mirror of
https://github.com/google/brotli.git
synced 2024-11-23 12:10:07 +00:00
343 lines
11 KiB
C++
343 lines
11 KiB
C++
|
// Copyright 2014 Google Inc. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
//
|
||
|
// Brotli bit stream functions to support the low level format. There are no
|
||
|
// compression algorithms here, just the right ordering of bits to match the
|
||
|
// specs.
|
||
|
|
||
|
#include "./brotli_bit_stream.h"
|
||
|
|
||
|
#include <vector>
|
||
|
|
||
|
#include "./entropy_encode.h"
|
||
|
#include "./fast_log.h"
|
||
|
#include "./write_bits.h"
|
||
|
|
||
|
namespace brotli {
|
||
|
|
||
|
// returns false if fail
|
||
|
// nibblesbits represents the 2 bits to encode MNIBBLES (0-3)
|
||
|
bool EncodeMlen(size_t length, int* bits, int* numbits, int* nibblesbits) {
|
||
|
length--; // MLEN - 1 is encoded
|
||
|
int lg = length == 0 ? 1 : Log2Floor(length) + 1;
|
||
|
if (lg > 28) return false;
|
||
|
int mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
|
||
|
*nibblesbits = mnibbles - 4;
|
||
|
*numbits = mnibbles * 4;
|
||
|
*bits = length;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void StoreVarLenUint8(int n, int* storage_ix, uint8_t* storage) {
|
||
|
if (n == 0) {
|
||
|
WriteBits(1, 0, storage_ix, storage);
|
||
|
} else {
|
||
|
WriteBits(1, 1, storage_ix, storage);
|
||
|
int nbits = Log2Floor(n);
|
||
|
WriteBits(3, nbits, storage_ix, storage);
|
||
|
WriteBits(nbits, n - (1 << nbits), storage_ix, storage);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void StoreCompressedMetaBlockHeader(bool final_block,
|
||
|
int length,
|
||
|
int* storage_ix,
|
||
|
uint8_t* storage) {
|
||
|
// Write ISLAST bit.
|
||
|
WriteBits(1, final_block, storage_ix, storage);
|
||
|
// Write ISEMPTY bit.
|
||
|
if (final_block) WriteBits(1, length == 0, storage_ix, storage);
|
||
|
|
||
|
int lenbits;
|
||
|
int nlenbits;
|
||
|
int nibblesbits;
|
||
|
EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
|
||
|
|
||
|
WriteBits(2, nibblesbits, storage_ix, storage);
|
||
|
WriteBits(nlenbits, lenbits, storage_ix, storage);
|
||
|
|
||
|
if (!final_block) {
|
||
|
// Write ISUNCOMPRESSED bit.
|
||
|
WriteBits(1, 0, storage_ix, storage);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void StoreUncompressedMetaBlockHeader(int length,
|
||
|
int* storage_ix,
|
||
|
uint8_t* storage) {
|
||
|
// Write ISLAST bit. Uncompressed block cannot be the last one, so set to 0.
|
||
|
WriteBits(1, 0, storage_ix, storage);
|
||
|
int lenbits;
|
||
|
int nlenbits;
|
||
|
int nibblesbits;
|
||
|
EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
|
||
|
WriteBits(2, nibblesbits, storage_ix, storage);
|
||
|
WriteBits(nlenbits, lenbits, storage_ix, storage);
|
||
|
// Write ISUNCOMPRESSED bit.
|
||
|
WriteBits(1, 1, storage_ix, storage);
|
||
|
}
|
||
|
|
||
|
void StoreHuffmanTreeOfHuffmanTreeToBitMask(
|
||
|
const int num_codes,
|
||
|
const uint8_t *code_length_bitdepth,
|
||
|
int *storage_ix,
|
||
|
uint8_t *storage) {
|
||
|
static const uint8_t kStorageOrder[kCodeLengthCodes] = {
|
||
|
1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
||
|
};
|
||
|
// The bit lengths of the Huffman code over the code length alphabet
|
||
|
// are compressed with the following static Huffman code:
|
||
|
// Symbol Code
|
||
|
// ------ ----
|
||
|
// 0 00
|
||
|
// 1 1110
|
||
|
// 2 110
|
||
|
// 3 01
|
||
|
// 4 10
|
||
|
// 5 1111
|
||
|
static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
|
||
|
0, 7, 3, 2, 1, 15
|
||
|
};
|
||
|
static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
|
||
|
2, 4, 3, 2, 2, 4
|
||
|
};
|
||
|
|
||
|
// Throw away trailing zeros:
|
||
|
int codes_to_store = kCodeLengthCodes;
|
||
|
if (num_codes > 1) {
|
||
|
for (; codes_to_store > 0; --codes_to_store) {
|
||
|
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
int skip_some = 0; // skips none.
|
||
|
if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
|
||
|
code_length_bitdepth[kStorageOrder[1]] == 0) {
|
||
|
skip_some = 2; // skips two.
|
||
|
if (code_length_bitdepth[kStorageOrder[2]] == 0) {
|
||
|
skip_some = 3; // skips three.
|
||
|
}
|
||
|
}
|
||
|
WriteBits(2, skip_some, storage_ix, storage);
|
||
|
for (int i = skip_some; i < codes_to_store; ++i) {
|
||
|
uint8_t l = code_length_bitdepth[kStorageOrder[i]];
|
||
|
WriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
|
||
|
kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void StoreHuffmanTreeToBitMask(
|
||
|
const std::vector<uint8_t> &huffman_tree,
|
||
|
const std::vector<uint8_t> &huffman_tree_extra_bits,
|
||
|
const uint8_t *code_length_bitdepth,
|
||
|
const std::vector<uint16_t> &code_length_bitdepth_symbols,
|
||
|
int * __restrict storage_ix,
|
||
|
uint8_t * __restrict storage) {
|
||
|
for (int i = 0; i < huffman_tree.size(); ++i) {
|
||
|
int ix = huffman_tree[i];
|
||
|
WriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
|
||
|
storage_ix, storage);
|
||
|
// Extra bits
|
||
|
switch (ix) {
|
||
|
case 16:
|
||
|
WriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
|
||
|
break;
|
||
|
case 17:
|
||
|
WriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void StoreSimpleHuffmanTree(const uint8_t* depths,
|
||
|
int symbols[4],
|
||
|
int num_symbols,
|
||
|
int max_bits,
|
||
|
int *storage_ix, uint8_t *storage) {
|
||
|
// value of 1 indicates a simple Huffman code
|
||
|
WriteBits(2, 1, storage_ix, storage);
|
||
|
WriteBits(2, num_symbols - 1, storage_ix, storage); // NSYM - 1
|
||
|
|
||
|
// Sort
|
||
|
for (int i = 0; i < num_symbols; i++) {
|
||
|
for (int j = i + 1; j < num_symbols; j++) {
|
||
|
if (depths[symbols[j]] < depths[symbols[i]]) {
|
||
|
std::swap(symbols[j], symbols[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (num_symbols == 2) {
|
||
|
WriteBits(max_bits, symbols[0], storage_ix, storage);
|
||
|
WriteBits(max_bits, symbols[1], storage_ix, storage);
|
||
|
} else if (num_symbols == 3) {
|
||
|
WriteBits(max_bits, symbols[0], storage_ix, storage);
|
||
|
WriteBits(max_bits, symbols[1], storage_ix, storage);
|
||
|
WriteBits(max_bits, symbols[2], storage_ix, storage);
|
||
|
} else {
|
||
|
WriteBits(max_bits, symbols[0], storage_ix, storage);
|
||
|
WriteBits(max_bits, symbols[1], storage_ix, storage);
|
||
|
WriteBits(max_bits, symbols[2], storage_ix, storage);
|
||
|
WriteBits(max_bits, symbols[3], storage_ix, storage);
|
||
|
// tree-select
|
||
|
WriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// num = alphabet size
|
||
|
// depths = symbol depths
|
||
|
void StoreHuffmanTree(const uint8_t* depths, size_t num,
|
||
|
int quality,
|
||
|
int *storage_ix, uint8_t *storage) {
|
||
|
// Write the Huffman tree into the brotli-representation.
|
||
|
std::vector<uint8_t> huffman_tree;
|
||
|
std::vector<uint8_t> huffman_tree_extra_bits;
|
||
|
// TODO(user): Consider allocating these from stack.
|
||
|
huffman_tree.reserve(256);
|
||
|
huffman_tree_extra_bits.reserve(256);
|
||
|
WriteHuffmanTree(depths, num, &huffman_tree, &huffman_tree_extra_bits);
|
||
|
|
||
|
// Calculate the statistics of the Huffman tree in brotli-representation.
|
||
|
int huffman_tree_histogram[kCodeLengthCodes] = { 0 };
|
||
|
for (int i = 0; i < huffman_tree.size(); ++i) {
|
||
|
++huffman_tree_histogram[huffman_tree[i]];
|
||
|
}
|
||
|
|
||
|
int num_codes = 0;
|
||
|
int code = 0;
|
||
|
for (int i = 0; i < kCodeLengthCodes; ++i) {
|
||
|
if (huffman_tree_histogram[i]) {
|
||
|
if (num_codes == 0) {
|
||
|
code = i;
|
||
|
num_codes = 1;
|
||
|
} else if (num_codes == 1) {
|
||
|
num_codes = 2;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Calculate another Huffman tree to use for compressing both the
|
||
|
// earlier Huffman tree with.
|
||
|
// TODO(user): Consider allocating these from stack.
|
||
|
uint8_t code_length_bitdepth[kCodeLengthCodes] = { 0 };
|
||
|
std::vector<uint16_t> code_length_bitdepth_symbols(kCodeLengthCodes);
|
||
|
CreateHuffmanTree(&huffman_tree_histogram[0], kCodeLengthCodes,
|
||
|
5, quality, &code_length_bitdepth[0]);
|
||
|
ConvertBitDepthsToSymbols(code_length_bitdepth, kCodeLengthCodes,
|
||
|
code_length_bitdepth_symbols.data());
|
||
|
|
||
|
// Now, we have all the data, let's start storing it
|
||
|
StoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
|
||
|
storage_ix, storage);
|
||
|
|
||
|
if (num_codes == 1) {
|
||
|
code_length_bitdepth[code] = 0;
|
||
|
}
|
||
|
|
||
|
// Store the real huffman tree now.
|
||
|
StoreHuffmanTreeToBitMask(huffman_tree,
|
||
|
huffman_tree_extra_bits,
|
||
|
&code_length_bitdepth[0],
|
||
|
code_length_bitdepth_symbols,
|
||
|
storage_ix, storage);
|
||
|
}
|
||
|
|
||
|
void BuildAndStoreHuffmanTree(const int *histogram,
|
||
|
const int length,
|
||
|
const int quality,
|
||
|
uint8_t* depth,
|
||
|
uint16_t* bits,
|
||
|
int* storage_ix,
|
||
|
uint8_t* storage) {
|
||
|
int count = 0;
|
||
|
int s4[4] = { 0 };
|
||
|
for (size_t i = 0; i < length; i++) {
|
||
|
if (histogram[i]) {
|
||
|
if (count < 4) {
|
||
|
s4[count] = i;
|
||
|
} else if (quality < 3 && count > 4) {
|
||
|
break;
|
||
|
}
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int max_bits_counter = length - 1;
|
||
|
int max_bits = 0;
|
||
|
while (max_bits_counter) {
|
||
|
max_bits_counter >>= 1;
|
||
|
++max_bits;
|
||
|
}
|
||
|
|
||
|
if (count <= 1) {
|
||
|
WriteBits(4, 1, storage_ix, storage);
|
||
|
WriteBits(max_bits, s4[0], storage_ix, storage);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (length >= 50 && count >= 16 && quality >= 3) {
|
||
|
std::vector<int> counts(length);
|
||
|
memcpy(&counts[0], histogram, sizeof(counts[0]) * length);
|
||
|
OptimizeHuffmanCountsForRle(length, &counts[0]);
|
||
|
CreateHuffmanTree(&counts[0], length, 15, quality, depth);
|
||
|
} else {
|
||
|
CreateHuffmanTree(histogram, length, 15, quality, depth);
|
||
|
}
|
||
|
ConvertBitDepthsToSymbols(depth, length, bits);
|
||
|
|
||
|
if (count <= 4) {
|
||
|
StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
|
||
|
} else {
|
||
|
StoreHuffmanTree(depth, length, quality, storage_ix, storage);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void StoreTrivialContextMap(int num_types,
|
||
|
int context_bits,
|
||
|
int* storage_ix,
|
||
|
uint8_t* storage) {
|
||
|
StoreVarLenUint8(num_types - 1, storage_ix, storage);
|
||
|
if (num_types > 1) {
|
||
|
int repeat_code = context_bits - 1;
|
||
|
int repeat_bits = (1 << repeat_code) - 1;
|
||
|
int alphabet_size = num_types + repeat_code;
|
||
|
std::vector<int> histogram(alphabet_size);
|
||
|
std::vector<uint8_t> depths(alphabet_size);
|
||
|
std::vector<uint16_t> bits(alphabet_size);
|
||
|
// Write RLEMAX.
|
||
|
WriteBits(1, 1, storage_ix, storage);
|
||
|
WriteBits(4, repeat_code - 1, storage_ix, storage);
|
||
|
histogram[repeat_code] = num_types;
|
||
|
histogram[0] = 1;
|
||
|
for (int i = context_bits; i < alphabet_size; ++i) {
|
||
|
histogram[i] = 1;
|
||
|
}
|
||
|
BuildAndStoreHuffmanTree(&histogram[0], alphabet_size, 1,
|
||
|
&depths[0], &bits[0],
|
||
|
storage_ix, storage);
|
||
|
for (int i = 0; i < num_types; ++i) {
|
||
|
int code = (i == 0 ? 0 : i + context_bits - 1);
|
||
|
WriteBits(depths[code], bits[code], storage_ix, storage);
|
||
|
WriteBits(depths[repeat_code], bits[repeat_code], storage_ix, storage);
|
||
|
WriteBits(repeat_code, repeat_bits, storage_ix, storage);
|
||
|
}
|
||
|
// Write IMTF (inverse-move-to-front) bit.
|
||
|
WriteBits(1, 1, storage_ix, storage);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace brotli
|