/* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ // Implementation of Brotli compressor. #include "./encode.h" #include #include /* free, malloc */ #include /* memset */ #include #include "./backward_references.h" #include "./bit_cost.h" #include "./block_splitter.h" #include "./brotli_bit_stream.h" #include "./cluster.h" #include "./context.h" #include "./metablock.h" #include "./transform.h" #include "./compress_fragment.h" #include "./compress_fragment_two_pass.h" #include "./entropy_encode.h" #include "./fast_log.h" #include "./hash.h" #include "./histogram.h" #include "./prefix.h" #include "./utf8_util.h" #include "./write_bits.h" namespace brotli { static const int kMinQualityForBlockSplit = 4; static const int kMinQualityForContextModeling = 5; static const int kMinQualityForOptimizeHistograms = 4; // For quality 2 there is no block splitting, so we buffer at most this much // literals and commands. static const size_t kMaxNumDelayedSymbols = 0x2fff; #define COPY_ARRAY(dst, src) memcpy(dst, src, sizeof(src)); void RecomputeDistancePrefixes(Command* cmds, size_t num_commands, uint32_t num_direct_distance_codes, uint32_t distance_postfix_bits) { if (num_direct_distance_codes == 0 && distance_postfix_bits == 0) { return; } for (size_t i = 0; i < num_commands; ++i) { Command* cmd = &cmds[i]; if (cmd->copy_len() && cmd->cmd_prefix_ >= 128) { PrefixEncodeCopyDistance(cmd->DistanceCode(), num_direct_distance_codes, distance_postfix_bits, &cmd->dist_prefix_, &cmd->dist_extra_); } } } /* Wraps 64-bit input position to 32-bit ringbuffer position preserving "not-a-first-lap" feature. */ uint32_t WrapPosition(uint64_t position) { uint32_t result = static_cast(position); if (position > (1u << 30)) { result = (result & ((1u << 30) - 1)) | (1u << 30); } return result; } uint8_t* BrotliCompressor::GetBrotliStorage(size_t size) { if (storage_size_ < size) { delete[] storage_; storage_ = new uint8_t[size]; storage_size_ = size; } return storage_; } size_t MaxHashTableSize(int quality) { return quality == 0 ? 1 << 15 : 1 << 17; } size_t HashTableSize(size_t max_table_size, size_t input_size) { size_t htsize = 256; while (htsize < max_table_size && htsize < input_size) { htsize <<= 1; } return htsize; } int* BrotliCompressor::GetHashTable(int quality, size_t input_size, size_t* table_size) { // Use smaller hash table when input.size() is smaller, since we // fill the table, incurring O(hash table size) overhead for // compression, and if the input is short, we won't need that // many hash table entries anyway. const size_t max_table_size = MaxHashTableSize(quality); assert(max_table_size >= 256); size_t htsize = HashTableSize(max_table_size, input_size); int* table; if (htsize <= sizeof(small_table_) / sizeof(small_table_[0])) { table = small_table_; } else { if (large_table_ == NULL) { large_table_ = new int[max_table_size]; } table = large_table_; } *table_size = htsize; memset(table, 0, htsize * sizeof(*table)); return table; } void EncodeWindowBits(int lgwin, uint8_t* last_byte, uint8_t* last_byte_bits) { if (lgwin == 16) { *last_byte = 0; *last_byte_bits = 1; } else if (lgwin == 17) { *last_byte = 1; *last_byte_bits = 7; } else if (lgwin > 17) { *last_byte = static_cast(((lgwin - 17) << 1) | 1); *last_byte_bits = 4; } else { *last_byte = static_cast(((lgwin - 8) << 4) | 1); *last_byte_bits = 7; } } // Initializes the command and distance prefix codes for the first block. void InitCommandPrefixCodes(uint8_t cmd_depths[128], uint16_t cmd_bits[128], uint8_t cmd_code[512], size_t* cmd_code_numbits) { static const uint8_t kDefaultCommandDepths[128] = { 0, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 0, 0, 0, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 10, 10, 10, 10, 10, 10, 0, 4, 4, 5, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, }; static const uint16_t kDefaultCommandBits[128] = { 0, 0, 8, 9, 3, 35, 7, 71, 39, 103, 23, 47, 175, 111, 239, 31, 0, 0, 0, 4, 12, 2, 10, 6, 13, 29, 11, 43, 27, 59, 87, 55, 15, 79, 319, 831, 191, 703, 447, 959, 0, 14, 1, 25, 5, 21, 19, 51, 119, 159, 95, 223, 479, 991, 63, 575, 127, 639, 383, 895, 255, 767, 511, 1023, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 59, 7, 39, 23, 55, 30, 1, 17, 9, 25, 5, 0, 8, 4, 12, 2, 10, 6, 21, 13, 29, 3, 19, 11, 15, 47, 31, 95, 63, 127, 255, 767, 2815, 1791, 3839, 511, 2559, 1535, 3583, 1023, 3071, 2047, 4095, }; COPY_ARRAY(cmd_depths, kDefaultCommandDepths); COPY_ARRAY(cmd_bits, kDefaultCommandBits); // Initialize the pre-compressed form of the command and distance prefix // codes. static const uint8_t kDefaultCommandCode[] = { 0xff, 0x77, 0xd5, 0xbf, 0xe7, 0xde, 0xea, 0x9e, 0x51, 0x5d, 0xde, 0xc6, 0x70, 0x57, 0xbc, 0x58, 0x58, 0x58, 0xd8, 0xd8, 0x58, 0xd5, 0xcb, 0x8c, 0xea, 0xe0, 0xc3, 0x87, 0x1f, 0x83, 0xc1, 0x60, 0x1c, 0x67, 0xb2, 0xaa, 0x06, 0x83, 0xc1, 0x60, 0x30, 0x18, 0xcc, 0xa1, 0xce, 0x88, 0x54, 0x94, 0x46, 0xe1, 0xb0, 0xd0, 0x4e, 0xb2, 0xf7, 0x04, 0x00, }; static const int kDefaultCommandCodeNumBits = 448; COPY_ARRAY(cmd_code, kDefaultCommandCode); *cmd_code_numbits = kDefaultCommandCodeNumBits; } // Decide about the context map based on the ability of the prediction // ability of the previous byte UTF8-prefix on the next byte. The // prediction ability is calculated as shannon entropy. Here we need // shannon entropy instead of 'BitsEntropy' since the prefix will be // encoded with the remaining 6 bits of the following byte, and // BitsEntropy will assume that symbol to be stored alone using Huffman // coding. void ChooseContextMap(int quality, uint32_t* bigram_histo, size_t* num_literal_contexts, const uint32_t** literal_context_map) { uint32_t monogram_histo[3] = { 0 }; uint32_t two_prefix_histo[6] = { 0 }; size_t total = 0; for (size_t i = 0; i < 9; ++i) { total += bigram_histo[i]; monogram_histo[i % 3] += bigram_histo[i]; size_t j = i; if (j >= 6) { j -= 6; } two_prefix_histo[j] += bigram_histo[i]; } size_t dummy; double entropy1 = ShannonEntropy(monogram_histo, 3, &dummy); double entropy2 = (ShannonEntropy(two_prefix_histo, 3, &dummy) + ShannonEntropy(two_prefix_histo + 3, 3, &dummy)); double entropy3 = 0; for (size_t k = 0; k < 3; ++k) { entropy3 += ShannonEntropy(bigram_histo + 3 * k, 3, &dummy); } assert(total != 0); double scale = 1.0 / static_cast(total); entropy1 *= scale; entropy2 *= scale; entropy3 *= scale; static const uint32_t kStaticContextMapContinuation[64] = { 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static const uint32_t kStaticContextMapSimpleUTF8[64] = { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; if (quality < 7) { // 3 context models is a bit slower, don't use it at lower qualities. entropy3 = entropy1 * 10; } // If expected savings by symbol are less than 0.2 bits, skip the // context modeling -- in exchange for faster decoding speed. if (entropy1 - entropy2 < 0.2 && entropy1 - entropy3 < 0.2) { *num_literal_contexts = 1; } else if (entropy2 - entropy3 < 0.02) { *num_literal_contexts = 2; *literal_context_map = kStaticContextMapSimpleUTF8; } else { *num_literal_contexts = 3; *literal_context_map = kStaticContextMapContinuation; } } void DecideOverLiteralContextModeling(const uint8_t* input, size_t start_pos, size_t length, size_t mask, int quality, ContextType* literal_context_mode, size_t* num_literal_contexts, const uint32_t** literal_context_map) { if (quality < kMinQualityForContextModeling || length < 64) { return; } // Gather bigram data of the UTF8 byte prefixes. To make the analysis of // UTF8 data faster we only examine 64 byte long strides at every 4kB // intervals. const size_t end_pos = start_pos + length; uint32_t bigram_prefix_histo[9] = { 0 }; for (; start_pos + 64 <= end_pos; start_pos += 4096) { static const int lut[4] = { 0, 0, 1, 2 }; const size_t stride_end_pos = start_pos + 64; int prev = lut[input[start_pos & mask] >> 6] * 3; for (size_t pos = start_pos + 1; pos < stride_end_pos; ++pos) { const uint8_t literal = input[pos & mask]; ++bigram_prefix_histo[prev + lut[literal >> 6]]; prev = lut[literal >> 6] * 3; } } *literal_context_mode = CONTEXT_UTF8; ChooseContextMap(quality, &bigram_prefix_histo[0], num_literal_contexts, literal_context_map); } bool ShouldCompress(const uint8_t* data, const size_t mask, const uint64_t last_flush_pos, const size_t bytes, const size_t num_literals, const size_t num_commands) { if (num_commands < (bytes >> 8) + 2) { if (num_literals > 0.99 * static_cast(bytes)) { uint32_t literal_histo[256] = { 0 }; static const uint32_t kSampleRate = 13; static const double kMinEntropy = 7.92; const double bit_cost_threshold = static_cast(bytes) * kMinEntropy / kSampleRate; size_t t = (bytes + kSampleRate - 1) / kSampleRate; uint32_t pos = static_cast(last_flush_pos); for (size_t i = 0; i < t; i++) { ++literal_histo[data[pos & mask]]; pos += kSampleRate; } if (BitsEntropy(literal_histo, 256) > bit_cost_threshold) { return false; } } } return true; } void WriteMetaBlockInternal(const uint8_t* data, const size_t mask, const uint64_t last_flush_pos, const size_t bytes, const bool is_last, const int quality, const bool font_mode, const uint8_t prev_byte, const uint8_t prev_byte2, const size_t num_literals, const size_t num_commands, Command* commands, const int* saved_dist_cache, int* dist_cache, size_t* storage_ix, uint8_t* storage) { if (bytes == 0) { // Write the ISLAST and ISEMPTY bits. WriteBits(2, 3, storage_ix, storage); *storage_ix = (*storage_ix + 7u) & ~7u; return; } if (!ShouldCompress(data, mask, last_flush_pos, bytes, num_literals, num_commands)) { // Restore the distance cache, as its last update by // CreateBackwardReferences is now unused. memcpy(dist_cache, saved_dist_cache, 4 * sizeof(dist_cache[0])); StoreUncompressedMetaBlock(is_last, data, WrapPosition(last_flush_pos), mask, bytes, storage_ix, storage); return; } const uint8_t last_byte = storage[0]; const uint8_t last_byte_bits = static_cast(*storage_ix & 0xff); uint32_t num_direct_distance_codes = 0; uint32_t distance_postfix_bits = 0; if (quality > 9 && font_mode) { num_direct_distance_codes = 12; distance_postfix_bits = 1; RecomputeDistancePrefixes(commands, num_commands, num_direct_distance_codes, distance_postfix_bits); } if (quality == 2) { StoreMetaBlockFast(data, WrapPosition(last_flush_pos), bytes, mask, is_last, commands, num_commands, storage_ix, storage); } else if (quality < kMinQualityForBlockSplit) { StoreMetaBlockTrivial(data, WrapPosition(last_flush_pos), bytes, mask, is_last, commands, num_commands, storage_ix, storage); } else { MetaBlockSplit mb; ContextType literal_context_mode = CONTEXT_UTF8; if (quality <= 9) { size_t num_literal_contexts = 1; const uint32_t* literal_context_map = NULL; DecideOverLiteralContextModeling(data, WrapPosition(last_flush_pos), bytes, mask, quality, &literal_context_mode, &num_literal_contexts, &literal_context_map); if (literal_context_map == NULL) { BuildMetaBlockGreedy(data, WrapPosition(last_flush_pos), mask, commands, num_commands, &mb); } else { BuildMetaBlockGreedyWithContexts(data, WrapPosition(last_flush_pos), mask, prev_byte, prev_byte2, literal_context_mode, num_literal_contexts, literal_context_map, commands, num_commands, &mb); } } else { if (!IsMostlyUTF8(data, WrapPosition(last_flush_pos), mask, bytes, kMinUTF8Ratio)) { literal_context_mode = CONTEXT_SIGNED; } BuildMetaBlock(data, WrapPosition(last_flush_pos), mask, prev_byte, prev_byte2, commands, num_commands, literal_context_mode, &mb); } if (quality >= kMinQualityForOptimizeHistograms) { OptimizeHistograms(num_direct_distance_codes, distance_postfix_bits, &mb); } StoreMetaBlock(data, WrapPosition(last_flush_pos), bytes, mask, prev_byte, prev_byte2, is_last, num_direct_distance_codes, distance_postfix_bits, literal_context_mode, commands, num_commands, mb, storage_ix, storage); } if (bytes + 4 < (*storage_ix >> 3)) { // Restore the distance cache and last byte. memcpy(dist_cache, saved_dist_cache, 4 * sizeof(dist_cache[0])); storage[0] = last_byte; *storage_ix = last_byte_bits; StoreUncompressedMetaBlock(is_last, data, WrapPosition(last_flush_pos), mask, bytes, storage_ix, storage); } } BrotliCompressor::BrotliCompressor(BrotliParams params) : params_(params), hashers_(new Hashers()), input_pos_(0), num_commands_(0), num_literals_(0), last_insert_len_(0), last_flush_pos_(0), last_processed_pos_(0), prev_byte_(0), prev_byte2_(0), storage_size_(0), storage_(0), large_table_(NULL), cmd_code_numbits_(0), command_buf_(NULL), literal_buf_(NULL) { // Sanitize params. params_.quality = std::max(0, params_.quality); if (params_.lgwin < kMinWindowBits) { params_.lgwin = kMinWindowBits; } else if (params_.lgwin > kMaxWindowBits) { params_.lgwin = kMaxWindowBits; } if (params_.quality <= 1) { params_.lgblock = params_.lgwin; } else if (params_.quality < kMinQualityForBlockSplit) { params_.lgblock = 14; } else if (params_.lgblock == 0) { params_.lgblock = 16; if (params_.quality >= 9 && params_.lgwin > params_.lgblock) { params_.lgblock = std::min(18, params_.lgwin); } } else { params_.lgblock = std::min(kMaxInputBlockBits, std::max(kMinInputBlockBits, params_.lgblock)); } // Initialize input and literal cost ring buffers. // We allocate at least lgwin + 1 bits for the ring buffer so that the newly // added block fits there completely and we still get lgwin bits and at least // read_block_size_bits + 1 bits because the copy tail length needs to be // smaller than ringbuffer size. int ringbuffer_bits = std::max(params_.lgwin + 1, params_.lgblock + 1); ringbuffer_ = new RingBuffer(ringbuffer_bits, params_.lgblock); commands_ = 0; cmd_alloc_size_ = 0; // Initialize last byte with stream header. EncodeWindowBits(params_.lgwin, &last_byte_, &last_byte_bits_); // Initialize distance cache. dist_cache_[0] = 4; dist_cache_[1] = 11; dist_cache_[2] = 15; dist_cache_[3] = 16; // Save the state of the distance cache in case we need to restore it for // emitting an uncompressed block. memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_)); if (params_.quality == 0) { InitCommandPrefixCodes(cmd_depths_, cmd_bits_, cmd_code_, &cmd_code_numbits_); } else if (params_.quality == 1) { command_buf_ = new uint32_t[kCompressFragmentTwoPassBlockSize]; literal_buf_ = new uint8_t[kCompressFragmentTwoPassBlockSize]; } // Initialize hashers. hash_type_ = std::min(10, params_.quality); hashers_->Init(hash_type_); } BrotliCompressor::~BrotliCompressor(void) { delete[] storage_; free(commands_); delete ringbuffer_; delete hashers_; delete[] large_table_; delete[] command_buf_; delete[] literal_buf_; } void BrotliCompressor::CopyInputToRingBuffer(const size_t input_size, const uint8_t* input_buffer) { ringbuffer_->Write(input_buffer, input_size); input_pos_ += input_size; // TL;DR: If needed, initialize 7 more bytes in the ring buffer to make the // hashing not depend on uninitialized data. This makes compression // deterministic and it prevents uninitialized memory warnings in Valgrind. // Even without erasing, the output would be valid (but nondeterministic). // // Background information: The compressor stores short (at most 8 bytes) // substrings of the input already read in a hash table, and detects // repetitions by looking up such substrings in the hash table. If it // can find a substring, it checks whether the substring is really there // in the ring buffer (or it's just a hash collision). Should the hash // table become corrupt, this check makes sure that the output is // still valid, albeit the compression ratio would be bad. // // The compressor populates the hash table from the ring buffer as it's // reading new bytes from the input. However, at the last few indexes of // the ring buffer, there are not enough bytes to build full-length // substrings from. Since the hash table always contains full-length // substrings, we erase with dummy 0s here to make sure that those // substrings will contain 0s at the end instead of uninitialized // data. // // Please note that erasing is not necessary (because the // memory region is already initialized since he ring buffer // has a `tail' that holds a copy of the beginning,) so we // skip erasing if we have already gone around at least once in // the ring buffer. size_t pos = ringbuffer_->position(); // Only clear during the first round of ringbuffer writes. On // subsequent rounds data in the ringbuffer would be affected. if (pos <= ringbuffer_->mask()) { // This is the first time when the ring buffer is being written. // We clear 7 bytes just after the bytes that have been copied from // the input buffer. // // The ringbuffer has a "tail" that holds a copy of the beginning, // but only once the ring buffer has been fully written once, i.e., // pos <= mask. For the first time, we need to write values // in this tail (where index may be larger than mask), so that // we have exactly defined behavior and don't read un-initialized // memory. Due to performance reasons, hashing reads data using a // LOAD64, which can go 7 bytes beyond the bytes written in the // ringbuffer. memset(ringbuffer_->start() + pos, 0, 7); } } void BrotliCompressor::BrotliSetCustomDictionary( const size_t size, const uint8_t* dict) { CopyInputToRingBuffer(size, dict); last_flush_pos_ = size; last_processed_pos_ = size; if (size > 0) { prev_byte_ = dict[size - 1]; } if (size > 1) { prev_byte2_ = dict[size - 2]; } hashers_->PrependCustomDictionary(hash_type_, params_.lgwin, size, dict); } bool BrotliCompressor::WriteBrotliData(const bool is_last, const bool force_flush, size_t* out_size, uint8_t** output) { const uint64_t delta = input_pos_ - last_processed_pos_; const uint8_t* data = ringbuffer_->start(); const uint32_t mask = ringbuffer_->mask(); if (delta > input_block_size()) { return false; } const uint32_t bytes = static_cast(delta); if (params_.quality <= 1) { if (delta == 0 && !is_last) { // We have no new input data and we don't have to finish the stream, so // nothing to do. *out_size = 0; return true; } const size_t max_out_size = 2 * bytes + 500; uint8_t* storage = GetBrotliStorage(max_out_size); storage[0] = last_byte_; size_t storage_ix = last_byte_bits_; size_t table_size; int* table = GetHashTable(params_.quality, bytes, &table_size); if (params_.quality == 0) { BrotliCompressFragmentFast( &data[WrapPosition(last_processed_pos_) & mask], bytes, is_last, table, table_size, cmd_depths_, cmd_bits_, &cmd_code_numbits_, cmd_code_, &storage_ix, storage); } else { BrotliCompressFragmentTwoPass( &data[WrapPosition(last_processed_pos_) & mask], bytes, is_last, command_buf_, literal_buf_, table, table_size, &storage_ix, storage); } last_byte_ = storage[storage_ix >> 3]; last_byte_bits_ = storage_ix & 7u; last_processed_pos_ = input_pos_; *output = &storage[0]; *out_size = storage_ix >> 3; return true; } // Theoretical max number of commands is 1 per 2 bytes. size_t newsize = num_commands_ + bytes / 2 + 1; if (newsize > cmd_alloc_size_) { // Reserve a bit more memory to allow merging with a next block // without realloc: that would impact speed. newsize += (bytes / 4) + 16; cmd_alloc_size_ = newsize; commands_ = static_cast(realloc(commands_, sizeof(Command) * newsize)); } CreateBackwardReferences(bytes, WrapPosition(last_processed_pos_), is_last, data, mask, params_.quality, params_.lgwin, hashers_, hash_type_, dist_cache_, &last_insert_len_, &commands_[num_commands_], &num_commands_, &num_literals_); size_t max_length = std::min(mask + 1, 1u << kMaxInputBlockBits); const size_t max_literals = max_length / 8; const size_t max_commands = max_length / 8; if (!is_last && !force_flush && (params_.quality >= kMinQualityForBlockSplit || (num_literals_ + num_commands_ < kMaxNumDelayedSymbols)) && num_literals_ < max_literals && num_commands_ < max_commands && input_pos_ + input_block_size() <= last_flush_pos_ + max_length) { // Merge with next input block. Everything will happen later. last_processed_pos_ = input_pos_; *out_size = 0; return true; } // Create the last insert-only command. if (last_insert_len_ > 0) { brotli::Command cmd(last_insert_len_); commands_[num_commands_++] = cmd; num_literals_ += last_insert_len_; last_insert_len_ = 0; } if (!is_last && input_pos_ == last_flush_pos_) { // We have no new input data and we don't have to finish the stream, so // nothing to do. *out_size = 0; return true; } assert(input_pos_ >= last_flush_pos_); assert(input_pos_ > last_flush_pos_ || is_last); assert(input_pos_ - last_flush_pos_ <= 1u << 24); const uint32_t metablock_size = static_cast(input_pos_ - last_flush_pos_); const size_t max_out_size = 2 * metablock_size + 500; uint8_t* storage = GetBrotliStorage(max_out_size); storage[0] = last_byte_; size_t storage_ix = last_byte_bits_; bool font_mode = params_.mode == BrotliParams::MODE_FONT; WriteMetaBlockInternal( data, mask, last_flush_pos_, metablock_size, is_last, params_.quality, font_mode, prev_byte_, prev_byte2_, num_literals_, num_commands_, commands_, saved_dist_cache_, dist_cache_, &storage_ix, storage); last_byte_ = storage[storage_ix >> 3]; last_byte_bits_ = storage_ix & 7u; last_flush_pos_ = input_pos_; last_processed_pos_ = input_pos_; if (last_flush_pos_ > 0) { prev_byte_ = data[(static_cast(last_flush_pos_) - 1) & mask]; } if (last_flush_pos_ > 1) { prev_byte2_ = data[(static_cast(last_flush_pos_) - 2) & mask]; } num_commands_ = 0; num_literals_ = 0; // Save the state of the distance cache in case we need to restore it for // emitting an uncompressed block. memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_)); *output = &storage[0]; *out_size = storage_ix >> 3; return true; } bool BrotliCompressor::WriteMetaBlock(const size_t input_size, const uint8_t* input_buffer, const bool is_last, size_t* encoded_size, uint8_t* encoded_buffer) { CopyInputToRingBuffer(input_size, input_buffer); size_t out_size = 0; uint8_t* output; if (!WriteBrotliData(is_last, /* force_flush = */ true, &out_size, &output) || out_size > *encoded_size) { return false; } if (out_size > 0) { memcpy(encoded_buffer, output, out_size); } *encoded_size = out_size; return true; } bool BrotliCompressor::WriteMetadata(const size_t input_size, const uint8_t* input_buffer, const bool is_last, size_t* encoded_size, uint8_t* encoded_buffer) { if (input_size > (1 << 24) || input_size + 6 > *encoded_size) { return false; } uint64_t hdr_buffer_data[2]; uint8_t* hdr_buffer = reinterpret_cast(&hdr_buffer_data[0]); size_t storage_ix = last_byte_bits_; hdr_buffer[0] = last_byte_; WriteBits(1, 0, &storage_ix, hdr_buffer); WriteBits(2, 3, &storage_ix, hdr_buffer); WriteBits(1, 0, &storage_ix, hdr_buffer); if (input_size == 0) { WriteBits(2, 0, &storage_ix, hdr_buffer); *encoded_size = (storage_ix + 7u) >> 3; memcpy(encoded_buffer, hdr_buffer, *encoded_size); } else { uint32_t nbits = (input_size == 1) ? 0 : (Log2FloorNonZero( static_cast(input_size) - 1) + 1); uint32_t nbytes = (nbits + 7) / 8; WriteBits(2, nbytes, &storage_ix, hdr_buffer); WriteBits(8 * nbytes, input_size - 1, &storage_ix, hdr_buffer); size_t hdr_size = (storage_ix + 7u) >> 3; memcpy(encoded_buffer, hdr_buffer, hdr_size); memcpy(&encoded_buffer[hdr_size], input_buffer, input_size); *encoded_size = hdr_size + input_size; } if (is_last) { encoded_buffer[(*encoded_size)++] = 3; } last_byte_ = 0; last_byte_bits_ = 0; return true; } bool BrotliCompressor::FinishStream( size_t* encoded_size, uint8_t* encoded_buffer) { return WriteMetaBlock(0, NULL, true, encoded_size, encoded_buffer); } int BrotliCompressBufferQuality10(int lgwin, size_t input_size, const uint8_t* input_buffer, size_t* encoded_size, uint8_t* encoded_buffer) { const size_t mask = std::numeric_limits::max() >> 1; assert(input_size <= mask + 1); const size_t max_backward_limit = (1 << lgwin) - 16; int dist_cache[4] = { 4, 11, 15, 16 }; int saved_dist_cache[4] = { 4, 11, 15, 16 }; int ok = 1; const size_t max_out_size = *encoded_size; size_t total_out_size = 0; uint8_t last_byte; uint8_t last_byte_bits; EncodeWindowBits(lgwin, &last_byte, &last_byte_bits); Hashers::H10* hasher = new Hashers::H10; const size_t hasher_eff_size = std::min(input_size, max_backward_limit + 16); hasher->Init(lgwin, 0, hasher_eff_size, true); const int lgblock = std::min(18, lgwin); const int lgmetablock = std::min(24, lgwin + 1); const size_t max_block_size = static_cast(1) << lgblock; const size_t max_metablock_size = static_cast(1) << lgmetablock; const size_t max_literals_per_metablock = max_metablock_size / 8; const size_t max_commands_per_metablock = max_metablock_size / 8; size_t metablock_start = 0; uint8_t prev_byte = 0; uint8_t prev_byte2 = 0; while (ok && metablock_start < input_size) { const size_t metablock_end = std::min(input_size, metablock_start + max_metablock_size); const size_t expected_num_commands = (metablock_end - metablock_start) / 12 + 16; Command* commands = 0; size_t num_commands = 0; size_t last_insert_len = 0; size_t num_literals = 0; size_t metablock_size = 0; size_t cmd_alloc_size = 0; for (size_t block_start = metablock_start; block_start < metablock_end; ) { size_t block_size = std::min(metablock_end - block_start, max_block_size); ZopfliNode* nodes = new ZopfliNode[block_size + 1]; std::vector path; hasher->StitchToPreviousBlock(block_size, block_start, input_buffer, mask); ZopfliComputeShortestPath(block_size, block_start, input_buffer, mask, max_backward_limit, dist_cache, hasher, nodes, &path); // We allocate a command buffer in the first iteration of this loop that // will be likely big enough for the whole metablock, so that for most // inputs we will not have to reallocate in later iterations. We do the // allocation here and not before the loop, because if the input is small, // this will be allocated after the zopfli cost model is freed, so this // will not increase peak memory usage. // TODO: If the first allocation is too small, increase command // buffer size exponentially. size_t new_cmd_alloc_size = std::max(expected_num_commands, num_commands + path.size() + 1); if (cmd_alloc_size != new_cmd_alloc_size) { cmd_alloc_size = new_cmd_alloc_size; commands = static_cast( realloc(commands, cmd_alloc_size * sizeof(Command))); } ZopfliCreateCommands(block_size, block_start, max_backward_limit, path, &nodes[0], dist_cache, &last_insert_len, &commands[num_commands], &num_literals); num_commands += path.size(); block_start += block_size; metablock_size += block_size; delete[] nodes; if (num_literals > max_literals_per_metablock || num_commands > max_commands_per_metablock) { break; } } if (last_insert_len > 0) { Command cmd(last_insert_len); commands[num_commands++] = cmd; num_literals += last_insert_len; } const bool is_last = (metablock_start + metablock_size == input_size); uint8_t* storage = NULL; size_t storage_ix = last_byte_bits; if (metablock_size == 0) { // Write the ISLAST and ISEMPTY bits. storage = new uint8_t[16]; storage[0] = last_byte; WriteBits(2, 3, &storage_ix, storage); storage_ix = (storage_ix + 7u) & ~7u; } else if (!ShouldCompress(input_buffer, mask, metablock_start, metablock_size, num_literals, num_commands)) { // Restore the distance cache, as its last update by // CreateBackwardReferences is now unused. memcpy(dist_cache, saved_dist_cache, 4 * sizeof(dist_cache[0])); storage = new uint8_t[metablock_size + 16]; storage[0] = last_byte; StoreUncompressedMetaBlock(is_last, input_buffer, metablock_start, mask, metablock_size, &storage_ix, storage); } else { uint32_t num_direct_distance_codes = 0; uint32_t distance_postfix_bits = 0; MetaBlockSplit mb; ContextType literal_context_mode = CONTEXT_UTF8; if (!IsMostlyUTF8( input_buffer, metablock_start, mask, metablock_size, kMinUTF8Ratio)) { literal_context_mode = CONTEXT_SIGNED; } BuildMetaBlock(input_buffer, metablock_start, mask, prev_byte, prev_byte2, commands, num_commands, literal_context_mode, &mb); OptimizeHistograms(num_direct_distance_codes, distance_postfix_bits, &mb); const size_t max_out_metablock_size = 2 * metablock_size + 500; storage = new uint8_t[max_out_metablock_size]; storage[0] = last_byte; StoreMetaBlock(input_buffer, metablock_start, metablock_size, mask, prev_byte, prev_byte2, is_last, num_direct_distance_codes, distance_postfix_bits, literal_context_mode, commands, num_commands, mb, &storage_ix, storage); if (metablock_size + 4 < (storage_ix >> 3)) { // Restore the distance cache and last byte. memcpy(dist_cache, saved_dist_cache, 4 * sizeof(dist_cache[0])); storage[0] = last_byte; storage_ix = last_byte_bits; StoreUncompressedMetaBlock(is_last, input_buffer, metablock_start, mask, metablock_size, &storage_ix, storage); } } last_byte = storage[storage_ix >> 3]; last_byte_bits = storage_ix & 7u; metablock_start += metablock_size; prev_byte = input_buffer[metablock_start - 1]; prev_byte2 = input_buffer[metablock_start - 2]; // Save the state of the distance cache in case we need to restore it for // emitting an uncompressed block. memcpy(saved_dist_cache, dist_cache, 4 * sizeof(dist_cache[0])); const size_t out_size = storage_ix >> 3; total_out_size += out_size; if (total_out_size <= max_out_size) { memcpy(encoded_buffer, storage, out_size); encoded_buffer += out_size; } else { ok = 0; } delete[] storage; free(commands); } *encoded_size = total_out_size; delete hasher; return ok; } int BrotliCompressBuffer(BrotliParams params, size_t input_size, const uint8_t* input_buffer, size_t* encoded_size, uint8_t* encoded_buffer) { if (*encoded_size == 0) { // Output buffer needs at least one byte. return 0; } if (input_size == 0) { // Handle the special case of empty input. *encoded_size = 1; *encoded_buffer = 6; return 1; } if (params.quality == 10) { // TODO(user) Implement this direct path for all quality levels. const int lgwin = std::min(24, std::max(16, params.lgwin)); return BrotliCompressBufferQuality10(lgwin, input_size, input_buffer, encoded_size, encoded_buffer); } BrotliMemIn in(input_buffer, input_size); BrotliMemOut out(encoded_buffer, *encoded_size); if (!BrotliCompress(params, &in, &out)) { return 0; } *encoded_size = out.position(); return 1; } bool BrotliInIsFinished(BrotliIn* r) { size_t read_bytes; return r->Read(0, &read_bytes) == NULL; } const uint8_t* BrotliInReadAndCheckEnd(const size_t block_size, BrotliIn* r, size_t* bytes_read, bool* is_last) { *bytes_read = 0; const uint8_t* data = reinterpret_cast( r->Read(block_size, bytes_read)); assert((data == NULL) == (*bytes_read == 0)); *is_last = BrotliInIsFinished(r); return data; } bool CopyOneBlockToRingBuffer(BrotliIn* r, BrotliCompressor* compressor, size_t* bytes_read, bool* is_last) { const size_t block_size = compressor->input_block_size(); const uint8_t* data = BrotliInReadAndCheckEnd(block_size, r, bytes_read, is_last); if (data == NULL) { return *is_last; } compressor->CopyInputToRingBuffer(*bytes_read, data); // Read more bytes until block_size is filled or an EOF (data == NULL) is // received. This is useful to get deterministic compressed output for the // same input no matter how r->Read splits the input to chunks. for (size_t remaining = block_size - *bytes_read; remaining > 0; ) { size_t more_bytes_read = 0; data = BrotliInReadAndCheckEnd(remaining, r, &more_bytes_read, is_last); if (data == NULL) { return *is_last; } compressor->CopyInputToRingBuffer(more_bytes_read, data); *bytes_read += more_bytes_read; remaining -= more_bytes_read; } return true; } int BrotliCompress(BrotliParams params, BrotliIn* in, BrotliOut* out) { return BrotliCompressWithCustomDictionary(0, 0, params, in, out); } // Reads the provided input in 'block_size' blocks. Only the last read can be // smaller than 'block_size'. class BrotliBlockReader { public: explicit BrotliBlockReader(size_t block_size) : block_size_(block_size), buf_(NULL) {} ~BrotliBlockReader(void) { delete[] buf_; } const uint8_t* Read(BrotliIn* in, size_t* bytes_read, bool* is_last) { *bytes_read = 0; const uint8_t* data = BrotliInReadAndCheckEnd(block_size_, in, bytes_read, is_last); if (data == NULL || *bytes_read == block_size_ || *is_last) { // If we could get the whole block in one read, or it is the last block, // we just return the pointer to the data without copying. return data; } // If the data comes in smaller chunks, we need to copy it into an internal // buffer until we get a whole block or reach the last chunk. if (buf_ == NULL) { buf_ = new uint8_t[block_size_]; } memcpy(buf_, data, *bytes_read); do { size_t cur_bytes_read = 0; data = BrotliInReadAndCheckEnd(block_size_ - *bytes_read, in, &cur_bytes_read, is_last); if (data == NULL) { return *is_last ? buf_ : NULL; } memcpy(&buf_[*bytes_read], data, cur_bytes_read); *bytes_read += cur_bytes_read; } while (*bytes_read < block_size_ && !*is_last); return buf_; } private: const size_t block_size_; uint8_t* buf_; }; int BrotliCompressWithCustomDictionary(size_t dictsize, const uint8_t* dict, BrotliParams params, BrotliIn* in, BrotliOut* out) { if (params.quality <= 1) { const int quality = std::max(0, params.quality); const int lgwin = std::min(kMaxWindowBits, std::max(kMinWindowBits, params.lgwin)); uint8_t* storage = NULL; int* table = NULL; uint32_t* command_buf = NULL; uint8_t* literal_buf = NULL; uint8_t cmd_depths[128]; uint16_t cmd_bits[128]; uint8_t cmd_code[512]; size_t cmd_code_numbits; if (quality == 0) { InitCommandPrefixCodes(cmd_depths, cmd_bits, cmd_code, &cmd_code_numbits); } uint8_t last_byte; uint8_t last_byte_bits; EncodeWindowBits(lgwin, &last_byte, &last_byte_bits); BrotliBlockReader r(1u << lgwin); int ok = 1; bool is_last = false; while (ok && !is_last) { // Read next block of input. size_t bytes; const uint8_t* data = r.Read(in, &bytes, &is_last); if (data == NULL) { if (!is_last) { ok = 0; break; } assert(bytes == 0); } // Set up output storage. const size_t max_out_size = 2 * bytes + 500; if (storage == NULL) { storage = new uint8_t[max_out_size]; } storage[0] = last_byte; size_t storage_ix = last_byte_bits; // Set up hash table. size_t htsize = HashTableSize(MaxHashTableSize(quality), bytes); if (table == NULL) { table = new int[htsize]; } memset(table, 0, htsize * sizeof(table[0])); // Set up command and literal buffers for two pass mode. if (quality == 1 && command_buf == NULL) { size_t buf_size = std::min(bytes, kCompressFragmentTwoPassBlockSize); command_buf = new uint32_t[buf_size]; literal_buf = new uint8_t[buf_size]; } // Do the actual compression. if (quality == 0) { BrotliCompressFragmentFast(data, bytes, is_last, table, htsize, cmd_depths, cmd_bits, &cmd_code_numbits, cmd_code, &storage_ix, storage); } else { BrotliCompressFragmentTwoPass(data, bytes, is_last, command_buf, literal_buf, table, htsize, &storage_ix, storage); } // Save last bytes to stitch it together with the next output block. last_byte = storage[storage_ix >> 3]; last_byte_bits = storage_ix & 7u; // Write output block. size_t out_bytes = storage_ix >> 3; if (out_bytes > 0 && !out->Write(storage, out_bytes)) { ok = 0; break; } } delete[] storage; delete[] table; delete[] command_buf; delete[] literal_buf; return ok; } size_t in_bytes = 0; size_t out_bytes = 0; uint8_t* output; bool final_block = false; BrotliCompressor compressor(params); if (dictsize != 0) compressor.BrotliSetCustomDictionary(dictsize, dict); while (!final_block) { if (!CopyOneBlockToRingBuffer(in, &compressor, &in_bytes, &final_block)) { return false; } out_bytes = 0; if (!compressor.WriteBrotliData(final_block, /* force_flush = */ false, &out_bytes, &output)) { return false; } if (out_bytes > 0 && !out->Write(output, out_bytes)) { return false; } } return true; } } // namespace brotli