/* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license, or public domain if desired and recognized in your jurisdiction. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ // Functions for clustering similar histograms together. #ifndef BROTLI_ENC_CLUSTER_H_ #define BROTLI_ENC_CLUSTER_H_ #include #include #include #include #include #include #include #include #include "./bit_cost.h" #include "./entropy_encode.h" #include "./fast_log.h" #include "./histogram.h" #include "./port.h" #include "./types.h" namespace brotli { struct HistogramPair { int idx1; int idx2; bool valid; double cost_combo; double cost_diff; }; struct HistogramPairComparator { bool operator()(const HistogramPair& p1, const HistogramPair& p2) const { if (p1.cost_diff != p2.cost_diff) { return p1.cost_diff > p2.cost_diff; } return abs(p1.idx1 - p1.idx2) > abs(p2.idx1 - p2.idx2); } }; // Returns entropy reduction of the context map when we combine two clusters. inline double ClusterCostDiff(int size_a, int size_b) { int size_c = size_a + size_b; return size_a * FastLog2(size_a) + size_b * FastLog2(size_b) - size_c * FastLog2(size_c); } // Computes the bit cost reduction by combining out[idx1] and out[idx2] and if // it is below a threshold, stores the pair (idx1, idx2) in the *pairs heap. template void CompareAndPushToHeap(const HistogramType* out, const int* cluster_size, int idx1, int idx2, std::vector* pairs) { if (idx1 == idx2) { return; } if (idx2 < idx1) { int t = idx2; idx2 = idx1; idx1 = t; } bool store_pair = false; HistogramPair p; p.idx1 = idx1; p.idx2 = idx2; p.valid = true; p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]); p.cost_diff -= out[idx1].bit_cost_; p.cost_diff -= out[idx2].bit_cost_; if (out[idx1].total_count_ == 0) { p.cost_combo = out[idx2].bit_cost_; store_pair = true; } else if (out[idx2].total_count_ == 0) { p.cost_combo = out[idx1].bit_cost_; store_pair = true; } else { double threshold = pairs->empty() ? 1e99 : std::max(0.0, (*pairs)[0].cost_diff); HistogramType combo = out[idx1]; combo.AddHistogram(out[idx2]); double cost_combo = PopulationCost(combo); if (cost_combo < threshold - p.cost_diff) { p.cost_combo = cost_combo; store_pair = true; } } if (store_pair) { p.cost_diff += p.cost_combo; pairs->push_back(p); std::push_heap(pairs->begin(), pairs->end(), HistogramPairComparator()); } } template void HistogramCombine(HistogramType* out, int* cluster_size, int* symbols, int symbols_size, size_t max_clusters) { double cost_diff_threshold = 0.0; size_t min_cluster_size = 1; std::set all_symbols; std::vector clusters; for (int i = 0; i < symbols_size; ++i) { if (all_symbols.find(symbols[i]) == all_symbols.end()) { all_symbols.insert(symbols[i]); if (!clusters.empty()) { BROTLI_DCHECK(clusters.back() < symbols[i]); } clusters.push_back(symbols[i]); } } // We maintain a heap of histogram pairs, ordered by the bit cost reduction. std::vector pairs; for (size_t idx1 = 0; idx1 < clusters.size(); ++idx1) { for (size_t idx2 = idx1 + 1; idx2 < clusters.size(); ++idx2) { CompareAndPushToHeap(out, cluster_size, clusters[idx1], clusters[idx2], &pairs); } } while (clusters.size() > min_cluster_size) { if (pairs[0].cost_diff >= cost_diff_threshold) { cost_diff_threshold = 1e99; min_cluster_size = max_clusters; continue; } // Take the best pair from the top of heap. int best_idx1 = pairs[0].idx1; int best_idx2 = pairs[0].idx2; out[best_idx1].AddHistogram(out[best_idx2]); out[best_idx1].bit_cost_ = pairs[0].cost_combo; cluster_size[best_idx1] += cluster_size[best_idx2]; for (int i = 0; i < symbols_size; ++i) { if (symbols[i] == best_idx2) { symbols[i] = best_idx1; } } for (size_t i = 0; i + 1 < clusters.size(); ++i) { if (clusters[i] >= best_idx2) { clusters[i] = clusters[i + 1]; } } clusters.pop_back(); // Invalidate pairs intersecting the just combined best pair. for (size_t i = 0; i < pairs.size(); ++i) { HistogramPair& p = pairs[i]; if (p.idx1 == best_idx1 || p.idx2 == best_idx1 || p.idx1 == best_idx2 || p.idx2 == best_idx2) { p.valid = false; } } // Pop invalid pairs from the top of the heap. while (!pairs.empty() && !pairs[0].valid) { std::pop_heap(pairs.begin(), pairs.end(), HistogramPairComparator()); pairs.pop_back(); } // Push new pairs formed with the combined histogram to the heap. for (size_t i = 0; i < clusters.size(); ++i) { CompareAndPushToHeap(out, cluster_size, best_idx1, clusters[i], &pairs); } } } // ----------------------------------------------------------------------------- // Histogram refinement // What is the bit cost of moving histogram from cur_symbol to candidate. template double HistogramBitCostDistance(const HistogramType& histogram, const HistogramType& candidate) { if (histogram.total_count_ == 0) { return 0.0; } HistogramType tmp = histogram; tmp.AddHistogram(candidate); return PopulationCost(tmp) - candidate.bit_cost_; } // Find the best 'out' histogram for each of the 'in' histograms. // Note: we assume that out[]->bit_cost_ is already up-to-date. template void HistogramRemap(const HistogramType* in, int in_size, HistogramType* out, int* symbols) { std::set all_symbols; for (int i = 0; i < in_size; ++i) { all_symbols.insert(symbols[i]); } for (int i = 0; i < in_size; ++i) { int best_out = i == 0 ? symbols[0] : symbols[i - 1]; double best_bits = HistogramBitCostDistance(in[i], out[best_out]); for (std::set::const_iterator k = all_symbols.begin(); k != all_symbols.end(); ++k) { const double cur_bits = HistogramBitCostDistance(in[i], out[*k]); if (cur_bits < best_bits) { best_bits = cur_bits; best_out = *k; } } symbols[i] = best_out; } // Recompute each out based on raw and symbols. for (std::set::const_iterator k = all_symbols.begin(); k != all_symbols.end(); ++k) { out[*k].Clear(); } for (int i = 0; i < in_size; ++i) { out[symbols[i]].AddHistogram(in[i]); } } // Reorder histograms in *out so that the new symbols in *symbols come in // increasing order. template void HistogramReindex(std::vector* out, std::vector* symbols) { std::vector tmp(*out); std::map new_index; int next_index = 0; for (size_t i = 0; i < symbols->size(); ++i) { if (new_index.find((*symbols)[i]) == new_index.end()) { new_index[(*symbols)[i]] = next_index; (*out)[next_index] = tmp[(*symbols)[i]]; ++next_index; } } out->resize(next_index); for (size_t i = 0; i < symbols->size(); ++i) { (*symbols)[i] = new_index[(*symbols)[i]]; } } // Clusters similar histograms in 'in' together, the selected histograms are // placed in 'out', and for each index in 'in', *histogram_symbols will // indicate which of the 'out' histograms is the best approximation. template void ClusterHistograms(const std::vector& in, int num_contexts, int num_blocks, size_t max_histograms, std::vector* out, std::vector* histogram_symbols) { const int in_size = num_contexts * num_blocks; BROTLI_DCHECK(in_size == in.size()); std::vector cluster_size(in_size, 1); out->resize(in_size); histogram_symbols->resize(in_size); for (int i = 0; i < in_size; ++i) { (*out)[i] = in[i]; (*out)[i].bit_cost_ = PopulationCost(in[i]); (*histogram_symbols)[i] = i; } const int max_input_histograms = 64; for (int i = 0; i < in_size; i += max_input_histograms) { int num_to_combine = std::min(in_size - i, max_input_histograms); HistogramCombine(&(*out)[0], &cluster_size[0], &(*histogram_symbols)[i], num_to_combine, max_histograms); } // Collapse similar histograms. HistogramCombine(&(*out)[0], &cluster_size[0], &(*histogram_symbols)[0], in_size, max_histograms); // Find the optimal map from original histograms to the final ones. HistogramRemap(&in[0], in_size, &(*out)[0], &(*histogram_symbols)[0]); // Convert the context map to a canonical form. HistogramReindex(out, histogram_symbols); } } // namespace brotli #endif // BROTLI_ENC_CLUSTER_H_