// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Functions to estimate the bit cost of Huffman trees. #ifndef BROTLI_ENC_BIT_COST_H_ #define BROTLI_ENC_BIT_COST_H_ #include #include "./entropy_encode.h" #include "./fast_log.h" namespace brotli { static const int kHuffmanExtraBits[kCodeLengthCodes] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, }; static inline int HuffmanTreeBitCost(const int* counts, const uint8_t* depth) { int nbits = 0; for (int i = 0; i < kCodeLengthCodes; ++i) { nbits += counts[i] * (depth[i] + kHuffmanExtraBits[i]); } return nbits; } static inline int HuffmanTreeBitCost( const Histogram& histogram, const EntropyCode& entropy) { return HuffmanTreeBitCost(&histogram.data_[0], &entropy.depth_[0]); } static inline int HuffmanBitCost(const uint8_t* depth, int length) { int max_depth = 1; int histogram[kCodeLengthCodes] = { 0 }; int tail_start = 0; int prev_value = 8; // compute histogram of compacted huffman tree for (int i = 0; i < length;) { const int value = depth[i]; if (value > max_depth) { max_depth = value; } int reps = 1; for (int k = i + 1; k < length && depth[k] == value; ++k) { ++reps; } i += reps; if (i == length && value == 0) break; if (value == 0) { if (reps < 3) { histogram[0] += reps; } else { reps -= 2; while (reps > 0) { ++histogram[17]; reps >>= 3; } } } else { tail_start = i; if (value != prev_value) { ++histogram[value]; --reps; } prev_value = value; if (reps < 3) { histogram[value] += reps; } else { reps -= 2; while (reps > 0) { ++histogram[16]; reps >>= 2; } } } } // create huffman tree of huffman tree uint8_t cost[kCodeLengthCodes] = { 0 }; CreateHuffmanTree(histogram, kCodeLengthCodes, 7, cost); // account for rle extra bits cost[16] += 2; cost[17] += 3; int tree_size = 0; int bits = 18 + 2 * max_depth; // huffman tree of huffman tree cost for (int i = 0; i < kCodeLengthCodes; ++i) { bits += histogram[i] * cost[i]; // huffman tree bit cost tree_size += histogram[i]; } return bits; } template double PopulationCost(const Histogram& histogram) { if (histogram.total_count_ == 0) { return 12; } int count = 0; for (int i = 0; i < kSize && count < 5; ++i) { if (histogram.data_[i] > 0) { ++count; } } if (count == 1) { return 12; } if (count == 2) { return 20 + histogram.total_count_; } uint8_t depth[kSize] = { 0 }; CreateHuffmanTree(&histogram.data_[0], kSize, 15, depth); int bits = 0; for (int i = 0; i < kSize; ++i) { bits += histogram.data_[i] * depth[i]; } if (count == 3) { bits += 28; } else if (count == 4) { bits += 37; } else { bits += HuffmanBitCost(depth, kSize); } return bits; } } // namespace brotli #endif // BROTLI_ENC_BIT_COST_H_