// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Function to find backward reference copies. #include "./backward_references.h" #include #include #include "./command.h" namespace brotli { template void CreateBackwardReferences(size_t num_bytes, size_t position, const uint8_t* ringbuffer, const float* literal_cost, size_t ringbuffer_mask, const size_t max_backward_limit, Hasher* hasher, std::vector* commands) { // Length heuristic that seems to help probably by better selection // of lazy matches of similar lengths. int insert_length = 0; size_t i = position & ringbuffer_mask; const int i_diff = position - i; const size_t i_end = i + num_bytes; const int random_heuristics_window_size = 512; int apply_random_heuristics = i + random_heuristics_window_size; double average_cost = 0.0; for (int k = position; k < position + num_bytes; ++k) { average_cost += literal_cost[k & ringbuffer_mask]; } average_cost /= num_bytes; hasher->set_average_cost(average_cost); // M1 match is for considering for two repeated copies, if moving // one literal form the previous copy to the current one allows the // current copy to be more efficient (because the way static dictionary // codes words). M1 matching improves text compression density by ~0.15 %. bool match_found_M1 = false; size_t best_len_M1 = 0; size_t best_len_code_M1 = 0; size_t best_dist_M1 = 0; double best_score_M1 = 0; while (i + 2 < i_end) { size_t best_len = 0; size_t best_len_code = 0; size_t best_dist = 0; double best_score = 0; size_t max_distance = std::min(i + i_diff, max_backward_limit); bool in_dictionary; hasher->set_insert_length(insert_length); bool match_found = hasher->FindLongestMatch( ringbuffer, literal_cost, ringbuffer_mask, i + i_diff, i_end - i, max_distance, &best_len, &best_len_code, &best_dist, &best_score, &in_dictionary); bool best_in_dictionary = in_dictionary; if (match_found) { if (match_found_M1 && best_score_M1 > best_score) { // Two copies after each other. Take the last literal from the // last copy, and use it as the first of this one. (commands->rbegin())->copy_length_ -= 1; (commands->rbegin())->copy_length_code_ -= 1; hasher->Store(ringbuffer + i, i + i_diff); --i; best_len = best_len_M1; best_len_code = best_len_code_M1; best_dist = best_dist_M1; best_score = best_score_M1; // in_dictionary doesn't need to be correct, but it is the only // reason why M1 matching should be beneficial here. Setting it here // will only disable further M1 matching against this copy. best_in_dictionary = true; in_dictionary = true; } else { // Found a match. Let's look for something even better ahead. int delayed_backward_references_in_row = 0; while (i + 4 < i_end && delayed_backward_references_in_row < 4) { size_t best_len_2 = 0; size_t best_len_code_2 = 0; size_t best_dist_2 = 0; double best_score_2 = 0; max_distance = std::min(i + i_diff + 1, max_backward_limit); hasher->Store(ringbuffer + i, i + i_diff); match_found = hasher->FindLongestMatch( ringbuffer, literal_cost, ringbuffer_mask, i + i_diff + 1, i_end - i - 1, max_distance, &best_len_2, &best_len_code_2, &best_dist_2, &best_score_2, &in_dictionary); double cost_diff_lazy = 0; if (best_len >= 4) { cost_diff_lazy += literal_cost[(i + 4) & ringbuffer_mask] - average_cost; } { const int tail_length = best_len_2 - best_len + 1; for (int k = 0; k < tail_length; ++k) { cost_diff_lazy -= literal_cost[(i + best_len + k) & ringbuffer_mask] - average_cost; } } // If we are not inserting any symbols, inserting one is more // expensive than if we were inserting symbols anyways. if (insert_length < 1) { cost_diff_lazy += 0.97; } // Add bias to slightly avoid lazy matching. cost_diff_lazy += 2.0 + delayed_backward_references_in_row * 0.2; cost_diff_lazy += 0.04 * literal_cost[i & ringbuffer_mask]; if (match_found && best_score_2 >= best_score + cost_diff_lazy) { // Ok, let's just write one byte for now and start a match from the // next byte. ++insert_length; ++delayed_backward_references_in_row; best_len = best_len_2; best_len_code = best_len_code_2; best_dist = best_dist_2; best_score = best_score_2; best_in_dictionary = in_dictionary; i++; } else { break; } } } apply_random_heuristics = i + 2 * best_len + random_heuristics_window_size; Command cmd; cmd.insert_length_ = insert_length; cmd.copy_length_ = best_len; cmd.copy_length_code_ = best_len_code; cmd.copy_distance_ = best_dist; commands->push_back(cmd); insert_length = 0; ++i; if (best_dist <= std::min(i + i_diff, max_backward_limit)) { hasher->set_last_distance(best_dist); } // Copy all copied literals to the hasher, except the last one. // We cannot store the last one yet, otherwise we couldn't find // the possible M1 match. for (int j = 1; j < best_len - 1; ++j) { if (i + 2 < i_end) { hasher->Store(ringbuffer + i, i + i_diff); } ++i; } // Prepare M1 match. if (hasher->HasStaticDictionary() && best_len >= 4 && i + 20 < i_end && !best_in_dictionary) { max_distance = std::min(i + i_diff, max_backward_limit); match_found_M1 = hasher->FindLongestMatch( ringbuffer, literal_cost, ringbuffer_mask, i + i_diff, i_end - i, max_distance, &best_len_M1, &best_len_code_M1, &best_dist_M1, &best_score_M1, &in_dictionary); } else { match_found_M1 = false; in_dictionary = false; } // This byte is just moved from the previous copy to the current, // that is no gain. best_score_M1 -= literal_cost[i & ringbuffer_mask]; // Adjust for losing the opportunity for lazy matching. best_score_M1 -= 3.75; // Store the last one of the match. if (i + 2 < i_end) { hasher->Store(ringbuffer + i, i + i_diff); } ++i; } else { match_found_M1 = false; ++insert_length; hasher->Store(ringbuffer + i, i + i_diff); ++i; // If we have not seen matches for a long time, we can skip some // match lookups. Unsuccessful match lookups are very very expensive // and this kind of a heuristic speeds up compression quite // a lot. if (i > apply_random_heuristics) { // Going through uncompressible data, jump. if (i > apply_random_heuristics + 4 * random_heuristics_window_size) { // It is quite a long time since we saw a copy, so we assume // that this data is not compressible, and store hashes less // often. Hashes of non compressible data are less likely to // turn out to be useful in the future, too, so we store less of // them to not to flood out the hash table of good compressible // data. int i_jump = std::min(i + 16, i_end - 4); for (; i < i_jump; i += 4) { hasher->Store(ringbuffer + i, i + i_diff); insert_length += 4; } } else { int i_jump = std::min(i + 8, i_end - 2); for (; i < i_jump; i += 2) { hasher->Store(ringbuffer + i, i + i_diff); insert_length += 2; } } } } } insert_length += (i_end - i); if (insert_length > 0) { Command cmd; cmd.insert_length_ = insert_length; cmd.copy_length_ = 0; cmd.copy_distance_ = 0; commands->push_back(cmd); } } void CreateBackwardReferences(size_t num_bytes, size_t position, const uint8_t* ringbuffer, const float* literal_cost, size_t ringbuffer_mask, const size_t max_backward_limit, Hashers* hashers, Hashers::Type hash_type, std::vector* commands) { switch (hash_type) { case Hashers::HASH_15_8_4: CreateBackwardReferences( num_bytes, position, ringbuffer, literal_cost, ringbuffer_mask, max_backward_limit, hashers->hash_15_8_4.get(), commands); break; case Hashers::HASH_15_8_2: CreateBackwardReferences( num_bytes, position, ringbuffer, literal_cost, ringbuffer_mask, max_backward_limit, hashers->hash_15_8_2.get(), commands); break; default: break; } } } // namespace brotli