// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Functions to estimate the bit cost of Huffman trees. #ifndef BROTLI_ENC_BIT_COST_H_ #define BROTLI_ENC_BIT_COST_H_ #include #include "./entropy_encode.h" #include "./fast_log.h" namespace brotli { static inline double ShannonEntropy(const int *population, int size, int *total) { int sum = 0; double retval = 0; const int *population_end = population + size; int p; if (size & 1) { goto odd_number_of_elements_left; } while (population < population_end) { p = *population++; sum += p; retval -= p * FastLog2(p); odd_number_of_elements_left: p = *population++; sum += p; retval -= p * FastLog2(p); } if (sum) retval += sum * FastLog2(sum); *total = sum; return retval; } static inline double BitsEntropy(const int *population, int size) { int sum; double retval = ShannonEntropy(population, size, &sum); if (retval < sum) { // At least one bit per literal is needed. retval = sum; } return retval; } template double PopulationCost(const Histogram& histogram) { if (histogram.total_count_ == 0) { return 12; } int count = 0; for (int i = 0; i < kSize; ++i) { if (histogram.data_[i] > 0) { ++count; } } if (count == 1) { return 12; } if (count == 2) { return 20 + histogram.total_count_; } double bits = 0; uint8_t depth_array[kSize] = { 0 }; if (count <= 4) { // For very low symbol count we build the Huffman tree. CreateHuffmanTree(&histogram.data_[0], kSize, 15, depth_array); for (int i = 0; i < kSize; ++i) { bits += histogram.data_[i] * depth_array[i]; } return count == 3 ? bits + 28 : bits + 37; } // In this loop we compute the entropy of the histogram and simultaneously // build a simplified histogram of the code length codes where we use the // zero repeat code 17, but we don't use the non-zero repeat code 16. int max_depth = 1; int depth_histo[kCodeLengthCodes] = { 0 }; const double log2total = FastLog2(histogram.total_count_); for (int i = 0; i < kSize;) { if (histogram.data_[i] > 0) { // Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) = // = log2(total_count) - log2(count(symbol)) double log2p = log2total - FastLog2(histogram.data_[i]); // Approximate the bit depth by round(-log2(P(symbol))) int depth = static_cast(log2p + 0.5); bits += histogram.data_[i] * log2p; if (depth > 15) { depth = 15; } if (depth > max_depth) { max_depth = depth; } ++depth_histo[depth]; ++i; } else { // Compute the run length of zeros and add the appropriate number of 0 and // 17 code length codes to the code length code histogram. int reps = 1; for (int k = i + 1; k < kSize && histogram.data_[k] == 0; ++k) { ++reps; } i += reps; if (i == kSize) { // Don't add any cost for the last zero run, since these are encoded // only implicitly. break; } if (reps < 3) { depth_histo[0] += reps; } else { reps -= 2; while (reps > 0) { ++depth_histo[17]; // Add the 3 extra bits for the 17 code length code. bits += 3; reps >>= 3; } } } } // Add the estimated encoding cost of the code length code histogram. bits += 18 + 2 * max_depth; // Add the entropy of the code length code histogram. bits += BitsEntropy(depth_histo, kCodeLengthCodes); return bits; } } // namespace brotli #endif // BROTLI_ENC_BIT_COST_H_