewBlockSize;
|
|
++newBlockSizeShift;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t newBlockIndex = 0;
|
|
VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
|
|
CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
// Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
|
|
if (!m_ExplicitBlockSize)
|
|
{
|
|
while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
|
|
{
|
|
const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
|
|
if (smallerNewBlockSize >= size)
|
|
{
|
|
newBlockSize = smallerNewBlockSize;
|
|
++newBlockSizeShift;
|
|
res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
|
|
CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (res == VK_SUCCESS)
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
|
|
VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
|
|
|
|
res = AllocateFromBlock(
|
|
pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
|
|
if (res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG_FORMAT(" Created new block #%" PRIu32 " Size=%" PRIu64, pBlock->GetId(), newBlockSize);
|
|
IncrementallySortBlocks();
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
// Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
}
|
|
}
|
|
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
void VmaBlockVector::Free(const VmaAllocation hAllocation)
|
|
{
|
|
VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
|
|
|
|
bool budgetExceeded = false;
|
|
{
|
|
const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
|
|
VmaBudget heapBudget = {};
|
|
m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
|
|
budgetExceeded = heapBudget.usage >= heapBudget.budget;
|
|
}
|
|
|
|
// Scope for lock.
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
|
|
|
|
if (IsCorruptionDetectionEnabled())
|
|
{
|
|
VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
|
|
VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
|
|
}
|
|
|
|
if (hAllocation->IsPersistentMap())
|
|
{
|
|
pBlock->Unmap(m_hAllocator, 1);
|
|
}
|
|
|
|
const bool hadEmptyBlockBeforeFree = HasEmptyBlock();
|
|
pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle());
|
|
pBlock->PostFree(m_hAllocator);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
|
|
VMA_DEBUG_LOG_FORMAT(" Freed from MemoryTypeIndex=%" PRIu32, m_MemoryTypeIndex);
|
|
|
|
const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;
|
|
// pBlock became empty after this deallocation.
|
|
if (pBlock->m_pMetadata->IsEmpty())
|
|
{
|
|
// Already had empty block. We don't want to have two, so delete this one.
|
|
if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock)
|
|
{
|
|
pBlockToDelete = pBlock;
|
|
Remove(pBlock);
|
|
}
|
|
// else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth.
|
|
}
|
|
// pBlock didn't become empty, but we have another empty block - find and free that one.
|
|
// (This is optional, heuristics.)
|
|
else if (hadEmptyBlockBeforeFree && canDeleteBlock)
|
|
{
|
|
VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
|
|
if (pLastBlock->m_pMetadata->IsEmpty())
|
|
{
|
|
pBlockToDelete = pLastBlock;
|
|
m_Blocks.pop_back();
|
|
}
|
|
}
|
|
|
|
IncrementallySortBlocks();
|
|
}
|
|
|
|
// Destruction of a free block. Deferred until this point, outside of mutex
|
|
// lock, for performance reason.
|
|
if (pBlockToDelete != VMA_NULL)
|
|
{
|
|
VMA_DEBUG_LOG_FORMAT(" Deleted empty block #%" PRIu32, pBlockToDelete->GetId());
|
|
pBlockToDelete->Destroy(m_hAllocator);
|
|
vma_delete(m_hAllocator, pBlockToDelete);
|
|
}
|
|
|
|
m_hAllocator->m_Budget.RemoveAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), hAllocation->GetSize());
|
|
m_hAllocator->m_AllocationObjectAllocator.Free(hAllocation);
|
|
}
|
|
|
|
VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
|
|
{
|
|
VkDeviceSize result = 0;
|
|
for (size_t i = m_Blocks.size(); i--; )
|
|
{
|
|
result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
|
|
if (result >= m_PreferredBlockSize)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
|
|
{
|
|
for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
if (m_Blocks[blockIndex] == pBlock)
|
|
{
|
|
VmaVectorRemove(m_Blocks, blockIndex);
|
|
return;
|
|
}
|
|
}
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
void VmaBlockVector::IncrementallySortBlocks()
|
|
{
|
|
if (!m_IncrementalSort)
|
|
return;
|
|
if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
|
|
{
|
|
// Bubble sort only until first swap.
|
|
for (size_t i = 1; i < m_Blocks.size(); ++i)
|
|
{
|
|
if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
|
|
{
|
|
VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaBlockVector::SortByFreeSize()
|
|
{
|
|
VMA_SORT(m_Blocks.begin(), m_Blocks.end(),
|
|
[](VmaDeviceMemoryBlock* b1, VmaDeviceMemoryBlock* b2) -> bool
|
|
{
|
|
return b1->m_pMetadata->GetSumFreeSize() < b2->m_pMetadata->GetSumFreeSize();
|
|
});
|
|
}
|
|
|
|
VkResult VmaBlockVector::AllocateFromBlock(
|
|
VmaDeviceMemoryBlock* pBlock,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
VmaAllocationCreateFlags allocFlags,
|
|
void* pUserData,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t strategy,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
|
|
|
|
VmaAllocationRequest currRequest = {};
|
|
if (pBlock->m_pMetadata->CreateAllocationRequest(
|
|
size,
|
|
alignment,
|
|
isUpperAddress,
|
|
suballocType,
|
|
strategy,
|
|
&currRequest))
|
|
{
|
|
return CommitAllocationRequest(currRequest, pBlock, alignment, allocFlags, pUserData, suballocType, pAllocation);
|
|
}
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
VkResult VmaBlockVector::CommitAllocationRequest(
|
|
VmaAllocationRequest& allocRequest,
|
|
VmaDeviceMemoryBlock* pBlock,
|
|
VkDeviceSize alignment,
|
|
VmaAllocationCreateFlags allocFlags,
|
|
void* pUserData,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
|
|
const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
|
|
const bool isMappingAllowed = (allocFlags &
|
|
(VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
|
|
|
|
pBlock->PostAlloc(m_hAllocator);
|
|
// Allocate from pCurrBlock.
|
|
if (mapped)
|
|
{
|
|
VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
}
|
|
|
|
*pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isMappingAllowed);
|
|
pBlock->m_pMetadata->Alloc(allocRequest, suballocType, *pAllocation);
|
|
(*pAllocation)->InitBlockAllocation(
|
|
pBlock,
|
|
allocRequest.allocHandle,
|
|
alignment,
|
|
allocRequest.size, // Not size, as actual allocation size may be larger than requested!
|
|
m_MemoryTypeIndex,
|
|
suballocType,
|
|
mapped);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
if (isUserDataString)
|
|
(*pAllocation)->SetName(m_hAllocator, (const char*)pUserData);
|
|
else
|
|
(*pAllocation)->SetUserData(m_hAllocator, pUserData);
|
|
m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), allocRequest.size);
|
|
if (VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
|
{
|
|
m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
|
|
}
|
|
if (IsCorruptionDetectionEnabled())
|
|
{
|
|
VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), allocRequest.size);
|
|
VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
|
|
{
|
|
VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
allocInfo.pNext = m_pMemoryAllocateNext;
|
|
allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
|
|
allocInfo.allocationSize = blockSize;
|
|
|
|
#if VMA_BUFFER_DEVICE_ADDRESS
|
|
// Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature.
|
|
VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
|
|
if (m_hAllocator->m_UseKhrBufferDeviceAddress)
|
|
{
|
|
allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
|
|
VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
|
|
}
|
|
#endif // VMA_BUFFER_DEVICE_ADDRESS
|
|
|
|
#if VMA_MEMORY_PRIORITY
|
|
VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
|
|
if (m_hAllocator->m_UseExtMemoryPriority)
|
|
{
|
|
VMA_ASSERT(m_Priority >= 0.f && m_Priority <= 1.f);
|
|
priorityInfo.priority = m_Priority;
|
|
VmaPnextChainPushFront(&allocInfo, &priorityInfo);
|
|
}
|
|
#endif // VMA_MEMORY_PRIORITY
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
// Attach VkExportMemoryAllocateInfoKHR if necessary.
|
|
VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
|
|
exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex);
|
|
if (exportMemoryAllocInfo.handleTypes != 0)
|
|
{
|
|
VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
|
|
}
|
|
#endif // VMA_EXTERNAL_MEMORY
|
|
|
|
VkDeviceMemory mem = VK_NULL_HANDLE;
|
|
VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
|
|
if (res < 0)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
// New VkDeviceMemory successfully created.
|
|
|
|
// Create new Allocation for it.
|
|
VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
|
|
pBlock->Init(
|
|
m_hAllocator,
|
|
m_hParentPool,
|
|
m_MemoryTypeIndex,
|
|
mem,
|
|
allocInfo.allocationSize,
|
|
m_NextBlockId++,
|
|
m_Algorithm,
|
|
m_BufferImageGranularity);
|
|
|
|
m_Blocks.push_back(pBlock);
|
|
if (pNewBlockIndex != VMA_NULL)
|
|
{
|
|
*pNewBlockIndex = m_Blocks.size() - 1;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
bool VmaBlockVector::HasEmptyBlock()
|
|
{
|
|
for (size_t index = 0, count = m_Blocks.size(); index < count; ++index)
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];
|
|
if (pBlock->m_pMetadata->IsEmpty())
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
|
|
json.BeginObject();
|
|
for (size_t i = 0; i < m_Blocks.size(); ++i)
|
|
{
|
|
json.BeginString();
|
|
json.ContinueString(m_Blocks[i]->GetId());
|
|
json.EndString();
|
|
|
|
json.BeginObject();
|
|
json.WriteString("MapRefCount");
|
|
json.WriteNumber(m_Blocks[i]->GetMapRefCount());
|
|
|
|
m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
|
|
json.EndObject();
|
|
}
|
|
json.EndObject();
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
|
|
VkResult VmaBlockVector::CheckCorruption()
|
|
{
|
|
if (!IsCorruptionDetectionEnabled())
|
|
{
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pBlock);
|
|
VkResult res = pBlock->CheckCorruption(m_hAllocator);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
#endif // _VMA_BLOCK_VECTOR_FUNCTIONS
|
|
|
|
#ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
|
|
VmaDefragmentationContext_T::VmaDefragmentationContext_T(
|
|
VmaAllocator hAllocator,
|
|
const VmaDefragmentationInfo& info)
|
|
: m_MaxPassBytes(info.maxBytesPerPass == 0 ? VK_WHOLE_SIZE : info.maxBytesPerPass),
|
|
m_MaxPassAllocations(info.maxAllocationsPerPass == 0 ? UINT32_MAX : info.maxAllocationsPerPass),
|
|
m_BreakCallback(info.pfnBreakCallback),
|
|
m_BreakCallbackUserData(info.pBreakCallbackUserData),
|
|
m_MoveAllocator(hAllocator->GetAllocationCallbacks()),
|
|
m_Moves(m_MoveAllocator)
|
|
{
|
|
m_Algorithm = info.flags & VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK;
|
|
|
|
if (info.pool != VMA_NULL)
|
|
{
|
|
m_BlockVectorCount = 1;
|
|
m_PoolBlockVector = &info.pool->m_BlockVector;
|
|
m_pBlockVectors = &m_PoolBlockVector;
|
|
m_PoolBlockVector->SetIncrementalSort(false);
|
|
m_PoolBlockVector->SortByFreeSize();
|
|
}
|
|
else
|
|
{
|
|
m_BlockVectorCount = hAllocator->GetMemoryTypeCount();
|
|
m_PoolBlockVector = VMA_NULL;
|
|
m_pBlockVectors = hAllocator->m_pBlockVectors;
|
|
for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
|
|
{
|
|
VmaBlockVector* vector = m_pBlockVectors[i];
|
|
if (vector != VMA_NULL)
|
|
{
|
|
vector->SetIncrementalSort(false);
|
|
vector->SortByFreeSize();
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (m_Algorithm)
|
|
{
|
|
case 0: // Default algorithm
|
|
m_Algorithm = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT;
|
|
m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
|
|
break;
|
|
case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
|
|
m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
|
|
break;
|
|
case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
|
|
if (hAllocator->GetBufferImageGranularity() > 1)
|
|
{
|
|
m_AlgorithmState = vma_new_array(hAllocator, StateExtensive, m_BlockVectorCount);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
|
|
{
|
|
if (m_PoolBlockVector != VMA_NULL)
|
|
{
|
|
m_PoolBlockVector->SetIncrementalSort(true);
|
|
}
|
|
else
|
|
{
|
|
for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
|
|
{
|
|
VmaBlockVector* vector = m_pBlockVectors[i];
|
|
if (vector != VMA_NULL)
|
|
vector->SetIncrementalSort(true);
|
|
}
|
|
}
|
|
|
|
if (m_AlgorithmState)
|
|
{
|
|
switch (m_Algorithm)
|
|
{
|
|
case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
|
|
vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateBalanced*>(m_AlgorithmState), m_BlockVectorCount);
|
|
break;
|
|
case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
|
|
vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateExtensive*>(m_AlgorithmState), m_BlockVectorCount);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo)
|
|
{
|
|
if (m_PoolBlockVector != VMA_NULL)
|
|
{
|
|
VmaMutexLockWrite lock(m_PoolBlockVector->GetMutex(), m_PoolBlockVector->GetAllocator()->m_UseMutex);
|
|
|
|
if (m_PoolBlockVector->GetBlockCount() > 1)
|
|
ComputeDefragmentation(*m_PoolBlockVector, 0);
|
|
else if (m_PoolBlockVector->GetBlockCount() == 1)
|
|
ReallocWithinBlock(*m_PoolBlockVector, m_PoolBlockVector->GetBlock(0));
|
|
}
|
|
else
|
|
{
|
|
for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
|
|
{
|
|
if (m_pBlockVectors[i] != VMA_NULL)
|
|
{
|
|
VmaMutexLockWrite lock(m_pBlockVectors[i]->GetMutex(), m_pBlockVectors[i]->GetAllocator()->m_UseMutex);
|
|
|
|
if (m_pBlockVectors[i]->GetBlockCount() > 1)
|
|
{
|
|
if (ComputeDefragmentation(*m_pBlockVectors[i], i))
|
|
break;
|
|
}
|
|
else if (m_pBlockVectors[i]->GetBlockCount() == 1)
|
|
{
|
|
if (ReallocWithinBlock(*m_pBlockVectors[i], m_pBlockVectors[i]->GetBlock(0)))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
moveInfo.moveCount = static_cast<uint32_t>(m_Moves.size());
|
|
if (moveInfo.moveCount > 0)
|
|
{
|
|
moveInfo.pMoves = m_Moves.data();
|
|
return VK_INCOMPLETE;
|
|
}
|
|
|
|
moveInfo.pMoves = VMA_NULL;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaDefragmentationContext_T::DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo)
|
|
{
|
|
VMA_ASSERT(moveInfo.moveCount > 0 ? moveInfo.pMoves != VMA_NULL : true);
|
|
|
|
VkResult result = VK_SUCCESS;
|
|
VmaStlAllocator<FragmentedBlock> blockAllocator(m_MoveAllocator.m_pCallbacks);
|
|
VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> immovableBlocks(blockAllocator);
|
|
VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> mappedBlocks(blockAllocator);
|
|
|
|
VmaAllocator allocator = VMA_NULL;
|
|
for (uint32_t i = 0; i < moveInfo.moveCount; ++i)
|
|
{
|
|
VmaDefragmentationMove& move = moveInfo.pMoves[i];
|
|
size_t prevCount = 0, currentCount = 0;
|
|
VkDeviceSize freedBlockSize = 0;
|
|
|
|
uint32_t vectorIndex;
|
|
VmaBlockVector* vector;
|
|
if (m_PoolBlockVector != VMA_NULL)
|
|
{
|
|
vectorIndex = 0;
|
|
vector = m_PoolBlockVector;
|
|
}
|
|
else
|
|
{
|
|
vectorIndex = move.srcAllocation->GetMemoryTypeIndex();
|
|
vector = m_pBlockVectors[vectorIndex];
|
|
VMA_ASSERT(vector != VMA_NULL);
|
|
}
|
|
|
|
switch (move.operation)
|
|
{
|
|
case VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY:
|
|
{
|
|
uint8_t mapCount = move.srcAllocation->SwapBlockAllocation(vector->m_hAllocator, move.dstTmpAllocation);
|
|
if (mapCount > 0)
|
|
{
|
|
allocator = vector->m_hAllocator;
|
|
VmaDeviceMemoryBlock* newMapBlock = move.srcAllocation->GetBlock();
|
|
bool notPresent = true;
|
|
for (FragmentedBlock& block : mappedBlocks)
|
|
{
|
|
if (block.block == newMapBlock)
|
|
{
|
|
notPresent = false;
|
|
block.data += mapCount;
|
|
break;
|
|
}
|
|
}
|
|
if (notPresent)
|
|
mappedBlocks.push_back({ mapCount, newMapBlock });
|
|
}
|
|
|
|
// Scope for locks, Free have it's own lock
|
|
{
|
|
VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
|
|
prevCount = vector->GetBlockCount();
|
|
freedBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
|
|
}
|
|
vector->Free(move.dstTmpAllocation);
|
|
{
|
|
VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
|
|
currentCount = vector->GetBlockCount();
|
|
}
|
|
|
|
result = VK_INCOMPLETE;
|
|
break;
|
|
}
|
|
case VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE:
|
|
{
|
|
m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
|
|
--m_PassStats.allocationsMoved;
|
|
vector->Free(move.dstTmpAllocation);
|
|
|
|
VmaDeviceMemoryBlock* newBlock = move.srcAllocation->GetBlock();
|
|
bool notPresent = true;
|
|
for (const FragmentedBlock& block : immovableBlocks)
|
|
{
|
|
if (block.block == newBlock)
|
|
{
|
|
notPresent = false;
|
|
break;
|
|
}
|
|
}
|
|
if (notPresent)
|
|
immovableBlocks.push_back({ vectorIndex, newBlock });
|
|
break;
|
|
}
|
|
case VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY:
|
|
{
|
|
m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
|
|
--m_PassStats.allocationsMoved;
|
|
// Scope for locks, Free have it's own lock
|
|
{
|
|
VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
|
|
prevCount = vector->GetBlockCount();
|
|
freedBlockSize = move.srcAllocation->GetBlock()->m_pMetadata->GetSize();
|
|
}
|
|
vector->Free(move.srcAllocation);
|
|
{
|
|
VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
|
|
currentCount = vector->GetBlockCount();
|
|
}
|
|
freedBlockSize *= prevCount - currentCount;
|
|
|
|
VkDeviceSize dstBlockSize;
|
|
{
|
|
VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
|
|
dstBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
|
|
}
|
|
vector->Free(move.dstTmpAllocation);
|
|
{
|
|
VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
|
|
freedBlockSize += dstBlockSize * (currentCount - vector->GetBlockCount());
|
|
currentCount = vector->GetBlockCount();
|
|
}
|
|
|
|
result = VK_INCOMPLETE;
|
|
break;
|
|
}
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
if (prevCount > currentCount)
|
|
{
|
|
size_t freedBlocks = prevCount - currentCount;
|
|
m_PassStats.deviceMemoryBlocksFreed += static_cast<uint32_t>(freedBlocks);
|
|
m_PassStats.bytesFreed += freedBlockSize;
|
|
}
|
|
|
|
if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT &&
|
|
m_AlgorithmState != VMA_NULL)
|
|
{
|
|
// Avoid unnecessary tries to allocate when new free block is available
|
|
StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[vectorIndex];
|
|
if (state.firstFreeBlock != SIZE_MAX)
|
|
{
|
|
const size_t diff = prevCount - currentCount;
|
|
if (state.firstFreeBlock >= diff)
|
|
{
|
|
state.firstFreeBlock -= diff;
|
|
if (state.firstFreeBlock != 0)
|
|
state.firstFreeBlock -= vector->GetBlock(state.firstFreeBlock - 1)->m_pMetadata->IsEmpty();
|
|
}
|
|
else
|
|
state.firstFreeBlock = 0;
|
|
}
|
|
}
|
|
}
|
|
moveInfo.moveCount = 0;
|
|
moveInfo.pMoves = VMA_NULL;
|
|
m_Moves.clear();
|
|
|
|
// Update stats
|
|
m_GlobalStats.allocationsMoved += m_PassStats.allocationsMoved;
|
|
m_GlobalStats.bytesFreed += m_PassStats.bytesFreed;
|
|
m_GlobalStats.bytesMoved += m_PassStats.bytesMoved;
|
|
m_GlobalStats.deviceMemoryBlocksFreed += m_PassStats.deviceMemoryBlocksFreed;
|
|
m_PassStats = { 0 };
|
|
|
|
// Move blocks with immovable allocations according to algorithm
|
|
if (immovableBlocks.size() > 0)
|
|
{
|
|
do
|
|
{
|
|
if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT)
|
|
{
|
|
if (m_AlgorithmState != VMA_NULL)
|
|
{
|
|
bool swapped = false;
|
|
// Move to the start of free blocks range
|
|
for (const FragmentedBlock& block : immovableBlocks)
|
|
{
|
|
StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[block.data];
|
|
if (state.operation != StateExtensive::Operation::Cleanup)
|
|
{
|
|
VmaBlockVector* vector = m_pBlockVectors[block.data];
|
|
VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
|
|
|
|
for (size_t i = 0, count = vector->GetBlockCount() - m_ImmovableBlockCount; i < count; ++i)
|
|
{
|
|
if (vector->GetBlock(i) == block.block)
|
|
{
|
|
VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[vector->GetBlockCount() - ++m_ImmovableBlockCount]);
|
|
if (state.firstFreeBlock != SIZE_MAX)
|
|
{
|
|
if (i + 1 < state.firstFreeBlock)
|
|
{
|
|
if (state.firstFreeBlock > 1)
|
|
VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[--state.firstFreeBlock]);
|
|
else
|
|
--state.firstFreeBlock;
|
|
}
|
|
}
|
|
swapped = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (swapped)
|
|
result = VK_INCOMPLETE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Move to the beginning
|
|
for (const FragmentedBlock& block : immovableBlocks)
|
|
{
|
|
VmaBlockVector* vector = m_pBlockVectors[block.data];
|
|
VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
|
|
|
|
for (size_t i = m_ImmovableBlockCount; i < vector->GetBlockCount(); ++i)
|
|
{
|
|
if (vector->GetBlock(i) == block.block)
|
|
{
|
|
VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[m_ImmovableBlockCount++]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while (false);
|
|
}
|
|
|
|
// Bulk-map destination blocks
|
|
for (const FragmentedBlock& block : mappedBlocks)
|
|
{
|
|
VkResult res = block.block->Map(allocator, block.data, VMA_NULL);
|
|
VMA_ASSERT(res == VK_SUCCESS);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::ComputeDefragmentation(VmaBlockVector& vector, size_t index)
|
|
{
|
|
switch (m_Algorithm)
|
|
{
|
|
case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT:
|
|
return ComputeDefragmentation_Fast(vector);
|
|
case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
|
|
return ComputeDefragmentation_Balanced(vector, index, true);
|
|
case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT:
|
|
return ComputeDefragmentation_Full(vector);
|
|
case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
|
|
return ComputeDefragmentation_Extensive(vector, index);
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return ComputeDefragmentation_Balanced(vector, index, true);
|
|
}
|
|
}
|
|
|
|
VmaDefragmentationContext_T::MoveAllocationData VmaDefragmentationContext_T::GetMoveData(
|
|
VmaAllocHandle handle, VmaBlockMetadata* metadata)
|
|
{
|
|
MoveAllocationData moveData;
|
|
moveData.move.srcAllocation = (VmaAllocation)metadata->GetAllocationUserData(handle);
|
|
moveData.size = moveData.move.srcAllocation->GetSize();
|
|
moveData.alignment = moveData.move.srcAllocation->GetAlignment();
|
|
moveData.type = moveData.move.srcAllocation->GetSuballocationType();
|
|
moveData.flags = 0;
|
|
|
|
if (moveData.move.srcAllocation->IsPersistentMap())
|
|
moveData.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
if (moveData.move.srcAllocation->IsMappingAllowed())
|
|
moveData.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
|
|
|
|
return moveData;
|
|
}
|
|
|
|
VmaDefragmentationContext_T::CounterStatus VmaDefragmentationContext_T::CheckCounters(VkDeviceSize bytes)
|
|
{
|
|
// Check custom criteria if exists
|
|
if (m_BreakCallback && m_BreakCallback(m_BreakCallbackUserData))
|
|
return CounterStatus::End;
|
|
|
|
// Ignore allocation if will exceed max size for copy
|
|
if (m_PassStats.bytesMoved + bytes > m_MaxPassBytes)
|
|
{
|
|
if (++m_IgnoredAllocs < MAX_ALLOCS_TO_IGNORE)
|
|
return CounterStatus::Ignore;
|
|
else
|
|
return CounterStatus::End;
|
|
}
|
|
else
|
|
m_IgnoredAllocs = 0;
|
|
return CounterStatus::Pass;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes)
|
|
{
|
|
m_PassStats.bytesMoved += bytes;
|
|
// Early return when max found
|
|
if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes)
|
|
{
|
|
VMA_ASSERT((m_PassStats.allocationsMoved == m_MaxPassAllocations ||
|
|
m_PassStats.bytesMoved == m_MaxPassBytes) && "Exceeded maximal pass threshold!");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block)
|
|
{
|
|
VmaBlockMetadata* metadata = block->m_pMetadata;
|
|
|
|
for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
|
|
handle != VK_NULL_HANDLE;
|
|
handle = metadata->GetNextAllocation(handle))
|
|
{
|
|
MoveAllocationData moveData = GetMoveData(handle, metadata);
|
|
// Ignore newly created allocations by defragmentation algorithm
|
|
if (moveData.move.srcAllocation->GetUserData() == this)
|
|
continue;
|
|
switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
|
|
{
|
|
case CounterStatus::Ignore:
|
|
continue;
|
|
case CounterStatus::End:
|
|
return true;
|
|
case CounterStatus::Pass:
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
|
|
if (offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
|
|
{
|
|
VmaAllocationRequest request = {};
|
|
if (metadata->CreateAllocationRequest(
|
|
moveData.size,
|
|
moveData.alignment,
|
|
false,
|
|
moveData.type,
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
|
|
&request))
|
|
{
|
|
if (metadata->GetAllocationOffset(request.allocHandle) < offset)
|
|
{
|
|
if (vector.CommitAllocationRequest(
|
|
request,
|
|
block,
|
|
moveData.alignment,
|
|
moveData.flags,
|
|
this,
|
|
moveData.type,
|
|
&moveData.move.dstTmpAllocation) == VK_SUCCESS)
|
|
{
|
|
m_Moves.push_back(moveData.move);
|
|
if (IncrementCounters(moveData.size))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector)
|
|
{
|
|
for (; start < end; ++start)
|
|
{
|
|
VmaDeviceMemoryBlock* dstBlock = vector.GetBlock(start);
|
|
if (dstBlock->m_pMetadata->GetSumFreeSize() >= data.size)
|
|
{
|
|
if (vector.AllocateFromBlock(dstBlock,
|
|
data.size,
|
|
data.alignment,
|
|
data.flags,
|
|
this,
|
|
data.type,
|
|
0,
|
|
&data.move.dstTmpAllocation) == VK_SUCCESS)
|
|
{
|
|
m_Moves.push_back(data.move);
|
|
if (IncrementCounters(data.size))
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::ComputeDefragmentation_Fast(VmaBlockVector& vector)
|
|
{
|
|
// Move only between blocks
|
|
|
|
// Go through allocations in last blocks and try to fit them inside first ones
|
|
for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
|
|
{
|
|
VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
|
|
|
|
for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
|
|
handle != VK_NULL_HANDLE;
|
|
handle = metadata->GetNextAllocation(handle))
|
|
{
|
|
MoveAllocationData moveData = GetMoveData(handle, metadata);
|
|
// Ignore newly created allocations by defragmentation algorithm
|
|
if (moveData.move.srcAllocation->GetUserData() == this)
|
|
continue;
|
|
switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
|
|
{
|
|
case CounterStatus::Ignore:
|
|
continue;
|
|
case CounterStatus::End:
|
|
return true;
|
|
case CounterStatus::Pass:
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
// Check all previous blocks for free space
|
|
if (AllocInOtherBlock(0, i, moveData, vector))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update)
|
|
{
|
|
// Go over every allocation and try to fit it in previous blocks at lowest offsets,
|
|
// if not possible: realloc within single block to minimize offset (exclude offset == 0),
|
|
// but only if there are noticeable gaps between them (some heuristic, ex. average size of allocation in block)
|
|
VMA_ASSERT(m_AlgorithmState != VMA_NULL);
|
|
|
|
StateBalanced& vectorState = reinterpret_cast<StateBalanced*>(m_AlgorithmState)[index];
|
|
if (update && vectorState.avgAllocSize == UINT64_MAX)
|
|
UpdateVectorStatistics(vector, vectorState);
|
|
|
|
const size_t startMoveCount = m_Moves.size();
|
|
VkDeviceSize minimalFreeRegion = vectorState.avgFreeSize / 2;
|
|
for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
|
|
{
|
|
VmaDeviceMemoryBlock* block = vector.GetBlock(i);
|
|
VmaBlockMetadata* metadata = block->m_pMetadata;
|
|
VkDeviceSize prevFreeRegionSize = 0;
|
|
|
|
for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
|
|
handle != VK_NULL_HANDLE;
|
|
handle = metadata->GetNextAllocation(handle))
|
|
{
|
|
MoveAllocationData moveData = GetMoveData(handle, metadata);
|
|
// Ignore newly created allocations by defragmentation algorithm
|
|
if (moveData.move.srcAllocation->GetUserData() == this)
|
|
continue;
|
|
switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
|
|
{
|
|
case CounterStatus::Ignore:
|
|
continue;
|
|
case CounterStatus::End:
|
|
return true;
|
|
case CounterStatus::Pass:
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
// Check all previous blocks for free space
|
|
const size_t prevMoveCount = m_Moves.size();
|
|
if (AllocInOtherBlock(0, i, moveData, vector))
|
|
return true;
|
|
|
|
VkDeviceSize nextFreeRegionSize = metadata->GetNextFreeRegionSize(handle);
|
|
// If no room found then realloc within block for lower offset
|
|
VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
|
|
if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
|
|
{
|
|
// Check if realloc will make sense
|
|
if (prevFreeRegionSize >= minimalFreeRegion ||
|
|
nextFreeRegionSize >= minimalFreeRegion ||
|
|
moveData.size <= vectorState.avgFreeSize ||
|
|
moveData.size <= vectorState.avgAllocSize)
|
|
{
|
|
VmaAllocationRequest request = {};
|
|
if (metadata->CreateAllocationRequest(
|
|
moveData.size,
|
|
moveData.alignment,
|
|
false,
|
|
moveData.type,
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
|
|
&request))
|
|
{
|
|
if (metadata->GetAllocationOffset(request.allocHandle) < offset)
|
|
{
|
|
if (vector.CommitAllocationRequest(
|
|
request,
|
|
block,
|
|
moveData.alignment,
|
|
moveData.flags,
|
|
this,
|
|
moveData.type,
|
|
&moveData.move.dstTmpAllocation) == VK_SUCCESS)
|
|
{
|
|
m_Moves.push_back(moveData.move);
|
|
if (IncrementCounters(moveData.size))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
prevFreeRegionSize = nextFreeRegionSize;
|
|
}
|
|
}
|
|
|
|
// No moves performed, update statistics to current vector state
|
|
if (startMoveCount == m_Moves.size() && !update)
|
|
{
|
|
vectorState.avgAllocSize = UINT64_MAX;
|
|
return ComputeDefragmentation_Balanced(vector, index, false);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::ComputeDefragmentation_Full(VmaBlockVector& vector)
|
|
{
|
|
// Go over every allocation and try to fit it in previous blocks at lowest offsets,
|
|
// if not possible: realloc within single block to minimize offset (exclude offset == 0)
|
|
|
|
for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
|
|
{
|
|
VmaDeviceMemoryBlock* block = vector.GetBlock(i);
|
|
VmaBlockMetadata* metadata = block->m_pMetadata;
|
|
|
|
for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
|
|
handle != VK_NULL_HANDLE;
|
|
handle = metadata->GetNextAllocation(handle))
|
|
{
|
|
MoveAllocationData moveData = GetMoveData(handle, metadata);
|
|
// Ignore newly created allocations by defragmentation algorithm
|
|
if (moveData.move.srcAllocation->GetUserData() == this)
|
|
continue;
|
|
switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
|
|
{
|
|
case CounterStatus::Ignore:
|
|
continue;
|
|
case CounterStatus::End:
|
|
return true;
|
|
case CounterStatus::Pass:
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
// Check all previous blocks for free space
|
|
const size_t prevMoveCount = m_Moves.size();
|
|
if (AllocInOtherBlock(0, i, moveData, vector))
|
|
return true;
|
|
|
|
// If no room found then realloc within block for lower offset
|
|
VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
|
|
if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
|
|
{
|
|
VmaAllocationRequest request = {};
|
|
if (metadata->CreateAllocationRequest(
|
|
moveData.size,
|
|
moveData.alignment,
|
|
false,
|
|
moveData.type,
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
|
|
&request))
|
|
{
|
|
if (metadata->GetAllocationOffset(request.allocHandle) < offset)
|
|
{
|
|
if (vector.CommitAllocationRequest(
|
|
request,
|
|
block,
|
|
moveData.alignment,
|
|
moveData.flags,
|
|
this,
|
|
moveData.type,
|
|
&moveData.move.dstTmpAllocation) == VK_SUCCESS)
|
|
{
|
|
m_Moves.push_back(moveData.move);
|
|
if (IncrementCounters(moveData.size))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index)
|
|
{
|
|
// First free single block, then populate it to the brim, then free another block, and so on
|
|
|
|
// Fallback to previous algorithm since without granularity conflicts it can achieve max packing
|
|
if (vector.m_BufferImageGranularity == 1)
|
|
return ComputeDefragmentation_Full(vector);
|
|
|
|
VMA_ASSERT(m_AlgorithmState != VMA_NULL);
|
|
|
|
StateExtensive& vectorState = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[index];
|
|
|
|
bool texturePresent = false, bufferPresent = false, otherPresent = false;
|
|
switch (vectorState.operation)
|
|
{
|
|
case StateExtensive::Operation::Done: // Vector defragmented
|
|
return false;
|
|
case StateExtensive::Operation::FindFreeBlockBuffer:
|
|
case StateExtensive::Operation::FindFreeBlockTexture:
|
|
case StateExtensive::Operation::FindFreeBlockAll:
|
|
{
|
|
// No more blocks to free, just perform fast realloc and move to cleanup
|
|
if (vectorState.firstFreeBlock == 0)
|
|
{
|
|
vectorState.operation = StateExtensive::Operation::Cleanup;
|
|
return ComputeDefragmentation_Fast(vector);
|
|
}
|
|
|
|
// No free blocks, have to clear last one
|
|
size_t last = (vectorState.firstFreeBlock == SIZE_MAX ? vector.GetBlockCount() : vectorState.firstFreeBlock) - 1;
|
|
VmaBlockMetadata* freeMetadata = vector.GetBlock(last)->m_pMetadata;
|
|
|
|
const size_t prevMoveCount = m_Moves.size();
|
|
for (VmaAllocHandle handle = freeMetadata->GetAllocationListBegin();
|
|
handle != VK_NULL_HANDLE;
|
|
handle = freeMetadata->GetNextAllocation(handle))
|
|
{
|
|
MoveAllocationData moveData = GetMoveData(handle, freeMetadata);
|
|
switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
|
|
{
|
|
case CounterStatus::Ignore:
|
|
continue;
|
|
case CounterStatus::End:
|
|
return true;
|
|
case CounterStatus::Pass:
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
// Check all previous blocks for free space
|
|
if (AllocInOtherBlock(0, last, moveData, vector))
|
|
{
|
|
// Full clear performed already
|
|
if (prevMoveCount != m_Moves.size() && freeMetadata->GetNextAllocation(handle) == VK_NULL_HANDLE)
|
|
vectorState.firstFreeBlock = last;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (prevMoveCount == m_Moves.size())
|
|
{
|
|
// Cannot perform full clear, have to move data in other blocks around
|
|
if (last != 0)
|
|
{
|
|
for (size_t i = last - 1; i; --i)
|
|
{
|
|
if (ReallocWithinBlock(vector, vector.GetBlock(i)))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (prevMoveCount == m_Moves.size())
|
|
{
|
|
// No possible reallocs within blocks, try to move them around fast
|
|
return ComputeDefragmentation_Fast(vector);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (vectorState.operation)
|
|
{
|
|
case StateExtensive::Operation::FindFreeBlockBuffer:
|
|
vectorState.operation = StateExtensive::Operation::MoveBuffers;
|
|
break;
|
|
case StateExtensive::Operation::FindFreeBlockTexture:
|
|
vectorState.operation = StateExtensive::Operation::MoveTextures;
|
|
break;
|
|
case StateExtensive::Operation::FindFreeBlockAll:
|
|
vectorState.operation = StateExtensive::Operation::MoveAll;
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
vectorState.operation = StateExtensive::Operation::MoveTextures;
|
|
}
|
|
vectorState.firstFreeBlock = last;
|
|
// Nothing done, block found without reallocations, can perform another reallocs in same pass
|
|
return ComputeDefragmentation_Extensive(vector, index);
|
|
}
|
|
break;
|
|
}
|
|
case StateExtensive::Operation::MoveTextures:
|
|
{
|
|
if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL, vector,
|
|
vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
|
|
{
|
|
if (texturePresent)
|
|
{
|
|
vectorState.operation = StateExtensive::Operation::FindFreeBlockTexture;
|
|
return ComputeDefragmentation_Extensive(vector, index);
|
|
}
|
|
|
|
if (!bufferPresent && !otherPresent)
|
|
{
|
|
vectorState.operation = StateExtensive::Operation::Cleanup;
|
|
break;
|
|
}
|
|
|
|
// No more textures to move, check buffers
|
|
vectorState.operation = StateExtensive::Operation::MoveBuffers;
|
|
bufferPresent = false;
|
|
otherPresent = false;
|
|
}
|
|
else
|
|
break;
|
|
VMA_FALLTHROUGH; // Fallthrough
|
|
}
|
|
case StateExtensive::Operation::MoveBuffers:
|
|
{
|
|
if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_BUFFER, vector,
|
|
vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
|
|
{
|
|
if (bufferPresent)
|
|
{
|
|
vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
|
|
return ComputeDefragmentation_Extensive(vector, index);
|
|
}
|
|
|
|
if (!otherPresent)
|
|
{
|
|
vectorState.operation = StateExtensive::Operation::Cleanup;
|
|
break;
|
|
}
|
|
|
|
// No more buffers to move, check all others
|
|
vectorState.operation = StateExtensive::Operation::MoveAll;
|
|
otherPresent = false;
|
|
}
|
|
else
|
|
break;
|
|
VMA_FALLTHROUGH; // Fallthrough
|
|
}
|
|
case StateExtensive::Operation::MoveAll:
|
|
{
|
|
if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_FREE, vector,
|
|
vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
|
|
{
|
|
if (otherPresent)
|
|
{
|
|
vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
|
|
return ComputeDefragmentation_Extensive(vector, index);
|
|
}
|
|
// Everything moved
|
|
vectorState.operation = StateExtensive::Operation::Cleanup;
|
|
}
|
|
break;
|
|
}
|
|
case StateExtensive::Operation::Cleanup:
|
|
// Cleanup is handled below so that other operations may reuse the cleanup code. This case is here to prevent the unhandled enum value warning (C4062).
|
|
break;
|
|
}
|
|
|
|
if (vectorState.operation == StateExtensive::Operation::Cleanup)
|
|
{
|
|
// All other work done, pack data in blocks even tighter if possible
|
|
const size_t prevMoveCount = m_Moves.size();
|
|
for (size_t i = 0; i < vector.GetBlockCount(); ++i)
|
|
{
|
|
if (ReallocWithinBlock(vector, vector.GetBlock(i)))
|
|
return true;
|
|
}
|
|
|
|
if (prevMoveCount == m_Moves.size())
|
|
vectorState.operation = StateExtensive::Operation::Done;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VmaDefragmentationContext_T::UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state)
|
|
{
|
|
size_t allocCount = 0;
|
|
size_t freeCount = 0;
|
|
state.avgFreeSize = 0;
|
|
state.avgAllocSize = 0;
|
|
|
|
for (size_t i = 0; i < vector.GetBlockCount(); ++i)
|
|
{
|
|
VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
|
|
|
|
allocCount += metadata->GetAllocationCount();
|
|
freeCount += metadata->GetFreeRegionsCount();
|
|
state.avgFreeSize += metadata->GetSumFreeSize();
|
|
state.avgAllocSize += metadata->GetSize();
|
|
}
|
|
|
|
state.avgAllocSize = (state.avgAllocSize - state.avgFreeSize) / allocCount;
|
|
state.avgFreeSize /= freeCount;
|
|
}
|
|
|
|
bool VmaDefragmentationContext_T::MoveDataToFreeBlocks(VmaSuballocationType currentType,
|
|
VmaBlockVector& vector, size_t firstFreeBlock,
|
|
bool& texturePresent, bool& bufferPresent, bool& otherPresent)
|
|
{
|
|
const size_t prevMoveCount = m_Moves.size();
|
|
for (size_t i = firstFreeBlock ; i;)
|
|
{
|
|
VmaDeviceMemoryBlock* block = vector.GetBlock(--i);
|
|
VmaBlockMetadata* metadata = block->m_pMetadata;
|
|
|
|
for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
|
|
handle != VK_NULL_HANDLE;
|
|
handle = metadata->GetNextAllocation(handle))
|
|
{
|
|
MoveAllocationData moveData = GetMoveData(handle, metadata);
|
|
// Ignore newly created allocations by defragmentation algorithm
|
|
if (moveData.move.srcAllocation->GetUserData() == this)
|
|
continue;
|
|
switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
|
|
{
|
|
case CounterStatus::Ignore:
|
|
continue;
|
|
case CounterStatus::End:
|
|
return true;
|
|
case CounterStatus::Pass:
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
// Move only single type of resources at once
|
|
if (!VmaIsBufferImageGranularityConflict(moveData.type, currentType))
|
|
{
|
|
// Try to fit allocation into free blocks
|
|
if (AllocInOtherBlock(firstFreeBlock, vector.GetBlockCount(), moveData, vector))
|
|
return false;
|
|
}
|
|
|
|
if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL))
|
|
texturePresent = true;
|
|
else if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_BUFFER))
|
|
bufferPresent = true;
|
|
else
|
|
otherPresent = true;
|
|
}
|
|
}
|
|
return prevMoveCount == m_Moves.size();
|
|
}
|
|
#endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
|
|
|
|
#ifndef _VMA_POOL_T_FUNCTIONS
|
|
VmaPool_T::VmaPool_T(
|
|
VmaAllocator hAllocator,
|
|
const VmaPoolCreateInfo& createInfo,
|
|
VkDeviceSize preferredBlockSize)
|
|
: m_BlockVector(
|
|
hAllocator,
|
|
this, // hParentPool
|
|
createInfo.memoryTypeIndex,
|
|
createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
|
|
createInfo.minBlockCount,
|
|
createInfo.maxBlockCount,
|
|
(createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
|
|
createInfo.blockSize != 0, // explicitBlockSize
|
|
createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
|
|
createInfo.priority,
|
|
VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment),
|
|
createInfo.pMemoryAllocateNext),
|
|
m_Id(0),
|
|
m_Name(VMA_NULL) {}
|
|
|
|
VmaPool_T::~VmaPool_T()
|
|
{
|
|
VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL);
|
|
|
|
const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
|
|
VmaFreeString(allocs, m_Name);
|
|
}
|
|
|
|
void VmaPool_T::SetName(const char* pName)
|
|
{
|
|
const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
|
|
VmaFreeString(allocs, m_Name);
|
|
|
|
if (pName != VMA_NULL)
|
|
{
|
|
m_Name = VmaCreateStringCopy(allocs, pName);
|
|
}
|
|
else
|
|
{
|
|
m_Name = VMA_NULL;
|
|
}
|
|
}
|
|
#endif // _VMA_POOL_T_FUNCTIONS
|
|
|
|
#ifndef _VMA_ALLOCATOR_T_FUNCTIONS
|
|
VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
|
|
m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
|
|
m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),
|
|
m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
|
|
m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
|
|
m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),
|
|
m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0),
|
|
m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0),
|
|
m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0),
|
|
m_UseKhrMaintenance4((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT) != 0),
|
|
m_hDevice(pCreateInfo->device),
|
|
m_hInstance(pCreateInfo->instance),
|
|
m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
|
|
m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
|
|
*pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
|
|
m_AllocationObjectAllocator(&m_AllocationCallbacks),
|
|
m_HeapSizeLimitMask(0),
|
|
m_DeviceMemoryCount(0),
|
|
m_PreferredLargeHeapBlockSize(0),
|
|
m_PhysicalDevice(pCreateInfo->physicalDevice),
|
|
m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
|
|
m_NextPoolId(0),
|
|
m_GlobalMemoryTypeBits(UINT32_MAX)
|
|
{
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
m_UseKhrDedicatedAllocation = false;
|
|
m_UseKhrBindMemory2 = false;
|
|
}
|
|
|
|
if(VMA_DEBUG_DETECT_CORRUPTION)
|
|
{
|
|
// Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
|
|
VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
|
|
}
|
|
|
|
VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance);
|
|
|
|
if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
#if !(VMA_DEDICATED_ALLOCATION)
|
|
if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if !(VMA_BIND_MEMORY2)
|
|
if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
}
|
|
#if !(VMA_MEMORY_BUDGET)
|
|
if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if !(VMA_BUFFER_DEVICE_ADDRESS)
|
|
if(m_UseKhrBufferDeviceAddress)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
|
|
}
|
|
#endif
|
|
#if VMA_VULKAN_VERSION < 1003000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
|
|
{
|
|
VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_3 but required Vulkan version is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if VMA_VULKAN_VERSION < 1002000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0))
|
|
{
|
|
VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if VMA_VULKAN_VERSION < 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if !(VMA_MEMORY_PRIORITY)
|
|
if(m_UseExtMemoryPriority)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
|
|
}
|
|
#endif
|
|
#if !(VMA_KHR_MAINTENANCE4)
|
|
if(m_UseKhrMaintenance4)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
|
|
}
|
|
#endif
|
|
|
|
memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
|
|
memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
|
|
memset(&m_MemProps, 0, sizeof(m_MemProps));
|
|
|
|
memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
|
|
memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes));
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
|
|
{
|
|
m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData;
|
|
m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
|
|
m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
|
|
}
|
|
|
|
ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
|
|
|
|
(*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
|
|
(*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
|
|
|
|
VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT));
|
|
VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
|
|
VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
|
|
VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
|
|
|
|
m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
|
|
pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
|
|
|
|
m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits();
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL)
|
|
{
|
|
memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes,
|
|
sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount());
|
|
}
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
|
|
{
|
|
for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
|
|
{
|
|
const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
|
|
if(limit != VK_WHOLE_SIZE)
|
|
{
|
|
m_HeapSizeLimitMask |= 1u << heapIndex;
|
|
if(limit < m_MemProps.memoryHeaps[heapIndex].size)
|
|
{
|
|
m_MemProps.memoryHeaps[heapIndex].size = limit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
// Create only supported types
|
|
if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
|
|
{
|
|
const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
|
|
m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
|
|
this,
|
|
VK_NULL_HANDLE, // hParentPool
|
|
memTypeIndex,
|
|
preferredBlockSize,
|
|
0,
|
|
SIZE_MAX,
|
|
GetBufferImageGranularity(),
|
|
false, // explicitBlockSize
|
|
0, // algorithm
|
|
0.5f, // priority (0.5 is the default per Vulkan spec)
|
|
GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment
|
|
VMA_NULL); // // pMemoryAllocateNext
|
|
// No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
|
|
// becase minBlockCount is 0.
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
|
|
{
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
if(m_UseExtMemoryBudget)
|
|
{
|
|
UpdateVulkanBudget();
|
|
}
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
|
|
return res;
|
|
}
|
|
|
|
VmaAllocator_T::~VmaAllocator_T()
|
|
{
|
|
VMA_ASSERT(m_Pools.IsEmpty());
|
|
|
|
for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
|
|
{
|
|
vma_delete(this, m_pBlockVectors[memTypeIndex]);
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
|
|
{
|
|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
ImportVulkanFunctions_Static();
|
|
#endif
|
|
|
|
if(pVulkanFunctions != VMA_NULL)
|
|
{
|
|
ImportVulkanFunctions_Custom(pVulkanFunctions);
|
|
}
|
|
|
|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
|
|
ImportVulkanFunctions_Dynamic();
|
|
#endif
|
|
|
|
ValidateVulkanFunctions();
|
|
}
|
|
|
|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
|
|
void VmaAllocator_T::ImportVulkanFunctions_Static()
|
|
{
|
|
// Vulkan 1.0
|
|
m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr;
|
|
m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr;
|
|
m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
|
|
m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
|
|
m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
|
|
m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
|
|
m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
|
|
m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
|
|
m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
|
|
m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
|
|
m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
|
|
m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
|
|
m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
|
|
m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
|
|
m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
|
|
m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
|
|
m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
|
|
m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
|
|
m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
|
|
|
|
// Vulkan 1.1
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2;
|
|
m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2;
|
|
m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2;
|
|
m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2;
|
|
}
|
|
#endif
|
|
|
|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2;
|
|
}
|
|
#endif
|
|
|
|
#if VMA_VULKAN_VERSION >= 1003000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
|
|
{
|
|
m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)vkGetDeviceBufferMemoryRequirements;
|
|
m_VulkanFunctions.vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)vkGetDeviceImageMemoryRequirements;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif // VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
|
|
void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions)
|
|
{
|
|
VMA_ASSERT(pVulkanFunctions != VMA_NULL);
|
|
|
|
#define VMA_COPY_IF_NOT_NULL(funcName) \
|
|
if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
|
|
|
|
VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr);
|
|
VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr);
|
|
VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
|
|
VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
|
|
VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkFreeMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkMapMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
|
|
VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
|
|
VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
|
|
VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
|
|
VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
|
|
VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
|
|
VMA_COPY_IF_NOT_NULL(vkCreateImage);
|
|
VMA_COPY_IF_NOT_NULL(vkDestroyImage);
|
|
VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
|
|
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
|
|
VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
|
|
#endif
|
|
|
|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
|
|
VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
|
|
VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
|
|
#endif
|
|
|
|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
|
|
VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);
|
|
#endif
|
|
|
|
#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
|
|
VMA_COPY_IF_NOT_NULL(vkGetDeviceBufferMemoryRequirements);
|
|
VMA_COPY_IF_NOT_NULL(vkGetDeviceImageMemoryRequirements);
|
|
#endif
|
|
|
|
#undef VMA_COPY_IF_NOT_NULL
|
|
}
|
|
|
|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
|
|
|
|
void VmaAllocator_T::ImportVulkanFunctions_Dynamic()
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr &&
|
|
"To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass "
|
|
"VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. "
|
|
"Other members can be null.");
|
|
|
|
#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \
|
|
if(m_VulkanFunctions.memberName == VMA_NULL) \
|
|
m_VulkanFunctions.memberName = \
|
|
(functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString);
|
|
#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \
|
|
if(m_VulkanFunctions.memberName == VMA_NULL) \
|
|
m_VulkanFunctions.memberName = \
|
|
(functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString);
|
|
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties");
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties");
|
|
VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges");
|
|
VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements");
|
|
VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer");
|
|
VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer");
|
|
VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage");
|
|
VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage");
|
|
VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer");
|
|
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2");
|
|
}
|
|
#endif
|
|
|
|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2");
|
|
}
|
|
else if(m_UseExtMemoryBudget)
|
|
{
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2KHR");
|
|
}
|
|
#endif
|
|
|
|
#if VMA_DEDICATED_ALLOCATION
|
|
if(m_UseKhrDedicatedAllocation)
|
|
{
|
|
VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR");
|
|
}
|
|
#endif
|
|
|
|
#if VMA_BIND_MEMORY2
|
|
if(m_UseKhrBindMemory2)
|
|
{
|
|
VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR");
|
|
}
|
|
#endif // #if VMA_BIND_MEMORY2
|
|
|
|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2");
|
|
}
|
|
else if(m_UseExtMemoryBudget)
|
|
{
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
|
|
}
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
|
|
#if VMA_VULKAN_VERSION >= 1003000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
|
|
{
|
|
VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirements, "vkGetDeviceBufferMemoryRequirements");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirements, "vkGetDeviceImageMemoryRequirements");
|
|
}
|
|
#endif
|
|
#if VMA_KHR_MAINTENANCE4
|
|
if(m_UseKhrMaintenance4)
|
|
{
|
|
VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirementsKHR, "vkGetDeviceBufferMemoryRequirementsKHR");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirementsKHR, "vkGetDeviceImageMemoryRequirementsKHR");
|
|
}
|
|
#endif
|
|
|
|
#undef VMA_FETCH_DEVICE_FUNC
|
|
#undef VMA_FETCH_INSTANCE_FUNC
|
|
}
|
|
|
|
#endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
|
|
|
|
void VmaAllocator_T::ValidateVulkanFunctions()
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
|
|
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
|
|
}
|
|
#endif
|
|
|
|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
|
|
}
|
|
#endif
|
|
|
|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);
|
|
}
|
|
#endif
|
|
|
|
// Not validating these due to suspected driver bugs with these function
|
|
// pointers being null despite correct extension or Vulkan version is enabled.
|
|
// See issue #397. Their usage in VMA is optional anyway.
|
|
//
|
|
// VMA_ASSERT(m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements != VMA_NULL);
|
|
// VMA_ASSERT(m_VulkanFunctions.vkGetDeviceImageMemoryRequirements != VMA_NULL);
|
|
}
|
|
|
|
VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
|
|
{
|
|
const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
|
|
const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
|
|
return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateMemoryOfType(
|
|
VmaPool pool,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
bool dedicatedPreferred,
|
|
VkBuffer dedicatedBuffer,
|
|
VkImage dedicatedImage,
|
|
VkFlags dedicatedBufferImageUsage,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
uint32_t memTypeIndex,
|
|
VmaSuballocationType suballocType,
|
|
VmaDedicatedAllocationList& dedicatedAllocations,
|
|
VmaBlockVector& blockVector,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations)
|
|
{
|
|
VMA_ASSERT(pAllocations != VMA_NULL);
|
|
VMA_DEBUG_LOG_FORMAT(" AllocateMemory: MemoryTypeIndex=%" PRIu32 ", AllocationCount=%zu, Size=%" PRIu64, memTypeIndex, allocationCount, size);
|
|
|
|
VmaAllocationCreateInfo finalCreateInfo = createInfo;
|
|
VkResult res = CalcMemTypeParams(
|
|
finalCreateInfo,
|
|
memTypeIndex,
|
|
size,
|
|
allocationCount);
|
|
if(res != VK_SUCCESS)
|
|
return res;
|
|
|
|
if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
|
|
{
|
|
return AllocateDedicatedMemory(
|
|
pool,
|
|
size,
|
|
suballocType,
|
|
dedicatedAllocations,
|
|
memTypeIndex,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
|
|
(finalCreateInfo.flags &
|
|
(VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
|
|
finalCreateInfo.pUserData,
|
|
finalCreateInfo.priority,
|
|
dedicatedBuffer,
|
|
dedicatedImage,
|
|
dedicatedBufferImageUsage,
|
|
allocationCount,
|
|
pAllocations,
|
|
blockVector.GetAllocationNextPtr());
|
|
}
|
|
else
|
|
{
|
|
const bool canAllocateDedicated =
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
|
|
(pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize());
|
|
|
|
if(canAllocateDedicated)
|
|
{
|
|
// Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
|
|
if(size > blockVector.GetPreferredBlockSize() / 2)
|
|
{
|
|
dedicatedPreferred = true;
|
|
}
|
|
// Protection against creating each allocation as dedicated when we reach or exceed heap size/budget,
|
|
// which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above
|
|
// 3/4 of the maximum allocation count.
|
|
if(m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount < UINT32_MAX / 4 &&
|
|
m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4)
|
|
{
|
|
dedicatedPreferred = false;
|
|
}
|
|
|
|
if(dedicatedPreferred)
|
|
{
|
|
res = AllocateDedicatedMemory(
|
|
pool,
|
|
size,
|
|
suballocType,
|
|
dedicatedAllocations,
|
|
memTypeIndex,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
|
|
(finalCreateInfo.flags &
|
|
(VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
|
|
finalCreateInfo.pUserData,
|
|
finalCreateInfo.priority,
|
|
dedicatedBuffer,
|
|
dedicatedImage,
|
|
dedicatedBufferImageUsage,
|
|
allocationCount,
|
|
pAllocations,
|
|
blockVector.GetAllocationNextPtr());
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here.
|
|
VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
res = blockVector.Allocate(
|
|
size,
|
|
alignment,
|
|
finalCreateInfo,
|
|
suballocType,
|
|
allocationCount,
|
|
pAllocations);
|
|
if(res == VK_SUCCESS)
|
|
return VK_SUCCESS;
|
|
|
|
// Try dedicated memory.
|
|
if(canAllocateDedicated && !dedicatedPreferred)
|
|
{
|
|
res = AllocateDedicatedMemory(
|
|
pool,
|
|
size,
|
|
suballocType,
|
|
dedicatedAllocations,
|
|
memTypeIndex,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
|
|
(finalCreateInfo.flags &
|
|
(VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
|
|
finalCreateInfo.pUserData,
|
|
finalCreateInfo.priority,
|
|
dedicatedBuffer,
|
|
dedicatedImage,
|
|
dedicatedBufferImageUsage,
|
|
allocationCount,
|
|
pAllocations,
|
|
blockVector.GetAllocationNextPtr());
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here.
|
|
VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
// Everything failed: Return error code.
|
|
VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
|
|
return res;
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateDedicatedMemory(
|
|
VmaPool pool,
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
VmaDedicatedAllocationList& dedicatedAllocations,
|
|
uint32_t memTypeIndex,
|
|
bool map,
|
|
bool isUserDataString,
|
|
bool isMappingAllowed,
|
|
bool canAliasMemory,
|
|
void* pUserData,
|
|
float priority,
|
|
VkBuffer dedicatedBuffer,
|
|
VkImage dedicatedImage,
|
|
VkFlags dedicatedBufferImageUsage,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations,
|
|
const void* pNextChain)
|
|
{
|
|
VMA_ASSERT(allocationCount > 0 && pAllocations);
|
|
|
|
VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
allocInfo.memoryTypeIndex = memTypeIndex;
|
|
allocInfo.allocationSize = size;
|
|
allocInfo.pNext = pNextChain;
|
|
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
|
|
if(!canAliasMemory)
|
|
{
|
|
if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
if(dedicatedBuffer != VK_NULL_HANDLE)
|
|
{
|
|
VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
|
|
dedicatedAllocInfo.buffer = dedicatedBuffer;
|
|
VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
|
|
}
|
|
else if(dedicatedImage != VK_NULL_HANDLE)
|
|
{
|
|
dedicatedAllocInfo.image = dedicatedImage;
|
|
VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
|
|
}
|
|
}
|
|
}
|
|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
|
|
#if VMA_BUFFER_DEVICE_ADDRESS
|
|
VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
|
|
if(m_UseKhrBufferDeviceAddress)
|
|
{
|
|
bool canContainBufferWithDeviceAddress = true;
|
|
if(dedicatedBuffer != VK_NULL_HANDLE)
|
|
{
|
|
canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == UINT32_MAX || // Usage flags unknown
|
|
(dedicatedBufferImageUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0;
|
|
}
|
|
else if(dedicatedImage != VK_NULL_HANDLE)
|
|
{
|
|
canContainBufferWithDeviceAddress = false;
|
|
}
|
|
if(canContainBufferWithDeviceAddress)
|
|
{
|
|
allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
|
|
VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
|
|
}
|
|
}
|
|
#endif // #if VMA_BUFFER_DEVICE_ADDRESS
|
|
|
|
#if VMA_MEMORY_PRIORITY
|
|
VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
|
|
if(m_UseExtMemoryPriority)
|
|
{
|
|
VMA_ASSERT(priority >= 0.f && priority <= 1.f);
|
|
priorityInfo.priority = priority;
|
|
VmaPnextChainPushFront(&allocInfo, &priorityInfo);
|
|
}
|
|
#endif // #if VMA_MEMORY_PRIORITY
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
// Attach VkExportMemoryAllocateInfoKHR if necessary.
|
|
VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
|
|
exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex);
|
|
if(exportMemoryAllocInfo.handleTypes != 0)
|
|
{
|
|
VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
|
|
}
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
size_t allocIndex;
|
|
VkResult res = VK_SUCCESS;
|
|
for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
res = AllocateDedicatedMemoryPage(
|
|
pool,
|
|
size,
|
|
suballocType,
|
|
memTypeIndex,
|
|
allocInfo,
|
|
map,
|
|
isUserDataString,
|
|
isMappingAllowed,
|
|
pUserData,
|
|
pAllocations + allocIndex);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
dedicatedAllocations.Register(pAllocations[allocIndex]);
|
|
}
|
|
VMA_DEBUG_LOG_FORMAT(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%" PRIu32, allocationCount, memTypeIndex);
|
|
}
|
|
else
|
|
{
|
|
// Free all already created allocations.
|
|
while(allocIndex--)
|
|
{
|
|
VmaAllocation currAlloc = pAllocations[allocIndex];
|
|
VkDeviceMemory hMemory = currAlloc->GetMemory();
|
|
|
|
/*
|
|
There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
|
|
before vkFreeMemory.
|
|
|
|
if(currAlloc->GetMappedData() != VMA_NULL)
|
|
{
|
|
(*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
|
|
}
|
|
*/
|
|
|
|
FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
|
|
m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());
|
|
m_AllocationObjectAllocator.Free(currAlloc);
|
|
}
|
|
|
|
memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
|
|
VmaPool pool,
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t memTypeIndex,
|
|
const VkMemoryAllocateInfo& allocInfo,
|
|
bool map,
|
|
bool isUserDataString,
|
|
bool isMappingAllowed,
|
|
void* pUserData,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
VkDeviceMemory hMemory = VK_NULL_HANDLE;
|
|
VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
|
|
if(res < 0)
|
|
{
|
|
VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
|
|
return res;
|
|
}
|
|
|
|
void* pMappedData = VMA_NULL;
|
|
if(map)
|
|
{
|
|
res = (*m_VulkanFunctions.vkMapMemory)(
|
|
m_hDevice,
|
|
hMemory,
|
|
0,
|
|
VK_WHOLE_SIZE,
|
|
0,
|
|
&pMappedData);
|
|
if(res < 0)
|
|
{
|
|
VMA_DEBUG_LOG(" vkMapMemory FAILED");
|
|
FreeVulkanMemory(memTypeIndex, size, hMemory);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
*pAllocation = m_AllocationObjectAllocator.Allocate(isMappingAllowed);
|
|
(*pAllocation)->InitDedicatedAllocation(pool, memTypeIndex, hMemory, suballocType, pMappedData, size);
|
|
if (isUserDataString)
|
|
(*pAllocation)->SetName(this, (const char*)pUserData);
|
|
else
|
|
(*pAllocation)->SetUserData(this, pUserData);
|
|
m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);
|
|
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
|
{
|
|
FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaAllocator_T::GetBufferMemoryRequirements(
|
|
VkBuffer hBuffer,
|
|
VkMemoryRequirements& memReq,
|
|
bool& requiresDedicatedAllocation,
|
|
bool& prefersDedicatedAllocation) const
|
|
{
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
|
|
memReqInfo.buffer = hBuffer;
|
|
|
|
VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
|
|
|
|
VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
|
|
VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
|
|
|
|
(*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
|
|
|
|
memReq = memReq2.memoryRequirements;
|
|
requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
|
|
prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
|
|
}
|
|
else
|
|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
{
|
|
(*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
|
|
requiresDedicatedAllocation = false;
|
|
prefersDedicatedAllocation = false;
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::GetImageMemoryRequirements(
|
|
VkImage hImage,
|
|
VkMemoryRequirements& memReq,
|
|
bool& requiresDedicatedAllocation,
|
|
bool& prefersDedicatedAllocation) const
|
|
{
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
|
|
memReqInfo.image = hImage;
|
|
|
|
VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
|
|
|
|
VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
|
|
VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
|
|
|
|
(*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
|
|
|
|
memReq = memReq2.memoryRequirements;
|
|
requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
|
|
prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
|
|
}
|
|
else
|
|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
{
|
|
(*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
|
|
requiresDedicatedAllocation = false;
|
|
prefersDedicatedAllocation = false;
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::FindMemoryTypeIndex(
|
|
uint32_t memoryTypeBits,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
VkFlags bufImgUsage,
|
|
uint32_t* pMemoryTypeIndex) const
|
|
{
|
|
memoryTypeBits &= GetGlobalMemoryTypeBits();
|
|
|
|
if(pAllocationCreateInfo->memoryTypeBits != 0)
|
|
{
|
|
memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
|
|
}
|
|
|
|
VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0;
|
|
if(!FindMemoryPreferences(
|
|
IsIntegratedGpu(),
|
|
*pAllocationCreateInfo,
|
|
bufImgUsage,
|
|
requiredFlags, preferredFlags, notPreferredFlags))
|
|
{
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
*pMemoryTypeIndex = UINT32_MAX;
|
|
uint32_t minCost = UINT32_MAX;
|
|
for(uint32_t memTypeIndex = 0, memTypeBit = 1;
|
|
memTypeIndex < GetMemoryTypeCount();
|
|
++memTypeIndex, memTypeBit <<= 1)
|
|
{
|
|
// This memory type is acceptable according to memoryTypeBits bitmask.
|
|
if((memTypeBit & memoryTypeBits) != 0)
|
|
{
|
|
const VkMemoryPropertyFlags currFlags =
|
|
m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
|
|
// This memory type contains requiredFlags.
|
|
if((requiredFlags & ~currFlags) == 0)
|
|
{
|
|
// Calculate cost as number of bits from preferredFlags not present in this memory type.
|
|
uint32_t currCost = VMA_COUNT_BITS_SET(preferredFlags & ~currFlags) +
|
|
VMA_COUNT_BITS_SET(currFlags & notPreferredFlags);
|
|
// Remember memory type with lowest cost.
|
|
if(currCost < minCost)
|
|
{
|
|
*pMemoryTypeIndex = memTypeIndex;
|
|
if(currCost == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
minCost = currCost;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CalcMemTypeParams(
|
|
VmaAllocationCreateInfo& inoutCreateInfo,
|
|
uint32_t memTypeIndex,
|
|
VkDeviceSize size,
|
|
size_t allocationCount)
|
|
{
|
|
// If memory type is not HOST_VISIBLE, disable MAPPED.
|
|
if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
|
|
(m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
|
|
{
|
|
inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
}
|
|
|
|
if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
|
|
(inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0)
|
|
{
|
|
const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
VmaBudget heapBudget = {};
|
|
GetHeapBudgets(&heapBudget, heapIndex, 1);
|
|
if(heapBudget.usage + size * allocationCount > heapBudget.budget)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CalcAllocationParams(
|
|
VmaAllocationCreateInfo& inoutCreateInfo,
|
|
bool dedicatedRequired,
|
|
bool dedicatedPreferred)
|
|
{
|
|
VMA_ASSERT((inoutCreateInfo.flags &
|
|
(VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) !=
|
|
(VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) &&
|
|
"Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect.");
|
|
VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 ||
|
|
(inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) &&
|
|
"Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
|
|
if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
|
|
{
|
|
if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0)
|
|
{
|
|
VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 &&
|
|
"When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
|
|
}
|
|
}
|
|
|
|
// If memory is lazily allocated, it should be always dedicated.
|
|
if(dedicatedRequired ||
|
|
inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)
|
|
{
|
|
inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
|
}
|
|
|
|
if(inoutCreateInfo.pool != VK_NULL_HANDLE)
|
|
{
|
|
if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() &&
|
|
(inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority();
|
|
}
|
|
|
|
if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
|
|
(inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY &&
|
|
(inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
{
|
|
inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
|
}
|
|
|
|
// Non-auto USAGE values imply HOST_ACCESS flags.
|
|
// And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools.
|
|
// Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*.
|
|
// Otherwise they just protect from assert on mapping.
|
|
if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO &&
|
|
inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE &&
|
|
inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
|
|
{
|
|
if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0)
|
|
{
|
|
inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateMemory(
|
|
const VkMemoryRequirements& vkMemReq,
|
|
bool requiresDedicatedAllocation,
|
|
bool prefersDedicatedAllocation,
|
|
VkBuffer dedicatedBuffer,
|
|
VkImage dedicatedImage,
|
|
VkFlags dedicatedBufferImageUsage,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations)
|
|
{
|
|
memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
|
|
|
|
VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
|
|
|
|
if(vkMemReq.size == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VmaAllocationCreateInfo createInfoFinal = createInfo;
|
|
VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
if(res != VK_SUCCESS)
|
|
return res;
|
|
|
|
if(createInfoFinal.pool != VK_NULL_HANDLE)
|
|
{
|
|
VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector;
|
|
return AllocateMemoryOfType(
|
|
createInfoFinal.pool,
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
prefersDedicatedAllocation,
|
|
dedicatedBuffer,
|
|
dedicatedImage,
|
|
dedicatedBufferImageUsage,
|
|
createInfoFinal,
|
|
blockVector.GetMemoryTypeIndex(),
|
|
suballocType,
|
|
createInfoFinal.pool->m_DedicatedAllocations,
|
|
blockVector,
|
|
allocationCount,
|
|
pAllocations);
|
|
}
|
|
else
|
|
{
|
|
// Bit mask of memory Vulkan types acceptable for this allocation.
|
|
uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
|
|
uint32_t memTypeIndex = UINT32_MAX;
|
|
res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
|
|
// Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
|
|
if(res != VK_SUCCESS)
|
|
return res;
|
|
do
|
|
{
|
|
VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex];
|
|
VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
|
|
res = AllocateMemoryOfType(
|
|
VK_NULL_HANDLE,
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
requiresDedicatedAllocation || prefersDedicatedAllocation,
|
|
dedicatedBuffer,
|
|
dedicatedImage,
|
|
dedicatedBufferImageUsage,
|
|
createInfoFinal,
|
|
memTypeIndex,
|
|
suballocType,
|
|
m_DedicatedAllocations[memTypeIndex],
|
|
*blockVector,
|
|
allocationCount,
|
|
pAllocations);
|
|
// Allocation succeeded
|
|
if(res == VK_SUCCESS)
|
|
return VK_SUCCESS;
|
|
|
|
// Remove old memTypeIndex from list of possibilities.
|
|
memoryTypeBits &= ~(1u << memTypeIndex);
|
|
// Find alternative memTypeIndex.
|
|
res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
|
|
} while(res == VK_SUCCESS);
|
|
|
|
// No other matching memory type index could be found.
|
|
// Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::FreeMemory(
|
|
size_t allocationCount,
|
|
const VmaAllocation* pAllocations)
|
|
{
|
|
VMA_ASSERT(pAllocations);
|
|
|
|
for(size_t allocIndex = allocationCount; allocIndex--; )
|
|
{
|
|
VmaAllocation allocation = pAllocations[allocIndex];
|
|
|
|
if(allocation != VK_NULL_HANDLE)
|
|
{
|
|
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
|
{
|
|
FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
|
|
}
|
|
|
|
allocation->FreeName(this);
|
|
|
|
switch(allocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaBlockVector* pBlockVector = VMA_NULL;
|
|
VmaPool hPool = allocation->GetParentPool();
|
|
if(hPool != VK_NULL_HANDLE)
|
|
{
|
|
pBlockVector = &hPool->m_BlockVector;
|
|
}
|
|
else
|
|
{
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
|
|
}
|
|
pBlockVector->Free(allocation);
|
|
}
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
FreeDedicatedMemory(allocation);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::CalculateStatistics(VmaTotalStatistics* pStats)
|
|
{
|
|
// Initialize.
|
|
VmaClearDetailedStatistics(pStats->total);
|
|
for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
|
|
VmaClearDetailedStatistics(pStats->memoryType[i]);
|
|
for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
|
|
VmaClearDetailedStatistics(pStats->memoryHeap[i]);
|
|
|
|
// Process default pools.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
if (pBlockVector != VMA_NULL)
|
|
pBlockVector->AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
|
|
}
|
|
|
|
// Process custom pools.
|
|
{
|
|
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
|
|
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
|
|
{
|
|
VmaBlockVector& blockVector = pool->m_BlockVector;
|
|
const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
|
|
blockVector.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
|
|
pool->m_DedicatedAllocations.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
|
|
}
|
|
}
|
|
|
|
// Process dedicated allocations.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
m_DedicatedAllocations[memTypeIndex].AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
|
|
}
|
|
|
|
// Sum from memory types to memory heaps.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
const uint32_t memHeapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex;
|
|
VmaAddDetailedStatistics(pStats->memoryHeap[memHeapIndex], pStats->memoryType[memTypeIndex]);
|
|
}
|
|
|
|
// Sum from memory heaps to total.
|
|
for(uint32_t memHeapIndex = 0; memHeapIndex < GetMemoryHeapCount(); ++memHeapIndex)
|
|
VmaAddDetailedStatistics(pStats->total, pStats->memoryHeap[memHeapIndex]);
|
|
|
|
VMA_ASSERT(pStats->total.statistics.allocationCount == 0 ||
|
|
pStats->total.allocationSizeMax >= pStats->total.allocationSizeMin);
|
|
VMA_ASSERT(pStats->total.unusedRangeCount == 0 ||
|
|
pStats->total.unusedRangeSizeMax >= pStats->total.unusedRangeSizeMin);
|
|
}
|
|
|
|
void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount)
|
|
{
|
|
#if VMA_MEMORY_BUDGET
|
|
if(m_UseExtMemoryBudget)
|
|
{
|
|
if(m_Budget.m_OperationsSinceBudgetFetch < 30)
|
|
{
|
|
VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);
|
|
for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
|
|
{
|
|
const uint32_t heapIndex = firstHeap + i;
|
|
|
|
outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
|
|
outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
|
|
outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
|
|
outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
|
|
|
|
if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->statistics.blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])
|
|
{
|
|
outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] +
|
|
outBudgets->statistics.blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
|
|
}
|
|
else
|
|
{
|
|
outBudgets->usage = 0;
|
|
}
|
|
|
|
// Have to take MIN with heap size because explicit HeapSizeLimit is included in it.
|
|
outBudgets->budget = VMA_MIN(
|
|
m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
UpdateVulkanBudget(); // Outside of mutex lock
|
|
GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
|
|
{
|
|
const uint32_t heapIndex = firstHeap + i;
|
|
|
|
outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
|
|
outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
|
|
outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
|
|
outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
|
|
|
|
outBudgets->usage = outBudgets->statistics.blockBytes;
|
|
outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
|
|
pAllocationInfo->deviceMemory = hAllocation->GetMemory();
|
|
pAllocationInfo->offset = hAllocation->GetOffset();
|
|
pAllocationInfo->size = hAllocation->GetSize();
|
|
pAllocationInfo->pMappedData = hAllocation->GetMappedData();
|
|
pAllocationInfo->pUserData = hAllocation->GetUserData();
|
|
pAllocationInfo->pName = hAllocation->GetName();
|
|
}
|
|
|
|
void VmaAllocator_T::GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo)
|
|
{
|
|
GetAllocationInfo(hAllocation, &pAllocationInfo->allocationInfo);
|
|
|
|
switch (hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
pAllocationInfo->blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize();
|
|
pAllocationInfo->dedicatedMemory = VK_FALSE;
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
pAllocationInfo->blockSize = pAllocationInfo->allocationInfo.size;
|
|
pAllocationInfo->dedicatedMemory = VK_TRUE;
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
|
|
{
|
|
VMA_DEBUG_LOG_FORMAT(" CreatePool: MemoryTypeIndex=%" PRIu32 ", flags=%" PRIu32, pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
|
|
|
|
VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
|
|
|
|
// Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash.
|
|
if(pCreateInfo->pMemoryAllocateNext)
|
|
{
|
|
VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0);
|
|
}
|
|
|
|
if(newCreateInfo.maxBlockCount == 0)
|
|
{
|
|
newCreateInfo.maxBlockCount = SIZE_MAX;
|
|
}
|
|
if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
// Memory type index out of range or forbidden.
|
|
if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
|
|
((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
|
|
{
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
if(newCreateInfo.minAllocationAlignment > 0)
|
|
{
|
|
VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment));
|
|
}
|
|
|
|
const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
|
|
|
|
*pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
|
|
|
|
VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
vma_delete(this, *pPool);
|
|
*pPool = VMA_NULL;
|
|
return res;
|
|
}
|
|
|
|
// Add to m_Pools.
|
|
{
|
|
VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
|
|
(*pPool)->SetId(m_NextPoolId++);
|
|
m_Pools.PushBack(*pPool);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaAllocator_T::DestroyPool(VmaPool pool)
|
|
{
|
|
// Remove from m_Pools.
|
|
{
|
|
VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
|
|
m_Pools.Remove(pool);
|
|
}
|
|
|
|
vma_delete(this, pool);
|
|
}
|
|
|
|
void VmaAllocator_T::GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats)
|
|
{
|
|
VmaClearStatistics(*pPoolStats);
|
|
pool->m_BlockVector.AddStatistics(*pPoolStats);
|
|
pool->m_DedicatedAllocations.AddStatistics(*pPoolStats);
|
|
}
|
|
|
|
void VmaAllocator_T::CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats)
|
|
{
|
|
VmaClearDetailedStatistics(*pPoolStats);
|
|
pool->m_BlockVector.AddDetailedStatistics(*pPoolStats);
|
|
pool->m_DedicatedAllocations.AddDetailedStatistics(*pPoolStats);
|
|
}
|
|
|
|
void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
|
|
{
|
|
m_CurrentFrameIndex.store(frameIndex);
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
if(m_UseExtMemoryBudget)
|
|
{
|
|
UpdateVulkanBudget();
|
|
}
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
|
|
{
|
|
return hPool->m_BlockVector.CheckCorruption();
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
|
|
{
|
|
VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
|
|
|
|
// Process default pools.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
if(pBlockVector != VMA_NULL)
|
|
{
|
|
VkResult localRes = pBlockVector->CheckCorruption();
|
|
switch(localRes)
|
|
{
|
|
case VK_ERROR_FEATURE_NOT_PRESENT:
|
|
break;
|
|
case VK_SUCCESS:
|
|
finalRes = VK_SUCCESS;
|
|
break;
|
|
default:
|
|
return localRes;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process custom pools.
|
|
{
|
|
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
|
|
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
|
|
{
|
|
if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
|
|
{
|
|
VkResult localRes = pool->m_BlockVector.CheckCorruption();
|
|
switch(localRes)
|
|
{
|
|
case VK_ERROR_FEATURE_NOT_PRESENT:
|
|
break;
|
|
case VK_SUCCESS:
|
|
finalRes = VK_SUCCESS;
|
|
break;
|
|
default:
|
|
return localRes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return finalRes;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
|
|
{
|
|
AtomicTransactionalIncrement<VMA_ATOMIC_UINT32> deviceMemoryCountIncrement;
|
|
const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount);
|
|
#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
|
|
if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount)
|
|
{
|
|
return VK_ERROR_TOO_MANY_OBJECTS;
|
|
}
|
|
#endif
|
|
|
|
const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
|
|
|
|
// HeapSizeLimit is in effect for this heap.
|
|
if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)
|
|
{
|
|
const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
|
|
VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];
|
|
for(;;)
|
|
{
|
|
const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;
|
|
if(blockBytesAfterAllocation > heapSize)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;
|
|
}
|
|
++m_Budget.m_BlockCount[heapIndex];
|
|
|
|
// VULKAN CALL vkAllocateMemory.
|
|
VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
|
|
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
#if VMA_MEMORY_BUDGET
|
|
++m_Budget.m_OperationsSinceBudgetFetch;
|
|
#endif
|
|
|
|
// Informative callback.
|
|
if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
|
|
{
|
|
(*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData);
|
|
}
|
|
|
|
deviceMemoryCountIncrement.Commit();
|
|
}
|
|
else
|
|
{
|
|
--m_Budget.m_BlockCount[heapIndex];
|
|
m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
|
|
{
|
|
// Informative callback.
|
|
if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
|
|
{
|
|
(*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData);
|
|
}
|
|
|
|
// VULKAN CALL vkFreeMemory.
|
|
(*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
|
|
|
|
const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
|
|
--m_Budget.m_BlockCount[heapIndex];
|
|
m_Budget.m_BlockBytes[heapIndex] -= size;
|
|
|
|
--m_DeviceMemoryCount;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::BindVulkanBuffer(
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset,
|
|
VkBuffer buffer,
|
|
const void* pNext)
|
|
{
|
|
if(pNext != VMA_NULL)
|
|
{
|
|
#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
|
|
if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
|
|
m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
|
|
{
|
|
VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
|
|
bindBufferMemoryInfo.pNext = pNext;
|
|
bindBufferMemoryInfo.buffer = buffer;
|
|
bindBufferMemoryInfo.memory = memory;
|
|
bindBufferMemoryInfo.memoryOffset = memoryOffset;
|
|
return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
|
|
}
|
|
else
|
|
#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
|
|
{
|
|
return VK_ERROR_EXTENSION_NOT_PRESENT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::BindVulkanImage(
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset,
|
|
VkImage image,
|
|
const void* pNext)
|
|
{
|
|
if(pNext != VMA_NULL)
|
|
{
|
|
#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
|
|
if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
|
|
m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
|
|
{
|
|
VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
|
|
bindBufferMemoryInfo.pNext = pNext;
|
|
bindBufferMemoryInfo.image = image;
|
|
bindBufferMemoryInfo.memory = memory;
|
|
bindBufferMemoryInfo.memoryOffset = memoryOffset;
|
|
return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
|
|
}
|
|
else
|
|
#endif // #if VMA_BIND_MEMORY2
|
|
{
|
|
return VK_ERROR_EXTENSION_NOT_PRESENT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
|
|
{
|
|
switch(hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
|
|
char *pBytes = VMA_NULL;
|
|
VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
*ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
|
|
hAllocation->BlockAllocMap();
|
|
}
|
|
return res;
|
|
}
|
|
VMA_FALLTHROUGH; // Fallthrough
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
return hAllocation->DedicatedAllocMap(this, ppData);
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VK_ERROR_MEMORY_MAP_FAILED;
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
|
|
{
|
|
switch(hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
|
|
hAllocation->BlockAllocUnmap();
|
|
pBlock->Unmap(this, 1);
|
|
}
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
hAllocation->DedicatedAllocUnmap(this);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::BindBufferMemory(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer hBuffer,
|
|
const void* pNext)
|
|
{
|
|
VkResult res = VK_ERROR_UNKNOWN_COPY;
|
|
switch(hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
|
|
VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block.");
|
|
res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
|
|
break;
|
|
}
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::BindImageMemory(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage hImage,
|
|
const void* pNext)
|
|
{
|
|
VkResult res = VK_ERROR_UNKNOWN_COPY;
|
|
switch(hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
|
|
VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block.");
|
|
res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
|
|
break;
|
|
}
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::FlushOrInvalidateAllocation(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize offset, VkDeviceSize size,
|
|
VMA_CACHE_OPERATION op)
|
|
{
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
VkMappedMemoryRange memRange = {};
|
|
if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange))
|
|
{
|
|
switch(op)
|
|
{
|
|
case VMA_CACHE_FLUSH:
|
|
res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
|
|
break;
|
|
case VMA_CACHE_INVALIDATE:
|
|
res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
// else: Just ignore this call.
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::FlushOrInvalidateAllocations(
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* allocations,
|
|
const VkDeviceSize* offsets, const VkDeviceSize* sizes,
|
|
VMA_CACHE_OPERATION op)
|
|
{
|
|
typedef VmaStlAllocator<VkMappedMemoryRange> RangeAllocator;
|
|
typedef VmaSmallVector<VkMappedMemoryRange, RangeAllocator, 16> RangeVector;
|
|
RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks()));
|
|
|
|
for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
const VmaAllocation alloc = allocations[allocIndex];
|
|
const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0;
|
|
const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE;
|
|
VkMappedMemoryRange newRange;
|
|
if(GetFlushOrInvalidateRange(alloc, offset, size, newRange))
|
|
{
|
|
ranges.push_back(newRange);
|
|
}
|
|
}
|
|
|
|
VkResult res = VK_SUCCESS;
|
|
if(!ranges.empty())
|
|
{
|
|
switch(op)
|
|
{
|
|
case VMA_CACHE_FLUSH:
|
|
res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
|
|
break;
|
|
case VMA_CACHE_INVALIDATE:
|
|
res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
// else: Just ignore this call.
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CopyMemoryToAllocation(
|
|
const void* pSrcHostPointer,
|
|
VmaAllocation dstAllocation,
|
|
VkDeviceSize dstAllocationLocalOffset,
|
|
VkDeviceSize size)
|
|
{
|
|
void* dstMappedData = VMA_NULL;
|
|
VkResult res = Map(dstAllocation, &dstMappedData);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
memcpy((char*)dstMappedData + dstAllocationLocalOffset, pSrcHostPointer, (size_t)size);
|
|
Unmap(dstAllocation);
|
|
res = FlushOrInvalidateAllocation(dstAllocation, dstAllocationLocalOffset, size, VMA_CACHE_FLUSH);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CopyAllocationToMemory(
|
|
VmaAllocation srcAllocation,
|
|
VkDeviceSize srcAllocationLocalOffset,
|
|
void* pDstHostPointer,
|
|
VkDeviceSize size)
|
|
{
|
|
void* srcMappedData = VMA_NULL;
|
|
VkResult res = Map(srcAllocation, &srcMappedData);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
res = FlushOrInvalidateAllocation(srcAllocation, srcAllocationLocalOffset, size, VMA_CACHE_INVALIDATE);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
memcpy(pDstHostPointer, (const char*)srcMappedData + srcAllocationLocalOffset, (size_t)size);
|
|
Unmap(srcAllocation);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
VmaPool parentPool = allocation->GetParentPool();
|
|
if(parentPool == VK_NULL_HANDLE)
|
|
{
|
|
// Default pool
|
|
m_DedicatedAllocations[memTypeIndex].Unregister(allocation);
|
|
}
|
|
else
|
|
{
|
|
// Custom pool
|
|
parentPool->m_DedicatedAllocations.Unregister(allocation);
|
|
}
|
|
|
|
VkDeviceMemory hMemory = allocation->GetMemory();
|
|
|
|
/*
|
|
There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
|
|
before vkFreeMemory.
|
|
|
|
if(allocation->GetMappedData() != VMA_NULL)
|
|
{
|
|
(*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
|
|
}
|
|
*/
|
|
|
|
FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
|
|
|
|
m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());
|
|
m_AllocationObjectAllocator.Free(allocation);
|
|
|
|
VMA_DEBUG_LOG_FORMAT(" Freed DedicatedMemory MemoryTypeIndex=%" PRIu32, memTypeIndex);
|
|
}
|
|
|
|
uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
|
|
{
|
|
VkBufferCreateInfo dummyBufCreateInfo;
|
|
VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
|
|
|
|
uint32_t memoryTypeBits = 0;
|
|
|
|
// Create buffer.
|
|
VkBuffer buf = VK_NULL_HANDLE;
|
|
VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
|
|
m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Query for supported memory types.
|
|
VkMemoryRequirements memReq;
|
|
(*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
|
|
memoryTypeBits = memReq.memoryTypeBits;
|
|
|
|
// Destroy buffer.
|
|
(*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
|
|
}
|
|
|
|
return memoryTypeBits;
|
|
}
|
|
|
|
uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const
|
|
{
|
|
// Make sure memory information is already fetched.
|
|
VMA_ASSERT(GetMemoryTypeCount() > 0);
|
|
|
|
uint32_t memoryTypeBits = UINT32_MAX;
|
|
|
|
if(!m_UseAmdDeviceCoherentMemory)
|
|
{
|
|
// Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
|
|
{
|
|
memoryTypeBits &= ~(1u << memTypeIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
return memoryTypeBits;
|
|
}
|
|
|
|
bool VmaAllocator_T::GetFlushOrInvalidateRange(
|
|
VmaAllocation allocation,
|
|
VkDeviceSize offset, VkDeviceSize size,
|
|
VkMappedMemoryRange& outRange) const
|
|
{
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
|
|
{
|
|
const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
|
|
const VkDeviceSize allocationSize = allocation->GetSize();
|
|
VMA_ASSERT(offset <= allocationSize);
|
|
|
|
outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
|
|
outRange.pNext = VMA_NULL;
|
|
outRange.memory = allocation->GetMemory();
|
|
|
|
switch(allocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
|
|
if(size == VK_WHOLE_SIZE)
|
|
{
|
|
outRange.size = allocationSize - outRange.offset;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(offset + size <= allocationSize);
|
|
outRange.size = VMA_MIN(
|
|
VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize),
|
|
allocationSize - outRange.offset);
|
|
}
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
// 1. Still within this allocation.
|
|
outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
|
|
if(size == VK_WHOLE_SIZE)
|
|
{
|
|
size = allocationSize - offset;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(offset + size <= allocationSize);
|
|
}
|
|
outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize);
|
|
|
|
// 2. Adjust to whole block.
|
|
const VkDeviceSize allocationOffset = allocation->GetOffset();
|
|
VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
|
|
const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize();
|
|
outRange.offset += allocationOffset;
|
|
outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
void VmaAllocator_T::UpdateVulkanBudget()
|
|
{
|
|
VMA_ASSERT(m_UseExtMemoryBudget);
|
|
|
|
VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };
|
|
|
|
VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
|
|
VmaPnextChainPushFront(&memProps, &budgetProps);
|
|
|
|
GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);
|
|
|
|
{
|
|
VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);
|
|
|
|
for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
|
|
{
|
|
m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];
|
|
m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];
|
|
m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();
|
|
|
|
// Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size.
|
|
if(m_Budget.m_VulkanBudget[heapIndex] == 0)
|
|
{
|
|
m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
|
|
}
|
|
else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size)
|
|
{
|
|
m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size;
|
|
}
|
|
if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0)
|
|
{
|
|
m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
|
|
}
|
|
}
|
|
m_Budget.m_OperationsSinceBudgetFetch = 0;
|
|
}
|
|
}
|
|
#endif // VMA_MEMORY_BUDGET
|
|
|
|
void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
|
|
{
|
|
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
|
|
hAllocation->IsMappingAllowed() &&
|
|
(m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
{
|
|
void* pData = VMA_NULL;
|
|
VkResult res = Map(hAllocation, &pData);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
|
|
FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
|
|
Unmap(hAllocation);
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
|
|
{
|
|
uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
|
|
if(memoryTypeBits == UINT32_MAX)
|
|
{
|
|
memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
|
|
m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
|
|
}
|
|
return memoryTypeBits;
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
|
|
{
|
|
json.WriteString("DefaultPools");
|
|
json.BeginObject();
|
|
{
|
|
for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex];
|
|
if (pBlockVector != VMA_NULL)
|
|
{
|
|
json.BeginString("Type ");
|
|
json.ContinueString(memTypeIndex);
|
|
json.EndString();
|
|
json.BeginObject();
|
|
{
|
|
json.WriteString("PreferredBlockSize");
|
|
json.WriteNumber(pBlockVector->GetPreferredBlockSize());
|
|
|
|
json.WriteString("Blocks");
|
|
pBlockVector->PrintDetailedMap(json);
|
|
|
|
json.WriteString("DedicatedAllocations");
|
|
dedicatedAllocList.BuildStatsString(json);
|
|
}
|
|
json.EndObject();
|
|
}
|
|
}
|
|
}
|
|
json.EndObject();
|
|
|
|
json.WriteString("CustomPools");
|
|
json.BeginObject();
|
|
{
|
|
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
|
|
if (!m_Pools.IsEmpty())
|
|
{
|
|
for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
bool displayType = true;
|
|
size_t index = 0;
|
|
for (VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
|
|
{
|
|
VmaBlockVector& blockVector = pool->m_BlockVector;
|
|
if (blockVector.GetMemoryTypeIndex() == memTypeIndex)
|
|
{
|
|
if (displayType)
|
|
{
|
|
json.BeginString("Type ");
|
|
json.ContinueString(memTypeIndex);
|
|
json.EndString();
|
|
json.BeginArray();
|
|
displayType = false;
|
|
}
|
|
|
|
json.BeginObject();
|
|
{
|
|
json.WriteString("Name");
|
|
json.BeginString();
|
|
json.ContinueString((uint64_t)index++);
|
|
if (pool->GetName())
|
|
{
|
|
json.ContinueString(" - ");
|
|
json.ContinueString(pool->GetName());
|
|
}
|
|
json.EndString();
|
|
|
|
json.WriteString("PreferredBlockSize");
|
|
json.WriteNumber(blockVector.GetPreferredBlockSize());
|
|
|
|
json.WriteString("Blocks");
|
|
blockVector.PrintDetailedMap(json);
|
|
|
|
json.WriteString("DedicatedAllocations");
|
|
pool->m_DedicatedAllocations.BuildStatsString(json);
|
|
}
|
|
json.EndObject();
|
|
}
|
|
}
|
|
|
|
if (!displayType)
|
|
json.EndArray();
|
|
}
|
|
}
|
|
}
|
|
json.EndObject();
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
#endif // _VMA_ALLOCATOR_T_FUNCTIONS
|
|
|
|
|
|
#ifndef _VMA_PUBLIC_INTERFACE
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
|
|
const VmaAllocatorCreateInfo* pCreateInfo,
|
|
VmaAllocator* pAllocator)
|
|
{
|
|
VMA_ASSERT(pCreateInfo && pAllocator);
|
|
VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||
|
|
(VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3));
|
|
VMA_DEBUG_LOG("vmaCreateAllocator");
|
|
*pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
|
|
VkResult result = (*pAllocator)->Init(pCreateInfo);
|
|
if(result < 0)
|
|
{
|
|
vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator);
|
|
*pAllocator = VK_NULL_HANDLE;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
|
|
VmaAllocator allocator)
|
|
{
|
|
if(allocator != VK_NULL_HANDLE)
|
|
{
|
|
VMA_DEBUG_LOG("vmaDestroyAllocator");
|
|
VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
|
|
vma_delete(&allocationCallbacks, allocator);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pAllocatorInfo);
|
|
pAllocatorInfo->instance = allocator->m_hInstance;
|
|
pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice();
|
|
pAllocatorInfo->device = allocator->m_hDevice;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
|
|
VmaAllocator allocator,
|
|
const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
|
|
{
|
|
VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
|
|
*ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
|
|
VmaAllocator allocator,
|
|
const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
|
|
{
|
|
VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
|
|
*ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeIndex,
|
|
VkMemoryPropertyFlags* pFlags)
|
|
{
|
|
VMA_ASSERT(allocator && pFlags);
|
|
VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
|
|
*pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
|
|
VmaAllocator allocator,
|
|
uint32_t frameIndex)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->SetCurrentFrameIndex(frameIndex);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
|
|
VmaAllocator allocator,
|
|
VmaTotalStatistics* pStats)
|
|
{
|
|
VMA_ASSERT(allocator && pStats);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
allocator->CalculateStatistics(pStats);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
|
|
VmaAllocator allocator,
|
|
VmaBudget* pBudgets)
|
|
{
|
|
VMA_ASSERT(allocator && pBudgets);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount());
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
|
|
VmaAllocator allocator,
|
|
char** ppStatsString,
|
|
VkBool32 detailedMap)
|
|
{
|
|
VMA_ASSERT(allocator && ppStatsString);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VmaStringBuilder sb(allocator->GetAllocationCallbacks());
|
|
{
|
|
VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
|
|
allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount());
|
|
|
|
VmaTotalStatistics stats;
|
|
allocator->CalculateStatistics(&stats);
|
|
|
|
VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
|
|
json.BeginObject();
|
|
{
|
|
json.WriteString("General");
|
|
json.BeginObject();
|
|
{
|
|
const VkPhysicalDeviceProperties& deviceProperties = allocator->m_PhysicalDeviceProperties;
|
|
const VkPhysicalDeviceMemoryProperties& memoryProperties = allocator->m_MemProps;
|
|
|
|
json.WriteString("API");
|
|
json.WriteString("Vulkan");
|
|
|
|
json.WriteString("apiVersion");
|
|
json.BeginString();
|
|
json.ContinueString(VK_VERSION_MAJOR(deviceProperties.apiVersion));
|
|
json.ContinueString(".");
|
|
json.ContinueString(VK_VERSION_MINOR(deviceProperties.apiVersion));
|
|
json.ContinueString(".");
|
|
json.ContinueString(VK_VERSION_PATCH(deviceProperties.apiVersion));
|
|
json.EndString();
|
|
|
|
json.WriteString("GPU");
|
|
json.WriteString(deviceProperties.deviceName);
|
|
json.WriteString("deviceType");
|
|
json.WriteNumber(static_cast<uint32_t>(deviceProperties.deviceType));
|
|
|
|
json.WriteString("maxMemoryAllocationCount");
|
|
json.WriteNumber(deviceProperties.limits.maxMemoryAllocationCount);
|
|
json.WriteString("bufferImageGranularity");
|
|
json.WriteNumber(deviceProperties.limits.bufferImageGranularity);
|
|
json.WriteString("nonCoherentAtomSize");
|
|
json.WriteNumber(deviceProperties.limits.nonCoherentAtomSize);
|
|
|
|
json.WriteString("memoryHeapCount");
|
|
json.WriteNumber(memoryProperties.memoryHeapCount);
|
|
json.WriteString("memoryTypeCount");
|
|
json.WriteNumber(memoryProperties.memoryTypeCount);
|
|
}
|
|
json.EndObject();
|
|
}
|
|
{
|
|
json.WriteString("Total");
|
|
VmaPrintDetailedStatistics(json, stats.total);
|
|
}
|
|
{
|
|
json.WriteString("MemoryInfo");
|
|
json.BeginObject();
|
|
{
|
|
for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
|
|
{
|
|
json.BeginString("Heap ");
|
|
json.ContinueString(heapIndex);
|
|
json.EndString();
|
|
json.BeginObject();
|
|
{
|
|
const VkMemoryHeap& heapInfo = allocator->m_MemProps.memoryHeaps[heapIndex];
|
|
json.WriteString("Flags");
|
|
json.BeginArray(true);
|
|
{
|
|
if (heapInfo.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT)
|
|
json.WriteString("DEVICE_LOCAL");
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
if (heapInfo.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT)
|
|
json.WriteString("MULTI_INSTANCE");
|
|
#endif
|
|
|
|
VkMemoryHeapFlags flags = heapInfo.flags &
|
|
~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
| VK_MEMORY_HEAP_MULTI_INSTANCE_BIT
|
|
#endif
|
|
);
|
|
if (flags != 0)
|
|
json.WriteNumber(flags);
|
|
}
|
|
json.EndArray();
|
|
|
|
json.WriteString("Size");
|
|
json.WriteNumber(heapInfo.size);
|
|
|
|
json.WriteString("Budget");
|
|
json.BeginObject();
|
|
{
|
|
json.WriteString("BudgetBytes");
|
|
json.WriteNumber(budgets[heapIndex].budget);
|
|
json.WriteString("UsageBytes");
|
|
json.WriteNumber(budgets[heapIndex].usage);
|
|
}
|
|
json.EndObject();
|
|
|
|
json.WriteString("Stats");
|
|
VmaPrintDetailedStatistics(json, stats.memoryHeap[heapIndex]);
|
|
|
|
json.WriteString("MemoryPools");
|
|
json.BeginObject();
|
|
{
|
|
for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
|
|
{
|
|
if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
|
|
{
|
|
json.BeginString("Type ");
|
|
json.ContinueString(typeIndex);
|
|
json.EndString();
|
|
json.BeginObject();
|
|
{
|
|
json.WriteString("Flags");
|
|
json.BeginArray(true);
|
|
{
|
|
VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
|
|
if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
|
|
json.WriteString("DEVICE_LOCAL");
|
|
if (flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
|
|
json.WriteString("HOST_VISIBLE");
|
|
if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
|
|
json.WriteString("HOST_COHERENT");
|
|
if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)
|
|
json.WriteString("HOST_CACHED");
|
|
if (flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT)
|
|
json.WriteString("LAZILY_ALLOCATED");
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
if (flags & VK_MEMORY_PROPERTY_PROTECTED_BIT)
|
|
json.WriteString("PROTECTED");
|
|
#endif
|
|
#if VK_AMD_device_coherent_memory
|
|
if (flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY)
|
|
json.WriteString("DEVICE_COHERENT_AMD");
|
|
if (flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)
|
|
json.WriteString("DEVICE_UNCACHED_AMD");
|
|
#endif
|
|
|
|
flags &= ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
| VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
|
|
#endif
|
|
#if VK_AMD_device_coherent_memory
|
|
| VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY
|
|
| VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY
|
|
#endif
|
|
| VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
|
|
| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
|
|
| VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
|
|
if (flags != 0)
|
|
json.WriteNumber(flags);
|
|
}
|
|
json.EndArray();
|
|
|
|
json.WriteString("Stats");
|
|
VmaPrintDetailedStatistics(json, stats.memoryType[typeIndex]);
|
|
}
|
|
json.EndObject();
|
|
}
|
|
}
|
|
|
|
}
|
|
json.EndObject();
|
|
}
|
|
json.EndObject();
|
|
}
|
|
}
|
|
json.EndObject();
|
|
}
|
|
|
|
if (detailedMap == VK_TRUE)
|
|
allocator->PrintDetailedMap(json);
|
|
|
|
json.EndObject();
|
|
}
|
|
|
|
*ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength());
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
|
|
VmaAllocator allocator,
|
|
char* pStatsString)
|
|
{
|
|
if(pStatsString != VMA_NULL)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString);
|
|
}
|
|
}
|
|
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
|
|
/*
|
|
This function is not protected by any mutex because it just reads immutable data.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeBits,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
uint32_t* pMemoryTypeIndex)
|
|
{
|
|
VMA_ASSERT(allocator != VK_NULL_HANDLE);
|
|
VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
|
|
|
|
return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, UINT32_MAX, pMemoryTypeIndex);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
|
|
VmaAllocator allocator,
|
|
const VkBufferCreateInfo* pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
uint32_t* pMemoryTypeIndex)
|
|
{
|
|
VMA_ASSERT(allocator != VK_NULL_HANDLE);
|
|
VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
|
|
|
|
const VkDevice hDev = allocator->m_hDevice;
|
|
const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
|
|
VkResult res;
|
|
|
|
#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
|
|
if(funcs->vkGetDeviceBufferMemoryRequirements)
|
|
{
|
|
// Can query straight from VkBufferCreateInfo :)
|
|
VkDeviceBufferMemoryRequirements devBufMemReq = {VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS};
|
|
devBufMemReq.pCreateInfo = pBufferCreateInfo;
|
|
|
|
VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
|
|
(*funcs->vkGetDeviceBufferMemoryRequirements)(hDev, &devBufMemReq, &memReq);
|
|
|
|
res = allocator->FindMemoryTypeIndex(
|
|
memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex);
|
|
}
|
|
else
|
|
#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
|
|
{
|
|
// Must create a dummy buffer to query :(
|
|
VkBuffer hBuffer = VK_NULL_HANDLE;
|
|
res = funcs->vkCreateBuffer(
|
|
hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VkMemoryRequirements memReq = {};
|
|
funcs->vkGetBufferMemoryRequirements(hDev, hBuffer, &memReq);
|
|
|
|
res = allocator->FindMemoryTypeIndex(
|
|
memReq.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex);
|
|
|
|
funcs->vkDestroyBuffer(
|
|
hDev, hBuffer, allocator->GetAllocationCallbacks());
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
|
|
VmaAllocator allocator,
|
|
const VkImageCreateInfo* pImageCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
uint32_t* pMemoryTypeIndex)
|
|
{
|
|
VMA_ASSERT(allocator != VK_NULL_HANDLE);
|
|
VMA_ASSERT(pImageCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
|
|
|
|
const VkDevice hDev = allocator->m_hDevice;
|
|
const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
|
|
VkResult res;
|
|
|
|
#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
|
|
if(funcs->vkGetDeviceImageMemoryRequirements)
|
|
{
|
|
// Can query straight from VkImageCreateInfo :)
|
|
VkDeviceImageMemoryRequirements devImgMemReq = {VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS};
|
|
devImgMemReq.pCreateInfo = pImageCreateInfo;
|
|
VMA_ASSERT(pImageCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY && (pImageCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_COPY) == 0 &&
|
|
"Cannot use this VkImageCreateInfo with vmaFindMemoryTypeIndexForImageInfo as I don't know what to pass as VkDeviceImageMemoryRequirements::planeAspect.");
|
|
|
|
VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
|
|
(*funcs->vkGetDeviceImageMemoryRequirements)(hDev, &devImgMemReq, &memReq);
|
|
|
|
res = allocator->FindMemoryTypeIndex(
|
|
memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex);
|
|
}
|
|
else
|
|
#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
|
|
{
|
|
// Must create a dummy image to query :(
|
|
VkImage hImage = VK_NULL_HANDLE;
|
|
res = funcs->vkCreateImage(
|
|
hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VkMemoryRequirements memReq = {};
|
|
funcs->vkGetImageMemoryRequirements(hDev, hImage, &memReq);
|
|
|
|
res = allocator->FindMemoryTypeIndex(
|
|
memReq.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex);
|
|
|
|
funcs->vkDestroyImage(
|
|
hDev, hImage, allocator->GetAllocationCallbacks());
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
|
|
VmaAllocator allocator,
|
|
const VmaPoolCreateInfo* pCreateInfo,
|
|
VmaPool* pPool)
|
|
{
|
|
VMA_ASSERT(allocator && pCreateInfo && pPool);
|
|
|
|
VMA_DEBUG_LOG("vmaCreatePool");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->CreatePool(pCreateInfo, pPool);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
|
|
VmaAllocator allocator,
|
|
VmaPool pool)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(pool == VK_NULL_HANDLE)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaDestroyPool");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->DestroyPool(pool);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
|
|
VmaAllocator allocator,
|
|
VmaPool pool,
|
|
VmaStatistics* pPoolStats)
|
|
{
|
|
VMA_ASSERT(allocator && pool && pPoolStats);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->GetPoolStatistics(pool, pPoolStats);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
|
|
VmaAllocator allocator,
|
|
VmaPool pool,
|
|
VmaDetailedStatistics* pPoolStats)
|
|
{
|
|
VMA_ASSERT(allocator && pool && pPoolStats);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->CalculatePoolStatistics(pool, pPoolStats);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
|
|
{
|
|
VMA_ASSERT(allocator && pool);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VMA_DEBUG_LOG("vmaCheckPoolCorruption");
|
|
|
|
return allocator->CheckPoolCorruption(pool);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
|
|
VmaAllocator allocator,
|
|
VmaPool pool,
|
|
const char** ppName)
|
|
{
|
|
VMA_ASSERT(allocator && pool && ppName);
|
|
|
|
VMA_DEBUG_LOG("vmaGetPoolName");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*ppName = pool->GetName();
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
|
|
VmaAllocator allocator,
|
|
VmaPool pool,
|
|
const char* pName)
|
|
{
|
|
VMA_ASSERT(allocator && pool);
|
|
|
|
VMA_DEBUG_LOG("vmaSetPoolName");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
pool->SetName(pName);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
|
|
VmaAllocator allocator,
|
|
const VkMemoryRequirements* pVkMemoryRequirements,
|
|
const VmaAllocationCreateInfo* pCreateInfo,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkResult result = allocator->AllocateMemory(
|
|
*pVkMemoryRequirements,
|
|
false, // requiresDedicatedAllocation
|
|
false, // prefersDedicatedAllocation
|
|
VK_NULL_HANDLE, // dedicatedBuffer
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
UINT32_MAX, // dedicatedBufferImageUsage
|
|
*pCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
|
|
VmaAllocator allocator,
|
|
const VkMemoryRequirements* pVkMemoryRequirements,
|
|
const VmaAllocationCreateInfo* pCreateInfo,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
if(allocationCount == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemoryPages");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkResult result = allocator->AllocateMemory(
|
|
*pVkMemoryRequirements,
|
|
false, // requiresDedicatedAllocation
|
|
false, // prefersDedicatedAllocation
|
|
VK_NULL_HANDLE, // dedicatedBuffer
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
UINT32_MAX, // dedicatedBufferImageUsage
|
|
*pCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN,
|
|
allocationCount,
|
|
pAllocations);
|
|
|
|
if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
|
|
{
|
|
for(size_t i = 0; i < allocationCount; ++i)
|
|
{
|
|
allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
|
|
VmaAllocator allocator,
|
|
VkBuffer buffer,
|
|
const VmaAllocationCreateInfo* pCreateInfo,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation);
|
|
|
|
VkResult result = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
buffer, // dedicatedBuffer
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
UINT32_MAX, // dedicatedBufferImageUsage
|
|
*pCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
if(pAllocationInfo && result == VK_SUCCESS)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
|
|
VmaAllocator allocator,
|
|
VkImage image,
|
|
const VmaAllocationCreateInfo* pCreateInfo,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetImageMemoryRequirements(image, vkMemReq,
|
|
requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
|
VkResult result = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
VK_NULL_HANDLE, // dedicatedBuffer
|
|
image, // dedicatedImage
|
|
UINT32_MAX, // dedicatedBufferImageUsage
|
|
*pCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
if(pAllocationInfo && result == VK_SUCCESS)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(allocation == VK_NULL_HANDLE)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaFreeMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
&allocation);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
|
|
VmaAllocator allocator,
|
|
size_t allocationCount,
|
|
const VmaAllocation* pAllocations)
|
|
{
|
|
if(allocationCount == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_LOG("vmaFreeMemoryPages");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->FreeMemory(allocationCount, pAllocations);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && pAllocationInfo);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->GetAllocationInfo(allocation, pAllocationInfo);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VmaAllocationInfo2* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && pAllocationInfo);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->GetAllocationInfo2(allocation, pAllocationInfo);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
void* pUserData)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocation->SetUserData(allocator, pUserData);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
const char* VMA_NULLABLE pName)
|
|
{
|
|
allocation->SetName(allocator, pName);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkMemoryPropertyFlags* VMA_NOT_NULL pFlags)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && pFlags);
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
*pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
void** ppData)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && ppData);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->Map(allocation, ppData);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->Unmap(allocation);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_LOG("vmaFlushAllocation");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_LOG("vmaInvalidateAllocation");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
|
|
VmaAllocator allocator,
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* allocations,
|
|
const VkDeviceSize* offsets,
|
|
const VkDeviceSize* sizes)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(allocationCount == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_ASSERT(allocations);
|
|
|
|
VMA_DEBUG_LOG("vmaFlushAllocations");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
|
|
VmaAllocator allocator,
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* allocations,
|
|
const VkDeviceSize* offsets,
|
|
const VkDeviceSize* sizes)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(allocationCount == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_ASSERT(allocations);
|
|
|
|
VMA_DEBUG_LOG("vmaInvalidateAllocations");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation(
|
|
VmaAllocator allocator,
|
|
const void* pSrcHostPointer,
|
|
VmaAllocation dstAllocation,
|
|
VkDeviceSize dstAllocationLocalOffset,
|
|
VkDeviceSize size)
|
|
{
|
|
VMA_ASSERT(allocator && pSrcHostPointer && dstAllocation);
|
|
|
|
if(size == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaCopyMemoryToAllocation");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->CopyMemoryToAllocation(pSrcHostPointer, dstAllocation, dstAllocationLocalOffset, size);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation srcAllocation,
|
|
VkDeviceSize srcAllocationLocalOffset,
|
|
void* pDstHostPointer,
|
|
VkDeviceSize size)
|
|
{
|
|
VMA_ASSERT(allocator && srcAllocation && pDstHostPointer);
|
|
|
|
if(size == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaCopyAllocationToMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->CopyAllocationToMemory(srcAllocation, srcAllocationLocalOffset, pDstHostPointer, size);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeBits)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_LOG("vmaCheckCorruption");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->CheckCorruption(memoryTypeBits);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
|
|
VmaAllocator allocator,
|
|
const VmaDefragmentationInfo* pInfo,
|
|
VmaDefragmentationContext* pContext)
|
|
{
|
|
VMA_ASSERT(allocator && pInfo && pContext);
|
|
|
|
VMA_DEBUG_LOG("vmaBeginDefragmentation");
|
|
|
|
if (pInfo->pool != VMA_NULL)
|
|
{
|
|
// Check if run on supported algorithms
|
|
if (pInfo->pool->m_BlockVector.GetAlgorithm() & VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*pContext = vma_new(allocator, VmaDefragmentationContext_T)(allocator, *pInfo);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
|
|
VmaAllocator allocator,
|
|
VmaDefragmentationContext context,
|
|
VmaDefragmentationStats* pStats)
|
|
{
|
|
VMA_ASSERT(allocator && context);
|
|
|
|
VMA_DEBUG_LOG("vmaEndDefragmentation");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
if (pStats)
|
|
context->GetStats(*pStats);
|
|
vma_delete(allocator, context);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaDefragmentationContext VMA_NOT_NULL context,
|
|
VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
|
|
{
|
|
VMA_ASSERT(context && pPassInfo);
|
|
|
|
VMA_DEBUG_LOG("vmaBeginDefragmentationPass");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return context->DefragmentPassBegin(*pPassInfo);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaDefragmentationContext VMA_NOT_NULL context,
|
|
VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
|
|
{
|
|
VMA_ASSERT(context && pPassInfo);
|
|
|
|
VMA_DEBUG_LOG("vmaEndDefragmentationPass");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return context->DefragmentPassEnd(*pPassInfo);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkBuffer buffer)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && buffer);
|
|
|
|
VMA_DEBUG_LOG("vmaBindBufferMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer buffer,
|
|
const void* pNext)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && buffer);
|
|
|
|
VMA_DEBUG_LOG("vmaBindBufferMemory2");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkImage image)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && image);
|
|
|
|
VMA_DEBUG_LOG("vmaBindImageMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage image,
|
|
const void* pNext)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && image);
|
|
|
|
VMA_DEBUG_LOG("vmaBindImageMemory2");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
|
|
VmaAllocator allocator,
|
|
const VkBufferCreateInfo* pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
VkBuffer* pBuffer,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
|
|
|
|
if(pBufferCreateInfo->size == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
|
|
!allocator->m_UseKhrBufferDeviceAddress)
|
|
{
|
|
VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaCreateBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
|
|
// 1. Create VkBuffer.
|
|
VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
|
|
allocator->m_hDevice,
|
|
pBufferCreateInfo,
|
|
allocator->GetAllocationCallbacks(),
|
|
pBuffer);
|
|
if(res >= 0)
|
|
{
|
|
// 2. vkGetBufferMemoryRequirements.
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
|
|
requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
|
// 3. Allocate memory using allocator.
|
|
res = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
*pBuffer, // dedicatedBuffer
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
pBufferCreateInfo->usage, // dedicatedBufferImageUsage
|
|
*pAllocationCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
if(res >= 0)
|
|
{
|
|
// 3. Bind buffer with memory.
|
|
if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
|
|
{
|
|
res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
|
|
}
|
|
if(res >= 0)
|
|
{
|
|
// All steps succeeded.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
(*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
|
|
#endif
|
|
if(pAllocationInfo != VMA_NULL)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
pAllocation);
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
|
|
VmaAllocator allocator,
|
|
const VkBufferCreateInfo* pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
VkDeviceSize minAlignment,
|
|
VkBuffer* pBuffer,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation);
|
|
|
|
if(pBufferCreateInfo->size == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
|
|
!allocator->m_UseKhrBufferDeviceAddress)
|
|
{
|
|
VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaCreateBufferWithAlignment");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
|
|
// 1. Create VkBuffer.
|
|
VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
|
|
allocator->m_hDevice,
|
|
pBufferCreateInfo,
|
|
allocator->GetAllocationCallbacks(),
|
|
pBuffer);
|
|
if(res >= 0)
|
|
{
|
|
// 2. vkGetBufferMemoryRequirements.
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
|
|
requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
|
// 2a. Include minAlignment
|
|
vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment);
|
|
|
|
// 3. Allocate memory using allocator.
|
|
res = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
*pBuffer, // dedicatedBuffer
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
pBufferCreateInfo->usage, // dedicatedBufferImageUsage
|
|
*pAllocationCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
if(res >= 0)
|
|
{
|
|
// 3. Bind buffer with memory.
|
|
if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
|
|
{
|
|
res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
|
|
}
|
|
if(res >= 0)
|
|
{
|
|
// All steps succeeded.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
(*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
|
|
#endif
|
|
if(pAllocationInfo != VMA_NULL)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
pAllocation);
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
|
|
{
|
|
return vmaCreateAliasingBuffer2(allocator, allocation, 0, pBufferCreateInfo, pBuffer);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
|
|
{
|
|
VMA_ASSERT(allocator && pBufferCreateInfo && pBuffer && allocation);
|
|
VMA_ASSERT(allocationLocalOffset + pBufferCreateInfo->size <= allocation->GetSize());
|
|
|
|
VMA_DEBUG_LOG("vmaCreateAliasingBuffer2");
|
|
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
|
|
if (pBufferCreateInfo->size == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
|
|
!allocator->m_UseKhrBufferDeviceAddress)
|
|
{
|
|
VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
// 1. Create VkBuffer.
|
|
VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
|
|
allocator->m_hDevice,
|
|
pBufferCreateInfo,
|
|
allocator->GetAllocationCallbacks(),
|
|
pBuffer);
|
|
if (res >= 0)
|
|
{
|
|
// 2. Bind buffer with memory.
|
|
res = allocator->BindBufferMemory(allocation, allocationLocalOffset, *pBuffer, VMA_NULL);
|
|
if (res >= 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
|
|
VmaAllocator allocator,
|
|
VkBuffer buffer,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaDestroyBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
if(buffer != VK_NULL_HANDLE)
|
|
{
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
|
|
}
|
|
|
|
if(allocation != VK_NULL_HANDLE)
|
|
{
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
&allocation);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
|
|
VmaAllocator allocator,
|
|
const VkImageCreateInfo* pImageCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
VkImage* pImage,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
|
|
|
|
if(pImageCreateInfo->extent.width == 0 ||
|
|
pImageCreateInfo->extent.height == 0 ||
|
|
pImageCreateInfo->extent.depth == 0 ||
|
|
pImageCreateInfo->mipLevels == 0 ||
|
|
pImageCreateInfo->arrayLayers == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaCreateImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*pImage = VK_NULL_HANDLE;
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
|
|
// 1. Create VkImage.
|
|
VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
|
|
allocator->m_hDevice,
|
|
pImageCreateInfo,
|
|
allocator->GetAllocationCallbacks(),
|
|
pImage);
|
|
if(res >= 0)
|
|
{
|
|
VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
|
|
|
|
// 2. Allocate memory using allocator.
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
|
|
requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
|
res = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
VK_NULL_HANDLE, // dedicatedBuffer
|
|
*pImage, // dedicatedImage
|
|
pImageCreateInfo->usage, // dedicatedBufferImageUsage
|
|
*pAllocationCreateInfo,
|
|
suballocType,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
if(res >= 0)
|
|
{
|
|
// 3. Bind image with memory.
|
|
if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
|
|
{
|
|
res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
|
|
}
|
|
if(res >= 0)
|
|
{
|
|
// All steps succeeded.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
(*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);
|
|
#endif
|
|
if(pAllocationInfo != VMA_NULL)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
pAllocation);
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
(*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
|
|
*pImage = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
(*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
|
|
*pImage = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
|
|
{
|
|
return vmaCreateAliasingImage2(allocator, allocation, 0, pImageCreateInfo, pImage);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
|
|
{
|
|
VMA_ASSERT(allocator && pImageCreateInfo && pImage && allocation);
|
|
|
|
*pImage = VK_NULL_HANDLE;
|
|
|
|
VMA_DEBUG_LOG("vmaCreateImage2");
|
|
|
|
if (pImageCreateInfo->extent.width == 0 ||
|
|
pImageCreateInfo->extent.height == 0 ||
|
|
pImageCreateInfo->extent.depth == 0 ||
|
|
pImageCreateInfo->mipLevels == 0 ||
|
|
pImageCreateInfo->arrayLayers == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
// 1. Create VkImage.
|
|
VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
|
|
allocator->m_hDevice,
|
|
pImageCreateInfo,
|
|
allocator->GetAllocationCallbacks(),
|
|
pImage);
|
|
if (res >= 0)
|
|
{
|
|
// 2. Bind image with memory.
|
|
res = allocator->BindImageMemory(allocation, allocationLocalOffset, *pImage, VMA_NULL);
|
|
if (res >= 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
(*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
|
|
VmaAllocation VMA_NULLABLE allocation)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaDestroyImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
if(image != VK_NULL_HANDLE)
|
|
{
|
|
(*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
|
|
}
|
|
if(allocation != VK_NULL_HANDLE)
|
|
{
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
&allocation);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
|
|
const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock)
|
|
{
|
|
VMA_ASSERT(pCreateInfo && pVirtualBlock);
|
|
VMA_ASSERT(pCreateInfo->size > 0);
|
|
VMA_DEBUG_LOG("vmaCreateVirtualBlock");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
*pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo);
|
|
VkResult res = (*pVirtualBlock)->Init();
|
|
if(res < 0)
|
|
{
|
|
vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock);
|
|
*pVirtualBlock = VK_NULL_HANDLE;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock)
|
|
{
|
|
if(virtualBlock != VK_NULL_HANDLE)
|
|
{
|
|
VMA_DEBUG_LOG("vmaDestroyVirtualBlock");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
|
|
vma_delete(&allocationCallbacks, virtualBlock);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL);
|
|
VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
|
|
VkDeviceSize* VMA_NULLABLE pOffset)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL);
|
|
VMA_DEBUG_LOG("vmaVirtualAllocate");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation)
|
|
{
|
|
if(allocation != VK_NULL_HANDLE)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_LOG("vmaVirtualFree");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->Free(allocation);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_LOG("vmaClearVirtualBlock");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->Clear();
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->SetAllocationUserData(allocation, pUserData);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaStatistics* VMA_NOT_NULL pStats)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
|
|
VMA_DEBUG_LOG("vmaGetVirtualBlockStatistics");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->GetStatistics(*pStats);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaDetailedStatistics* VMA_NOT_NULL pStats)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
|
|
VMA_DEBUG_LOG("vmaCalculateVirtualBlockStatistics");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->CalculateDetailedStatistics(*pStats);
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks();
|
|
VmaStringBuilder sb(allocationCallbacks);
|
|
virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb);
|
|
*ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength());
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
char* VMA_NULLABLE pStatsString)
|
|
{
|
|
if(pStatsString != VMA_NULL)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString);
|
|
}
|
|
}
|
|
#endif // VMA_STATS_STRING_ENABLED
|
|
#endif // _VMA_PUBLIC_INTERFACE
|
|
#endif // VMA_IMPLEMENTATION
|
|
|
|
/**
|
|
\page quick_start Quick start
|
|
|
|
\section quick_start_project_setup Project setup
|
|
|
|
Vulkan Memory Allocator comes in form of a "stb-style" single header file.
|
|
While you can pull the entire repository e.g. as Git module, there is also Cmake script provided,
|
|
you don't need to build it as a separate library project.
|
|
You can add file "vk_mem_alloc.h" directly to your project and submit it to code repository next to your other source files.
|
|
|
|
"Single header" doesn't mean that everything is contained in C/C++ declarations,
|
|
like it tends to be in case of inline functions or C++ templates.
|
|
It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
|
|
If you don't do it properly, it will result in linker errors.
|
|
|
|
To do it properly:
|
|
|
|
-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
|
|
This includes declarations of all members of the library.
|
|
-# In exactly one CPP file define following macro before this include.
|
|
It enables also internal definitions.
|
|
|
|
\code
|
|
#define VMA_IMPLEMENTATION
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
It may be a good idea to create dedicated CPP file just for this purpose, e.g. "VmaUsage.cpp".
|
|
|
|
This library includes header `<vulkan/vulkan.h>`, which in turn
|
|
includes `<windows.h>` on Windows. If you need some specific macros defined
|
|
before including these headers (like `WIN32_LEAN_AND_MEAN` or
|
|
`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
|
|
them before every `#include` of this library.
|
|
It may be a good idea to create a dedicate header file for this purpose, e.g. "VmaUsage.h",
|
|
that will be included in other source files instead of VMA header directly.
|
|
|
|
This library is written in C++, but has C-compatible interface.
|
|
Thus, you can include and use "vk_mem_alloc.h" in C or C++ code, but full
|
|
implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
|
|
Some features of C++14 are used and required. Features of C++20 are used optionally when available.
|
|
Some headers of standard C and C++ library are used, but STL containers, RTTI, or C++ exceptions are not used.
|
|
|
|
|
|
\section quick_start_initialization Initialization
|
|
|
|
VMA offers library interface in a style similar to Vulkan, with object handles like #VmaAllocation,
|
|
structures describing parameters of objects to be created like #VmaAllocationCreateInfo,
|
|
and errors codes returned from functions using `VkResult` type.
|
|
|
|
The first and the main object that needs to be created is #VmaAllocator.
|
|
It represents the initialization of the entire library.
|
|
Only one such object should be created per `VkDevice`.
|
|
You should create it at program startup, after `VkDevice` was created, and before any device memory allocator needs to be made.
|
|
It must be destroyed before `VkDevice` is destroyed.
|
|
|
|
At program startup:
|
|
|
|
-# Initialize Vulkan to have `VkInstance`, `VkPhysicalDevice`, `VkDevice` object.
|
|
-# Fill VmaAllocatorCreateInfo structure and call vmaCreateAllocator() to create #VmaAllocator object.
|
|
|
|
Only members `physicalDevice`, `device`, `instance` are required.
|
|
However, you should inform the library which Vulkan version do you use by setting
|
|
VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable
|
|
by setting VmaAllocatorCreateInfo::flags.
|
|
Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions.
|
|
See below for details.
|
|
|
|
\subsection quick_start_initialization_selecting_vulkan_version Selecting Vulkan version
|
|
|
|
VMA supports Vulkan version down to 1.0, for backward compatibility.
|
|
If you want to use higher version, you need to inform the library about it.
|
|
This is a two-step process.
|
|
|
|
<b>Step 1: Compile time.</b> By default, VMA compiles with code supporting the highest
|
|
Vulkan version found in the included `<vulkan/vulkan.h>` that is also supported by the library.
|
|
If this is OK, you don't need to do anything.
|
|
However, if you want to compile VMA as if only some lower Vulkan version was available,
|
|
define macro `VMA_VULKAN_VERSION` before every `#include "vk_mem_alloc.h"`.
|
|
It should have decimal numeric value in form of ABBBCCC, where A = major, BBB = minor, CCC = patch Vulkan version.
|
|
For example, to compile against Vulkan 1.2:
|
|
|
|
\code
|
|
#define VMA_VULKAN_VERSION 1002000 // Vulkan 1.2
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
<b>Step 2: Runtime.</b> Even when compiled with higher Vulkan version available,
|
|
VMA can use only features of a lower version, which is configurable during creation of the #VmaAllocator object.
|
|
By default, only Vulkan 1.0 is used.
|
|
To initialize the allocator with support for higher Vulkan version, you need to set member
|
|
VmaAllocatorCreateInfo::vulkanApiVersion to an appropriate value, e.g. using constants like `VK_API_VERSION_1_2`.
|
|
See code sample below.
|
|
|
|
\subsection quick_start_initialization_importing_vulkan_functions Importing Vulkan functions
|
|
|
|
You may need to configure importing Vulkan functions. There are 3 ways to do this:
|
|
|
|
-# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows):
|
|
- You don't need to do anything.
|
|
- VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default.
|
|
-# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`,
|
|
`vkGetDeviceProcAddr` (this is the option presented in the example below):
|
|
- Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1.
|
|
- Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr,
|
|
VmaVulkanFunctions::vkGetDeviceProcAddr.
|
|
- The library will fetch pointers to all other functions it needs internally.
|
|
-# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like
|
|
[Volk](https://github.com/zeux/volk):
|
|
- Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0.
|
|
- Pass these pointers via structure #VmaVulkanFunctions.
|
|
|
|
\subsection quick_start_initialization_enabling_extensions Enabling extensions
|
|
|
|
VMA can automatically use following Vulkan extensions.
|
|
If you found them availeble on the selected physical device and you enabled them
|
|
while creating `VkInstance` / `VkDevice` object, inform VMA about their availability
|
|
by setting appropriate flags in VmaAllocatorCreateInfo::flags.
|
|
|
|
Vulkan extension | VMA flag
|
|
------------------------------|-----------------------------------------------------
|
|
VK_KHR_dedicated_allocation | #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT
|
|
VK_KHR_bind_memory2 | #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT
|
|
VK_KHR_maintenance4 | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT
|
|
VK_EXT_memory_budget | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT
|
|
VK_EXT_memory_priority | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT
|
|
VK_AMD_device_coherent_memory | #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
|
|
|
|
Example with fetching pointers to Vulkan functions dynamically:
|
|
|
|
\code
|
|
#define VMA_STATIC_VULKAN_FUNCTIONS 0
|
|
#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
|
|
#include "vk_mem_alloc.h"
|
|
|
|
...
|
|
|
|
VmaVulkanFunctions vulkanFunctions = {};
|
|
vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr;
|
|
vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr;
|
|
|
|
VmaAllocatorCreateInfo allocatorCreateInfo = {};
|
|
allocatorCreateInfo.flags = VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT;
|
|
allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2;
|
|
allocatorCreateInfo.physicalDevice = physicalDevice;
|
|
allocatorCreateInfo.device = device;
|
|
allocatorCreateInfo.instance = instance;
|
|
allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions;
|
|
|
|
VmaAllocator allocator;
|
|
vmaCreateAllocator(&allocatorCreateInfo, &allocator);
|
|
|
|
// Entire program...
|
|
|
|
// At the end, don't forget to:
|
|
vmaDestroyAllocator(allocator);
|
|
\endcode
|
|
|
|
|
|
\subsection quick_start_initialization_other_config Other configuration options
|
|
|
|
There are additional configuration options available through preprocessor macros that you can define
|
|
before including VMA header and through parameters passed in #VmaAllocatorCreateInfo.
|
|
They include a possibility to use your own callbacks for host memory allocations (`VkAllocationCallbacks`),
|
|
callbacks for device memory allocations (instead of `vkAllocateMemory`, `vkFreeMemory`),
|
|
or your custom `VMA_ASSERT` macro, among others.
|
|
For more information, see: @ref configuration.
|
|
|
|
|
|
\section quick_start_resource_allocation Resource allocation
|
|
|
|
When you want to create a buffer or image:
|
|
|
|
-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
|
|
-# Fill VmaAllocationCreateInfo structure.
|
|
-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
|
|
already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufferInfo.size = 65536;
|
|
bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
Don't forget to destroy your buffer and allocation objects when no longer needed:
|
|
|
|
\code
|
|
vmaDestroyBuffer(allocator, buffer, allocation);
|
|
\endcode
|
|
|
|
If you need to map the buffer, you must set flag
|
|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
|
|
in VmaAllocationCreateInfo::flags.
|
|
There are many additional parameters that can control the choice of memory type to be used for the allocation
|
|
and other features.
|
|
For more information, see documentation chapters: @ref choosing_memory_type, @ref memory_mapping.
|
|
|
|
|
|
\page choosing_memory_type Choosing memory type
|
|
|
|
Physical devices in Vulkan support various combinations of memory heaps and
|
|
types. Help with choosing correct and optimal memory type for your specific
|
|
resource is one of the key features of this library. You can use it by filling
|
|
appropriate members of VmaAllocationCreateInfo structure, as described below.
|
|
You can also combine multiple methods.
|
|
|
|
-# If you just want to find memory type index that meets your requirements, you
|
|
can use function: vmaFindMemoryTypeIndexForBufferInfo(),
|
|
vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex().
|
|
-# If you want to allocate a region of device memory without association with any
|
|
specific image or buffer, you can use function vmaAllocateMemory(). Usage of
|
|
this function is not recommended and usually not needed.
|
|
vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
|
|
which may be useful for sparse binding.
|
|
-# If you already have a buffer or an image created, you want to allocate memory
|
|
for it and then you will bind it yourself, you can use function
|
|
vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
|
|
For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
|
|
or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
|
|
-# If you want to create a buffer or an image, allocate memory for it, and bind
|
|
them together, all in one call, you can use function vmaCreateBuffer(),
|
|
vmaCreateImage().
|
|
<b>This is the easiest and recommended way to use this library!</b>
|
|
|
|
When using 3. or 4., the library internally queries Vulkan for memory types
|
|
supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
|
|
and uses only one of these types.
|
|
|
|
If no memory type can be found that meets all the requirements, these functions
|
|
return `VK_ERROR_FEATURE_NOT_PRESENT`.
|
|
|
|
You can leave VmaAllocationCreateInfo structure completely filled with zeros.
|
|
It means no requirements are specified for memory type.
|
|
It is valid, although not very useful.
|
|
|
|
\section choosing_memory_type_usage Usage
|
|
|
|
The easiest way to specify memory requirements is to fill member
|
|
VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
|
|
It defines high level, common usage types.
|
|
Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically.
|
|
|
|
For example, if you want to create a uniform buffer that will be filled using
|
|
transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can
|
|
do it using following code. The buffer will most likely end up in a memory type with
|
|
`VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufferInfo.size = 65536;
|
|
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory
|
|
on systems with discrete graphics card that have the memories separate, you can use
|
|
#VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST.
|
|
|
|
When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory,
|
|
you also need to specify one of the host access flags:
|
|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
|
|
This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
|
|
so you can map it.
|
|
|
|
For example, a staging buffer that will be filled via mapped pointer and then
|
|
used as a source of transfer to the buffer described previously can be created like this.
|
|
It will likely end up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT`
|
|
but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM).
|
|
|
|
\code
|
|
VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
stagingBufferInfo.size = 65536;
|
|
stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
|
|
VmaAllocationCreateInfo stagingAllocInfo = {};
|
|
stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
|
|
|
|
VkBuffer stagingBuffer;
|
|
VmaAllocation stagingAllocation;
|
|
vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr);
|
|
\endcode
|
|
|
|
For more examples of creating different kinds of resources, see chapter \ref usage_patterns.
|
|
See also: @ref memory_mapping.
|
|
|
|
Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows
|
|
about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed,
|
|
so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc.
|
|
If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting
|
|
memory type, as described below.
|
|
|
|
\note
|
|
Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`,
|
|
`VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`)
|
|
are still available and work same way as in previous versions of the library
|
|
for backward compatibility, but they are deprecated.
|
|
|
|
\section choosing_memory_type_required_preferred_flags Required and preferred flags
|
|
|
|
You can specify more detailed requirements by filling members
|
|
VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
|
|
with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
|
|
if you want to create a buffer that will be persistently mapped on host (so it
|
|
must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
|
|
use following code:
|
|
|
|
\code
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
A memory type is chosen that has all the required flags and as many preferred
|
|
flags set as possible.
|
|
|
|
Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags,
|
|
plus some extra "magic" (heuristics).
|
|
|
|
\section choosing_memory_type_explicit_memory_types Explicit memory types
|
|
|
|
If you inspected memory types available on the physical device and <b>you have
|
|
a preference for memory types that you want to use</b>, you can fill member
|
|
VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
|
|
means that a memory type with that index is allowed to be used for the
|
|
allocation. Special value 0, just like `UINT32_MAX`, means there are no
|
|
restrictions to memory type index.
|
|
|
|
Please note that this member is NOT just a memory type index.
|
|
Still you can use it to choose just one, specific memory type.
|
|
For example, if you already determined that your buffer should be created in
|
|
memory type 2, use following code:
|
|
|
|
\code
|
|
uint32_t memoryTypeIndex = 2;
|
|
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
You can also use this parameter to <b>exclude some memory types</b>.
|
|
If you inspect memory heaps and types available on the current physical device and
|
|
you determine that for some reason you don't want to use a specific memory type for the allocation,
|
|
you can enable automatic memory type selection but exclude certain memory type or types
|
|
by setting all bits of `memoryTypeBits` to 1 except the ones you choose.
|
|
|
|
\code
|
|
// ...
|
|
uint32_t excludedMemoryTypeIndex = 2;
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocInfo.memoryTypeBits = ~(1u << excludedMemoryTypeIndex);
|
|
// ...
|
|
\endcode
|
|
|
|
|
|
\section choosing_memory_type_custom_memory_pools Custom memory pools
|
|
|
|
If you allocate from custom memory pool, all the ways of specifying memory
|
|
requirements described above are not applicable and the aforementioned members
|
|
of VmaAllocationCreateInfo structure are ignored. Memory type is selected
|
|
explicitly when creating the pool and then used to make all the allocations from
|
|
that pool. For further details, see \ref custom_memory_pools.
|
|
|
|
\section choosing_memory_type_dedicated_allocations Dedicated allocations
|
|
|
|
Memory for allocations is reserved out of larger block of `VkDeviceMemory`
|
|
allocated from Vulkan internally. That is the main feature of this whole library.
|
|
You can still request a separate memory block to be created for an allocation,
|
|
just like you would do in a trivial solution without using any allocator.
|
|
In that case, a buffer or image is always bound to that memory at offset 0.
|
|
This is called a "dedicated allocation".
|
|
You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
The library can also internally decide to use dedicated allocation in some cases, e.g.:
|
|
|
|
- When the size of the allocation is large.
|
|
- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
|
|
and it reports that dedicated allocation is required or recommended for the resource.
|
|
- When allocation of next big memory block fails due to not enough device memory,
|
|
but allocation with the exact requested size succeeds.
|
|
|
|
|
|
\page memory_mapping Memory mapping
|
|
|
|
To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
|
|
to be able to read from it or write to it in CPU code.
|
|
Mapping is possible only of memory allocated from a memory type that has
|
|
`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
|
|
Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
|
|
You can use them directly with memory allocated by this library,
|
|
but it is not recommended because of following issue:
|
|
Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
|
|
This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
|
|
It is also not thread-safe.
|
|
Because of this, Vulkan Memory Allocator provides following facilities:
|
|
|
|
\note If you want to be able to map an allocation, you need to specify one of the flags
|
|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
|
|
in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable
|
|
when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values.
|
|
For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable,
|
|
but these flags can still be used for consistency.
|
|
|
|
\section memory_mapping_copy_functions Copy functions
|
|
|
|
The easiest way to copy data from a host pointer to an allocation is to use convenience function vmaCopyMemoryToAllocation().
|
|
It automatically maps the Vulkan memory temporarily (if not already mapped), performs `memcpy`,
|
|
and calls `vkFlushMappedMemoryRanges` (if required - if memory type is not `HOST_COHERENT`).
|
|
|
|
It is also the safest one, because using `memcpy` avoids a risk of accidentally introducing memory reads
|
|
(e.g. by doing `pMappedVectors[i] += v`), which may be very slow on memory types that are not `HOST_CACHED`.
|
|
|
|
\code
|
|
struct ConstantBuffer
|
|
{
|
|
...
|
|
};
|
|
ConstantBuffer constantBufferData = ...
|
|
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = sizeof(ConstantBuffer);
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
|
|
|
|
vmaCopyMemoryToAllocation(allocator, &constantBufferData, alloc, 0, sizeof(ConstantBuffer));
|
|
\endcode
|
|
|
|
Copy in the other direction - from an allocation to a host pointer can be performed the same way using function vmaCopyAllocationToMemory().
|
|
|
|
\section memory_mapping_mapping_functions Mapping functions
|
|
|
|
The library provides following functions for mapping of a specific allocation: vmaMapMemory(), vmaUnmapMemory().
|
|
They are safer and more convenient to use than standard Vulkan functions.
|
|
You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
|
|
You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
|
|
The way it is implemented is that the library always maps entire memory block, not just region of the allocation.
|
|
For further details, see description of vmaMapMemory() function.
|
|
Example:
|
|
|
|
\code
|
|
// Having these objects initialized:
|
|
struct ConstantBuffer
|
|
{
|
|
...
|
|
};
|
|
ConstantBuffer constantBufferData = ...
|
|
|
|
VmaAllocator allocator = ...
|
|
VkBuffer constantBuffer = ...
|
|
VmaAllocation constantBufferAllocation = ...
|
|
|
|
// You can map and fill your buffer using following code:
|
|
|
|
void* mappedData;
|
|
vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
|
|
memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
|
|
vmaUnmapMemory(allocator, constantBufferAllocation);
|
|
\endcode
|
|
|
|
When mapping, you may see a warning from Vulkan validation layer similar to this one:
|
|
|
|
<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
|
|
|
|
It happens because the library maps entire `VkDeviceMemory` block, where different
|
|
types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
|
|
You can safely ignore it if you are sure you access only memory of the intended
|
|
object that you wanted to map.
|
|
|
|
|
|
\section memory_mapping_persistently_mapped_memory Persistently mapped memory
|
|
|
|
Keeping your memory persistently mapped is generally OK in Vulkan.
|
|
You don't need to unmap it before using its data on the GPU.
|
|
The library provides a special feature designed for that:
|
|
Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
|
|
VmaAllocationCreateInfo::flags stay mapped all the time,
|
|
so you can just access CPU pointer to it any time
|
|
without a need to call any "map" or "unmap" function.
|
|
Example:
|
|
|
|
\code
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = sizeof(ConstantBuffer);
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
|
|
VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
VmaAllocationInfo allocInfo;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
|
|
// Buffer is already mapped. You can access its memory.
|
|
memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
|
|
\endcode
|
|
|
|
\note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up
|
|
in a mappable memory type.
|
|
For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or
|
|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
|
|
#VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation.
|
|
For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading.
|
|
|
|
\section memory_mapping_cache_control Cache flush and invalidate
|
|
|
|
Memory in Vulkan doesn't need to be unmapped before using it on GPU,
|
|
but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
|
|
you need to manually **invalidate** cache before reading of mapped pointer
|
|
and **flush** cache after writing to mapped pointer.
|
|
Map/unmap operations don't do that automatically.
|
|
Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
|
|
`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
|
|
functions that refer to given allocation object: vmaFlushAllocation(),
|
|
vmaInvalidateAllocation(),
|
|
or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations().
|
|
|
|
Regions of memory specified for flush/invalidate must be aligned to
|
|
`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
|
|
In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
|
|
within blocks are aligned to this value, so their offsets are always multiply of
|
|
`nonCoherentAtomSize` and two different allocations never share same "line" of this size.
|
|
|
|
Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)
|
|
currently provide `HOST_COHERENT` flag on all memory types that are
|
|
`HOST_VISIBLE`, so on PC you may not need to bother.
|
|
|
|
|
|
\page staying_within_budget Staying within budget
|
|
|
|
When developing a graphics-intensive game or program, it is important to avoid allocating
|
|
more GPU memory than it is physically available. When the memory is over-committed,
|
|
various bad things can happen, depending on the specific GPU, graphics driver, and
|
|
operating system:
|
|
|
|
- It may just work without any problems.
|
|
- The application may slow down because some memory blocks are moved to system RAM
|
|
and the GPU has to access them through PCI Express bus.
|
|
- A new allocation may take very long time to complete, even few seconds, and possibly
|
|
freeze entire system.
|
|
- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`
|
|
returned somewhere later.
|
|
|
|
\section staying_within_budget_querying_for_budget Querying for budget
|
|
|
|
To query for current memory usage and available budget, use function vmaGetHeapBudgets().
|
|
Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.
|
|
|
|
Please note that this function returns different information and works faster than
|
|
vmaCalculateStatistics(). vmaGetHeapBudgets() can be called every frame or even before every
|
|
allocation, while vmaCalculateStatistics() is intended to be used rarely,
|
|
only to obtain statistical information, e.g. for debugging purposes.
|
|
|
|
It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information
|
|
about the budget from Vulkan device. VMA is able to use this extension automatically.
|
|
When not enabled, the allocator behaves same way, but then it estimates current usage
|
|
and available budget based on its internal information and Vulkan memory heap sizes,
|
|
which may be less precise. In order to use this extension:
|
|
|
|
1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2
|
|
required by it are available and enable them. Please note that the first is a device
|
|
extension and the second is instance extension!
|
|
2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.
|
|
3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from
|
|
Vulkan inside of it to avoid overhead of querying it with every allocation.
|
|
|
|
\section staying_within_budget_controlling_memory_usage Controlling memory usage
|
|
|
|
There are many ways in which you can try to stay within the budget.
|
|
|
|
First, when making new allocation requires allocating a new memory block, the library
|
|
tries not to exceed the budget automatically. If a block with default recommended size
|
|
(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even
|
|
dedicated memory for just this resource.
|
|
|
|
If the size of the requested resource plus current memory usage is more than the
|
|
budget, by default the library still tries to create it, leaving it to the Vulkan
|
|
implementation whether the allocation succeeds or fails. You can change this behavior
|
|
by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is
|
|
not made if it would exceed the budget or if the budget is already exceeded.
|
|
VMA then tries to make the allocation from the next eligible Vulkan memory type.
|
|
The all of them fail, the call then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag
|
|
when creating resources that are not essential for the application (e.g. the texture
|
|
of a specific object) and not to pass it when creating critically important resources
|
|
(e.g. render targets).
|
|
|
|
On AMD graphics cards there is a custom vendor extension available: <b>VK_AMD_memory_overallocation_behavior</b>
|
|
that allows to control the behavior of the Vulkan implementation in out-of-memory cases -
|
|
whether it should fail with an error code or still allow the allocation.
|
|
Usage of this extension involves only passing extra structure on Vulkan device creation,
|
|
so it is out of scope of this library.
|
|
|
|
Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure
|
|
a new allocation is created only when it fits inside one of the existing memory blocks.
|
|
If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
This also ensures that the function call is very fast because it never goes to Vulkan
|
|
to obtain a new block.
|
|
|
|
\note Creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount
|
|
set to more than 0 will currently try to allocate memory blocks without checking whether they
|
|
fit within budget.
|
|
|
|
|
|
\page resource_aliasing Resource aliasing (overlap)
|
|
|
|
New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory
|
|
management, give an opportunity to alias (overlap) multiple resources in the
|
|
same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL).
|
|
It can be useful to save video memory, but it must be used with caution.
|
|
|
|
For example, if you know the flow of your whole render frame in advance, you
|
|
are going to use some intermediate textures or buffers only during a small range of render passes,
|
|
and you know these ranges don't overlap in time, you can bind these resources to
|
|
the same place in memory, even if they have completely different parameters (width, height, format etc.).
|
|
|
|
![Resource aliasing (overlap)](../gfx/Aliasing.png)
|
|
|
|
Such scenario is possible using VMA, but you need to create your images manually.
|
|
Then you need to calculate parameters of an allocation to be made using formula:
|
|
|
|
- allocation size = max(size of each image)
|
|
- allocation alignment = max(alignment of each image)
|
|
- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image)
|
|
|
|
Following example shows two different images bound to the same place in memory,
|
|
allocated to fit largest of them.
|
|
|
|
\code
|
|
// A 512x512 texture to be sampled.
|
|
VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
|
img1CreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
img1CreateInfo.extent.width = 512;
|
|
img1CreateInfo.extent.height = 512;
|
|
img1CreateInfo.extent.depth = 1;
|
|
img1CreateInfo.mipLevels = 10;
|
|
img1CreateInfo.arrayLayers = 1;
|
|
img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;
|
|
img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
// A full screen texture to be used as color attachment.
|
|
VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
|
img2CreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
img2CreateInfo.extent.width = 1920;
|
|
img2CreateInfo.extent.height = 1080;
|
|
img2CreateInfo.extent.depth = 1;
|
|
img2CreateInfo.mipLevels = 1;
|
|
img2CreateInfo.arrayLayers = 1;
|
|
img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
VkImage img1;
|
|
res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1);
|
|
VkImage img2;
|
|
res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2);
|
|
|
|
VkMemoryRequirements img1MemReq;
|
|
vkGetImageMemoryRequirements(device, img1, &img1MemReq);
|
|
VkMemoryRequirements img2MemReq;
|
|
vkGetImageMemoryRequirements(device, img2, &img2MemReq);
|
|
|
|
VkMemoryRequirements finalMemReq = {};
|
|
finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size);
|
|
finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment);
|
|
finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits;
|
|
// Validate if(finalMemReq.memoryTypeBits != 0)
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
|
|
VmaAllocation alloc;
|
|
res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr);
|
|
|
|
res = vmaBindImageMemory(allocator, alloc, img1);
|
|
res = vmaBindImageMemory(allocator, alloc, img2);
|
|
|
|
// You can use img1, img2 here, but not at the same time!
|
|
|
|
vmaFreeMemory(allocator, alloc);
|
|
vkDestroyImage(allocator, img2, nullptr);
|
|
vkDestroyImage(allocator, img1, nullptr);
|
|
\endcode
|
|
|
|
VMA also provides convenience functions that create a buffer or image and bind it to memory
|
|
represented by an existing #VmaAllocation:
|
|
vmaCreateAliasingBuffer(), vmaCreateAliasingBuffer2(),
|
|
vmaCreateAliasingImage(), vmaCreateAliasingImage2().
|
|
Versions with "2" offer additional parameter `allocationLocalOffset`.
|
|
|
|
Remember that using resources that alias in memory requires proper synchronization.
|
|
You need to issue a memory barrier to make sure commands that use `img1` and `img2`
|
|
don't overlap on GPU timeline.
|
|
You also need to treat a resource after aliasing as uninitialized - containing garbage data.
|
|
For example, if you use `img1` and then want to use `img2`, you need to issue
|
|
an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`.
|
|
|
|
Additional considerations:
|
|
|
|
- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases.
|
|
See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag.
|
|
- You can create more complex layout where different images and buffers are bound
|
|
at different offsets inside one large allocation. For example, one can imagine
|
|
a big texture used in some render passes, aliasing with a set of many small buffers
|
|
used between in some further passes. To bind a resource at non-zero offset in an allocation,
|
|
use vmaBindBufferMemory2() / vmaBindImageMemory2().
|
|
- Before allocating memory for the resources you want to alias, check `memoryTypeBits`
|
|
returned in memory requirements of each resource to make sure the bits overlap.
|
|
Some GPUs may expose multiple memory types suitable e.g. only for buffers or
|
|
images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your
|
|
resources may be disjoint. Aliasing them is not possible in that case.
|
|
|
|
|
|
\page custom_memory_pools Custom memory pools
|
|
|
|
A memory pool contains a number of `VkDeviceMemory` blocks.
|
|
The library automatically creates and manages default pool for each memory type available on the device.
|
|
Default memory pool automatically grows in size.
|
|
Size of allocated blocks is also variable and managed automatically.
|
|
You are using default pools whenever you leave VmaAllocationCreateInfo::pool = null.
|
|
|
|
You can create custom pool and allocate memory out of it.
|
|
It can be useful if you want to:
|
|
|
|
- Keep certain kind of allocations separate from others.
|
|
- Enforce particular, fixed size of Vulkan memory blocks.
|
|
- Limit maximum amount of Vulkan memory allocated for that pool.
|
|
- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
|
|
- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in
|
|
#VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain.
|
|
- Perform defragmentation on a specific subset of your allocations.
|
|
|
|
To use custom memory pools:
|
|
|
|
-# Fill VmaPoolCreateInfo structure.
|
|
-# Call vmaCreatePool() to obtain #VmaPool handle.
|
|
-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
|
|
You don't need to specify any other parameters of this structure, like `usage`.
|
|
|
|
Example:
|
|
|
|
\code
|
|
// Find memoryTypeIndex for the pool.
|
|
VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
sampleBufCreateInfo.size = 0x10000; // Doesn't matter.
|
|
sampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo sampleAllocCreateInfo = {};
|
|
sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
|
|
uint32_t memTypeIndex;
|
|
VkResult res = vmaFindMemoryTypeIndexForBufferInfo(allocator,
|
|
&sampleBufCreateInfo, &sampleAllocCreateInfo, &memTypeIndex);
|
|
// Check res...
|
|
|
|
// Create a pool that can have at most 2 blocks, 128 MiB each.
|
|
VmaPoolCreateInfo poolCreateInfo = {};
|
|
poolCreateInfo.memoryTypeIndex = memTypeIndex;
|
|
poolCreateInfo.blockSize = 128ull * 1024 * 1024;
|
|
poolCreateInfo.maxBlockCount = 2;
|
|
|
|
VmaPool pool;
|
|
res = vmaCreatePool(allocator, &poolCreateInfo, &pool);
|
|
// Check res...
|
|
|
|
// Allocate a buffer out of it.
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = 1024;
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.pool = pool;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
res = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
|
|
// Check res...
|
|
\endcode
|
|
|
|
You have to free all allocations made from this pool before destroying it.
|
|
|
|
\code
|
|
vmaDestroyBuffer(allocator, buf, alloc);
|
|
vmaDestroyPool(allocator, pool);
|
|
\endcode
|
|
|
|
New versions of this library support creating dedicated allocations in custom pools.
|
|
It is supported only when VmaPoolCreateInfo::blockSize = 0.
|
|
To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and
|
|
VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
|
|
|
|
\section custom_memory_pools_MemTypeIndex Choosing memory type index
|
|
|
|
When creating a pool, you must explicitly specify memory type index.
|
|
To find the one suitable for your buffers or images, you can use helper functions
|
|
vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
|
|
You need to provide structures with example parameters of buffers or images
|
|
that you are going to create in that pool.
|
|
|
|
\code
|
|
VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
exampleBufCreateInfo.size = 1024; // Doesn't matter
|
|
exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
|
|
uint32_t memTypeIndex;
|
|
vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
|
|
|
|
VmaPoolCreateInfo poolCreateInfo = {};
|
|
poolCreateInfo.memoryTypeIndex = memTypeIndex;
|
|
// ...
|
|
\endcode
|
|
|
|
When creating buffers/images allocated in that pool, provide following parameters:
|
|
|
|
- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
|
|
Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
|
|
Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
|
|
or the other way around.
|
|
- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
|
|
Other members are ignored anyway.
|
|
|
|
|
|
\section custom_memory_pools_when_not_use When not to use custom pools
|
|
|
|
Custom pools are commonly overused by VMA users.
|
|
While it may feel natural to keep some logical groups of resources separate in memory,
|
|
in most cases it does more harm than good.
|
|
Using custom pool shouldn't be your first choice.
|
|
Instead, please make all allocations from default pools first and only use custom pools
|
|
if you can prove and measure that it is beneficial in some way,
|
|
e.g. it results in lower memory usage, better performance, etc.
|
|
|
|
Using custom pools has disadvantages:
|
|
|
|
- Each pool has its own collection of `VkDeviceMemory` blocks.
|
|
Some of them may be partially or even completely empty.
|
|
Spreading allocations across multiple pools increases the amount of wasted (allocated but unbound) memory.
|
|
- You must manually choose specific memory type to be used by a custom pool (set as VmaPoolCreateInfo::memoryTypeIndex).
|
|
When using default pools, best memory type for each of your allocations can be selected automatically
|
|
using a carefully design algorithm that works across all kinds of GPUs.
|
|
- If an allocation from a custom pool at specific memory type fails, entire allocation operation returns failure.
|
|
When using default pools, VMA tries another compatible memory type.
|
|
- If you set VmaPoolCreateInfo::blockSize != 0, each memory block has the same size,
|
|
while default pools start from small blocks and only allocate next blocks larger and larger
|
|
up to the preferred block size.
|
|
|
|
Many of the common concerns can be addressed in a different way than using custom pools:
|
|
|
|
- If you want to keep your allocations of certain size (small versus large) or certain lifetime (transient versus long lived)
|
|
separate, you likely don't need to.
|
|
VMA uses a high quality allocation algorithm that manages memory well in various cases.
|
|
Please mesure and check if using custom pools provides a benefit.
|
|
- If you want to keep your images and buffers separate, you don't need to.
|
|
VMA respects `bufferImageGranularity` limit automatically.
|
|
- If you want to keep your mapped and not mapped allocations separate, you don't need to.
|
|
VMA respects `nonCoherentAtomSize` limit automatically.
|
|
It also maps only those `VkDeviceMemory` blocks that need to map any allocation.
|
|
It even tries to keep mappable and non-mappable allocations in separate blocks to minimize the amount of mapped memory.
|
|
- If you want to choose a custom size for the default memory block, you can set it globally instead
|
|
using VmaAllocatorCreateInfo::preferredLargeHeapBlockSize.
|
|
- If you want to select specific memory type for your allocation,
|
|
you can set VmaAllocationCreateInfo::memoryTypeBits to `(1u << myMemoryTypeIndex)` instead.
|
|
- If you need to create a buffer with certain minimum alignment, you can still do it
|
|
using default pools with dedicated function vmaCreateBufferWithAlignment().
|
|
|
|
|
|
\section linear_algorithm Linear allocation algorithm
|
|
|
|
Each Vulkan memory block managed by this library has accompanying metadata that
|
|
keeps track of used and unused regions. By default, the metadata structure and
|
|
algorithm tries to find best place for new allocations among free regions to
|
|
optimize memory usage. This way you can allocate and free objects in any order.
|
|
|
|
![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png)
|
|
|
|
Sometimes there is a need to use simpler, linear allocation algorithm. You can
|
|
create custom pool that uses such algorithm by adding flag
|
|
#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
|
|
#VmaPool object. Then an alternative metadata management is used. It always
|
|
creates new allocations after last one and doesn't reuse free regions after
|
|
allocations freed in the middle. It results in better allocation performance and
|
|
less memory consumed by metadata.
|
|
|
|
![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png)
|
|
|
|
With this one flag, you can create a custom pool that can be used in many ways:
|
|
free-at-once, stack, double stack, and ring buffer. See below for details.
|
|
You don't need to specify explicitly which of these options you are going to use - it is detected automatically.
|
|
|
|
\subsection linear_algorithm_free_at_once Free-at-once
|
|
|
|
In a pool that uses linear algorithm, you still need to free all the allocations
|
|
individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
|
|
them in any order. New allocations are always made after last one - free space
|
|
in the middle is not reused. However, when you release all the allocation and
|
|
the pool becomes empty, allocation starts from the beginning again. This way you
|
|
can use linear algorithm to speed up creation of allocations that you are going
|
|
to release all at once.
|
|
|
|
![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)
|
|
|
|
This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
|
|
value that allows multiple memory blocks.
|
|
|
|
\subsection linear_algorithm_stack Stack
|
|
|
|
When you free an allocation that was created last, its space can be reused.
|
|
Thanks to this, if you always release allocations in the order opposite to their
|
|
creation (LIFO - Last In First Out), you can achieve behavior of a stack.
|
|
|
|
![Stack](../gfx/Linear_allocator_4_stack.png)
|
|
|
|
This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
|
|
value that allows multiple memory blocks.
|
|
|
|
\subsection linear_algorithm_double_stack Double stack
|
|
|
|
The space reserved by a custom pool with linear algorithm may be used by two
|
|
stacks:
|
|
|
|
- First, default one, growing up from offset 0.
|
|
- Second, "upper" one, growing down from the end towards lower offsets.
|
|
|
|
To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
|
|
to VmaAllocationCreateInfo::flags.
|
|
|
|
![Double stack](../gfx/Linear_allocator_7_double_stack.png)
|
|
|
|
Double stack is available only in pools with one memory block -
|
|
VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
|
|
|
|
When the two stacks' ends meet so there is not enough space between them for a
|
|
new allocation, such allocation fails with usual
|
|
`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
|
|
|
|
\subsection linear_algorithm_ring_buffer Ring buffer
|
|
|
|
When you free some allocations from the beginning and there is not enough free space
|
|
for a new one at the end of a pool, allocator's "cursor" wraps around to the
|
|
beginning and starts allocation there. Thanks to this, if you always release
|
|
allocations in the same order as you created them (FIFO - First In First Out),
|
|
you can achieve behavior of a ring buffer / queue.
|
|
|
|
![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png)
|
|
|
|
Ring buffer is available only in pools with one memory block -
|
|
VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
|
|
|
|
\note \ref defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
|
|
|
|
|
|
\page defragmentation Defragmentation
|
|
|
|
Interleaved allocations and deallocations of many objects of varying size can
|
|
cause fragmentation over time, which can lead to a situation where the library is unable
|
|
to find a continuous range of free memory for a new allocation despite there is
|
|
enough free space, just scattered across many small free ranges between existing
|
|
allocations.
|
|
|
|
To mitigate this problem, you can use defragmentation feature.
|
|
It doesn't happen automatically though and needs your cooperation,
|
|
because VMA is a low level library that only allocates memory.
|
|
It cannot recreate buffers and images in a new place as it doesn't remember the contents of `VkBufferCreateInfo` / `VkImageCreateInfo` structures.
|
|
It cannot copy their contents as it doesn't record any commands to a command buffer.
|
|
|
|
Example:
|
|
|
|
\code
|
|
VmaDefragmentationInfo defragInfo = {};
|
|
defragInfo.pool = myPool;
|
|
defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT;
|
|
|
|
VmaDefragmentationContext defragCtx;
|
|
VkResult res = vmaBeginDefragmentation(allocator, &defragInfo, &defragCtx);
|
|
// Check res...
|
|
|
|
for(;;)
|
|
{
|
|
VmaDefragmentationPassMoveInfo pass;
|
|
res = vmaBeginDefragmentationPass(allocator, defragCtx, &pass);
|
|
if(res == VK_SUCCESS)
|
|
break;
|
|
else if(res != VK_INCOMPLETE)
|
|
// Handle error...
|
|
|
|
for(uint32_t i = 0; i < pass.moveCount; ++i)
|
|
{
|
|
// Inspect pass.pMoves[i].srcAllocation, identify what buffer/image it represents.
|
|
VmaAllocationInfo allocInfo;
|
|
vmaGetAllocationInfo(allocator, pass.pMoves[i].srcAllocation, &allocInfo);
|
|
MyEngineResourceData* resData = (MyEngineResourceData*)allocInfo.pUserData;
|
|
|
|
// Recreate and bind this buffer/image at: pass.pMoves[i].dstMemory, pass.pMoves[i].dstOffset.
|
|
VkImageCreateInfo imgCreateInfo = ...
|
|
VkImage newImg;
|
|
res = vkCreateImage(device, &imgCreateInfo, nullptr, &newImg);
|
|
// Check res...
|
|
res = vmaBindImageMemory(allocator, pass.pMoves[i].dstTmpAllocation, newImg);
|
|
// Check res...
|
|
|
|
// Issue a vkCmdCopyBuffer/vkCmdCopyImage to copy its content to the new place.
|
|
vkCmdCopyImage(cmdBuf, resData->img, ..., newImg, ...);
|
|
}
|
|
|
|
// Make sure the copy commands finished executing.
|
|
vkWaitForFences(...);
|
|
|
|
// Destroy old buffers/images bound with pass.pMoves[i].srcAllocation.
|
|
for(uint32_t i = 0; i < pass.moveCount; ++i)
|
|
{
|
|
// ...
|
|
vkDestroyImage(device, resData->img, nullptr);
|
|
}
|
|
|
|
// Update appropriate descriptors to point to the new places...
|
|
|
|
res = vmaEndDefragmentationPass(allocator, defragCtx, &pass);
|
|
if(res == VK_SUCCESS)
|
|
break;
|
|
else if(res != VK_INCOMPLETE)
|
|
// Handle error...
|
|
}
|
|
|
|
vmaEndDefragmentation(allocator, defragCtx, nullptr);
|
|
\endcode
|
|
|
|
Although functions like vmaCreateBuffer(), vmaCreateImage(), vmaDestroyBuffer(), vmaDestroyImage()
|
|
create/destroy an allocation and a buffer/image at once, these are just a shortcut for
|
|
creating the resource, allocating memory, and binding them together.
|
|
Defragmentation works on memory allocations only. You must handle the rest manually.
|
|
Defragmentation is an iterative process that should repreat "passes" as long as related functions
|
|
return `VK_INCOMPLETE` not `VK_SUCCESS`.
|
|
In each pass:
|
|
|
|
1. vmaBeginDefragmentationPass() function call:
|
|
- Calculates and returns the list of allocations to be moved in this pass.
|
|
Note this can be a time-consuming process.
|
|
- Reserves destination memory for them by creating temporary destination allocations
|
|
that you can query for their `VkDeviceMemory` + offset using vmaGetAllocationInfo().
|
|
2. Inside the pass, **you should**:
|
|
- Inspect the returned list of allocations to be moved.
|
|
- Create new buffers/images and bind them at the returned destination temporary allocations.
|
|
- Copy data from source to destination resources if necessary.
|
|
- Destroy the source buffers/images, but NOT their allocations.
|
|
3. vmaEndDefragmentationPass() function call:
|
|
- Frees the source memory reserved for the allocations that are moved.
|
|
- Modifies source #VmaAllocation objects that are moved to point to the destination reserved memory.
|
|
- Frees `VkDeviceMemory` blocks that became empty.
|
|
|
|
Unlike in previous iterations of the defragmentation API, there is no list of "movable" allocations passed as a parameter.
|
|
Defragmentation algorithm tries to move all suitable allocations.
|
|
You can, however, refuse to move some of them inside a defragmentation pass, by setting
|
|
`pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
|
|
This is not recommended and may result in suboptimal packing of the allocations after defragmentation.
|
|
If you cannot ensure any allocation can be moved, it is better to keep movable allocations separate in a custom pool.
|
|
|
|
Inside a pass, for each allocation that should be moved:
|
|
|
|
- You should copy its data from the source to the destination place by calling e.g. `vkCmdCopyBuffer()`, `vkCmdCopyImage()`.
|
|
- You need to make sure these commands finished executing before destroying the source buffers/images and before calling vmaEndDefragmentationPass().
|
|
- If a resource doesn't contain any meaningful data, e.g. it is a transient color attachment image to be cleared,
|
|
filled, and used temporarily in each rendering frame, you can just recreate this image
|
|
without copying its data.
|
|
- If the resource is in `HOST_VISIBLE` and `HOST_CACHED` memory, you can copy its data on the CPU
|
|
using `memcpy()`.
|
|
- If you cannot move the allocation, you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
|
|
This will cancel the move.
|
|
- vmaEndDefragmentationPass() will then free the destination memory
|
|
not the source memory of the allocation, leaving it unchanged.
|
|
- If you decide the allocation is unimportant and can be destroyed instead of moved (e.g. it wasn't used for long time),
|
|
you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
|
|
- vmaEndDefragmentationPass() will then free both source and destination memory, and will destroy the source #VmaAllocation object.
|
|
|
|
You can defragment a specific custom pool by setting VmaDefragmentationInfo::pool
|
|
(like in the example above) or all the default pools by setting this member to null.
|
|
|
|
Defragmentation is always performed in each pool separately.
|
|
Allocations are never moved between different Vulkan memory types.
|
|
The size of the destination memory reserved for a moved allocation is the same as the original one.
|
|
Alignment of an allocation as it was determined using `vkGetBufferMemoryRequirements()` etc. is also respected after defragmentation.
|
|
Buffers/images should be recreated with the same `VkBufferCreateInfo` / `VkImageCreateInfo` parameters as the original ones.
|
|
|
|
You can perform the defragmentation incrementally to limit the number of allocations and bytes to be moved
|
|
in each pass, e.g. to call it in sync with render frames and not to experience too big hitches.
|
|
See members: VmaDefragmentationInfo::maxBytesPerPass, VmaDefragmentationInfo::maxAllocationsPerPass.
|
|
|
|
It is also safe to perform the defragmentation asynchronously to render frames and other Vulkan and VMA
|
|
usage, possibly from multiple threads, with the exception that allocations
|
|
returned in VmaDefragmentationPassMoveInfo::pMoves shouldn't be destroyed until the defragmentation pass is ended.
|
|
|
|
<b>Mapping</b> is preserved on allocations that are moved during defragmentation.
|
|
Whether through #VMA_ALLOCATION_CREATE_MAPPED_BIT or vmaMapMemory(), the allocations
|
|
are mapped at their new place. Of course, pointer to the mapped data changes, so it needs to be queried
|
|
using VmaAllocationInfo::pMappedData.
|
|
|
|
\note Defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
|
|
|
|
|
|
\page statistics Statistics
|
|
|
|
This library contains several functions that return information about its internal state,
|
|
especially the amount of memory allocated from Vulkan.
|
|
|
|
\section statistics_numeric_statistics Numeric statistics
|
|
|
|
If you need to obtain basic statistics about memory usage per heap, together with current budget,
|
|
you can call function vmaGetHeapBudgets() and inspect structure #VmaBudget.
|
|
This is useful to keep track of memory usage and stay within budget
|
|
(see also \ref staying_within_budget).
|
|
Example:
|
|
|
|
\code
|
|
uint32_t heapIndex = ...
|
|
|
|
VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
|
|
vmaGetHeapBudgets(allocator, budgets);
|
|
|
|
printf("My heap currently has %u allocations taking %llu B,\n",
|
|
budgets[heapIndex].statistics.allocationCount,
|
|
budgets[heapIndex].statistics.allocationBytes);
|
|
printf("allocated out of %u Vulkan device memory blocks taking %llu B,\n",
|
|
budgets[heapIndex].statistics.blockCount,
|
|
budgets[heapIndex].statistics.blockBytes);
|
|
printf("Vulkan reports total usage %llu B with budget %llu B.\n",
|
|
budgets[heapIndex].usage,
|
|
budgets[heapIndex].budget);
|
|
\endcode
|
|
|
|
You can query for more detailed statistics per memory heap, type, and totals,
|
|
including minimum and maximum allocation size and unused range size,
|
|
by calling function vmaCalculateStatistics() and inspecting structure #VmaTotalStatistics.
|
|
This function is slower though, as it has to traverse all the internal data structures,
|
|
so it should be used only for debugging purposes.
|
|
|
|
You can query for statistics of a custom pool using function vmaGetPoolStatistics()
|
|
or vmaCalculatePoolStatistics().
|
|
|
|
You can query for information about a specific allocation using function vmaGetAllocationInfo().
|
|
It fill structure #VmaAllocationInfo.
|
|
|
|
\section statistics_json_dump JSON dump
|
|
|
|
You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
|
|
The result is guaranteed to be correct JSON.
|
|
It uses ANSI encoding.
|
|
Any strings provided by user (see [Allocation names](@ref allocation_names))
|
|
are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
|
|
this JSON string can be treated as using this encoding.
|
|
It must be freed using function vmaFreeStatsString().
|
|
|
|
The format of this JSON string is not part of official documentation of the library,
|
|
but it will not change in backward-incompatible way without increasing library major version number
|
|
and appropriate mention in changelog.
|
|
|
|
The JSON string contains all the data that can be obtained using vmaCalculateStatistics().
|
|
It can also contain detailed map of allocated memory blocks and their regions -
|
|
free and occupied by allocations.
|
|
This allows e.g. to visualize the memory or assess fragmentation.
|
|
|
|
|
|
\page allocation_annotation Allocation names and user data
|
|
|
|
\section allocation_user_data Allocation user data
|
|
|
|
You can annotate allocations with your own information, e.g. for debugging purposes.
|
|
To do that, fill VmaAllocationCreateInfo::pUserData field when creating
|
|
an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer,
|
|
some handle, index, key, ordinal number or any other value that would associate
|
|
the allocation with your custom metadata.
|
|
It is useful to identify appropriate data structures in your engine given #VmaAllocation,
|
|
e.g. when doing \ref defragmentation.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufCreateInfo = ...
|
|
|
|
MyBufferMetadata* pMetadata = CreateBufferMetadata();
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocCreateInfo.pUserData = pMetadata;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
The pointer may be later retrieved as VmaAllocationInfo::pUserData:
|
|
|
|
\code
|
|
VmaAllocationInfo allocInfo;
|
|
vmaGetAllocationInfo(allocator, allocation, &allocInfo);
|
|
MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
|
|
\endcode
|
|
|
|
It can also be changed using function vmaSetAllocationUserData().
|
|
|
|
Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
|
|
vmaBuildStatsString() in hexadecimal form.
|
|
|
|
\section allocation_names Allocation names
|
|
|
|
An allocation can also carry a null-terminated string, giving a name to the allocation.
|
|
To set it, call vmaSetAllocationName().
|
|
The library creates internal copy of the string, so the pointer you pass doesn't need
|
|
to be valid for whole lifetime of the allocation. You can free it after the call.
|
|
|
|
\code
|
|
std::string imageName = "Texture: ";
|
|
imageName += fileName;
|
|
vmaSetAllocationName(allocator, allocation, imageName.c_str());
|
|
\endcode
|
|
|
|
The string can be later retrieved by inspecting VmaAllocationInfo::pName.
|
|
It is also printed in JSON report created by vmaBuildStatsString().
|
|
|
|
\note Setting string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it.
|
|
You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library.
|
|
|
|
|
|
\page virtual_allocator Virtual allocator
|
|
|
|
As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator".
|
|
It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block".
|
|
You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan.
|
|
A common use case is sub-allocation of pieces of one large GPU buffer.
|
|
|
|
\section virtual_allocator_creating_virtual_block Creating virtual block
|
|
|
|
To use this functionality, there is no main "allocator" object.
|
|
You don't need to have #VmaAllocator object created.
|
|
All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator:
|
|
|
|
-# Fill in #VmaVirtualBlockCreateInfo structure.
|
|
-# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object.
|
|
|
|
Example:
|
|
|
|
\code
|
|
VmaVirtualBlockCreateInfo blockCreateInfo = {};
|
|
blockCreateInfo.size = 1048576; // 1 MB
|
|
|
|
VmaVirtualBlock block;
|
|
VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block);
|
|
\endcode
|
|
|
|
\section virtual_allocator_making_virtual_allocations Making virtual allocations
|
|
|
|
#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions
|
|
using the same code as the main Vulkan memory allocator.
|
|
Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type
|
|
that represents an opaque handle to an allocation within the virtual block.
|
|
|
|
In order to make such allocation:
|
|
|
|
-# Fill in #VmaVirtualAllocationCreateInfo structure.
|
|
-# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation.
|
|
You can also receive `VkDeviceSize offset` that was assigned to the allocation.
|
|
|
|
Example:
|
|
|
|
\code
|
|
VmaVirtualAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.size = 4096; // 4 KB
|
|
|
|
VmaVirtualAllocation alloc;
|
|
VkDeviceSize offset;
|
|
res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Use the 4 KB of your memory starting at offset.
|
|
}
|
|
else
|
|
{
|
|
// Allocation failed - no space for it could be found. Handle this error!
|
|
}
|
|
\endcode
|
|
|
|
\section virtual_allocator_deallocation Deallocation
|
|
|
|
When no longer needed, an allocation can be freed by calling vmaVirtualFree().
|
|
You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate()
|
|
called for the same #VmaVirtualBlock.
|
|
|
|
When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock().
|
|
All allocations must be freed before the block is destroyed, which is checked internally by an assert.
|
|
However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once -
|
|
a feature not available in normal Vulkan memory allocator. Example:
|
|
|
|
\code
|
|
vmaVirtualFree(block, alloc);
|
|
vmaDestroyVirtualBlock(block);
|
|
\endcode
|
|
|
|
\section virtual_allocator_allocation_parameters Allocation parameters
|
|
|
|
You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData().
|
|
Its default value is null.
|
|
It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some
|
|
larger data structure containing more information. Example:
|
|
|
|
\code
|
|
struct CustomAllocData
|
|
{
|
|
std::string m_AllocName;
|
|
};
|
|
CustomAllocData* allocData = new CustomAllocData();
|
|
allocData->m_AllocName = "My allocation 1";
|
|
vmaSetVirtualAllocationUserData(block, alloc, allocData);
|
|
\endcode
|
|
|
|
The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function
|
|
vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo.
|
|
If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation!
|
|
Example:
|
|
|
|
\code
|
|
VmaVirtualAllocationInfo allocInfo;
|
|
vmaGetVirtualAllocationInfo(block, alloc, &allocInfo);
|
|
delete (CustomAllocData*)allocInfo.pUserData;
|
|
|
|
vmaVirtualFree(block, alloc);
|
|
\endcode
|
|
|
|
\section virtual_allocator_alignment_and_units Alignment and units
|
|
|
|
It feels natural to express sizes and offsets in bytes.
|
|
If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member
|
|
VmaVirtualAllocationCreateInfo::alignment to request it. Example:
|
|
|
|
\code
|
|
VmaVirtualAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.size = 4096; // 4 KB
|
|
allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B
|
|
|
|
VmaVirtualAllocation alloc;
|
|
res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr);
|
|
\endcode
|
|
|
|
Alignments of different allocations made from one block may vary.
|
|
However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`,
|
|
you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes.
|
|
It might be more convenient, but you need to make sure to use this new unit consistently in all the places:
|
|
|
|
- VmaVirtualBlockCreateInfo::size
|
|
- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment
|
|
- Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset
|
|
|
|
\section virtual_allocator_statistics Statistics
|
|
|
|
You can obtain statistics of a virtual block using vmaGetVirtualBlockStatistics()
|
|
(to get brief statistics that are fast to calculate)
|
|
or vmaCalculateVirtualBlockStatistics() (to get more detailed statistics, slower to calculate).
|
|
The functions fill structures #VmaStatistics, #VmaDetailedStatistics respectively - same as used by the normal Vulkan memory allocator.
|
|
Example:
|
|
|
|
\code
|
|
VmaStatistics stats;
|
|
vmaGetVirtualBlockStatistics(block, &stats);
|
|
printf("My virtual block has %llu bytes used by %u virtual allocations\n",
|
|
stats.allocationBytes, stats.allocationCount);
|
|
\endcode
|
|
|
|
You can also request a full list of allocations and free regions as a string in JSON format by calling
|
|
vmaBuildVirtualBlockStatsString().
|
|
Returned string must be later freed using vmaFreeVirtualBlockStatsString().
|
|
The format of this string differs from the one returned by the main Vulkan allocator, but it is similar.
|
|
|
|
\section virtual_allocator_additional_considerations Additional considerations
|
|
|
|
The "virtual allocator" functionality is implemented on a level of individual memory blocks.
|
|
Keeping track of a whole collection of blocks, allocating new ones when out of free space,
|
|
deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user.
|
|
|
|
Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory.
|
|
See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT).
|
|
You can find their description in chapter \ref custom_memory_pools.
|
|
Allocation strategies are also supported.
|
|
See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT).
|
|
|
|
Following features are supported only by the allocator of the real GPU memory and not by virtual allocations:
|
|
buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`.
|
|
|
|
|
|
\page debugging_memory_usage Debugging incorrect memory usage
|
|
|
|
If you suspect a bug with memory usage, like usage of uninitialized memory or
|
|
memory being overwritten out of bounds of an allocation,
|
|
you can use debug features of this library to verify this.
|
|
|
|
\section debugging_memory_usage_initialization Memory initialization
|
|
|
|
If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
|
|
you can enable automatic memory initialization to verify this.
|
|
To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
|
|
|
|
\code
|
|
#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
It makes memory of new allocations initialized to bit pattern `0xDCDCDCDC`.
|
|
Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
|
|
Memory is automatically mapped and unmapped if necessary.
|
|
|
|
If you find these values while debugging your program, good chances are that you incorrectly
|
|
read Vulkan memory that is allocated but not initialized, or already freed, respectively.
|
|
|
|
Memory initialization works only with memory types that are `HOST_VISIBLE` and with allocations that can be mapped.
|
|
It works also with dedicated allocations.
|
|
|
|
\section debugging_memory_usage_margins Margins
|
|
|
|
By default, allocations are laid out in memory blocks next to each other if possible
|
|
(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
|
|
|
|
![Allocations without margin](../gfx/Margins_1.png)
|
|
|
|
Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
|
|
number of bytes as a margin after every allocation.
|
|
|
|
\code
|
|
#define VMA_DEBUG_MARGIN 16
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
![Allocations with margin](../gfx/Margins_2.png)
|
|
|
|
If your bug goes away after enabling margins, it means it may be caused by memory
|
|
being overwritten outside of allocation boundaries. It is not 100% certain though.
|
|
Change in application behavior may also be caused by different order and distribution
|
|
of allocations across memory blocks after margins are applied.
|
|
|
|
Margins work with all types of memory.
|
|
|
|
Margin is applied only to allocations made out of memory blocks and not to dedicated
|
|
allocations, which have their own memory block of specific size.
|
|
It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
|
|
or those automatically decided to put into dedicated allocations, e.g. due to its
|
|
large size or recommended by VK_KHR_dedicated_allocation extension.
|
|
|
|
Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
|
|
|
|
Note that enabling margins increases memory usage and fragmentation.
|
|
|
|
Margins do not apply to \ref virtual_allocator.
|
|
|
|
\section debugging_memory_usage_corruption_detection Corruption detection
|
|
|
|
You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
|
|
of contents of the margins.
|
|
|
|
\code
|
|
#define VMA_DEBUG_MARGIN 16
|
|
#define VMA_DEBUG_DETECT_CORRUPTION 1
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
|
|
(it must be multiply of 4) after every allocation is filled with a magic number.
|
|
This idea is also know as "canary".
|
|
Memory is automatically mapped and unmapped if necessary.
|
|
|
|
This number is validated automatically when the allocation is destroyed.
|
|
If it is not equal to the expected value, `VMA_ASSERT()` is executed.
|
|
It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
|
|
which indicates a serious bug.
|
|
|
|
You can also explicitly request checking margins of all allocations in all memory blocks
|
|
that belong to specified memory types by using function vmaCheckCorruption(),
|
|
or in memory blocks that belong to specified custom pool, by using function
|
|
vmaCheckPoolCorruption().
|
|
|
|
Margin validation (corruption detection) works only for memory types that are
|
|
`HOST_VISIBLE` and `HOST_COHERENT`.
|
|
|
|
|
|
\section debugging_memory_usage_leak_detection Leak detection features
|
|
|
|
At allocation and allocator destruction time VMA checks for unfreed and unmapped blocks using
|
|
`VMA_ASSERT_LEAK()`. This macro defaults to an assertion, triggering a typically fatal error in Debug
|
|
builds, and doing nothing in Release builds. You can provide your own definition of `VMA_ASSERT_LEAK()`
|
|
to change this behavior.
|
|
|
|
At memory block destruction time VMA lists out all unfreed allocations using the `VMA_LEAK_LOG_FORMAT()`
|
|
macro, which defaults to `VMA_DEBUG_LOG_FORMAT`, which in turn defaults to a no-op.
|
|
If you're having trouble with leaks - for example, the aforementioned assertion triggers, but you don't
|
|
quite know \em why -, overriding this macro to print out the the leaking blocks, combined with assigning
|
|
individual names to allocations using vmaSetAllocationName(), can greatly aid in fixing them.
|
|
|
|
\page other_api_interop Interop with other graphics APIs
|
|
|
|
VMA provides some features that help with interoperability with other graphics APIs, e.g. OpenGL.
|
|
|
|
\section opengl_interop_exporting_memory Exporting memory
|
|
|
|
If you want to attach `VkExportMemoryAllocateInfoKHR` or other structure to `pNext` chain of memory allocations made by the library:
|
|
|
|
You can create \ref custom_memory_pools for such allocations.
|
|
Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext
|
|
while creating the custom pool.
|
|
Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool,
|
|
not only while creating it, as no copy of the structure is made,
|
|
but its original pointer is used for each allocation instead.
|
|
|
|
If you want to export all memory allocated by VMA from certain memory types,
|
|
also dedicated allocations or other allocations made from default pools,
|
|
an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes.
|
|
It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library
|
|
through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type.
|
|
Please note that new versions of the library also support dedicated allocations created in custom pools.
|
|
|
|
You should not mix these two methods in a way that allows to apply both to the same memory type.
|
|
Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`.
|
|
|
|
|
|
\section opengl_interop_custom_alignment Custom alignment
|
|
|
|
Buffers or images exported to a different API like OpenGL may require a different alignment,
|
|
higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`.
|
|
To impose such alignment:
|
|
|
|
You can create \ref custom_memory_pools for such allocations.
|
|
Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation
|
|
to be made out of this pool.
|
|
The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image
|
|
from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically.
|
|
|
|
If you want to create a buffer with a specific minimum alignment out of default pools,
|
|
use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`.
|
|
|
|
Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated
|
|
allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block.
|
|
You can ensure that an allocation is created as dedicated by using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation.
|
|
|
|
\section opengl_interop_extended_allocation_information Extended allocation information
|
|
|
|
If you want to rely on VMA to allocate your buffers and images inside larger memory blocks,
|
|
but you need to know the size of the entire block and whether the allocation was made
|
|
with its own dedicated memory, use function vmaGetAllocationInfo2() to retrieve
|
|
extended allocation information in structure #VmaAllocationInfo2.
|
|
|
|
|
|
|
|
\page usage_patterns Recommended usage patterns
|
|
|
|
Vulkan gives great flexibility in memory allocation.
|
|
This chapter shows the most common patterns.
|
|
|
|
See also slides from talk:
|
|
[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
|
|
|
|
|
|
\section usage_patterns_gpu_only GPU-only resource
|
|
|
|
<b>When:</b>
|
|
Any resources that you frequently write and read on GPU,
|
|
e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
|
|
images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
|
|
|
|
<b>What to do:</b>
|
|
Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
|
|
|
|
\code
|
|
VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
|
imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imgCreateInfo.extent.width = 3840;
|
|
imgCreateInfo.extent.height = 2160;
|
|
imgCreateInfo.extent.depth = 1;
|
|
imgCreateInfo.mipLevels = 1;
|
|
imgCreateInfo.arrayLayers = 1;
|
|
imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
|
allocCreateInfo.priority = 1.0f;
|
|
|
|
VkImage img;
|
|
VmaAllocation alloc;
|
|
vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
|
|
\endcode
|
|
|
|
<b>Also consider:</b>
|
|
Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
|
|
especially if they are large or if you plan to destroy and recreate them with different sizes
|
|
e.g. when display resolution changes.
|
|
Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
|
|
When VK_EXT_memory_priority extension is enabled, it is also worth setting high priority to such allocation
|
|
to decrease chances to be evicted to system memory by the operating system.
|
|
|
|
\section usage_patterns_staging_copy_upload Staging copy for upload
|
|
|
|
<b>When:</b>
|
|
A "staging" buffer than you want to map and fill from CPU code, then use as a source of transfer
|
|
to some GPU resource.
|
|
|
|
<b>What to do:</b>
|
|
Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT.
|
|
Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = 65536;
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
|
|
VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
VmaAllocationInfo allocInfo;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
|
|
...
|
|
|
|
memcpy(allocInfo.pMappedData, myData, myDataSize);
|
|
\endcode
|
|
|
|
<b>Also consider:</b>
|
|
You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped
|
|
using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above.
|
|
|
|
|
|
\section usage_patterns_readback Readback
|
|
|
|
<b>When:</b>
|
|
Buffers for data written by or transferred from the GPU that you want to read back on the CPU,
|
|
e.g. results of some computations.
|
|
|
|
<b>What to do:</b>
|
|
Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
|
|
Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
|
|
and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = 65536;
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
|
|
VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
VmaAllocationInfo allocInfo;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
|
|
...
|
|
|
|
const float* downloadedData = (const float*)allocInfo.pMappedData;
|
|
\endcode
|
|
|
|
|
|
\section usage_patterns_advanced_data_uploading Advanced data uploading
|
|
|
|
For resources that you frequently write on CPU via mapped pointer and
|
|
frequently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible:
|
|
|
|
-# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory,
|
|
even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card,
|
|
and make the device reach out to that resource directly.
|
|
- Reads performed by the device will then go through PCI Express bus.
|
|
The performance of this access may be limited, but it may be fine depending on the size
|
|
of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity
|
|
of access.
|
|
-# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips),
|
|
a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL`
|
|
(fast to access from the GPU). Then, it is likely the best choice for such type of resource.
|
|
-# Systems with a discrete graphics card and separate video memory may or may not expose
|
|
a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR).
|
|
If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS)
|
|
that is available to CPU for mapping.
|
|
- Writes performed by the host to that memory go through PCI Express bus.
|
|
The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0,
|
|
as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads.
|
|
-# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory,
|
|
a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them.
|
|
|
|
Thankfully, VMA offers an aid to create and use such resources in the the way optimal
|
|
for the current Vulkan device. To help the library make the best choice,
|
|
use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with
|
|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT.
|
|
It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR),
|
|
but if no such memory type is available or allocation from it fails
|
|
(PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS),
|
|
it will fall back to `DEVICE_LOCAL` memory for fast GPU access.
|
|
It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`,
|
|
so you need to create another "staging" allocation and perform explicit transfers.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = 65536;
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
|
|
VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT |
|
|
VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
VmaAllocationInfo allocInfo;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
|
|
VkMemoryPropertyFlags memPropFlags;
|
|
vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags);
|
|
|
|
if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
|
|
{
|
|
// Allocation ended up in a mappable memory and is already mapped - write to it directly.
|
|
|
|
// [Executed in runtime]:
|
|
memcpy(allocInfo.pMappedData, myData, myDataSize);
|
|
}
|
|
else
|
|
{
|
|
// Allocation ended up in a non-mappable memory - need to transfer.
|
|
VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
stagingBufCreateInfo.size = 65536;
|
|
stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
|
|
VmaAllocationCreateInfo stagingAllocCreateInfo = {};
|
|
stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
|
|
VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer stagingBuf;
|
|
VmaAllocation stagingAlloc;
|
|
VmaAllocationInfo stagingAllocInfo;
|
|
vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo,
|
|
&stagingBuf, &stagingAlloc, stagingAllocInfo);
|
|
|
|
// [Executed in runtime]:
|
|
memcpy(stagingAllocInfo.pMappedData, myData, myDataSize);
|
|
vmaFlushAllocation(allocator, stagingAlloc, 0, VK_WHOLE_SIZE);
|
|
//vkCmdPipelineBarrier: VK_ACCESS_HOST_WRITE_BIT --> VK_ACCESS_TRANSFER_READ_BIT
|
|
VkBufferCopy bufCopy = {
|
|
0, // srcOffset
|
|
0, // dstOffset,
|
|
myDataSize); // size
|
|
vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy);
|
|
}
|
|
\endcode
|
|
|
|
\section usage_patterns_other_use_cases Other use cases
|
|
|
|
Here are some other, less obvious use cases and their recommended settings:
|
|
|
|
- An image that is used only as transfer source and destination, but it should stay on the device,
|
|
as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame,
|
|
for temporal antialiasing or other temporal effects.
|
|
- Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
|
|
- Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO
|
|
- An image that is used only as transfer source and destination, but it should be placed
|
|
in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict
|
|
least recently used textures from VRAM.
|
|
- Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
|
|
- Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST,
|
|
as VMA needs a hint here to differentiate from the previous case.
|
|
- A buffer that you want to map and write from the CPU, directly read from the GPU
|
|
(e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or
|
|
host memory due to its large size.
|
|
- Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT`
|
|
- Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST
|
|
- Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT
|
|
|
|
|
|
\page configuration Configuration
|
|
|
|
Please check "CONFIGURATION SECTION" in the code to find macros that you can define
|
|
before each include of this file or change directly in this file to provide
|
|
your own implementation of basic facilities like assert, `min()` and `max()` functions,
|
|
mutex, atomic etc.
|
|
The library uses its own implementation of containers by default, but you can switch to using
|
|
STL containers instead.
|
|
|
|
For example, define `VMA_ASSERT(expr)` before including the library to provide
|
|
custom implementation of the assertion, compatible with your project.
|
|
By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
|
|
and empty otherwise.
|
|
|
|
\section config_Vulkan_functions Pointers to Vulkan functions
|
|
|
|
There are multiple ways to import pointers to Vulkan functions in the library.
|
|
In the simplest case you don't need to do anything.
|
|
If the compilation or linking of your program or the initialization of the #VmaAllocator
|
|
doesn't work for you, you can try to reconfigure it.
|
|
|
|
First, the allocator tries to fetch pointers to Vulkan functions linked statically,
|
|
like this:
|
|
|
|
\code
|
|
m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
|
|
\endcode
|
|
|
|
If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`.
|
|
|
|
Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or
|
|
by using a helper library like [volk](https://github.com/zeux/volk).
|
|
|
|
Third, VMA tries to fetch remaining pointers that are still null by calling
|
|
`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own.
|
|
You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr.
|
|
Other pointers will be fetched automatically.
|
|
If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`.
|
|
|
|
Finally, all the function pointers required by the library (considering selected
|
|
Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null.
|
|
|
|
|
|
\section custom_memory_allocator Custom host memory allocator
|
|
|
|
If you use custom allocator for CPU memory rather than default operator `new`
|
|
and `delete` from C++, you can make this library using your allocator as well
|
|
by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
|
|
functions will be passed to Vulkan, as well as used by the library itself to
|
|
make any CPU-side allocations.
|
|
|
|
\section allocation_callbacks Device memory allocation callbacks
|
|
|
|
The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
|
|
You can setup callbacks to be informed about these calls, e.g. for the purpose
|
|
of gathering some statistics. To do it, fill optional member
|
|
VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
|
|
|
|
\section heap_memory_limit Device heap memory limit
|
|
|
|
When device memory of certain heap runs out of free space, new allocations may
|
|
fail (returning error code) or they may succeed, silently pushing some existing_
|
|
memory blocks from GPU VRAM to system RAM (which degrades performance). This
|
|
behavior is implementation-dependent - it depends on GPU vendor and graphics
|
|
driver.
|
|
|
|
On AMD cards it can be controlled while creating Vulkan device object by using
|
|
VK_AMD_memory_overallocation_behavior extension, if available.
|
|
|
|
Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
|
|
memory available without switching your graphics card to one that really has
|
|
smaller VRAM, you can use a feature of this library intended for this purpose.
|
|
To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
|
|
|
|
|
|
|
|
\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
|
|
|
|
VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
|
|
performance on some GPUs. It augments Vulkan API with possibility to query
|
|
driver whether it prefers particular buffer or image to have its own, dedicated
|
|
allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
|
|
to do some internal optimizations. The extension is supported by this library.
|
|
It will be used automatically when enabled.
|
|
|
|
It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version
|
|
and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion,
|
|
you are all set.
|
|
|
|
Otherwise, if you want to use it as an extension:
|
|
|
|
1 . When creating Vulkan device, check if following 2 device extensions are
|
|
supported (call `vkEnumerateDeviceExtensionProperties()`).
|
|
If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
|
|
|
|
- VK_KHR_get_memory_requirements2
|
|
- VK_KHR_dedicated_allocation
|
|
|
|
If you enabled these extensions:
|
|
|
|
2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
|
|
your #VmaAllocator to inform the library that you enabled required extensions
|
|
and you want the library to use them.
|
|
|
|
\code
|
|
allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
|
|
|
|
vmaCreateAllocator(&allocatorInfo, &allocator);
|
|
\endcode
|
|
|
|
That is all. The extension will be automatically used whenever you create a
|
|
buffer using vmaCreateBuffer() or image using vmaCreateImage().
|
|
|
|
When using the extension together with Vulkan Validation Layer, you will receive
|
|
warnings like this:
|
|
|
|
_vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._
|
|
|
|
It is OK, you should just ignore it. It happens because you use function
|
|
`vkGetBufferMemoryRequirements2KHR()` instead of standard
|
|
`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
|
|
unaware of it.
|
|
|
|
To learn more about this extension, see:
|
|
|
|
- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation)
|
|
- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
|
|
|
|
|
|
|
|
\page vk_ext_memory_priority VK_EXT_memory_priority
|
|
|
|
VK_EXT_memory_priority is a device extension that allows to pass additional "priority"
|
|
value to Vulkan memory allocations that the implementation may use prefer certain
|
|
buffers and images that are critical for performance to stay in device-local memory
|
|
in cases when the memory is over-subscribed, while some others may be moved to the system memory.
|
|
|
|
VMA offers convenient usage of this extension.
|
|
If you enable it, you can pass "priority" parameter when creating allocations or custom pools
|
|
and the library automatically passes the value to Vulkan using this extension.
|
|
|
|
If you want to use this extension in connection with VMA, follow these steps:
|
|
|
|
\section vk_ext_memory_priority_initialization Initialization
|
|
|
|
1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
|
|
Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_EXT_memory_priority".
|
|
|
|
2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
|
|
Attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
|
|
Check if the device feature is really supported - check if `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority` is true.
|
|
|
|
3) While creating device with `vkCreateDevice`, enable this extension - add "VK_EXT_memory_priority"
|
|
to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
|
|
|
|
4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
|
|
Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
|
|
Enable this device feature - attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to
|
|
`VkPhysicalDeviceFeatures2::pNext` chain and set its member `memoryPriority` to `VK_TRUE`.
|
|
|
|
5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
|
|
have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT
|
|
to VmaAllocatorCreateInfo::flags.
|
|
|
|
\section vk_ext_memory_priority_usage Usage
|
|
|
|
When using this extension, you should initialize following member:
|
|
|
|
- VmaAllocationCreateInfo::priority when creating a dedicated allocation with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
- VmaPoolCreateInfo::priority when creating a custom pool.
|
|
|
|
It should be a floating-point value between `0.0f` and `1.0f`, where recommended default is `0.5f`.
|
|
Memory allocated with higher value can be treated by the Vulkan implementation as higher priority
|
|
and so it can have lower chances of being pushed out to system memory, experiencing degraded performance.
|
|
|
|
It might be a good idea to create performance-critical resources like color-attachment or depth-stencil images
|
|
as dedicated and set high priority to them. For example:
|
|
|
|
\code
|
|
VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
|
imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imgCreateInfo.extent.width = 3840;
|
|
imgCreateInfo.extent.height = 2160;
|
|
imgCreateInfo.extent.depth = 1;
|
|
imgCreateInfo.mipLevels = 1;
|
|
imgCreateInfo.arrayLayers = 1;
|
|
imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
|
allocCreateInfo.priority = 1.0f;
|
|
|
|
VkImage img;
|
|
VmaAllocation alloc;
|
|
vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
|
|
\endcode
|
|
|
|
`priority` member is ignored in the following situations:
|
|
|
|
- Allocations created in custom pools: They inherit the priority, along with all other allocation parameters
|
|
from the parametrs passed in #VmaPoolCreateInfo when the pool was created.
|
|
- Allocations created in default pools: They inherit the priority from the parameters
|
|
VMA used when creating default pools, which means `priority == 0.5f`.
|
|
|
|
|
|
\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory
|
|
|
|
VK_AMD_device_coherent_memory is a device extension that enables access to
|
|
additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and
|
|
`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for
|
|
allocation of buffers intended for writing "breadcrumb markers" in between passes
|
|
or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases.
|
|
|
|
When the extension is available but has not been enabled, Vulkan physical device
|
|
still exposes those memory types, but their usage is forbidden. VMA automatically
|
|
takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt
|
|
to allocate memory of such type is made.
|
|
|
|
If you want to use this extension in connection with VMA, follow these steps:
|
|
|
|
\section vk_amd_device_coherent_memory_initialization Initialization
|
|
|
|
1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
|
|
Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory".
|
|
|
|
2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
|
|
Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
|
|
Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true.
|
|
|
|
3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory"
|
|
to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
|
|
|
|
4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
|
|
Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
|
|
Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to
|
|
`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`.
|
|
|
|
5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
|
|
have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
|
|
to VmaAllocatorCreateInfo::flags.
|
|
|
|
\section vk_amd_device_coherent_memory_usage Usage
|
|
|
|
After following steps described above, you can create VMA allocations and custom pools
|
|
out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible
|
|
devices. There are multiple ways to do it, for example:
|
|
|
|
- You can request or prefer to allocate out of such memory types by adding
|
|
`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags
|
|
or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with
|
|
other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage.
|
|
- If you manually found memory type index to use for this purpose, force allocation
|
|
from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`.
|
|
|
|
\section vk_amd_device_coherent_memory_more_information More information
|
|
|
|
To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html)
|
|
|
|
Example use of this extension can be found in the code of the sample and test suite
|
|
accompanying this library.
|
|
|
|
|
|
\page enabling_buffer_device_address Enabling buffer device address
|
|
|
|
Device extension VK_KHR_buffer_device_address
|
|
allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code.
|
|
It has been promoted to core Vulkan 1.2.
|
|
|
|
If you want to use this feature in connection with VMA, follow these steps:
|
|
|
|
\section enabling_buffer_device_address_initialization Initialization
|
|
|
|
1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
|
|
Check if the extension is supported - if returned array of `VkExtensionProperties` contains
|
|
"VK_KHR_buffer_device_address".
|
|
|
|
2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
|
|
Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
|
|
Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true.
|
|
|
|
3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add
|
|
"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
|
|
|
|
4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
|
|
Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
|
|
Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to
|
|
`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`.
|
|
|
|
5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
|
|
have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
|
|
to VmaAllocatorCreateInfo::flags.
|
|
|
|
\section enabling_buffer_device_address_usage Usage
|
|
|
|
After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.
|
|
The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to
|
|
allocated memory blocks wherever it might be needed.
|
|
|
|
Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`.
|
|
The second part of this functionality related to "capture and replay" is not supported,
|
|
as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage.
|
|
|
|
\section enabling_buffer_device_address_more_information More information
|
|
|
|
To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address)
|
|
|
|
Example use of this extension can be found in the code of the sample and test suite
|
|
accompanying this library.
|
|
|
|
\page general_considerations General considerations
|
|
|
|
\section general_considerations_thread_safety Thread safety
|
|
|
|
- The library has no global state, so separate #VmaAllocator objects can be used
|
|
independently.
|
|
There should be no need to create multiple such objects though - one per `VkDevice` is enough.
|
|
- By default, all calls to functions that take #VmaAllocator as first parameter
|
|
are safe to call from multiple threads simultaneously because they are
|
|
synchronized internally when needed.
|
|
This includes allocation and deallocation from default memory pool, as well as custom #VmaPool.
|
|
- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
|
|
flag, calls to functions that take such #VmaAllocator object must be
|
|
synchronized externally.
|
|
- Access to a #VmaAllocation object must be externally synchronized. For example,
|
|
you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
|
|
threads at the same time if you pass the same #VmaAllocation object to these
|
|
functions.
|
|
- #VmaVirtualBlock is not safe to be used from multiple threads simultaneously.
|
|
|
|
\section general_considerations_versioning_and_compatibility Versioning and compatibility
|
|
|
|
The library uses [**Semantic Versioning**](https://semver.org/),
|
|
which means version numbers follow convention: Major.Minor.Patch (e.g. 2.3.0), where:
|
|
|
|
- Incremented Patch version means a release is backward- and forward-compatible,
|
|
introducing only some internal improvements, bug fixes, optimizations etc.
|
|
or changes that are out of scope of the official API described in this documentation.
|
|
- Incremented Minor version means a release is backward-compatible,
|
|
so existing code that uses the library should continue to work, while some new
|
|
symbols could have been added: new structures, functions, new values in existing
|
|
enums and bit flags, new structure members, but not new function parameters.
|
|
- Incrementing Major version means a release could break some backward compatibility.
|
|
|
|
All changes between official releases are documented in file "CHANGELOG.md".
|
|
|
|
\warning Backward compatibility is considered on the level of C++ source code, not binary linkage.
|
|
Adding new members to existing structures is treated as backward compatible if initializing
|
|
the new members to binary zero results in the old behavior.
|
|
You should always fully initialize all library structures to zeros and not rely on their
|
|
exact binary size.
|
|
|
|
\section general_considerations_validation_layer_warnings Validation layer warnings
|
|
|
|
When using this library, you can meet following types of warnings issued by
|
|
Vulkan validation layer. They don't necessarily indicate a bug, so you may need
|
|
to just ignore them.
|
|
|
|
- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
|
|
- It happens when VK_KHR_dedicated_allocation extension is enabled.
|
|
`vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
|
|
- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
|
|
- It happens when you map a buffer or image, because the library maps entire
|
|
`VkDeviceMemory` block, where different types of images and buffers may end
|
|
up together, especially on GPUs with unified memory like Intel.
|
|
- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
|
|
- It may happen when you use [defragmentation](@ref defragmentation).
|
|
|
|
\section general_considerations_allocation_algorithm Allocation algorithm
|
|
|
|
The library uses following algorithm for allocation, in order:
|
|
|
|
-# Try to find free range of memory in existing blocks.
|
|
-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
|
|
-# If failed, try to create such block with size / 2, size / 4, size / 8.
|
|
-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
|
|
just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
-# If failed, choose other memory type that meets the requirements specified in
|
|
VmaAllocationCreateInfo and go to point 1.
|
|
-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
|
|
\section general_considerations_features_not_supported Features not supported
|
|
|
|
Features deliberately excluded from the scope of this library:
|
|
|
|
-# **Data transfer.** Uploading (streaming) and downloading data of buffers and images
|
|
between CPU and GPU memory and related synchronization is responsibility of the user.
|
|
Defining some "texture" object that would automatically stream its data from a
|
|
staging copy in CPU memory to GPU memory would rather be a feature of another,
|
|
higher-level library implemented on top of VMA.
|
|
VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory.
|
|
-# **Recreation of buffers and images.** Although the library has functions for
|
|
buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to
|
|
recreate these objects yourself after defragmentation. That is because the big
|
|
structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
|
|
#VmaAllocation object.
|
|
-# **Handling CPU memory allocation failures.** When dynamically creating small C++
|
|
objects in CPU memory (not Vulkan memory), allocation failures are not checked
|
|
and handled gracefully, because that would complicate code significantly and
|
|
is usually not needed in desktop PC applications anyway.
|
|
Success of an allocation is just checked with an assert.
|
|
-# **Code free of any compiler warnings.** Maintaining the library to compile and
|
|
work correctly on so many different platforms is hard enough. Being free of
|
|
any warnings, on any version of any compiler, is simply not feasible.
|
|
There are many preprocessor macros that make some variables unused, function parameters unreferenced,
|
|
or conditional expressions constant in some configurations.
|
|
The code of this library should not be bigger or more complicated just to silence these warnings.
|
|
It is recommended to disable such warnings instead.
|
|
-# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but
|
|
are not going to be included into this repository.
|
|
*/
|