// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Implementation of Brotli compressor. #include "./encode.h" #include #include #include "./backward_references.h" #include "./bit_cost.h" #include "./block_splitter.h" #include "./brotli_bit_stream.h" #include "./cluster.h" #include "./context.h" #include "./metablock.h" #include "./transform.h" #include "./entropy_encode.h" #include "./fast_log.h" #include "./hash.h" #include "./histogram.h" #include "./literal_cost.h" #include "./prefix.h" #include "./write_bits.h" namespace brotli { static const double kMinUTF8Ratio = 0.75; static const int kMinQualityForBlockSplit = 4; static const int kMinQualityForContextModeling = 5; static const int kMinQualityForOptimizeHistograms = 4; int ParseAsUTF8(int* symbol, const uint8_t* input, int size) { // ASCII if ((input[0] & 0x80) == 0) { *symbol = input[0]; if (*symbol > 0) { return 1; } } // 2-byte UTF8 if (size > 1 && (input[0] & 0xe0) == 0xc0 && (input[1] & 0xc0) == 0x80) { *symbol = (((input[0] & 0x1f) << 6) | (input[1] & 0x3f)); if (*symbol > 0x7f) { return 2; } } // 3-byte UFT8 if (size > 2 && (input[0] & 0xf0) == 0xe0 && (input[1] & 0xc0) == 0x80 && (input[2] & 0xc0) == 0x80) { *symbol = (((input[0] & 0x0f) << 12) | ((input[1] & 0x3f) << 6) | (input[2] & 0x3f)); if (*symbol > 0x7ff) { return 3; } } // 4-byte UFT8 if (size > 3 && (input[0] & 0xf8) == 0xf0 && (input[1] & 0xc0) == 0x80 && (input[2] & 0xc0) == 0x80 && (input[3] & 0xc0) == 0x80) { *symbol = (((input[0] & 0x07) << 18) | ((input[1] & 0x3f) << 12) | ((input[2] & 0x3f) << 6) | (input[3] & 0x3f)); if (*symbol > 0xffff && *symbol <= 0x10ffff) { return 4; } } // Not UTF8, emit a special symbol above the UTF8-code space *symbol = 0x110000 | input[0]; return 1; } // Returns true if at least min_fraction of the data is UTF8-encoded. bool IsMostlyUTF8(const uint8_t* data, size_t length, double min_fraction) { size_t size_utf8 = 0; size_t pos = 0; while (pos < length) { int symbol; int bytes_read = ParseAsUTF8(&symbol, data + pos, length - pos); pos += bytes_read; if (symbol < 0x110000) size_utf8 += bytes_read; } return size_utf8 > min_fraction * length; } void RecomputeDistancePrefixes(Command* cmds, size_t num_commands, int num_direct_distance_codes, int distance_postfix_bits) { if (num_direct_distance_codes == 0 && distance_postfix_bits == 0) { return; } for (int i = 0; i < num_commands; ++i) { Command* cmd = &cmds[i]; if (cmd->copy_len_ > 0 && cmd->cmd_prefix_ >= 128) { PrefixEncodeCopyDistance(cmd->DistanceCode(), num_direct_distance_codes, distance_postfix_bits, &cmd->dist_prefix_, &cmd->dist_extra_); } } } uint8_t* BrotliCompressor::GetBrotliStorage(size_t size) { if (storage_size_ < size) { delete[] storage_; storage_ = new uint8_t[size]; storage_size_ = size; } return storage_; } BrotliCompressor::BrotliCompressor(BrotliParams params) : params_(params), hashers_(new Hashers()), input_pos_(0), literal_cost_(0), num_commands_(0), num_literals_(0), last_insert_len_(0), last_flush_pos_(0), last_processed_pos_(0), prev_byte_(0), prev_byte2_(0), storage_size_(0), storage_(0) { // Sanitize params. params_.quality = std::max(1, params_.quality); if (params_.lgwin < kMinWindowBits) { params_.lgwin = kMinWindowBits; } else if (params_.lgwin > kMaxWindowBits) { params_.lgwin = kMaxWindowBits; } if (params_.lgblock == 0) { params_.lgblock = params_.quality < kMinQualityForBlockSplit ? 14 : 16; if (params_.quality >= 9 && params_.lgwin > params_.lgblock) { params_.lgblock = std::min(21, params_.lgwin); } } else { params_.lgblock = std::min(kMaxInputBlockBits, std::max(kMinInputBlockBits, params_.lgblock)); } // Set maximum distance, see section 9.1. of the spec. max_backward_distance_ = (1 << params_.lgwin) - 16; // Initialize input and literal cost ring buffers. // We allocate at least lgwin + 1 bits for the ring buffer so that the newly // added block fits there completely and we still get lgwin bits and at least // read_block_size_bits + 1 bits because the copy tail length needs to be // smaller than ringbuffer size. int ringbuffer_bits = std::max(params_.lgwin + 1, params_.lgblock + 1); ringbuffer_ = new RingBuffer(ringbuffer_bits, params_.lgblock); if (params_.quality > 9) { literal_cost_mask_ = (1 << params_.lgblock) - 1; literal_cost_ = new float[literal_cost_mask_ + 1]; } // Allocate command buffer. cmd_buffer_size_ = std::max(1 << 18, 1 << params_.lgblock); commands_ = new brotli::Command[cmd_buffer_size_]; // Initialize last byte with stream header. if (params_.lgwin == 16) { last_byte_ = 0; last_byte_bits_ = 1; } else if (params_.lgwin == 17) { last_byte_ = 1; last_byte_bits_ = 7; } else if (params_.lgwin > 17) { last_byte_ = ((params_.lgwin - 17) << 1) | 1; last_byte_bits_ = 4; } else { last_byte_ = ((params_.lgwin - 8) << 4) | 1; last_byte_bits_ = 7; } // Initialize distance cache. dist_cache_[0] = 4; dist_cache_[1] = 11; dist_cache_[2] = 15; dist_cache_[3] = 16; // Save the state of the distance cache in case we need to restore it for // emitting an uncompressed block. memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_)); // Initialize hashers. hash_type_ = std::min(9, params_.quality); hashers_->Init(hash_type_); } BrotliCompressor::~BrotliCompressor() { delete[] storage_; delete[] literal_cost_; delete[] commands_; delete ringbuffer_; delete hashers_; } void BrotliCompressor::CopyInputToRingBuffer(const size_t input_size, const uint8_t* input_buffer) { ringbuffer_->Write(input_buffer, input_size); input_pos_ += input_size; // Erase a few more bytes in the ring buffer to make hashing not // depend on uninitialized data. This makes compression deterministic // and it prevents uninitialized memory warnings in Valgrind. Even // without erasing, the output would be valid (but nondeterministic). // // Background information: The compressor stores short (at most 8 bytes) // substrings of the input already read in a hash table, and detects // repetitions by looking up such substrings in the hash table. If it // can find a substring, it checks whether the substring is really there // in the ring buffer (or it's just a hash collision). Should the hash // table become corrupt, this check makes sure that the output is // still valid, albeit the compression ratio would be bad. // // The compressor populates the hash table from the ring buffer as it's // reading new bytes from the input. However, at the last few indexes of // the ring buffer, there are not enough bytes to build full-length // substrings from. Since the hash table always contains full-length // substrings, we erase with dummy 0s here to make sure that those // substrings will contain 0s at the end instead of uninitialized // data. // // Please note that erasing is not necessary (because the // memory region is already initialized since he ring buffer // has a `tail' that holds a copy of the beginning,) so we // skip erasing if we have already gone around at least once in // the ring buffer. size_t pos = ringbuffer_->position(); // Only clear during the first round of ringbuffer writes. On // subsequent rounds data in the ringbuffer would be affected. if (pos <= ringbuffer_->mask()) { // This is the first time when the ring buffer is being written. // We clear 3 bytes just after the bytes that have been copied from // the input buffer. // // The ringbuffer has a "tail" that holds a copy of the beginning, // but only once the ring buffer has been fully written once, i.e., // pos <= mask. For the first time, we need to write values // in this tail (where index may be larger than mask), so that // we have exactly defined behavior and don't read un-initialized // memory. Due to performance reasons, hashing reads data using a // LOAD32, which can go 3 bytes beyond the bytes written in the // ringbuffer. memset(ringbuffer_->start() + pos, 0, 3); } } void BrotliCompressor::BrotliSetCustomDictionary( const size_t size, const uint8_t* dict) { CopyInputToRingBuffer(size, dict); last_flush_pos_ = size; last_processed_pos_ = size; if (size > 0) { prev_byte_ = dict[size - 1]; } if (size > 1) { prev_byte2_ = dict[size - 2]; } hashers_->PrependCustomDictionary(hash_type_, size, dict); } bool BrotliCompressor::WriteBrotliData(const bool is_last, const bool force_flush, size_t* out_size, uint8_t** output) { const size_t bytes = input_pos_ - last_processed_pos_; const uint8_t* data = ringbuffer_->start(); const size_t mask = ringbuffer_->mask(); if (bytes > input_block_size()) { return false; } bool utf8_mode = params_.quality >= 9 && IsMostlyUTF8(&data[last_processed_pos_ & mask], bytes, kMinUTF8Ratio); if (literal_cost_) { if (utf8_mode) { EstimateBitCostsForLiteralsUTF8(last_processed_pos_, bytes, mask, literal_cost_mask_, data, literal_cost_); } else { EstimateBitCostsForLiterals(last_processed_pos_, bytes, mask, literal_cost_mask_, data, literal_cost_); } } CreateBackwardReferences(bytes, last_processed_pos_, data, mask, literal_cost_, literal_cost_mask_, max_backward_distance_, params_.quality, hashers_, hash_type_, dist_cache_, &last_insert_len_, &commands_[num_commands_], &num_commands_, &num_literals_); // For quality 1 there is no block splitting, so we buffer at most this much // literals and commands. static const int kMaxNumDelayedSymbols = 0x2fff; int max_length = std::min(mask + 1, 1 << kMaxInputBlockBits); if (!is_last && !force_flush && (params_.quality >= kMinQualityForBlockSplit || (num_literals_ + num_commands_ < kMaxNumDelayedSymbols)) && num_commands_ + (input_block_size() >> 1) < cmd_buffer_size_ && input_pos_ + input_block_size() <= last_flush_pos_ + max_length) { // Everything will happen later. last_processed_pos_ = input_pos_; *out_size = 0; return true; } // Create the last insert-only command. if (last_insert_len_ > 0) { brotli::Command cmd(last_insert_len_); commands_[num_commands_++] = cmd; num_literals_ += last_insert_len_; last_insert_len_ = 0; } return WriteMetaBlockInternal(is_last, utf8_mode, out_size, output); } // Decide about the context map based on the ability of the prediction // ability of the previous byte UTF8-prefix on the next byte. The // prediction ability is calculated as shannon entropy. Here we need // shannon entropy instead of 'BitsEntropy' since the prefix will be // encoded with the remaining 6 bits of the following byte, and // BitsEntropy will assume that symbol to be stored alone using Huffman // coding. void ChooseContextMap(int quality, int* bigram_histo, int* num_literal_contexts, const int** literal_context_map) { int monogram_histo[3] = { 0 }; int two_prefix_histo[6] = { 0 }; int total = 0; for (int i = 0; i < 9; ++i) { total += bigram_histo[i]; monogram_histo[i % 3] += bigram_histo[i]; int j = i; if (j >= 6) { j -= 6; } two_prefix_histo[j] += bigram_histo[i]; } int dummy; double entropy1 = ShannonEntropy(monogram_histo, 3, &dummy); double entropy2 = (ShannonEntropy(two_prefix_histo, 3, &dummy) + ShannonEntropy(two_prefix_histo + 3, 3, &dummy)); double entropy3 = 0; for (int k = 0; k < 3; ++k) { entropy3 += ShannonEntropy(bigram_histo + 3 * k, 3, &dummy); } assert(total != 0); entropy1 *= (1.0 / total); entropy2 *= (1.0 / total); entropy3 *= (1.0 / total); static const int kStaticContextMapContinuation[64] = { 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static const int kStaticContextMapSimpleUTF8[64] = { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; if (quality < 7) { // 3 context models is a bit slower, don't use it at lower qualities. entropy3 = entropy1 * 10; } // If expected savings by symbol are less than 0.2 bits, skip the // context modeling -- in exchange for faster decoding speed. if (entropy1 - entropy2 < 0.2 && entropy1 - entropy3 < 0.2) { *num_literal_contexts = 1; } else if (entropy2 - entropy3 < 0.02) { *num_literal_contexts = 2; *literal_context_map = kStaticContextMapSimpleUTF8; } else { *num_literal_contexts = 3; *literal_context_map = kStaticContextMapContinuation; } } void DecideOverLiteralContextModeling(const uint8_t* input, size_t start_pos, size_t length, size_t mask, int quality, int* literal_context_mode, int* num_literal_contexts, const int** literal_context_map) { if (quality < kMinQualityForContextModeling || length < 64) { return; } // Gather bigram data of the UTF8 byte prefixes. To make the analysis of // UTF8 data faster we only examine 64 byte long strides at every 4kB // intervals. const size_t end_pos = start_pos + length; int bigram_prefix_histo[9] = { 0 }; for (; start_pos + 64 <= end_pos; start_pos += 4096) { static const int lut[4] = { 0, 0, 1, 2 }; const size_t stride_end_pos = start_pos + 64; int prev = lut[input[start_pos & mask] >> 6] * 3; for (size_t pos = start_pos + 1; pos < stride_end_pos; ++pos) { const uint8_t literal = input[pos & mask]; ++bigram_prefix_histo[prev + lut[literal >> 6]]; prev = lut[literal >> 6] * 3; } } *literal_context_mode = CONTEXT_UTF8; ChooseContextMap(quality, &bigram_prefix_histo[0], num_literal_contexts, literal_context_map); } bool BrotliCompressor::WriteMetaBlockInternal(const bool is_last, const bool utf8_mode, size_t* out_size, uint8_t** output) { const size_t bytes = input_pos_ - last_flush_pos_; const uint8_t* data = ringbuffer_->start(); const size_t mask = ringbuffer_->mask(); const size_t max_out_size = 2 * bytes + 500; uint8_t* storage = GetBrotliStorage(max_out_size); storage[0] = last_byte_; int storage_ix = last_byte_bits_; bool uncompressed = false; if (num_commands_ < (bytes >> 8) + 2) { if (num_literals_ > 0.99 * bytes) { int literal_histo[256] = { 0 }; static const int kSampleRate = 13; static const double kMinEntropy = 7.92; static const double kBitCostThreshold = bytes * kMinEntropy / kSampleRate; for (int i = last_flush_pos_; i < input_pos_; i += kSampleRate) { ++literal_histo[data[i & mask]]; } if (BitsEntropy(literal_histo, 256) > kBitCostThreshold) { uncompressed = true; } } } if (bytes == 0) { if (!StoreCompressedMetaBlockHeader(is_last, 0, &storage_ix, &storage[0])) { return false; } storage_ix = (storage_ix + 7) & ~7; } else if (uncompressed) { // Restore the distance cache, as its last update by // CreateBackwardReferences is now unused. memcpy(dist_cache_, saved_dist_cache_, sizeof(dist_cache_)); if (!StoreUncompressedMetaBlock(is_last, data, last_flush_pos_, mask, bytes, &storage_ix, &storage[0])) { return false; } } else { int num_direct_distance_codes = 0; int distance_postfix_bits = 0; if (params_.quality > 9 && params_.mode == BrotliParams::MODE_FONT) { num_direct_distance_codes = 12; distance_postfix_bits = 1; RecomputeDistancePrefixes(commands_, num_commands_, num_direct_distance_codes, distance_postfix_bits); } if (params_.quality < kMinQualityForBlockSplit) { if (!StoreMetaBlockTrivial(data, last_flush_pos_, bytes, mask, is_last, commands_, num_commands_, &storage_ix, &storage[0])) { return false; } } else { MetaBlockSplit mb; int literal_context_mode = utf8_mode ? CONTEXT_UTF8 : CONTEXT_SIGNED; if (params_.quality <= 9) { int num_literal_contexts = 1; const int* literal_context_map = NULL; DecideOverLiteralContextModeling(data, last_flush_pos_, bytes, mask, params_.quality, &literal_context_mode, &num_literal_contexts, &literal_context_map); if (literal_context_map == NULL) { BuildMetaBlockGreedy(data, last_flush_pos_, mask, commands_, num_commands_, &mb); } else { BuildMetaBlockGreedyWithContexts(data, last_flush_pos_, mask, prev_byte_, prev_byte2_, literal_context_mode, num_literal_contexts, literal_context_map, commands_, num_commands_, &mb); } } else { BuildMetaBlock(data, last_flush_pos_, mask, prev_byte_, prev_byte2_, commands_, num_commands_, literal_context_mode, &mb); } if (params_.quality >= kMinQualityForOptimizeHistograms) { OptimizeHistograms(num_direct_distance_codes, distance_postfix_bits, &mb); } if (!StoreMetaBlock(data, last_flush_pos_, bytes, mask, prev_byte_, prev_byte2_, is_last, num_direct_distance_codes, distance_postfix_bits, literal_context_mode, commands_, num_commands_, mb, &storage_ix, &storage[0])) { return false; } } if (bytes + 4 < (storage_ix >> 3)) { // Restore the distance cache and last byte. memcpy(dist_cache_, saved_dist_cache_, sizeof(dist_cache_)); storage[0] = last_byte_; storage_ix = last_byte_bits_; if (!StoreUncompressedMetaBlock(is_last, data, last_flush_pos_, mask, bytes, &storage_ix, &storage[0])) { return false; } } } last_byte_ = storage[storage_ix >> 3]; last_byte_bits_ = storage_ix & 7; last_flush_pos_ = input_pos_; last_processed_pos_ = input_pos_; prev_byte_ = data[(last_flush_pos_ - 1) & mask]; prev_byte2_ = data[(last_flush_pos_ - 2) & mask]; num_commands_ = 0; num_literals_ = 0; // Save the state of the distance cache in case we need to restore it for // emitting an uncompressed block. memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_)); *output = &storage[0]; *out_size = storage_ix >> 3; return true; } bool BrotliCompressor::WriteMetaBlock(const size_t input_size, const uint8_t* input_buffer, const bool is_last, size_t* encoded_size, uint8_t* encoded_buffer) { CopyInputToRingBuffer(input_size, input_buffer); size_t out_size = 0; uint8_t* output; if (!WriteBrotliData(is_last, /* force_flush = */ true, &out_size, &output) || out_size > *encoded_size) { return false; } if (out_size > 0) { memcpy(encoded_buffer, output, out_size); } *encoded_size = out_size; return true; } bool BrotliCompressor::WriteMetadata(const size_t input_size, const uint8_t* input_buffer, const bool is_last, size_t* encoded_size, uint8_t* encoded_buffer) { if (input_size > (1 << 24) || input_size + 6 > *encoded_size) { return false; } int storage_ix = last_byte_bits_; encoded_buffer[0] = last_byte_; WriteBits(1, 0, &storage_ix, encoded_buffer); WriteBits(2, 3, &storage_ix, encoded_buffer); WriteBits(1, 0, &storage_ix, encoded_buffer); if (input_size == 0) { WriteBits(2, 0, &storage_ix, encoded_buffer); *encoded_size = (storage_ix + 7) >> 3; } else { size_t nbits = Log2Floor(input_size - 1) + 1; size_t nbytes = (nbits + 7) / 8; WriteBits(2, nbytes, &storage_ix, encoded_buffer); WriteBits(8 * nbytes, input_size - 1, &storage_ix, encoded_buffer); size_t hdr_size = (storage_ix + 7) >> 3; memcpy(&encoded_buffer[hdr_size], input_buffer, input_size); *encoded_size = hdr_size + input_size; } if (is_last) { encoded_buffer[(*encoded_size)++] = 3; } last_byte_ = 0; last_byte_bits_ = 0; return true; } bool BrotliCompressor::FinishStream( size_t* encoded_size, uint8_t* encoded_buffer) { return WriteMetaBlock(0, NULL, true, encoded_size, encoded_buffer); } int BrotliCompressBuffer(BrotliParams params, size_t input_size, const uint8_t* input_buffer, size_t* encoded_size, uint8_t* encoded_buffer) { if (*encoded_size == 0) { // Output buffer needs at least one byte. return 0; } BrotliCompressor compressor(params); BrotliMemIn in(input_buffer, input_size); BrotliMemOut out(encoded_buffer, *encoded_size); if (!BrotliCompress(params, &in, &out)) { return 0; } *encoded_size = out.position(); return 1; } size_t CopyOneBlockToRingBuffer(BrotliIn* r, BrotliCompressor* compressor) { const size_t block_size = compressor->input_block_size(); size_t bytes_read = 0; const uint8_t* data = reinterpret_cast( r->Read(block_size, &bytes_read)); if (data == NULL) { return 0; } compressor->CopyInputToRingBuffer(bytes_read, data); // Read more bytes until block_size is filled or an EOF (data == NULL) is // received. This is useful to get deterministic compressed output for the // same input no matter how r->Read splits the input to chunks. for (size_t remaining = block_size - bytes_read; remaining > 0; ) { size_t more_bytes_read = 0; data = reinterpret_cast( r->Read(remaining, &more_bytes_read)); if (data == NULL) { break; } compressor->CopyInputToRingBuffer(more_bytes_read, data); bytes_read += more_bytes_read; remaining -= more_bytes_read; } return bytes_read; } bool BrotliInIsFinished(BrotliIn* r) { size_t read_bytes; return r->Read(0, &read_bytes) == NULL; } int BrotliCompress(BrotliParams params, BrotliIn* in, BrotliOut* out) { return BrotliCompressWithCustomDictionary(0, 0, params, in, out); } int BrotliCompressWithCustomDictionary(size_t dictsize, const uint8_t* dict, BrotliParams params, BrotliIn* in, BrotliOut* out) { size_t in_bytes = 0; size_t out_bytes = 0; uint8_t* output; bool final_block = false; BrotliCompressor compressor(params); if (dictsize != 0) compressor.BrotliSetCustomDictionary(dictsize, dict); while (!final_block) { in_bytes = CopyOneBlockToRingBuffer(in, &compressor); final_block = in_bytes == 0 || BrotliInIsFinished(in); out_bytes = 0; if (!compressor.WriteBrotliData(final_block, /* force_flush = */ false, &out_bytes, &output)) { return false; } if (out_bytes > 0 && !out->Write(output, out_bytes)) { return false; } } return true; } } // namespace brotli