/* Copyright 2010 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ // Entropy encoding (Huffman) utilities. #include "./entropy_encode.h" #include #include #include #include #include "./histogram.h" #include "./port.h" #include "./types.h" namespace brotli { namespace { struct HuffmanTree { HuffmanTree(int count, int16_t left, int16_t right) : total_count_(count), index_left_(left), index_right_or_value_(right) { } int total_count_; int16_t index_left_; int16_t index_right_or_value_; }; // Sort the root nodes, least popular first. bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) { return v0.total_count_ < v1.total_count_; } void SetDepth(const HuffmanTree &p, HuffmanTree *pool, uint8_t *depth, uint8_t level) { if (p.index_left_ >= 0) { ++level; SetDepth(pool[p.index_left_], pool, depth, level); SetDepth(pool[p.index_right_or_value_], pool, depth, level); } else { depth[p.index_right_or_value_] = level; } } } // namespace // This function will create a Huffman tree. // // The catch here is that the tree cannot be arbitrarily deep. // Brotli specifies a maximum depth of 15 bits for "code trees" // and 7 bits for "code length code trees." // // count_limit is the value that is to be faked as the minimum value // and this minimum value is raised until the tree matches the // maximum length requirement. // // This algorithm is not of excellent performance for very long data blocks, // especially when population counts are longer than 2**tree_limit, but // we are not planning to use this with extremely long blocks. // // See http://en.wikipedia.org/wiki/Huffman_coding void CreateHuffmanTree(const int *data, const int length, const int tree_limit, uint8_t *depth) { // For block sizes below 64 kB, we never need to do a second iteration // of this loop. Probably all of our block sizes will be smaller than // that, so this loop is mostly of academic interest. If we actually // would need this, we would be better off with the Katajainen algorithm. for (int count_limit = 1; ; count_limit *= 2) { std::vector tree; tree.reserve(2 * length + 1); for (int i = length - 1; i >= 0; --i) { if (data[i]) { const int count = std::max(data[i], count_limit); tree.push_back(HuffmanTree(count, -1, static_cast(i))); } } const int n = static_cast(tree.size()); if (n == 1) { depth[tree[0].index_right_or_value_] = 1; // Only one element. break; } std::stable_sort(tree.begin(), tree.end(), SortHuffmanTree); // The nodes are: // [0, n): the sorted leaf nodes that we start with. // [n]: we add a sentinel here. // [n + 1, 2n): new parent nodes are added here, starting from // (n+1). These are naturally in ascending order. // [2n]: we add a sentinel at the end as well. // There will be (2n+1) elements at the end. const HuffmanTree sentinel(std::numeric_limits::max(), -1, -1); tree.push_back(sentinel); tree.push_back(sentinel); int i = 0; // Points to the next leaf node. int j = n + 1; // Points to the next non-leaf node. for (int k = n - 1; k > 0; --k) { int left, right; if (tree[i].total_count_ <= tree[j].total_count_) { left = i; ++i; } else { left = j; ++j; } if (tree[i].total_count_ <= tree[j].total_count_) { right = i; ++i; } else { right = j; ++j; } // The sentinel node becomes the parent node. int j_end = static_cast(tree.size()) - 1; tree[j_end].total_count_ = tree[left].total_count_ + tree[right].total_count_; tree[j_end].index_left_ = static_cast(left); tree[j_end].index_right_or_value_ = static_cast(right); // Add back the last sentinel node. tree.push_back(sentinel); } BROTLI_DCHECK(tree.size() == 2 * n + 1); SetDepth(tree[2 * n - 1], &tree[0], depth, 0); // We need to pack the Huffman tree in tree_limit bits. // If this was not successful, add fake entities to the lowest values // and retry. if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) { break; } } } void Reverse(std::vector* v, int start, int end) { --end; while (start < end) { uint8_t tmp = (*v)[start]; (*v)[start] = (*v)[end]; (*v)[end] = tmp; ++start; --end; } } void WriteHuffmanTreeRepetitions( const uint8_t previous_value, const uint8_t value, int repetitions, std::vector *tree, std::vector *extra_bits_data) { if (previous_value != value) { tree->push_back(value); extra_bits_data->push_back(0); --repetitions; } if (repetitions == 7) { tree->push_back(value); extra_bits_data->push_back(0); --repetitions; } if (repetitions < 3) { for (int i = 0; i < repetitions; ++i) { tree->push_back(value); extra_bits_data->push_back(0); } } else { repetitions -= 3; int start = static_cast(tree->size()); while (repetitions >= 0) { tree->push_back(16); extra_bits_data->push_back(repetitions & 0x3); repetitions >>= 2; --repetitions; } Reverse(tree, start, static_cast(tree->size())); Reverse(extra_bits_data, start, static_cast(tree->size())); } } void WriteHuffmanTreeRepetitionsZeros( int repetitions, std::vector *tree, std::vector *extra_bits_data) { if (repetitions == 11) { tree->push_back(0); extra_bits_data->push_back(0); --repetitions; } if (repetitions < 3) { for (int i = 0; i < repetitions; ++i) { tree->push_back(0); extra_bits_data->push_back(0); } } else { repetitions -= 3; int start = static_cast(tree->size()); while (repetitions >= 0) { tree->push_back(17); extra_bits_data->push_back(repetitions & 0x7); repetitions >>= 3; --repetitions; } Reverse(tree, start, static_cast(tree->size())); Reverse(extra_bits_data, start, static_cast(tree->size())); } } int OptimizeHuffmanCountsForRle(int length, int* counts) { int nonzero_count = 0; int stride; int limit; int sum; uint8_t* good_for_rle; // Let's make the Huffman code more compatible with rle encoding. int i; for (i = 0; i < length; i++) { if (counts[i]) { ++nonzero_count; } } if (nonzero_count < 16) { return 1; } for (; length >= 0; --length) { if (length == 0) { return 1; // All zeros. } if (counts[length - 1] != 0) { // Now counts[0..length - 1] does not have trailing zeros. break; } } { int nonzeros = 0; int smallest_nonzero = 1 << 30; for (i = 0; i < length; ++i) { if (counts[i] != 0) { ++nonzeros; if (smallest_nonzero > counts[i]) { smallest_nonzero = counts[i]; } } } if (nonzeros < 5) { // Small histogram will model it well. return 1; } int zeros = length - nonzeros; if (smallest_nonzero < 4) { if (zeros < 6) { for (i = 1; i < length - 1; ++i) { if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) { counts[i] = 1; } } } } if (nonzeros < 28) { return 1; } } // 2) Let's mark all population counts that already can be encoded // with an rle code. good_for_rle = (uint8_t*)calloc(length, 1); if (good_for_rle == NULL) { return 0; } { // Let's not spoil any of the existing good rle codes. // Mark any seq of 0's that is longer as 5 as a good_for_rle. // Mark any seq of non-0's that is longer as 7 as a good_for_rle. int symbol = counts[0]; int stride = 0; for (i = 0; i < length + 1; ++i) { if (i == length || counts[i] != symbol) { if ((symbol == 0 && stride >= 5) || (symbol != 0 && stride >= 7)) { int k; for (k = 0; k < stride; ++k) { good_for_rle[i - k - 1] = 1; } } stride = 1; if (i != length) { symbol = counts[i]; } } else { ++stride; } } } // 3) Let's replace those population counts that lead to more rle codes. // Math here is in 24.8 fixed point representation. const int streak_limit = 1240; stride = 0; limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420; sum = 0; for (i = 0; i < length + 1; ++i) { if (i == length || good_for_rle[i] || (i != 0 && good_for_rle[i - 1]) || abs(256 * counts[i] - limit) >= streak_limit) { if (stride >= 4 || (stride >= 3 && sum == 0)) { int k; // The stride must end, collapse what we have, if we have enough (4). int count = (sum + stride / 2) / stride; if (count < 1) { count = 1; } if (sum == 0) { // Don't make an all zeros stride to be upgraded to ones. count = 0; } for (k = 0; k < stride; ++k) { // We don't want to change value at counts[i], // that is already belonging to the next stride. Thus - 1. counts[i - k - 1] = count; } } stride = 0; sum = 0; if (i < length - 2) { // All interesting strides have a count of at least 4, // at least when non-zeros. limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420; } else if (i < length) { limit = 256 * counts[i]; } else { limit = 0; } } ++stride; if (i != length) { sum += counts[i]; if (stride >= 4) { limit = (256 * sum + stride / 2) / stride; } if (stride == 4) { limit += 120; } } } free(good_for_rle); return 1; } static void DecideOverRleUse(const uint8_t* depth, const int length, bool *use_rle_for_non_zero, bool *use_rle_for_zero) { int total_reps_zero = 0; int total_reps_non_zero = 0; int count_reps_zero = 0; int count_reps_non_zero = 0; for (int i = 0; i < length;) { const int value = depth[i]; int reps = 1; for (int k = i + 1; k < length && depth[k] == value; ++k) { ++reps; } if (reps >= 3 && value == 0) { total_reps_zero += reps; ++count_reps_zero; } if (reps >= 4 && value != 0) { total_reps_non_zero += reps; ++count_reps_non_zero; } i += reps; } total_reps_non_zero -= count_reps_non_zero * 2; total_reps_zero -= count_reps_zero * 2; *use_rle_for_non_zero = total_reps_non_zero > 2; *use_rle_for_zero = total_reps_zero > 2; } void WriteHuffmanTree(const uint8_t* depth, uint32_t length, std::vector *tree, std::vector *extra_bits_data) { uint8_t previous_value = 8; // Throw away trailing zeros. uint32_t new_length = length; for (uint32_t i = 0; i < length; ++i) { if (depth[length - i - 1] == 0) { --new_length; } else { break; } } // First gather statistics on if it is a good idea to do rle. bool use_rle_for_non_zero = false; bool use_rle_for_zero = false; if (length > 50) { // Find rle coding for longer codes. // Shorter codes seem not to benefit from rle. DecideOverRleUse(depth, new_length, &use_rle_for_non_zero, &use_rle_for_zero); } // Actual rle coding. for (uint32_t i = 0; i < new_length;) { const uint8_t value = depth[i]; int reps = 1; if ((value != 0 && use_rle_for_non_zero) || (value == 0 && use_rle_for_zero)) { for (uint32_t k = i + 1; k < new_length && depth[k] == value; ++k) { ++reps; } } if (value == 0) { WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data); } else { WriteHuffmanTreeRepetitions(previous_value, value, reps, tree, extra_bits_data); previous_value = value; } i += reps; } } namespace { uint16_t ReverseBits(int num_bits, uint16_t bits) { static const size_t kLut[16] = { // Pre-reversed 4-bit values. 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf }; size_t retval = kLut[bits & 0xf]; for (int i = 4; i < num_bits; i += 4) { retval <<= 4; bits = static_cast(bits >> 4); retval |= kLut[bits & 0xf]; } retval >>= (-num_bits & 0x3); return static_cast(retval); } } // namespace void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits) { // In Brotli, all bit depths are [1..15] // 0 bit depth means that the symbol does not exist. const int kMaxBits = 16; // 0..15 are values for bits uint16_t bl_count[kMaxBits] = { 0 }; { for (int i = 0; i < len; ++i) { ++bl_count[depth[i]]; } bl_count[0] = 0; } uint16_t next_code[kMaxBits]; next_code[0] = 0; { int code = 0; for (int bits = 1; bits < kMaxBits; ++bits) { code = (code + bl_count[bits - 1]) << 1; next_code[bits] = static_cast(code); } } for (int i = 0; i < len; ++i) { if (depth[i]) { bits[i] = ReverseBits(depth[i], next_code[depth[i]]++); } } } } // namespace brotli