mirror of
https://github.com/google/brotli.git
synced 2025-01-01 04:40:08 +00:00
618287b373
These affected only quality 11, and now it does not make sense to disable block splitting or context modeling because most of the time is spent in zopfli anyway. Now all speed vs size compromises are controlled by the quality param.
289 lines
9.2 KiB
C++
289 lines
9.2 KiB
C++
// Copyright 2013 Google Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// Functions for clustering similar histograms together.
|
|
|
|
#ifndef BROTLI_ENC_CLUSTER_H_
|
|
#define BROTLI_ENC_CLUSTER_H_
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <algorithm>
|
|
#include <complex>
|
|
#include <map>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "./bit_cost.h"
|
|
#include "./entropy_encode.h"
|
|
#include "./fast_log.h"
|
|
#include "./histogram.h"
|
|
|
|
namespace brotli {
|
|
|
|
struct HistogramPair {
|
|
int idx1;
|
|
int idx2;
|
|
bool valid;
|
|
double cost_combo;
|
|
double cost_diff;
|
|
};
|
|
|
|
struct HistogramPairComparator {
|
|
bool operator()(const HistogramPair& p1, const HistogramPair& p2) const {
|
|
if (p1.cost_diff != p2.cost_diff) {
|
|
return p1.cost_diff > p2.cost_diff;
|
|
}
|
|
return abs(p1.idx1 - p1.idx2) > abs(p2.idx1 - p2.idx2);
|
|
}
|
|
};
|
|
|
|
// Returns entropy reduction of the context map when we combine two clusters.
|
|
inline double ClusterCostDiff(int size_a, int size_b) {
|
|
int size_c = size_a + size_b;
|
|
return size_a * FastLog2(size_a) + size_b * FastLog2(size_b) -
|
|
size_c * FastLog2(size_c);
|
|
}
|
|
|
|
// Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
|
|
// it is below a threshold, stores the pair (idx1, idx2) in the *pairs heap.
|
|
template<typename HistogramType>
|
|
void CompareAndPushToHeap(const HistogramType* out,
|
|
const int* cluster_size,
|
|
int idx1, int idx2,
|
|
std::vector<HistogramPair>* pairs) {
|
|
if (idx1 == idx2) {
|
|
return;
|
|
}
|
|
if (idx2 < idx1) {
|
|
int t = idx2;
|
|
idx2 = idx1;
|
|
idx1 = t;
|
|
}
|
|
bool store_pair = false;
|
|
HistogramPair p;
|
|
p.idx1 = idx1;
|
|
p.idx2 = idx2;
|
|
p.valid = true;
|
|
p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]);
|
|
p.cost_diff -= out[idx1].bit_cost_;
|
|
p.cost_diff -= out[idx2].bit_cost_;
|
|
|
|
if (out[idx1].total_count_ == 0) {
|
|
p.cost_combo = out[idx2].bit_cost_;
|
|
store_pair = true;
|
|
} else if (out[idx2].total_count_ == 0) {
|
|
p.cost_combo = out[idx1].bit_cost_;
|
|
store_pair = true;
|
|
} else {
|
|
double threshold = pairs->empty() ? 1e99 :
|
|
std::max(0.0, (*pairs)[0].cost_diff);
|
|
HistogramType combo = out[idx1];
|
|
combo.AddHistogram(out[idx2]);
|
|
double cost_combo = PopulationCost(combo);
|
|
if (cost_combo < threshold - p.cost_diff) {
|
|
p.cost_combo = cost_combo;
|
|
store_pair = true;
|
|
}
|
|
}
|
|
if (store_pair) {
|
|
p.cost_diff += p.cost_combo;
|
|
pairs->push_back(p);
|
|
std::push_heap(pairs->begin(), pairs->end(), HistogramPairComparator());
|
|
}
|
|
}
|
|
|
|
template<typename HistogramType>
|
|
void HistogramCombine(HistogramType* out,
|
|
int* cluster_size,
|
|
int* symbols,
|
|
int symbols_size,
|
|
int max_clusters) {
|
|
double cost_diff_threshold = 0.0;
|
|
int min_cluster_size = 1;
|
|
std::set<int> all_symbols;
|
|
std::vector<int> clusters;
|
|
for (int i = 0; i < symbols_size; ++i) {
|
|
if (all_symbols.find(symbols[i]) == all_symbols.end()) {
|
|
all_symbols.insert(symbols[i]);
|
|
clusters.push_back(symbols[i]);
|
|
}
|
|
}
|
|
|
|
// We maintain a heap of histogram pairs, ordered by the bit cost reduction.
|
|
std::vector<HistogramPair> pairs;
|
|
for (int idx1 = 0; idx1 < clusters.size(); ++idx1) {
|
|
for (int idx2 = idx1 + 1; idx2 < clusters.size(); ++idx2) {
|
|
CompareAndPushToHeap(out, cluster_size, clusters[idx1], clusters[idx2],
|
|
&pairs);
|
|
}
|
|
}
|
|
|
|
while (clusters.size() > min_cluster_size) {
|
|
if (pairs[0].cost_diff >= cost_diff_threshold) {
|
|
cost_diff_threshold = 1e99;
|
|
min_cluster_size = max_clusters;
|
|
continue;
|
|
}
|
|
// Take the best pair from the top of heap.
|
|
int best_idx1 = pairs[0].idx1;
|
|
int best_idx2 = pairs[0].idx2;
|
|
out[best_idx1].AddHistogram(out[best_idx2]);
|
|
out[best_idx1].bit_cost_ = pairs[0].cost_combo;
|
|
cluster_size[best_idx1] += cluster_size[best_idx2];
|
|
for (int i = 0; i < symbols_size; ++i) {
|
|
if (symbols[i] == best_idx2) {
|
|
symbols[i] = best_idx1;
|
|
}
|
|
}
|
|
for (int i = 0; i + 1 < clusters.size(); ++i) {
|
|
if (clusters[i] >= best_idx2) {
|
|
clusters[i] = clusters[i + 1];
|
|
}
|
|
}
|
|
clusters.pop_back();
|
|
// Invalidate pairs intersecting the just combined best pair.
|
|
for (int i = 0; i < pairs.size(); ++i) {
|
|
HistogramPair& p = pairs[i];
|
|
if (p.idx1 == best_idx1 || p.idx2 == best_idx1 ||
|
|
p.idx1 == best_idx2 || p.idx2 == best_idx2) {
|
|
p.valid = false;
|
|
}
|
|
}
|
|
// Pop invalid pairs from the top of the heap.
|
|
while (!pairs.empty() && !pairs[0].valid) {
|
|
std::pop_heap(pairs.begin(), pairs.end(), HistogramPairComparator());
|
|
pairs.pop_back();
|
|
}
|
|
// Push new pairs formed with the combined histogram to the heap.
|
|
for (int i = 0; i < clusters.size(); ++i) {
|
|
CompareAndPushToHeap(out, cluster_size, best_idx1, clusters[i], &pairs);
|
|
}
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Histogram refinement
|
|
|
|
// What is the bit cost of moving histogram from cur_symbol to candidate.
|
|
template<typename HistogramType>
|
|
double HistogramBitCostDistance(const HistogramType& histogram,
|
|
const HistogramType& candidate) {
|
|
if (histogram.total_count_ == 0) {
|
|
return 0.0;
|
|
}
|
|
HistogramType tmp = histogram;
|
|
tmp.AddHistogram(candidate);
|
|
return PopulationCost(tmp) - candidate.bit_cost_;
|
|
}
|
|
|
|
// Find the best 'out' histogram for each of the 'in' histograms.
|
|
// Note: we assume that out[]->bit_cost_ is already up-to-date.
|
|
template<typename HistogramType>
|
|
void HistogramRemap(const HistogramType* in, int in_size,
|
|
HistogramType* out, int* symbols) {
|
|
std::set<int> all_symbols;
|
|
for (int i = 0; i < in_size; ++i) {
|
|
all_symbols.insert(symbols[i]);
|
|
}
|
|
for (int i = 0; i < in_size; ++i) {
|
|
int best_out = i == 0 ? symbols[0] : symbols[i - 1];
|
|
double best_bits = HistogramBitCostDistance(in[i], out[best_out]);
|
|
for (std::set<int>::const_iterator k = all_symbols.begin();
|
|
k != all_symbols.end(); ++k) {
|
|
const double cur_bits = HistogramBitCostDistance(in[i], out[*k]);
|
|
if (cur_bits < best_bits) {
|
|
best_bits = cur_bits;
|
|
best_out = *k;
|
|
}
|
|
}
|
|
symbols[i] = best_out;
|
|
}
|
|
|
|
// Recompute each out based on raw and symbols.
|
|
for (std::set<int>::const_iterator k = all_symbols.begin();
|
|
k != all_symbols.end(); ++k) {
|
|
out[*k].Clear();
|
|
}
|
|
for (int i = 0; i < in_size; ++i) {
|
|
out[symbols[i]].AddHistogram(in[i]);
|
|
}
|
|
}
|
|
|
|
// Reorder histograms in *out so that the new symbols in *symbols come in
|
|
// increasing order.
|
|
template<typename HistogramType>
|
|
void HistogramReindex(std::vector<HistogramType>* out,
|
|
std::vector<int>* symbols) {
|
|
std::vector<HistogramType> tmp(*out);
|
|
std::map<int, int> new_index;
|
|
int next_index = 0;
|
|
for (int i = 0; i < symbols->size(); ++i) {
|
|
if (new_index.find((*symbols)[i]) == new_index.end()) {
|
|
new_index[(*symbols)[i]] = next_index;
|
|
(*out)[next_index] = tmp[(*symbols)[i]];
|
|
++next_index;
|
|
}
|
|
}
|
|
out->resize(next_index);
|
|
for (int i = 0; i < symbols->size(); ++i) {
|
|
(*symbols)[i] = new_index[(*symbols)[i]];
|
|
}
|
|
}
|
|
|
|
// Clusters similar histograms in 'in' together, the selected histograms are
|
|
// placed in 'out', and for each index in 'in', *histogram_symbols will
|
|
// indicate which of the 'out' histograms is the best approximation.
|
|
template<typename HistogramType>
|
|
void ClusterHistograms(const std::vector<HistogramType>& in,
|
|
int num_contexts, int num_blocks,
|
|
int max_histograms,
|
|
std::vector<HistogramType>* out,
|
|
std::vector<int>* histogram_symbols) {
|
|
const int in_size = num_contexts * num_blocks;
|
|
std::vector<int> cluster_size(in_size, 1);
|
|
out->resize(in_size);
|
|
histogram_symbols->resize(in_size);
|
|
for (int i = 0; i < in_size; ++i) {
|
|
(*out)[i] = in[i];
|
|
(*out)[i].bit_cost_ = PopulationCost(in[i]);
|
|
(*histogram_symbols)[i] = i;
|
|
}
|
|
|
|
const int max_input_histograms = 64;
|
|
for (int i = 0; i < in_size; i += max_input_histograms) {
|
|
int num_to_combine = std::min(in_size - i, max_input_histograms);
|
|
HistogramCombine(&(*out)[0], &cluster_size[0],
|
|
&(*histogram_symbols)[i], num_to_combine,
|
|
max_histograms);
|
|
}
|
|
|
|
// Collapse similar histograms.
|
|
HistogramCombine(&(*out)[0], &cluster_size[0],
|
|
&(*histogram_symbols)[0], in_size,
|
|
max_histograms);
|
|
|
|
// Find the optimal map from original histograms to the final ones.
|
|
HistogramRemap(&in[0], in_size, &(*out)[0], &(*histogram_symbols)[0]);
|
|
|
|
// Convert the context map to a canonical form.
|
|
HistogramReindex(out, histogram_symbols);
|
|
}
|
|
|
|
} // namespace brotli
|
|
|
|
#endif // BROTLI_ENC_CLUSTER_H_
|