brotli/enc/entropy_encode.cc

481 lines
13 KiB
C++
Raw Normal View History

/* Copyright 2010 Google Inc. All Rights Reserved.
2015-12-11 10:11:51 +00:00
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
// Entropy encoding (Huffman) utilities.
#include "./entropy_encode.h"
#include <algorithm>
#include <cstdlib>
#include <limits>
#include "../common/types.h"
#include "./histogram.h"
#include "./port.h"
namespace brotli {
void SetDepth(const HuffmanTree &p,
HuffmanTree *pool,
uint8_t *depth,
uint8_t level) {
if (p.index_left_ >= 0) {
++level;
SetDepth(pool[p.index_left_], pool, depth, level);
SetDepth(pool[p.index_right_or_value_], pool, depth, level);
} else {
depth[p.index_right_or_value_] = level;
}
}
// Sort the root nodes, least popular first.
static inline bool SortHuffmanTree(const HuffmanTree& v0,
const HuffmanTree& v1) {
if (v0.total_count_ != v1.total_count_) {
return v0.total_count_ < v1.total_count_;
}
return v0.index_right_or_value_ > v1.index_right_or_value_;
}
// This function will create a Huffman tree.
//
// The catch here is that the tree cannot be arbitrarily deep.
// Brotli specifies a maximum depth of 15 bits for "code trees"
// and 7 bits for "code length code trees."
//
// count_limit is the value that is to be faked as the minimum value
// and this minimum value is raised until the tree matches the
// maximum length requirement.
//
// This algorithm is not of excellent performance for very long data blocks,
// especially when population counts are longer than 2**tree_limit, but
// we are not planning to use this with extremely long blocks.
//
// See http://en.wikipedia.org/wiki/Huffman_coding
2016-01-07 15:27:49 +00:00
void CreateHuffmanTree(const uint32_t *data,
const size_t length,
const int tree_limit,
HuffmanTree* tree,
uint8_t *depth) {
// For block sizes below 64 kB, we never need to do a second iteration
// of this loop. Probably all of our block sizes will be smaller than
// that, so this loop is mostly of academic interest. If we actually
// would need this, we would be better off with the Katajainen algorithm.
2016-01-07 15:27:49 +00:00
for (uint32_t count_limit = 1; ; count_limit *= 2) {
size_t n = 0;
2016-01-07 15:27:49 +00:00
for (size_t i = length; i != 0;) {
--i;
if (data[i]) {
2016-01-07 15:27:49 +00:00
const uint32_t count = std::max(data[i], count_limit);
tree[n++] = HuffmanTree(count, -1, static_cast<int16_t>(i));
}
}
if (n == 1) {
depth[tree[0].index_right_or_value_] = 1; // Only one element.
break;
}
std::sort(tree, tree + n, SortHuffmanTree);
// The nodes are:
// [0, n): the sorted leaf nodes that we start with.
// [n]: we add a sentinel here.
// [n + 1, 2n): new parent nodes are added here, starting from
// (n+1). These are naturally in ascending order.
// [2n]: we add a sentinel at the end as well.
// There will be (2n+1) elements at the end.
2016-01-07 15:27:49 +00:00
const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1);
tree[n] = sentinel;
tree[n + 1] = sentinel;
2016-01-07 15:27:49 +00:00
size_t i = 0; // Points to the next leaf node.
size_t j = n + 1; // Points to the next non-leaf node.
for (size_t k = n - 1; k != 0; --k) {
size_t left, right;
if (tree[i].total_count_ <= tree[j].total_count_) {
left = i;
++i;
} else {
left = j;
++j;
}
if (tree[i].total_count_ <= tree[j].total_count_) {
right = i;
++i;
} else {
right = j;
++j;
}
// The sentinel node becomes the parent node.
size_t j_end = 2 * n - k;
tree[j_end].total_count_ =
tree[left].total_count_ + tree[right].total_count_;
tree[j_end].index_left_ = static_cast<int16_t>(left);
tree[j_end].index_right_or_value_ = static_cast<int16_t>(right);
// Add back the last sentinel node.
tree[j_end + 1] = sentinel;
}
SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
// We need to pack the Huffman tree in tree_limit bits.
// If this was not successful, add fake entities to the lowest values
// and retry.
if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
break;
}
}
}
static void Reverse(uint8_t* v, size_t start, size_t end) {
--end;
while (start < end) {
uint8_t tmp = v[start];
v[start] = v[end];
v[end] = tmp;
++start;
--end;
}
}
static void WriteHuffmanTreeRepetitions(
const uint8_t previous_value,
const uint8_t value,
2016-01-07 15:27:49 +00:00
size_t repetitions,
size_t* tree_size,
uint8_t* tree,
uint8_t* extra_bits_data) {
2016-01-07 15:27:49 +00:00
assert(repetitions > 0);
if (previous_value != value) {
tree[*tree_size] = value;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
--repetitions;
}
if (repetitions == 7) {
tree[*tree_size] = value;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
--repetitions;
}
if (repetitions < 3) {
2016-01-07 15:27:49 +00:00
for (size_t i = 0; i < repetitions; ++i) {
tree[*tree_size] = value;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
}
} else {
repetitions -= 3;
size_t start = *tree_size;
2016-01-07 15:27:49 +00:00
while (true) {
tree[*tree_size] = 16;
extra_bits_data[*tree_size] = repetitions & 0x3;
++(*tree_size);
repetitions >>= 2;
2016-01-07 15:27:49 +00:00
if (repetitions == 0) {
break;
}
--repetitions;
}
Reverse(tree, start, *tree_size);
Reverse(extra_bits_data, start, *tree_size);
}
}
static void WriteHuffmanTreeRepetitionsZeros(
2016-01-07 15:27:49 +00:00
size_t repetitions,
size_t* tree_size,
uint8_t* tree,
uint8_t* extra_bits_data) {
if (repetitions == 11) {
tree[*tree_size] = 0;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
--repetitions;
}
if (repetitions < 3) {
2016-01-07 15:27:49 +00:00
for (size_t i = 0; i < repetitions; ++i) {
tree[*tree_size] = 0;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
}
} else {
repetitions -= 3;
size_t start = *tree_size;
2016-01-07 15:27:49 +00:00
while (true) {
tree[*tree_size] = 17;
extra_bits_data[*tree_size] = repetitions & 0x7;
++(*tree_size);
repetitions >>= 3;
2016-01-07 15:27:49 +00:00
if (repetitions == 0) {
break;
}
--repetitions;
}
Reverse(tree, start, *tree_size);
Reverse(extra_bits_data, start, *tree_size);
}
}
void OptimizeHuffmanCountsForRle(size_t length, uint32_t* counts,
uint8_t* good_for_rle) {
2016-01-07 15:27:49 +00:00
size_t nonzero_count = 0;
size_t stride;
size_t limit;
size_t sum;
const size_t streak_limit = 1240;
// Let's make the Huffman code more compatible with rle encoding.
2016-01-07 15:27:49 +00:00
size_t i;
for (i = 0; i < length; i++) {
if (counts[i]) {
++nonzero_count;
}
}
if (nonzero_count < 16) {
return;
}
2016-01-07 15:27:49 +00:00
while (length != 0 && counts[length - 1] == 0) {
--length;
}
if (length == 0) {
return; // All zeros.
}
2016-01-07 15:27:49 +00:00
// Now counts[0..length - 1] does not have trailing zeros.
{
2016-01-07 15:27:49 +00:00
size_t nonzeros = 0;
uint32_t smallest_nonzero = 1 << 30;
for (i = 0; i < length; ++i) {
if (counts[i] != 0) {
++nonzeros;
if (smallest_nonzero > counts[i]) {
smallest_nonzero = counts[i];
}
}
}
if (nonzeros < 5) {
// Small histogram will model it well.
return;
}
2016-01-07 15:27:49 +00:00
size_t zeros = length - nonzeros;
if (smallest_nonzero < 4) {
if (zeros < 6) {
for (i = 1; i < length - 1; ++i) {
if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
counts[i] = 1;
}
}
}
}
if (nonzeros < 28) {
return;
}
}
// 2) Let's mark all population counts that already can be encoded
// with an rle code.
memset(good_for_rle, 0, length);
{
// Let's not spoil any of the existing good rle codes.
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
2016-01-07 15:27:49 +00:00
uint32_t symbol = counts[0];
size_t step = 0;
for (i = 0; i <= length; ++i) {
if (i == length || counts[i] != symbol) {
2016-01-07 15:27:49 +00:00
if ((symbol == 0 && step >= 5) ||
(symbol != 0 && step >= 7)) {
size_t k;
for (k = 0; k < step; ++k) {
good_for_rle[i - k - 1] = 1;
}
}
2016-01-07 15:27:49 +00:00
step = 1;
if (i != length) {
symbol = counts[i];
}
} else {
2016-01-07 15:27:49 +00:00
++step;
}
}
}
// 3) Let's replace those population counts that lead to more rle codes.
// Math here is in 24.8 fixed point representation.
stride = 0;
limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
sum = 0;
2016-01-07 15:27:49 +00:00
for (i = 0; i <= length; ++i) {
if (i == length || good_for_rle[i] ||
(i != 0 && good_for_rle[i - 1]) ||
2016-01-07 15:27:49 +00:00
(256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) {
if (stride >= 4 || (stride >= 3 && sum == 0)) {
2016-01-07 15:27:49 +00:00
size_t k;
// The stride must end, collapse what we have, if we have enough (4).
2016-01-07 15:27:49 +00:00
size_t count = (sum + stride / 2) / stride;
if (count == 0) {
count = 1;
}
if (sum == 0) {
// Don't make an all zeros stride to be upgraded to ones.
count = 0;
}
for (k = 0; k < stride; ++k) {
// We don't want to change value at counts[i],
// that is already belonging to the next stride. Thus - 1.
2016-01-07 15:27:49 +00:00
counts[i - k - 1] = static_cast<uint32_t>(count);
}
}
stride = 0;
sum = 0;
if (i < length - 2) {
// All interesting strides have a count of at least 4,
// at least when non-zeros.
limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
} else if (i < length) {
limit = 256 * counts[i];
} else {
limit = 0;
}
}
++stride;
if (i != length) {
sum += counts[i];
if (stride >= 4) {
limit = (256 * sum + stride / 2) / stride;
}
if (stride == 4) {
limit += 120;
}
}
}
}
2016-01-07 15:27:49 +00:00
static void DecideOverRleUse(const uint8_t* depth, const size_t length,
bool *use_rle_for_non_zero,
bool *use_rle_for_zero) {
2016-01-07 15:27:49 +00:00
size_t total_reps_zero = 0;
size_t total_reps_non_zero = 0;
size_t count_reps_zero = 1;
size_t count_reps_non_zero = 1;
for (size_t i = 0; i < length;) {
const uint8_t value = depth[i];
size_t reps = 1;
for (size_t k = i + 1; k < length && depth[k] == value; ++k) {
++reps;
}
if (reps >= 3 && value == 0) {
total_reps_zero += reps;
++count_reps_zero;
}
if (reps >= 4 && value != 0) {
total_reps_non_zero += reps;
++count_reps_non_zero;
}
i += reps;
}
2016-01-07 15:27:49 +00:00
*use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero * 2;
*use_rle_for_zero = total_reps_zero > count_reps_zero * 2;
}
void WriteHuffmanTree(const uint8_t* depth,
2016-01-07 15:27:49 +00:00
size_t length,
size_t* tree_size,
uint8_t* tree,
uint8_t* extra_bits_data) {
uint8_t previous_value = 8;
// Throw away trailing zeros.
2016-01-07 15:27:49 +00:00
size_t new_length = length;
for (size_t i = 0; i < length; ++i) {
if (depth[length - i - 1] == 0) {
--new_length;
} else {
break;
}
}
// First gather statistics on if it is a good idea to do rle.
bool use_rle_for_non_zero = false;
bool use_rle_for_zero = false;
if (length > 50) {
// Find rle coding for longer codes.
// Shorter codes seem not to benefit from rle.
DecideOverRleUse(depth, new_length,
&use_rle_for_non_zero, &use_rle_for_zero);
}
// Actual rle coding.
2016-01-07 15:27:49 +00:00
for (size_t i = 0; i < new_length;) {
const uint8_t value = depth[i];
2016-01-07 15:27:49 +00:00
size_t reps = 1;
if ((value != 0 && use_rle_for_non_zero) ||
(value == 0 && use_rle_for_zero)) {
2016-01-07 15:27:49 +00:00
for (size_t k = i + 1; k < new_length && depth[k] == value; ++k) {
++reps;
}
}
if (value == 0) {
WriteHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data);
} else {
WriteHuffmanTreeRepetitions(previous_value,
value, reps, tree_size,
tree, extra_bits_data);
previous_value = value;
}
i += reps;
}
}
namespace {
uint16_t ReverseBits(int num_bits, uint16_t bits) {
static const size_t kLut[16] = { // Pre-reversed 4-bit values.
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
};
size_t retval = kLut[bits & 0xf];
for (int i = 4; i < num_bits; i += 4) {
retval <<= 4;
bits = static_cast<uint16_t>(bits >> 4);
retval |= kLut[bits & 0xf];
}
retval >>= (-num_bits & 0x3);
return static_cast<uint16_t>(retval);
}
} // namespace
2016-01-07 15:27:49 +00:00
void ConvertBitDepthsToSymbols(const uint8_t *depth,
size_t len,
uint16_t *bits) {
// In Brotli, all bit depths are [1..15]
// 0 bit depth means that the symbol does not exist.
const int kMaxBits = 16; // 0..15 are values for bits
uint16_t bl_count[kMaxBits] = { 0 };
{
2016-01-07 15:27:49 +00:00
for (size_t i = 0; i < len; ++i) {
++bl_count[depth[i]];
}
bl_count[0] = 0;
}
uint16_t next_code[kMaxBits];
next_code[0] = 0;
{
int code = 0;
for (int bits = 1; bits < kMaxBits; ++bits) {
code = (code + bl_count[bits - 1]) << 1;
next_code[bits] = static_cast<uint16_t>(code);
}
}
2016-01-07 15:27:49 +00:00
for (size_t i = 0; i < len; ++i) {
if (depth[i]) {
bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
}
}
}
} // namespace brotli