// Copyright 2014 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Brotli bit stream functions to support the low level format. There are no // compression algorithms here, just the right ordering of bits to match the // specs. #include "./brotli_bit_stream.h" #include #include #include #include "./bit_cost.h" #include "./context.h" #include "./entropy_encode.h" #include "./fast_log.h" #include "./prefix.h" #include "./write_bits.h" namespace brotli { // returns false if fail // nibblesbits represents the 2 bits to encode MNIBBLES (0-3) bool EncodeMlen(size_t length, int* bits, int* numbits, int* nibblesbits) { length--; // MLEN - 1 is encoded int lg = length == 0 ? 1 : Log2Floor(length) + 1; if (lg > 24) return false; int mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4; *nibblesbits = mnibbles - 4; *numbits = mnibbles * 4; *bits = length; return true; } void StoreVarLenUint8(int n, int* storage_ix, uint8_t* storage) { if (n == 0) { WriteBits(1, 0, storage_ix, storage); } else { WriteBits(1, 1, storage_ix, storage); int nbits = Log2Floor(n); WriteBits(3, nbits, storage_ix, storage); WriteBits(nbits, n - (1 << nbits), storage_ix, storage); } } bool StoreCompressedMetaBlockHeader(bool final_block, size_t length, int* storage_ix, uint8_t* storage) { // Write ISLAST bit. WriteBits(1, final_block, storage_ix, storage); // Write ISEMPTY bit. if (final_block) { WriteBits(1, length == 0, storage_ix, storage); if (length == 0) { return true; } } if (length == 0) { // Only the last meta-block can be empty. return false; } int lenbits; int nlenbits; int nibblesbits; if (!EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits)) { return false; } WriteBits(2, nibblesbits, storage_ix, storage); WriteBits(nlenbits, lenbits, storage_ix, storage); if (!final_block) { // Write ISUNCOMPRESSED bit. WriteBits(1, 0, storage_ix, storage); } return true; } bool StoreUncompressedMetaBlockHeader(size_t length, int* storage_ix, uint8_t* storage) { // Write ISLAST bit. Uncompressed block cannot be the last one, so set to 0. WriteBits(1, 0, storage_ix, storage); int lenbits; int nlenbits; int nibblesbits; if (!EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits)) { return false; } WriteBits(2, nibblesbits, storage_ix, storage); WriteBits(nlenbits, lenbits, storage_ix, storage); // Write ISUNCOMPRESSED bit. WriteBits(1, 1, storage_ix, storage); return true; } void StoreHuffmanTreeOfHuffmanTreeToBitMask( const int num_codes, const uint8_t *code_length_bitdepth, int *storage_ix, uint8_t *storage) { static const uint8_t kStorageOrder[kCodeLengthCodes] = { 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; // The bit lengths of the Huffman code over the code length alphabet // are compressed with the following static Huffman code: // Symbol Code // ------ ---- // 0 00 // 1 1110 // 2 110 // 3 01 // 4 10 // 5 1111 static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = { 0, 7, 3, 2, 1, 15 }; static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = { 2, 4, 3, 2, 2, 4 }; // Throw away trailing zeros: int codes_to_store = kCodeLengthCodes; if (num_codes > 1) { for (; codes_to_store > 0; --codes_to_store) { if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { break; } } } int skip_some = 0; // skips none. if (code_length_bitdepth[kStorageOrder[0]] == 0 && code_length_bitdepth[kStorageOrder[1]] == 0) { skip_some = 2; // skips two. if (code_length_bitdepth[kStorageOrder[2]] == 0) { skip_some = 3; // skips three. } } WriteBits(2, skip_some, storage_ix, storage); for (int i = skip_some; i < codes_to_store; ++i) { uint8_t l = code_length_bitdepth[kStorageOrder[i]]; WriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l], kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage); } } void StoreHuffmanTreeToBitMask( const std::vector &huffman_tree, const std::vector &huffman_tree_extra_bits, const uint8_t *code_length_bitdepth, const std::vector &code_length_bitdepth_symbols, int * __restrict storage_ix, uint8_t * __restrict storage) { for (int i = 0; i < huffman_tree.size(); ++i) { int ix = huffman_tree[i]; WriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix], storage_ix, storage); // Extra bits switch (ix) { case 16: WriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage); break; case 17: WriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage); break; } } } void StoreSimpleHuffmanTree(const uint8_t* depths, int symbols[4], int num_symbols, int max_bits, int *storage_ix, uint8_t *storage) { // value of 1 indicates a simple Huffman code WriteBits(2, 1, storage_ix, storage); WriteBits(2, num_symbols - 1, storage_ix, storage); // NSYM - 1 // Sort for (int i = 0; i < num_symbols; i++) { for (int j = i + 1; j < num_symbols; j++) { if (depths[symbols[j]] < depths[symbols[i]]) { std::swap(symbols[j], symbols[i]); } } } if (num_symbols == 2) { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); } else if (num_symbols == 3) { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); WriteBits(max_bits, symbols[2], storage_ix, storage); } else { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); WriteBits(max_bits, symbols[2], storage_ix, storage); WriteBits(max_bits, symbols[3], storage_ix, storage); // tree-select WriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); } } // num = alphabet size // depths = symbol depths void StoreHuffmanTree(const uint8_t* depths, size_t num, int *storage_ix, uint8_t *storage) { // Write the Huffman tree into the brotli-representation. std::vector huffman_tree; std::vector huffman_tree_extra_bits; // TODO: Consider allocating these from stack. huffman_tree.reserve(256); huffman_tree_extra_bits.reserve(256); WriteHuffmanTree(depths, num, &huffman_tree, &huffman_tree_extra_bits); // Calculate the statistics of the Huffman tree in brotli-representation. int huffman_tree_histogram[kCodeLengthCodes] = { 0 }; for (int i = 0; i < huffman_tree.size(); ++i) { ++huffman_tree_histogram[huffman_tree[i]]; } int num_codes = 0; int code = 0; for (int i = 0; i < kCodeLengthCodes; ++i) { if (huffman_tree_histogram[i]) { if (num_codes == 0) { code = i; num_codes = 1; } else if (num_codes == 1) { num_codes = 2; break; } } } // Calculate another Huffman tree to use for compressing both the // earlier Huffman tree with. // TODO: Consider allocating these from stack. uint8_t code_length_bitdepth[kCodeLengthCodes] = { 0 }; std::vector code_length_bitdepth_symbols(kCodeLengthCodes); CreateHuffmanTree(&huffman_tree_histogram[0], kCodeLengthCodes, 5, &code_length_bitdepth[0]); ConvertBitDepthsToSymbols(code_length_bitdepth, kCodeLengthCodes, code_length_bitdepth_symbols.data()); // Now, we have all the data, let's start storing it StoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth, storage_ix, storage); if (num_codes == 1) { code_length_bitdepth[code] = 0; } // Store the real huffman tree now. StoreHuffmanTreeToBitMask(huffman_tree, huffman_tree_extra_bits, &code_length_bitdepth[0], code_length_bitdepth_symbols, storage_ix, storage); } void BuildAndStoreHuffmanTree(const int *histogram, const int length, uint8_t* depth, uint16_t* bits, int* storage_ix, uint8_t* storage) { int count = 0; int s4[4] = { 0 }; for (size_t i = 0; i < length; i++) { if (histogram[i]) { if (count < 4) { s4[count] = i; } else if (count > 4) { break; } count++; } } int max_bits_counter = length - 1; int max_bits = 0; while (max_bits_counter) { max_bits_counter >>= 1; ++max_bits; } if (count <= 1) { WriteBits(4, 1, storage_ix, storage); WriteBits(max_bits, s4[0], storage_ix, storage); return; } CreateHuffmanTree(histogram, length, 15, depth); ConvertBitDepthsToSymbols(depth, length, bits); if (count <= 4) { StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage); } else { StoreHuffmanTree(depth, length, storage_ix, storage); } } int IndexOf(const std::vector& v, int value) { for (int i = 0; i < v.size(); ++i) { if (v[i] == value) return i; } return -1; } void MoveToFront(std::vector* v, int index) { int value = (*v)[index]; for (int i = index; i > 0; --i) { (*v)[i] = (*v)[i - 1]; } (*v)[0] = value; } std::vector MoveToFrontTransform(const std::vector& v) { if (v.empty()) return v; std::vector mtf(*std::max_element(v.begin(), v.end()) + 1); for (int i = 0; i < mtf.size(); ++i) mtf[i] = i; std::vector result(v.size()); for (int i = 0; i < v.size(); ++i) { int index = IndexOf(mtf, v[i]); result[i] = index; MoveToFront(&mtf, index); } return result; } // Finds runs of zeros in v_in and replaces them with a prefix code of the run // length plus extra bits in *v_out and *extra_bits. Non-zero values in v_in are // shifted by *max_length_prefix. Will not create prefix codes bigger than the // initial value of *max_run_length_prefix. The prefix code of run length L is // simply Log2Floor(L) and the number of extra bits is the same as the prefix // code. void RunLengthCodeZeros(const std::vector& v_in, int* max_run_length_prefix, std::vector* v_out, std::vector* extra_bits) { int max_reps = 0; for (int i = 0; i < v_in.size();) { for (; i < v_in.size() && v_in[i] != 0; ++i) ; int reps = 0; for (; i < v_in.size() && v_in[i] == 0; ++i) { ++reps; } max_reps = std::max(reps, max_reps); } int max_prefix = max_reps > 0 ? Log2Floor(max_reps) : 0; *max_run_length_prefix = std::min(max_prefix, *max_run_length_prefix); for (int i = 0; i < v_in.size();) { if (v_in[i] != 0) { v_out->push_back(v_in[i] + *max_run_length_prefix); extra_bits->push_back(0); ++i; } else { int reps = 1; for (uint32_t k = i + 1; k < v_in.size() && v_in[k] == 0; ++k) { ++reps; } i += reps; while (reps) { if (reps < (2 << *max_run_length_prefix)) { int run_length_prefix = Log2Floor(reps); v_out->push_back(run_length_prefix); extra_bits->push_back(reps - (1 << run_length_prefix)); break; } else { v_out->push_back(*max_run_length_prefix); extra_bits->push_back((1 << *max_run_length_prefix) - 1); reps -= (2 << *max_run_length_prefix) - 1; } } } } } // Returns a maximum zero-run-length-prefix value such that run-length coding // zeros in v with this maximum prefix value and then encoding the resulting // histogram and entropy-coding v produces the least amount of bits. int BestMaxZeroRunLengthPrefix(const std::vector& v) { int min_cost = std::numeric_limits::max(); int best_max_prefix = 0; for (int max_prefix = 0; max_prefix <= 16; ++max_prefix) { std::vector rle_symbols; std::vector extra_bits; int max_run_length_prefix = max_prefix; RunLengthCodeZeros(v, &max_run_length_prefix, &rle_symbols, &extra_bits); if (max_run_length_prefix < max_prefix) break; HistogramContextMap histogram; for (int i = 0; i < rle_symbols.size(); ++i) { histogram.Add(rle_symbols[i]); } int bit_cost = PopulationCost(histogram); if (max_prefix > 0) { bit_cost += 4; } for (int i = 1; i <= max_prefix; ++i) { bit_cost += histogram.data_[i] * i; // extra bits } if (bit_cost < min_cost) { min_cost = bit_cost; best_max_prefix = max_prefix; } } return best_max_prefix; } void EncodeContextMap(const std::vector& context_map, int num_clusters, int* storage_ix, uint8_t* storage) { StoreVarLenUint8(num_clusters - 1, storage_ix, storage); if (num_clusters == 1) { return; } std::vector transformed_symbols = MoveToFrontTransform(context_map); std::vector rle_symbols; std::vector extra_bits; int max_run_length_prefix = BestMaxZeroRunLengthPrefix(transformed_symbols); RunLengthCodeZeros(transformed_symbols, &max_run_length_prefix, &rle_symbols, &extra_bits); HistogramContextMap symbol_histogram; for (int i = 0; i < rle_symbols.size(); ++i) { symbol_histogram.Add(rle_symbols[i]); } bool use_rle = max_run_length_prefix > 0; WriteBits(1, use_rle, storage_ix, storage); if (use_rle) { WriteBits(4, max_run_length_prefix - 1, storage_ix, storage); } EntropyCodeContextMap symbol_code; memset(symbol_code.depth_, 0, sizeof(symbol_code.depth_)); memset(symbol_code.bits_, 0, sizeof(symbol_code.bits_)); BuildAndStoreHuffmanTree(symbol_histogram.data_, num_clusters + max_run_length_prefix, symbol_code.depth_, symbol_code.bits_, storage_ix, storage); for (int i = 0; i < rle_symbols.size(); ++i) { WriteBits(symbol_code.depth_[rle_symbols[i]], symbol_code.bits_[rle_symbols[i]], storage_ix, storage); if (rle_symbols[i] > 0 && rle_symbols[i] <= max_run_length_prefix) { WriteBits(rle_symbols[i], extra_bits[i], storage_ix, storage); } } WriteBits(1, 1, storage_ix, storage); // use move-to-front } void StoreBlockSwitch(const BlockSplitCode& code, const int block_ix, int* storage_ix, uint8_t* storage) { if (block_ix > 0) { int typecode = code.type_code[block_ix]; WriteBits(code.type_depths[typecode], code.type_bits[typecode], storage_ix, storage); } int lencode = code.length_prefix[block_ix]; WriteBits(code.length_depths[lencode], code.length_bits[lencode], storage_ix, storage); WriteBits(code.length_nextra[block_ix], code.length_extra[block_ix], storage_ix, storage); } void BuildAndStoreBlockSplitCode(const std::vector& types, const std::vector& lengths, const int num_types, BlockSplitCode* code, int* storage_ix, uint8_t* storage) { const int num_blocks = types.size(); std::vector type_histo(num_types + 2); std::vector length_histo(26); int last_type = 1; int second_last_type = 0; code->type_code.resize(num_blocks); code->length_prefix.resize(num_blocks); code->length_nextra.resize(num_blocks); code->length_extra.resize(num_blocks); code->type_depths.resize(num_types + 2); code->type_bits.resize(num_types + 2); code->length_depths.resize(26); code->length_bits.resize(26); for (int i = 0; i < num_blocks; ++i) { int type = types[i]; int type_code = (type == last_type + 1 ? 1 : type == second_last_type ? 0 : type + 2); second_last_type = last_type; last_type = type; code->type_code[i] = type_code; if (i > 0) ++type_histo[type_code]; GetBlockLengthPrefixCode(lengths[i], &code->length_prefix[i], &code->length_nextra[i], &code->length_extra[i]); ++length_histo[code->length_prefix[i]]; } StoreVarLenUint8(num_types - 1, storage_ix, storage); if (num_types > 1) { BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, &code->type_depths[0], &code->type_bits[0], storage_ix, storage); BuildAndStoreHuffmanTree(&length_histo[0], 26, &code->length_depths[0], &code->length_bits[0], storage_ix, storage); StoreBlockSwitch(*code, 0, storage_ix, storage); } } void StoreTrivialContextMap(int num_types, int context_bits, int* storage_ix, uint8_t* storage) { StoreVarLenUint8(num_types - 1, storage_ix, storage); if (num_types > 1) { int repeat_code = context_bits - 1; int repeat_bits = (1 << repeat_code) - 1; int alphabet_size = num_types + repeat_code; std::vector histogram(alphabet_size); std::vector depths(alphabet_size); std::vector bits(alphabet_size); // Write RLEMAX. WriteBits(1, 1, storage_ix, storage); WriteBits(4, repeat_code - 1, storage_ix, storage); histogram[repeat_code] = num_types; histogram[0] = 1; for (int i = context_bits; i < alphabet_size; ++i) { histogram[i] = 1; } BuildAndStoreHuffmanTree(&histogram[0], alphabet_size, &depths[0], &bits[0], storage_ix, storage); for (int i = 0; i < num_types; ++i) { int code = (i == 0 ? 0 : i + context_bits - 1); WriteBits(depths[code], bits[code], storage_ix, storage); WriteBits(depths[repeat_code], bits[repeat_code], storage_ix, storage); WriteBits(repeat_code, repeat_bits, storage_ix, storage); } // Write IMTF (inverse-move-to-front) bit. WriteBits(1, 1, storage_ix, storage); } } // Manages the encoding of one block category (literal, command or distance). class BlockEncoder { public: BlockEncoder(int alphabet_size, int num_block_types, const std::vector& block_types, const std::vector& block_lengths) : alphabet_size_(alphabet_size), num_block_types_(num_block_types), block_types_(block_types), block_lengths_(block_lengths), block_ix_(0), block_len_(block_lengths.empty() ? 0 : block_lengths[0]), entropy_ix_(0) {} // Creates entropy codes of block lengths and block types and stores them // to the bit stream. void BuildAndStoreBlockSwitchEntropyCodes(int* storage_ix, uint8_t* storage) { BuildAndStoreBlockSplitCode( block_types_, block_lengths_, num_block_types_, &block_split_code_, storage_ix, storage); } // Creates entropy codes for all block types and stores them to the bit // stream. template void BuildAndStoreEntropyCodes( const std::vector >& histograms, int* storage_ix, uint8_t* storage) { depths_.resize(histograms.size() * alphabet_size_); bits_.resize(histograms.size() * alphabet_size_); for (int i = 0; i < histograms.size(); ++i) { int ix = i * alphabet_size_; BuildAndStoreHuffmanTree(&histograms[i].data_[0], alphabet_size_, &depths_[ix], &bits_[ix], storage_ix, storage); } } // Stores the next symbol with the entropy code of the current block type. // Updates the block type and block length at block boundaries. void StoreSymbol(int symbol, int* storage_ix, uint8_t* storage) { if (block_len_ == 0) { ++block_ix_; block_len_ = block_lengths_[block_ix_]; entropy_ix_ = block_types_[block_ix_] * alphabet_size_; StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage); } --block_len_; int ix = entropy_ix_ + symbol; WriteBits(depths_[ix], bits_[ix], storage_ix, storage); } // Stores the next symbol with the entropy code of the current block type and // context value. // Updates the block type and block length at block boundaries. template void StoreSymbolWithContext(int symbol, int context, const std::vector& context_map, int* storage_ix, uint8_t* storage) { if (block_len_ == 0) { ++block_ix_; block_len_ = block_lengths_[block_ix_]; entropy_ix_ = block_types_[block_ix_] << kContextBits; StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage); } --block_len_; int histo_ix = context_map[entropy_ix_ + context]; int ix = histo_ix * alphabet_size_ + symbol; WriteBits(depths_[ix], bits_[ix], storage_ix, storage); } private: const int alphabet_size_; const int num_block_types_; const std::vector& block_types_; const std::vector& block_lengths_; BlockSplitCode block_split_code_; int block_ix_; int block_len_; int entropy_ix_; std::vector depths_; std::vector bits_; }; void JumpToByteBoundary(int* storage_ix, uint8_t* storage) { *storage_ix = (*storage_ix + 7) & ~7; storage[*storage_ix >> 3] = 0; } bool StoreMetaBlock(const uint8_t* input, size_t start_pos, size_t length, size_t mask, uint8_t prev_byte, uint8_t prev_byte2, bool is_last, int num_direct_distance_codes, int distance_postfix_bits, int literal_context_mode, const brotli::Command *commands, size_t n_commands, const MetaBlockSplit& mb, int *storage_ix, uint8_t *storage) { if (!StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage)) { return false; } if (length == 0) { // Only the last meta-block can be empty, so jump to next byte. JumpToByteBoundary(storage_ix, storage); return true; } int num_distance_codes = kNumDistanceShortCodes + num_direct_distance_codes + (48 << distance_postfix_bits); BlockEncoder literal_enc(256, mb.literal_split.num_types, mb.literal_split.types, mb.literal_split.lengths); BlockEncoder command_enc(kNumCommandPrefixes, mb.command_split.num_types, mb.command_split.types, mb.command_split.lengths); BlockEncoder distance_enc(num_distance_codes, mb.distance_split.num_types, mb.distance_split.types, mb.distance_split.lengths); literal_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); command_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); distance_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); WriteBits(2, distance_postfix_bits, storage_ix, storage); WriteBits(4, num_direct_distance_codes >> distance_postfix_bits, storage_ix, storage); for (int i = 0; i < mb.literal_split.num_types; ++i) { WriteBits(2, literal_context_mode, storage_ix, storage); } if (mb.literal_context_map.empty()) { StoreTrivialContextMap(mb.literal_histograms.size(), kLiteralContextBits, storage_ix, storage); } else { EncodeContextMap(mb.literal_context_map, mb.literal_histograms.size(), storage_ix, storage); } if (mb.distance_context_map.empty()) { StoreTrivialContextMap(mb.distance_histograms.size(), kDistanceContextBits, storage_ix, storage); } else { EncodeContextMap(mb.distance_context_map, mb.distance_histograms.size(), storage_ix, storage); } literal_enc.BuildAndStoreEntropyCodes(mb.literal_histograms, storage_ix, storage); command_enc.BuildAndStoreEntropyCodes(mb.command_histograms, storage_ix, storage); distance_enc.BuildAndStoreEntropyCodes(mb.distance_histograms, storage_ix, storage); size_t pos = start_pos; for (int i = 0; i < n_commands; ++i) { const Command cmd = commands[i]; int cmd_code = cmd.cmd_prefix_; int lennumextra = cmd.cmd_extra_ >> 48; uint64_t lenextra = cmd.cmd_extra_ & 0xffffffffffffULL; command_enc.StoreSymbol(cmd_code, storage_ix, storage); WriteBits(lennumextra, lenextra, storage_ix, storage); if (mb.literal_context_map.empty()) { for (int j = 0; j < cmd.insert_len_; j++) { literal_enc.StoreSymbol(input[pos & mask], storage_ix, storage); ++pos; } } else { for (int j = 0; j < cmd.insert_len_; ++j) { int context = Context(prev_byte, prev_byte2, literal_context_mode); int literal = input[pos & mask]; literal_enc.StoreSymbolWithContext( literal, context, mb.literal_context_map, storage_ix, storage); prev_byte2 = prev_byte; prev_byte = literal; ++pos; } } pos += cmd.copy_len_; if (cmd.copy_len_ > 0) { prev_byte2 = input[(pos - 2) & mask]; prev_byte = input[(pos - 1) & mask]; if (cmd.cmd_prefix_ >= 128) { int dist_code = cmd.dist_prefix_; int distnumextra = cmd.dist_extra_ >> 24; int distextra = cmd.dist_extra_ & 0xffffff; if (mb.distance_context_map.empty()) { distance_enc.StoreSymbol(dist_code, storage_ix, storage); } else { int context = cmd.DistanceContext(); distance_enc.StoreSymbolWithContext( dist_code, context, mb.distance_context_map, storage_ix, storage); } brotli::WriteBits(distnumextra, distextra, storage_ix, storage); } } } if (is_last) { JumpToByteBoundary(storage_ix, storage); } return true; } bool StoreMetaBlockTrivial(const uint8_t* input, size_t start_pos, size_t length, size_t mask, bool is_last, const brotli::Command *commands, size_t n_commands, int *storage_ix, uint8_t *storage) { if (!StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage)) { return false; } if (length == 0) { // Only the last meta-block can be empty, so jump to next byte. JumpToByteBoundary(storage_ix, storage); return true; } HistogramLiteral lit_histo; HistogramCommand cmd_histo; HistogramDistance dist_histo; size_t pos = start_pos; for (int i = 0; i < n_commands; ++i) { const Command cmd = commands[i]; cmd_histo.Add(cmd.cmd_prefix_); for (int j = 0; j < cmd.insert_len_; ++j) { lit_histo.Add(input[pos & mask]); ++pos; } pos += cmd.copy_len_; if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) { dist_histo.Add(cmd.dist_prefix_); } } WriteBits(13, 0, storage_ix, storage); std::vector lit_depth(256); std::vector lit_bits(256); std::vector cmd_depth(kNumCommandPrefixes); std::vector cmd_bits(kNumCommandPrefixes); std::vector dist_depth(64); std::vector dist_bits(64); BuildAndStoreHuffmanTree(&lit_histo.data_[0], 256, &lit_depth[0], &lit_bits[0], storage_ix, storage); BuildAndStoreHuffmanTree(&cmd_histo.data_[0], kNumCommandPrefixes, &cmd_depth[0], &cmd_bits[0], storage_ix, storage); BuildAndStoreHuffmanTree(&dist_histo.data_[0], 64, &dist_depth[0], &dist_bits[0], storage_ix, storage); pos = start_pos; for (int i = 0; i < n_commands; ++i) { const Command cmd = commands[i]; const int cmd_code = cmd.cmd_prefix_; const int lennumextra = cmd.cmd_extra_ >> 48; const uint64_t lenextra = cmd.cmd_extra_ & 0xffffffffffffULL; WriteBits(cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage); WriteBits(lennumextra, lenextra, storage_ix, storage); for (int j = 0; j < cmd.insert_len_; j++) { const uint8_t literal = input[pos & mask]; WriteBits(lit_depth[literal], lit_bits[literal], storage_ix, storage); ++pos; } pos += cmd.copy_len_; if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) { const int dist_code = cmd.dist_prefix_; const int distnumextra = cmd.dist_extra_ >> 24; const int distextra = cmd.dist_extra_ & 0xffffff; WriteBits(dist_depth[dist_code], dist_bits[dist_code], storage_ix, storage); WriteBits(distnumextra, distextra, storage_ix, storage); } } if (is_last) { JumpToByteBoundary(storage_ix, storage); } return true; } // This is for storing uncompressed blocks (simple raw storage of // bytes-as-bytes). bool StoreUncompressedMetaBlock(bool final_block, const uint8_t * __restrict input, size_t position, size_t mask, size_t len, int * __restrict storage_ix, uint8_t * __restrict storage) { if (!brotli::StoreUncompressedMetaBlockHeader(len, storage_ix, storage)) { return false; } JumpToByteBoundary(storage_ix, storage); size_t masked_pos = position & mask; if (masked_pos + len > mask + 1) { size_t len1 = mask + 1 - masked_pos; memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1); *storage_ix += len1 << 3; len -= len1; masked_pos = 0; } memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len); *storage_ix += len << 3; // We need to clear the next 4 bytes to continue to be // compatible with WriteBits. brotli::WriteBitsPrepareStorage(*storage_ix, storage); // Since the uncomressed block itself may not be the final block, add an empty // one after this. if (final_block) { brotli::WriteBits(1, 1, storage_ix, storage); // islast brotli::WriteBits(1, 1, storage_ix, storage); // isempty JumpToByteBoundary(storage_ix, storage); } return true; } void StoreSyncMetaBlock(int * __restrict storage_ix, uint8_t * __restrict storage) { // Empty metadata meta-block bit pattern: // 1 bit: is_last (0) // 2 bits: num nibbles (3) // 1 bit: reserved (0) // 2 bits: metadata length bytes (0) WriteBits(6, 6, storage_ix, storage); JumpToByteBoundary(storage_ix, storage); } } // namespace brotli