brotli/enc/entropy_encode.h
2016-01-07 16:27:49 +01:00

103 lines
3.2 KiB
C++

/* Copyright 2010 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
// Entropy encoding (Huffman) utilities.
#ifndef BROTLI_ENC_ENTROPY_ENCODE_H_
#define BROTLI_ENC_ENTROPY_ENCODE_H_
#include <string.h>
#include <vector>
#include "./histogram.h"
#include "./prefix.h"
#include "./types.h"
namespace brotli {
// A node of a Huffman tree.
struct HuffmanTree {
HuffmanTree(uint32_t count, int16_t left, int16_t right)
: total_count_(count),
index_left_(left),
index_right_or_value_(right) {
}
uint32_t total_count_;
int16_t index_left_;
int16_t index_right_or_value_;
};
// Sort the root nodes, least popular first.
inline bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) {
return v0.total_count_ < v1.total_count_;
}
void SetDepth(const HuffmanTree &p, HuffmanTree *pool,
uint8_t *depth, uint8_t level);
// This function will create a Huffman tree.
//
// The (data,length) contains the population counts.
// The tree_limit is the maximum bit depth of the Huffman codes.
//
// The depth contains the tree, i.e., how many bits are used for
// the symbol.
//
// See http://en.wikipedia.org/wiki/Huffman_coding
void CreateHuffmanTree(const uint32_t *data,
const size_t length,
const int tree_limit,
uint8_t *depth);
// Change the population counts in a way that the consequent
// Huffman tree compression, especially its rle-part will be more
// likely to compress this data more efficiently.
//
// length contains the size of the histogram.
// counts contains the population counts.
bool OptimizeHuffmanCountsForRle(size_t length, uint32_t* counts);
// Write a Huffman tree from bit depths into the bitstream representation
// of a Huffman tree. The generated Huffman tree is to be compressed once
// more using a Huffman tree
void WriteHuffmanTree(const uint8_t* depth,
size_t num,
std::vector<uint8_t> *tree,
std::vector<uint8_t> *extra_bits_data);
// Get the actual bit values for a tree of bit depths.
void ConvertBitDepthsToSymbols(const uint8_t *depth,
size_t len,
uint16_t *bits);
template<int kSize>
struct EntropyCode {
// How many bits for symbol.
uint8_t depth_[kSize];
// Actual bits used to represent the symbol.
uint16_t bits_[kSize];
// How many non-zero depth.
int count_;
// First four symbols with non-zero depth.
int symbols_[4];
};
static const int kCodeLengthCodes = 18;
// Literal entropy code.
typedef EntropyCode<256> EntropyCodeLiteral;
// Prefix entropy codes.
typedef EntropyCode<kNumCommandPrefixes> EntropyCodeCommand;
typedef EntropyCode<kNumDistancePrefixes> EntropyCodeDistance;
typedef EntropyCode<kNumBlockLenPrefixes> EntropyCodeBlockLength;
// Context map entropy code, 256 Huffman tree indexes + 16 run length codes.
typedef EntropyCode<272> EntropyCodeContextMap;
// Block type entropy code, 256 block types + 2 special symbols.
typedef EntropyCode<258> EntropyCodeBlockType;
} // namespace brotli
#endif // BROTLI_ENC_ENTROPY_ENCODE_H_