// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Block split point selection utilities. #include "./block_splitter.h" #include #include #include #include #include #include #include "./cluster.h" #include "./command.h" #include "./fast_log.h" #include "./histogram.h" namespace brotli { static const int kMaxLiteralHistograms = 48; static const int kMaxCommandHistograms = 50; static const double kLiteralBlockSwitchCost = 26; static const double kCommandBlockSwitchCost = 13.5; static const double kDistanceBlockSwitchCost = 14.6; static const int kLiteralStrideLength = 70; static const int kCommandStrideLength = 40; static const int kSymbolsPerLiteralHistogram = 550; static const int kSymbolsPerCommandHistogram = 530; static const int kSymbolsPerDistanceHistogram = 550; static const int kMinLengthForBlockSplitting = 128; static const int kIterMulForRefining = 2; static const int kMinItersForRefining = 100; void CopyLiteralsToByteArray(const std::vector& cmds, const uint8_t* data, std::vector* literals) { // Count how many we have. size_t total_length = 0; for (int i = 0; i < cmds.size(); ++i) { total_length += cmds[i].insert_length_; } if (total_length == 0) { return; } // Allocate. literals->resize(total_length); // Loop again, and copy this time. size_t pos = 0; size_t from_pos = 0; for (int i = 0; i < cmds.size() && pos < total_length; ++i) { memcpy(&(*literals)[pos], data + from_pos, cmds[i].insert_length_); pos += cmds[i].insert_length_; from_pos += cmds[i].insert_length_ + cmds[i].copy_length_; } } void CopyCommandsToByteArray(const std::vector& cmds, std::vector* insert_and_copy_codes, std::vector* distance_prefixes) { for (int i = 0; i < cmds.size(); ++i) { const Command& cmd = cmds[i]; insert_and_copy_codes->push_back(cmd.command_prefix_); if (cmd.copy_length_ > 0 && cmd.distance_prefix_ != 0xffff) { distance_prefixes->push_back(cmd.distance_prefix_); } } } template double HistogramAddEval(const Histogram& a, const Histogram& b) { int total = a.total_count_ + b.total_count_; double retval = total * FastLog2(total); for (int i = 0; i < kSize; ++i) { int count = a.data_[i] + b.data_[i]; retval -= count * FastLog2(count); } return retval; } template void InitialEntropyCodes(const DataType* data, size_t length, int literals_per_histogram, int max_histograms, size_t stride, std::vector* vec) { int total_histograms = length / literals_per_histogram + 1; if (total_histograms > max_histograms) { total_histograms = max_histograms; } unsigned int seed = 7; int block_length = length / total_histograms; for (int i = 0; i < total_histograms; ++i) { int pos = length * i / total_histograms; if (i != 0) { pos += rand_r(&seed) % block_length; } if (pos + stride >= length) { pos = length - stride - 1; } HistogramType histo; histo.Add(data + pos, stride); vec->push_back(histo); } } template int FindClosest(const HistogramType& sample, const std::vector& vec) { double best_distance = 1e99; int best_ix = 0; for (int i = 0; i < vec.size(); ++i) { double distance = HistogramAddEval(sample, vec[i]); if (distance < best_distance) { best_ix = i; best_distance = distance; } } return best_ix; } template void RandomSample(unsigned int* seed, const DataType* data, size_t length, size_t stride, HistogramType* sample) { size_t pos = rand_r(seed) % (length - stride); sample->Add(data + pos, stride); } template void RefineEntropyCodes(const DataType* data, size_t length, size_t stride, std::vector* vec) { const int iters = kIterMulForRefining * length / stride + kMinItersForRefining; unsigned int seed = 7; for (int iter = 0; iter < iters; ++iter) { HistogramType sample; RandomSample(&seed, data, length, stride, &sample); int ix = FindClosest(sample, *vec); (*vec)[ix].AddHistogram(sample); } } inline static float BitCost(int total, int count) { return count == 0 ? FastLog2(total) + 2 : FastLog2(total) - FastLog2(count); } template void FindBlocks(const DataType* data, const size_t length, const double block_switch_bitcost, const std::vector > &vec, uint8_t *block_id) { if (vec.size() <= 1) { for (int i = 0; i < length; ++i) { block_id[i] = 0; } return; } int vecsize = vec.size(); double* insert_cost = new double[kSize * vecsize]; memset(insert_cost, 0, sizeof(insert_cost[0]) * kSize * vecsize); for (int i = 0; i < kSize; ++i) { for (int j = 0; j < vecsize; ++j) { insert_cost[i * vecsize + j] = BitCost(vec[j].total_count_, vec[j].data_[i]); } } double *cost = new double[vecsize]; memset(cost, 0, sizeof(cost[0]) * vecsize); bool* switch_signal = new bool[length * vecsize]; memset(switch_signal, 0, sizeof(switch_signal[0]) * length * vecsize); // After each iteration of this loop, cost[k] will contain the difference // between the minimum cost of arriving at the current byte position using // entropy code k, and the minimum cost of arriving at the current byte // position. This difference is capped at the block switch cost, and if it // reaches block switch cost, it means that when we trace back from the last // position, we need to switch here. for (size_t byte_ix = 0; byte_ix < length; ++byte_ix) { int ix = byte_ix * vecsize; int insert_cost_ix = data[byte_ix] * vecsize; double min_cost = 1e99; for (int k = 0; k < vecsize; ++k) { // We are coding the symbol in data[byte_ix] with entropy code k. cost[k] += insert_cost[insert_cost_ix + k]; if (cost[k] < min_cost) { min_cost = cost[k]; block_id[byte_ix] = k; } } double block_switch_cost = block_switch_bitcost; // More blocks for the beginning. if (byte_ix < 2000) { block_switch_cost *= 0.77 + 0.07 * byte_ix / 2000; } for (int k = 0; k < vecsize; ++k) { cost[k] -= min_cost; if (cost[k] >= block_switch_cost) { cost[k] = block_switch_cost; switch_signal[ix + k] = true; } } } // Now trace back from the last position and switch at the marked places. int byte_ix = length - 1; int ix = byte_ix * vecsize; int cur_id = block_id[byte_ix]; while (byte_ix > 0) { --byte_ix; ix -= vecsize; if (switch_signal[ix + cur_id]) { cur_id = block_id[byte_ix]; } block_id[byte_ix] = cur_id; } delete[] insert_cost; delete[] cost; delete[] switch_signal; } int RemapBlockIds(uint8_t* block_ids, const size_t length) { std::map new_id; int next_id = 0; for (int i = 0; i < length; ++i) { if (new_id.find(block_ids[i]) == new_id.end()) { new_id[block_ids[i]] = next_id; ++next_id; } } for (int i = 0; i < length; ++i) { block_ids[i] = new_id[block_ids[i]]; } return next_id; } template void BuildBlockHistograms(const DataType* data, const size_t length, uint8_t* block_ids, std::vector* histograms) { int num_types = RemapBlockIds(block_ids, length); histograms->clear(); histograms->resize(num_types); for (int i = 0; i < length; ++i) { (*histograms)[block_ids[i]].Add(data[i]); } } template void ClusterBlocks(const DataType* data, const size_t length, uint8_t* block_ids) { std::vector histograms; std::vector block_index(length); int cur_idx = 0; HistogramType cur_histogram; for (int i = 0; i < length; ++i) { bool block_boundary = (i + 1 == length || block_ids[i] != block_ids[i + 1]); block_index[i] = cur_idx; cur_histogram.Add(data[i]); if (block_boundary) { histograms.push_back(cur_histogram); cur_histogram.Clear(); ++cur_idx; } } std::vector clustered_histograms; std::vector histogram_symbols; // Block ids need to fit in one byte and there are two ids reserved for // indicating 'same as last' and 'last plus one'. static const int kMaxNumberOfBlockTypes = 254; ClusterHistograms(histograms, 1, histograms.size(), kMaxNumberOfBlockTypes, &clustered_histograms, &histogram_symbols); for (int i = 0; i < length; ++i) { block_ids[i] = histogram_symbols[block_index[i]]; } } void BuildBlockSplit(const std::vector& block_ids, BlockSplit* split) { int cur_id = block_ids[0]; int cur_length = 1; split->num_types_ = -1; for (int i = 1; i < block_ids.size(); ++i) { if (block_ids[i] != cur_id) { split->types_.push_back(cur_id); split->lengths_.push_back(cur_length); split->num_types_ = std::max(split->num_types_, cur_id); cur_id = block_ids[i]; cur_length = 0; } ++cur_length; } split->types_.push_back(cur_id); split->lengths_.push_back(cur_length); split->num_types_ = std::max(split->num_types_, cur_id); ++split->num_types_; } template void SplitByteVector(const std::vector& data, const int literals_per_histogram, const int max_histograms, const int sampling_stride_length, const double block_switch_cost, BlockSplit* split) { if (data.empty()) { split->num_types_ = 0; return; } else if (data.size() < kMinLengthForBlockSplitting) { split->num_types_ = 1; split->types_.push_back(0); split->lengths_.push_back(data.size()); return; } std::vector histograms; // Find good entropy codes. InitialEntropyCodes(data.data(), data.size(), literals_per_histogram, max_histograms, sampling_stride_length, &histograms); RefineEntropyCodes(data.data(), data.size(), sampling_stride_length, &histograms); // Find a good path through literals with the good entropy codes. std::vector block_ids(data.size()); for (int i = 0; i < 10; ++i) { FindBlocks(data.data(), data.size(), block_switch_cost, histograms, &block_ids[0]); BuildBlockHistograms(data.data(), data.size(), &block_ids[0], &histograms); } ClusterBlocks(data.data(), data.size(), &block_ids[0]); BuildBlockSplit(block_ids, split); } void SplitBlock(const std::vector& cmds, const uint8_t* data, BlockSplit* literal_split, BlockSplit* insert_and_copy_split, BlockSplit* dist_split) { // Create a continuous array of literals. std::vector literals; CopyLiteralsToByteArray(cmds, data, &literals); // Compute prefix codes for commands. std::vector insert_and_copy_codes; std::vector distance_prefixes; CopyCommandsToByteArray(cmds, &insert_and_copy_codes, &distance_prefixes); SplitByteVector( literals, kSymbolsPerLiteralHistogram, kMaxLiteralHistograms, kLiteralStrideLength, kLiteralBlockSwitchCost, literal_split); SplitByteVector( insert_and_copy_codes, kSymbolsPerCommandHistogram, kMaxCommandHistograms, kCommandStrideLength, kCommandBlockSwitchCost, insert_and_copy_split); SplitByteVector( distance_prefixes, kSymbolsPerDistanceHistogram, kMaxCommandHistograms, kCommandStrideLength, kDistanceBlockSwitchCost, dist_split); } void SplitBlockByTotalLength(const std::vector& all_commands, int input_size, int target_length, std::vector >* blocks) { int num_blocks = input_size / target_length + 1; int length_limit = input_size / num_blocks + 1; int total_length = 0; std::vector cur_block; for (int i = 0; i < all_commands.size(); ++i) { const Command& cmd = all_commands[i]; int cmd_length = cmd.insert_length_ + cmd.copy_length_; if (total_length > length_limit) { blocks->push_back(cur_block); cur_block.clear(); total_length = 0; } cur_block.push_back(cmd); total_length += cmd_length; } blocks->push_back(cur_block); } } // namespace brotli