// Copyright 2010 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // A (forgetful) hash table to the data seen by the compressor, to // help create backward references to previous data. #ifndef BROTLI_ENC_HASH_H_ #define BROTLI_ENC_HASH_H_ #include #include #include #include #include #include #include "./dictionary_hash.h" #include "./fast_log.h" #include "./find_match_length.h" #include "./port.h" #include "./prefix.h" #include "./static_dict.h" #include "./transform.h" #include "./types.h" namespace brotli { static const int kDistanceCacheIndex[] = { 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, }; static const int kDistanceCacheOffset[] = { 0, 0, 0, 0, -1, 1, -2, 2, -3, 3, -1, 1, -2, 2, -3, 3 }; static const int kCutoffTransformsCount = 10; static const int kCutoffTransforms[] = {0, 12, 27, 23, 42, 63, 56, 48, 59, 64}; // kHashMul32 multiplier has these properties: // * The multiplier must be odd. Otherwise we may lose the highest bit. // * No long streaks of 1s or 0s. // * There is no effort to ensure that it is a prime, the oddity is enough // for this use. // * The number has been tuned heuristically against compression benchmarks. static const uint32_t kHashMul32 = 0x1e35a7bd; template inline uint32_t Hash(const uint8_t *data) { uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32; // The higher bits contain more mixture from the multiplication, // so we take our results from there. return h >> (32 - kShiftBits); } // Usually, we always choose the longest backward reference. This function // allows for the exception of that rule. // // If we choose a backward reference that is further away, it will // usually be coded with more bits. We approximate this by assuming // log2(distance). If the distance can be expressed in terms of the // last four distances, we use some heuristic constants to estimate // the bits cost. For the first up to four literals we use the bit // cost of the literals from the literal cost model, after that we // use the average bit cost of the cost model. // // This function is used to sometimes discard a longer backward reference // when it is not much longer and the bit cost for encoding it is more // than the saved literals. inline double BackwardReferenceScore(int copy_length, int backward_reference_offset) { return 5.4 * copy_length - 1.20 * Log2Floor(backward_reference_offset); } inline double BackwardReferenceScoreUsingLastDistance(int copy_length, int distance_short_code) { static const double kDistanceShortCodeBitCost[16] = { -0.6, 0.95, 1.17, 1.27, 0.93, 0.93, 0.96, 0.96, 0.99, 0.99, 1.05, 1.05, 1.15, 1.15, 1.25, 1.25 }; return 5.4 * copy_length - kDistanceShortCodeBitCost[distance_short_code]; } struct BackwardMatch { BackwardMatch() : distance(0), length_and_code(0) {} BackwardMatch(int dist, int len) : distance(dist), length_and_code((len << 5)) {} BackwardMatch(int dist, int len, int len_code) : distance(dist), length_and_code((len << 5) | (len == len_code ? 0 : len_code)) {} int length() const { return length_and_code >> 5; } int length_code() const { int code = length_and_code & 31; return code ? code : length(); } int distance; int length_and_code; }; // A (forgetful) hash table to the data seen by the compressor, to // help create backward references to previous data. // // This is a hash map of fixed size (kBucketSize). Starting from the // given index, kBucketSweep buckets are used to store values of a key. template class HashLongestMatchQuickly { public: HashLongestMatchQuickly() { Reset(); } void Reset() { // It is not strictly necessary to fill this buffer here, but // not filling will make the results of the compression stochastic // (but correct). This is because random data would cause the // system to find accidentally good backward references here and there. memset(&buckets_[0], 0, sizeof(buckets_)); num_dict_lookups_ = 0; num_dict_matches_ = 0; } // Look at 4 bytes at data. // Compute a hash from these, and store the value somewhere within // [ix .. ix+3]. inline void Store(const uint8_t *data, const uint32_t ix) { const uint32_t key = HashBytes(data); // Wiggle the value with the bucket sweep range. const uint32_t off = (ix >> 3) % kBucketSweep; buckets_[key + off] = ix; } // Find a longest backward match of &ring_buffer[cur_ix & ring_buffer_mask] // up to the length of max_length. // // Does not look for matches longer than max_length. // Does not look for matches further away than max_backward. // Writes the best found match length into best_len_out. // Writes the index (&data[index]) of the start of the best match into // best_distance_out. inline bool FindLongestMatch(const uint8_t * __restrict ring_buffer, const size_t ring_buffer_mask, const int* __restrict distance_cache, const uint32_t cur_ix, const int max_length, const uint32_t max_backward, int * __restrict best_len_out, int * __restrict best_len_code_out, int * __restrict best_distance_out, double* __restrict best_score_out) { const int best_len_in = *best_len_out; const size_t cur_ix_masked = cur_ix & ring_buffer_mask; int compare_char = ring_buffer[cur_ix_masked + best_len_in]; double best_score = *best_score_out; int best_len = best_len_in; int cached_backward = distance_cache[0]; uint32_t prev_ix = cur_ix - cached_backward; bool match_found = false; if (prev_ix < cur_ix) { prev_ix &= static_cast(ring_buffer_mask); if (compare_char == ring_buffer[prev_ix + best_len]) { int len = FindMatchLengthWithLimit(&ring_buffer[prev_ix], &ring_buffer[cur_ix_masked], max_length); if (len >= 4) { best_score = BackwardReferenceScoreUsingLastDistance(len, 0); best_len = len; *best_len_out = len; *best_len_code_out = len; *best_distance_out = cached_backward; *best_score_out = best_score; compare_char = ring_buffer[cur_ix_masked + best_len]; if (kBucketSweep == 1) { return true; } else { match_found = true; } } } } const uint32_t key = HashBytes(&ring_buffer[cur_ix_masked]); if (kBucketSweep == 1) { // Only one to look for, don't bother to prepare for a loop. prev_ix = buckets_[key]; uint32_t backward = cur_ix - prev_ix; prev_ix &= static_cast(ring_buffer_mask); if (compare_char != ring_buffer[prev_ix + best_len_in]) { return false; } if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { return false; } const int len = FindMatchLengthWithLimit(&ring_buffer[prev_ix], &ring_buffer[cur_ix_masked], max_length); if (len >= 4) { *best_len_out = len; *best_len_code_out = len; *best_distance_out = backward; *best_score_out = BackwardReferenceScore(len, backward); return true; } } else { uint32_t *bucket = buckets_ + key; prev_ix = *bucket++; for (int i = 0; i < kBucketSweep; ++i, prev_ix = *bucket++) { const uint32_t backward = cur_ix - prev_ix; prev_ix &= static_cast(ring_buffer_mask); if (compare_char != ring_buffer[prev_ix + best_len]) { continue; } if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { continue; } const int len = FindMatchLengthWithLimit(&ring_buffer[prev_ix], &ring_buffer[cur_ix_masked], max_length); if (len >= 4) { const double score = BackwardReferenceScore(len, backward); if (best_score < score) { best_score = score; best_len = len; *best_len_out = best_len; *best_len_code_out = best_len; *best_distance_out = backward; *best_score_out = score; compare_char = ring_buffer[cur_ix_masked + best_len]; match_found = true; } } } } if (kUseDictionary && !match_found && num_dict_matches_ >= (num_dict_lookups_ >> 7)) { ++num_dict_lookups_; const uint32_t dict_key = Hash<14>(&ring_buffer[cur_ix_masked]) << 1; const uint16_t v = kStaticDictionaryHash[dict_key]; if (v > 0) { const int len = v & 31; const int dist = v >> 5; const int offset = kBrotliDictionaryOffsetsByLength[len] + len * dist; if (len <= max_length) { const int matchlen = FindMatchLengthWithLimit(&ring_buffer[cur_ix_masked], &kBrotliDictionary[offset], len); if (matchlen > len - kCutoffTransformsCount && matchlen > 0) { const int transform_id = kCutoffTransforms[len - matchlen]; const int word_id = transform_id * (1 << kBrotliDictionarySizeBitsByLength[len]) + dist; const int backward = max_backward + word_id + 1; const double score = BackwardReferenceScore(matchlen, backward); if (best_score < score) { ++num_dict_matches_; best_score = score; best_len = matchlen; *best_len_out = best_len; *best_len_code_out = len; *best_distance_out = backward; *best_score_out = best_score; return true; } } } } } return match_found; } enum { kHashLength = 5 }; enum { kHashTypeLength = 8 }; // HashBytes is the function that chooses the bucket to place // the address in. The HashLongestMatch and HashLongestMatchQuickly // classes have separate, different implementations of hashing. static uint32_t HashBytes(const uint8_t *data) { // Computing a hash based on 5 bytes works much better for // qualities 1 and 3, where the next hash value is likely to replace uint64_t h = (BROTLI_UNALIGNED_LOAD64(data) << 24) * kHashMul32; // The higher bits contain more mixture from the multiplication, // so we take our results from there. return static_cast(h >> (64 - kBucketBits)); } private: static const uint32_t kBucketSize = 1 << kBucketBits; uint32_t buckets_[kBucketSize + kBucketSweep]; size_t num_dict_lookups_; size_t num_dict_matches_; }; // The maximum length for which the zopflification uses distinct distances. static const int kMaxZopfliLen = 325; // A (forgetful) hash table to the data seen by the compressor, to // help create backward references to previous data. // // This is a hash map of fixed size (kBucketSize) to a ring buffer of // fixed size (kBlockSize). The ring buffer contains the last kBlockSize // index positions of the given hash key in the compressed data. template class HashLongestMatch { public: HashLongestMatch() { Reset(); } void Reset() { memset(&num_[0], 0, sizeof(num_)); num_dict_lookups_ = 0; num_dict_matches_ = 0; } // Look at 3 bytes at data. // Compute a hash from these, and store the value of ix at that position. inline void Store(const uint8_t *data, const uint32_t ix) { const uint32_t key = HashBytes(data); const int minor_ix = num_[key] & kBlockMask; buckets_[key][minor_ix] = ix; ++num_[key]; } // Find a longest backward match of &data[cur_ix] up to the length of // max_length. // // Does not look for matches longer than max_length. // Does not look for matches further away than max_backward. // Writes the best found match length into best_len_out. // Writes the index (&data[index]) offset from the start of the best match // into best_distance_out. // Write the score of the best match into best_score_out. bool FindLongestMatch(const uint8_t * __restrict data, const size_t ring_buffer_mask, const int* __restrict distance_cache, const uint32_t cur_ix, const int max_length, const uint32_t max_backward, int * __restrict best_len_out, int * __restrict best_len_code_out, int * __restrict best_distance_out, double * __restrict best_score_out) { *best_len_code_out = 0; const size_t cur_ix_masked = cur_ix & ring_buffer_mask; bool match_found = false; // Don't accept a short copy from far away. double best_score = *best_score_out; int best_len = *best_len_out; *best_len_out = 0; // Try last distance first. for (int i = 0; i < kNumLastDistancesToCheck; ++i) { const int idx = kDistanceCacheIndex[i]; const int backward = distance_cache[idx] + kDistanceCacheOffset[i]; uint32_t prev_ix = cur_ix - backward; if (prev_ix >= cur_ix) { continue; } if (PREDICT_FALSE(backward > (int)max_backward)) { continue; } prev_ix &= static_cast(ring_buffer_mask); if (cur_ix_masked + best_len > ring_buffer_mask || prev_ix + best_len > ring_buffer_mask || data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { continue; } const int len = FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], max_length); if (len >= 3 || (len == 2 && i < 2)) { // Comparing for >= 2 does not change the semantics, but just saves for // a few unnecessary binary logarithms in backward reference score, // since we are not interested in such short matches. double score = BackwardReferenceScoreUsingLastDistance(len, i); if (best_score < score) { best_score = score; best_len = len; *best_len_out = best_len; *best_len_code_out = best_len; *best_distance_out = backward; *best_score_out = best_score; match_found = true; } } } const uint32_t key = HashBytes(&data[cur_ix_masked]); const uint32_t * __restrict const bucket = &buckets_[key][0]; const int down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0; for (int i = num_[key] - 1; i >= down; --i) { uint32_t prev_ix = bucket[i & kBlockMask]; const uint32_t backward = cur_ix - prev_ix; if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { break; } prev_ix &= static_cast(ring_buffer_mask); if (cur_ix_masked + best_len > ring_buffer_mask || prev_ix + best_len > ring_buffer_mask || data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { continue; } const int len = FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], max_length); if (len >= 4) { // Comparing for >= 3 does not change the semantics, but just saves // for a few unnecessary binary logarithms in backward reference // score, since we are not interested in such short matches. double score = BackwardReferenceScore(len, backward); if (best_score < score) { best_score = score; best_len = len; *best_len_out = best_len; *best_len_code_out = best_len; *best_distance_out = backward; *best_score_out = best_score; match_found = true; } } } if (!match_found && num_dict_matches_ >= (num_dict_lookups_ >> 7)) { uint32_t dict_key = Hash<14>(&data[cur_ix_masked]) << 1; for (int k = 0; k < 2; ++k, ++dict_key) { ++num_dict_lookups_; const uint16_t v = kStaticDictionaryHash[dict_key]; if (v > 0) { const int len = v & 31; const int dist = v >> 5; const int offset = kBrotliDictionaryOffsetsByLength[len] + len * dist; if (len <= max_length) { const int matchlen = FindMatchLengthWithLimit(&data[cur_ix_masked], &kBrotliDictionary[offset], len); if (matchlen > len - kCutoffTransformsCount && matchlen > 0) { const int transform_id = kCutoffTransforms[len - matchlen]; const int word_id = transform_id * (1 << kBrotliDictionarySizeBitsByLength[len]) + dist; const int backward = max_backward + word_id + 1; double score = BackwardReferenceScore(matchlen, backward); if (best_score < score) { ++num_dict_matches_; best_score = score; best_len = matchlen; *best_len_out = best_len; *best_len_code_out = len; *best_distance_out = backward; *best_score_out = best_score; match_found = true; } } } } } } return match_found; } // Similar to FindLongestMatch(), but finds all matches. // // Sets *num_matches to the number of matches found, and stores the found // matches in matches[0] to matches[*num_matches - 1]. // // If the longest match is longer than kMaxZopfliLen, returns only this // longest match. // // Requires that at least kMaxZopfliLen space is available in matches. void FindAllMatches(const uint8_t* data, const size_t ring_buffer_mask, const uint32_t cur_ix, const int max_length, const uint32_t max_backward, int* num_matches, BackwardMatch* matches) const { BackwardMatch* const orig_matches = matches; const size_t cur_ix_masked = cur_ix & ring_buffer_mask; int best_len = 1; int stop = static_cast(cur_ix) - 64; if (stop < 0) { stop = 0; } for (int i = cur_ix - 1; i > stop && best_len <= 2; --i) { size_t prev_ix = i; const size_t backward = cur_ix - prev_ix; if (PREDICT_FALSE(backward > max_backward)) { break; } prev_ix &= ring_buffer_mask; if (data[cur_ix_masked] != data[prev_ix] || data[cur_ix_masked + 1] != data[prev_ix + 1]) { continue; } const int len = FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], max_length); if (len > best_len) { best_len = len; if (len > kMaxZopfliLen) { matches = orig_matches; } *matches++ = BackwardMatch(static_cast(backward), len); } } const uint32_t key = HashBytes(&data[cur_ix_masked]); const uint32_t * __restrict const bucket = &buckets_[key][0]; const int down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0; for (int i = num_[key] - 1; i >= down; --i) { uint32_t prev_ix = bucket[i & kBlockMask]; const uint32_t backward = cur_ix - prev_ix; if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { break; } prev_ix &= static_cast(ring_buffer_mask); if (cur_ix_masked + best_len > ring_buffer_mask || prev_ix + best_len > ring_buffer_mask || data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { continue; } const int len = FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], max_length); if (len > best_len) { best_len = len; if (len > kMaxZopfliLen) { matches = orig_matches; } *matches++ = BackwardMatch(backward, len); } } std::vector dict_matches(kMaxDictionaryMatchLen + 1, kInvalidMatch); int minlen = std::max(4, best_len + 1); if (FindAllStaticDictionaryMatches(&data[cur_ix_masked], minlen, max_length, &dict_matches[0])) { int maxlen = std::min(kMaxDictionaryMatchLen, max_length); for (int l = minlen; l <= maxlen; ++l) { int dict_id = dict_matches[l]; if (dict_id < kInvalidMatch) { *matches++ = BackwardMatch(max_backward + (dict_id >> 5) + 1, l, dict_id & 31); } } } *num_matches += static_cast(matches - orig_matches); } enum { kHashLength = 4 }; enum { kHashTypeLength = 4 }; // HashBytes is the function that chooses the bucket to place // the address in. The HashLongestMatch and HashLongestMatchQuickly // classes have separate, different implementations of hashing. static uint32_t HashBytes(const uint8_t *data) { uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32; // The higher bits contain more mixture from the multiplication, // so we take our results from there. return h >> (32 - kBucketBits); } private: // Number of hash buckets. static const uint32_t kBucketSize = 1 << kBucketBits; // Only kBlockSize newest backward references are kept, // and the older are forgotten. static const uint32_t kBlockSize = 1 << kBlockBits; // Mask for accessing entries in a block (in a ringbuffer manner). static const uint32_t kBlockMask = (1 << kBlockBits) - 1; // Number of entries in a particular bucket. uint16_t num_[kBucketSize]; // Buckets containing kBlockSize of backward references. uint32_t buckets_[kBucketSize][kBlockSize]; size_t num_dict_lookups_; size_t num_dict_matches_; }; struct Hashers { // For kBucketSweep == 1, enabling the dictionary lookup makes compression // a little faster (0.5% - 1%) and it compresses 0.15% better on small text // and html inputs. typedef HashLongestMatchQuickly<16, 1, true> H1; typedef HashLongestMatchQuickly<16, 2, false> H2; typedef HashLongestMatchQuickly<16, 4, false> H3; typedef HashLongestMatchQuickly<17, 4, true> H4; typedef HashLongestMatch<14, 4, 4> H5; typedef HashLongestMatch<14, 5, 4> H6; typedef HashLongestMatch<15, 6, 10> H7; typedef HashLongestMatch<15, 7, 10> H8; typedef HashLongestMatch<15, 8, 16> H9; Hashers() : hash_h1(0), hash_h2(0), hash_h3(0), hash_h4(0), hash_h5(0), hash_h6(0), hash_h7(0), hash_h8(0), hash_h9(0) {} ~Hashers() { delete hash_h1; delete hash_h2; delete hash_h3; delete hash_h4; delete hash_h5; delete hash_h6; delete hash_h7; delete hash_h8; delete hash_h9; } void Init(int type) { switch (type) { case 1: hash_h1 = new H1; break; case 2: hash_h2 = new H2; break; case 3: hash_h3 = new H3; break; case 4: hash_h4 = new H4; break; case 5: hash_h5 = new H5; break; case 6: hash_h6 = new H6; break; case 7: hash_h7 = new H7; break; case 8: hash_h8 = new H8; break; case 9: hash_h9 = new H9; break; default: break; } } template void WarmupHash(const size_t size, const uint8_t* dict, Hasher* hasher) { for (size_t i = 0; i + Hasher::kHashTypeLength - 1 < size; i++) { hasher->Store(&dict[i], static_cast(i)); } } // Custom LZ77 window. void PrependCustomDictionary( int type, const size_t size, const uint8_t* dict) { switch (type) { case 1: WarmupHash(size, dict, hash_h1); break; case 2: WarmupHash(size, dict, hash_h2); break; case 3: WarmupHash(size, dict, hash_h3); break; case 4: WarmupHash(size, dict, hash_h4); break; case 5: WarmupHash(size, dict, hash_h5); break; case 6: WarmupHash(size, dict, hash_h6); break; case 7: WarmupHash(size, dict, hash_h7); break; case 8: WarmupHash(size, dict, hash_h8); break; case 9: WarmupHash(size, dict, hash_h9); break; default: break; } } H1* hash_h1; H2* hash_h2; H3* hash_h3; H4* hash_h4; H5* hash_h5; H6* hash_h6; H7* hash_h7; H8* hash_h8; H9* hash_h9; }; } // namespace brotli #endif // BROTLI_ENC_HASH_H_