brotli/enc/block_splitter.cc
Piotr Sikora 501cb86172 Fix build with -Wmissing-declarations.
While there, add -Wmissing-prototypes and -Wmissing-declarations
to shared.mk in order to catch similar errors in the future.

Signed-off-by: Piotr Sikora <piotrsikora@google.com>
2016-03-18 19:18:59 -07:00

506 lines
18 KiB
C++

/* Copyright 2013 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
// Block split point selection utilities.
#include "./block_splitter.h"
#include <assert.h>
#include <math.h>
#include <algorithm>
#include <cstring>
#include <vector>
#include "./cluster.h"
#include "./command.h"
#include "./fast_log.h"
#include "./histogram.h"
namespace brotli {
static const size_t kMaxLiteralHistograms = 100;
static const size_t kMaxCommandHistograms = 50;
static const double kLiteralBlockSwitchCost = 28.1;
static const double kCommandBlockSwitchCost = 13.5;
static const double kDistanceBlockSwitchCost = 14.6;
static const size_t kLiteralStrideLength = 70;
static const size_t kCommandStrideLength = 40;
static const size_t kSymbolsPerLiteralHistogram = 544;
static const size_t kSymbolsPerCommandHistogram = 530;
static const size_t kSymbolsPerDistanceHistogram = 544;
static const size_t kMinLengthForBlockSplitting = 128;
static const size_t kIterMulForRefining = 2;
static const size_t kMinItersForRefining = 100;
void CopyLiteralsToByteArray(const Command* cmds,
const size_t num_commands,
const uint8_t* data,
const size_t offset,
const size_t mask,
std::vector<uint8_t>* literals) {
// Count how many we have.
size_t total_length = 0;
for (size_t i = 0; i < num_commands; ++i) {
total_length += cmds[i].insert_len_;
}
if (total_length == 0) {
return;
}
// Allocate.
literals->resize(total_length);
// Loop again, and copy this time.
size_t pos = 0;
size_t from_pos = offset & mask;
for (size_t i = 0; i < num_commands && pos < total_length; ++i) {
size_t insert_len = cmds[i].insert_len_;
if (from_pos + insert_len > mask) {
size_t head_size = mask + 1 - from_pos;
memcpy(&(*literals)[pos], data + from_pos, head_size);
from_pos = 0;
pos += head_size;
insert_len -= head_size;
}
if (insert_len > 0) {
memcpy(&(*literals)[pos], data + from_pos, insert_len);
pos += insert_len;
}
from_pos = (from_pos + insert_len + cmds[i].copy_len()) & mask;
}
}
inline static unsigned int MyRand(unsigned int* seed) {
*seed *= 16807U;
if (*seed == 0) {
*seed = 1;
}
return *seed;
}
template<typename HistogramType, typename DataType>
void InitialEntropyCodes(const DataType* data, size_t length,
size_t stride,
size_t num_histograms,
HistogramType* histograms) {
for (size_t i = 0; i < num_histograms; ++i) {
histograms[i].Clear();
}
unsigned int seed = 7;
size_t block_length = length / num_histograms;
for (size_t i = 0; i < num_histograms; ++i) {
size_t pos = length * i / num_histograms;
if (i != 0) {
pos += MyRand(&seed) % block_length;
}
if (pos + stride >= length) {
pos = length - stride - 1;
}
histograms[i].Add(data + pos, stride);
}
}
template<typename HistogramType, typename DataType>
void RandomSample(unsigned int* seed,
const DataType* data,
size_t length,
size_t stride,
HistogramType* sample) {
size_t pos = 0;
if (stride >= length) {
pos = 0;
stride = length;
} else {
pos = MyRand(seed) % (length - stride + 1);
}
sample->Add(data + pos, stride);
}
template<typename HistogramType, typename DataType>
void RefineEntropyCodes(const DataType* data, size_t length,
size_t stride,
size_t num_histograms,
HistogramType* histograms) {
size_t iters =
kIterMulForRefining * length / stride + kMinItersForRefining;
unsigned int seed = 7;
iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms;
for (size_t iter = 0; iter < iters; ++iter) {
HistogramType sample;
RandomSample(&seed, data, length, stride, &sample);
size_t ix = iter % num_histograms;
histograms[ix].AddHistogram(sample);
}
}
inline static double BitCost(size_t count) {
return count == 0 ? -2.0 : FastLog2(count);
}
// Assigns a block id from the range [0, vec.size()) to each data element
// in data[0..length) and fills in block_id[0..length) with the assigned values.
// Returns the number of blocks, i.e. one plus the number of block switches.
template<typename DataType, int kSize>
size_t FindBlocks(const DataType* data, const size_t length,
const double block_switch_bitcost,
const size_t num_histograms,
const Histogram<kSize>* histograms,
double* insert_cost,
double* cost,
uint8_t* switch_signal,
uint8_t *block_id) {
if (num_histograms <= 1) {
for (size_t i = 0; i < length; ++i) {
block_id[i] = 0;
}
return 1;
}
const size_t bitmaplen = (num_histograms + 7) >> 3;
assert(num_histograms <= 256);
memset(insert_cost, 0, sizeof(insert_cost[0]) * kSize * num_histograms);
for (size_t j = 0; j < num_histograms; ++j) {
insert_cost[j] = FastLog2(static_cast<uint32_t>(
histograms[j].total_count_));
}
for (size_t i = kSize; i != 0;) {
--i;
for (size_t j = 0; j < num_histograms; ++j) {
insert_cost[i * num_histograms + j] =
insert_cost[j] - BitCost(histograms[j].data_[i]);
}
}
memset(cost, 0, sizeof(cost[0]) * num_histograms);
memset(switch_signal, 0, sizeof(switch_signal[0]) * length * bitmaplen);
// After each iteration of this loop, cost[k] will contain the difference
// between the minimum cost of arriving at the current byte position using
// entropy code k, and the minimum cost of arriving at the current byte
// position. This difference is capped at the block switch cost, and if it
// reaches block switch cost, it means that when we trace back from the last
// position, we need to switch here.
for (size_t byte_ix = 0; byte_ix < length; ++byte_ix) {
size_t ix = byte_ix * bitmaplen;
size_t insert_cost_ix = data[byte_ix] * num_histograms;
double min_cost = 1e99;
for (size_t k = 0; k < num_histograms; ++k) {
// We are coding the symbol in data[byte_ix] with entropy code k.
cost[k] += insert_cost[insert_cost_ix + k];
if (cost[k] < min_cost) {
min_cost = cost[k];
block_id[byte_ix] = static_cast<uint8_t>(k);
}
}
double block_switch_cost = block_switch_bitcost;
// More blocks for the beginning.
if (byte_ix < 2000) {
block_switch_cost *= 0.77 + 0.07 * static_cast<double>(byte_ix) / 2000;
}
for (size_t k = 0; k < num_histograms; ++k) {
cost[k] -= min_cost;
if (cost[k] >= block_switch_cost) {
cost[k] = block_switch_cost;
const uint8_t mask = static_cast<uint8_t>(1u << (k & 7));
assert((k >> 3) < bitmaplen);
switch_signal[ix + (k >> 3)] |= mask;
}
}
}
// Now trace back from the last position and switch at the marked places.
size_t byte_ix = length - 1;
size_t ix = byte_ix * bitmaplen;
uint8_t cur_id = block_id[byte_ix];
size_t num_blocks = 1;
while (byte_ix > 0) {
--byte_ix;
ix -= bitmaplen;
const uint8_t mask = static_cast<uint8_t>(1u << (cur_id & 7));
assert((static_cast<size_t>(cur_id) >> 3) < bitmaplen);
if (switch_signal[ix + (cur_id >> 3)] & mask) {
if (cur_id != block_id[byte_ix]) {
cur_id = block_id[byte_ix];
++num_blocks;
}
}
block_id[byte_ix] = cur_id;
}
return num_blocks;
}
static size_t RemapBlockIds(uint8_t* block_ids, const size_t length,
uint16_t* new_id, const size_t num_histograms) {
static const uint16_t kInvalidId = 256;
for (size_t i = 0; i < num_histograms; ++i) {
new_id[i] = kInvalidId;
}
uint16_t next_id = 0;
for (size_t i = 0; i < length; ++i) {
assert(block_ids[i] < num_histograms);
if (new_id[block_ids[i]] == kInvalidId) {
new_id[block_ids[i]] = next_id++;
}
}
for (size_t i = 0; i < length; ++i) {
block_ids[i] = static_cast<uint8_t>(new_id[block_ids[i]]);
assert(block_ids[i] < num_histograms);
}
assert(next_id <= num_histograms);
return next_id;
}
template<typename HistogramType, typename DataType>
void BuildBlockHistograms(const DataType* data, const size_t length,
const uint8_t* block_ids,
const size_t num_histograms,
HistogramType* histograms) {
for (size_t i = 0; i < num_histograms; ++i) {
histograms[i].Clear();
}
for (size_t i = 0; i < length; ++i) {
histograms[block_ids[i]].Add(data[i]);
}
}
template<typename HistogramType, typename DataType>
void ClusterBlocks(const DataType* data, const size_t length,
const size_t num_blocks,
uint8_t* block_ids,
BlockSplit* split) {
static const size_t kMaxNumberOfBlockTypes = 256;
static const size_t kHistogramsPerBatch = 64;
static const size_t kClustersPerBatch = 16;
std::vector<uint32_t> histogram_symbols(num_blocks);
std::vector<uint32_t> block_lengths(num_blocks);
size_t block_idx = 0;
for (size_t i = 0; i < length; ++i) {
assert(block_idx < num_blocks);
++block_lengths[block_idx];
if (i + 1 == length || block_ids[i] != block_ids[i + 1]) {
++block_idx;
}
}
assert(block_idx == num_blocks);
const size_t expected_num_clusters =
kClustersPerBatch *
(num_blocks + kHistogramsPerBatch - 1) / kHistogramsPerBatch;
std::vector<HistogramType> all_histograms;
std::vector<uint32_t> cluster_size;
all_histograms.reserve(expected_num_clusters);
cluster_size.reserve(expected_num_clusters);
size_t num_clusters = 0;
std::vector<HistogramType> histograms(
std::min(num_blocks, kHistogramsPerBatch));
size_t max_num_pairs = kHistogramsPerBatch * kHistogramsPerBatch / 2;
std::vector<HistogramPair> pairs(max_num_pairs + 1);
size_t pos = 0;
for (size_t i = 0; i < num_blocks; i += kHistogramsPerBatch) {
const size_t num_to_combine = std::min(num_blocks - i, kHistogramsPerBatch);
uint32_t sizes[kHistogramsPerBatch];
uint32_t clusters[kHistogramsPerBatch];
uint32_t symbols[kHistogramsPerBatch];
uint32_t remap[kHistogramsPerBatch];
for (size_t j = 0; j < num_to_combine; ++j) {
histograms[j].Clear();
for (size_t k = 0; k < block_lengths[i + j]; ++k) {
histograms[j].Add(data[pos++]);
}
histograms[j].bit_cost_ = PopulationCost(histograms[j]);
symbols[j] = clusters[j] = static_cast<uint32_t>(j);
sizes[j] = 1;
}
size_t num_new_clusters = HistogramCombine(
&histograms[0], sizes, symbols, clusters, &pairs[0], num_to_combine,
num_to_combine, kHistogramsPerBatch, max_num_pairs);
for (size_t j = 0; j < num_new_clusters; ++j) {
all_histograms.push_back(histograms[clusters[j]]);
cluster_size.push_back(sizes[clusters[j]]);
remap[clusters[j]] = static_cast<uint32_t>(j);
}
for (size_t j = 0; j < num_to_combine; ++j) {
histogram_symbols[i + j] =
static_cast<uint32_t>(num_clusters) + remap[symbols[j]];
}
num_clusters += num_new_clusters;
assert(num_clusters == cluster_size.size());
assert(num_clusters == all_histograms.size());
}
max_num_pairs =
std::min(64 * num_clusters, (num_clusters / 2) * num_clusters);
pairs.resize(max_num_pairs + 1);
std::vector<uint32_t> clusters(num_clusters);
for (size_t i = 0; i < num_clusters; ++i) {
clusters[i] = static_cast<uint32_t>(i);
}
size_t num_final_clusters =
HistogramCombine(&all_histograms[0], &cluster_size[0],
&histogram_symbols[0],
&clusters[0], &pairs[0], num_clusters,
num_blocks, kMaxNumberOfBlockTypes, max_num_pairs);
static const uint32_t kInvalidIndex = std::numeric_limits<uint32_t>::max();
std::vector<uint32_t> new_index(num_clusters, kInvalidIndex);
uint32_t next_index = 0;
pos = 0;
for (size_t i = 0; i < num_blocks; ++i) {
HistogramType histo;
for (size_t j = 0; j < block_lengths[i]; ++j) {
histo.Add(data[pos++]);
}
uint32_t best_out =
i == 0 ? histogram_symbols[0] : histogram_symbols[i - 1];
double best_bits = HistogramBitCostDistance(
histo, all_histograms[best_out]);
for (size_t j = 0; j < num_final_clusters; ++j) {
const double cur_bits = HistogramBitCostDistance(
histo, all_histograms[clusters[j]]);
if (cur_bits < best_bits) {
best_bits = cur_bits;
best_out = clusters[j];
}
}
histogram_symbols[i] = best_out;
if (new_index[best_out] == kInvalidIndex) {
new_index[best_out] = next_index++;
}
}
uint8_t max_type = 0;
uint32_t cur_length = 0;
block_idx = 0;
split->types.resize(num_blocks);
split->lengths.resize(num_blocks);
for (size_t i = 0; i < num_blocks; ++i) {
cur_length += block_lengths[i];
if (i + 1 == num_blocks ||
histogram_symbols[i] != histogram_symbols[i + 1]) {
const uint8_t id = static_cast<uint8_t>(new_index[histogram_symbols[i]]);
split->types[block_idx] = id;
split->lengths[block_idx] = cur_length;
max_type = std::max(max_type, id);
cur_length = 0;
++block_idx;
}
}
split->types.resize(block_idx);
split->lengths.resize(block_idx);
split->num_types = static_cast<size_t>(max_type) + 1;
}
template<int kSize, typename DataType>
void SplitByteVector(const std::vector<DataType>& data,
const size_t literals_per_histogram,
const size_t max_histograms,
const size_t sampling_stride_length,
const double block_switch_cost,
BlockSplit* split) {
if (data.empty()) {
split->num_types = 1;
return;
} else if (data.size() < kMinLengthForBlockSplitting) {
split->num_types = 1;
split->types.push_back(0);
split->lengths.push_back(static_cast<uint32_t>(data.size()));
return;
}
size_t num_histograms = data.size() / literals_per_histogram + 1;
if (num_histograms > max_histograms) {
num_histograms = max_histograms;
}
Histogram<kSize>* histograms = new Histogram<kSize>[num_histograms];
// Find good entropy codes.
InitialEntropyCodes(&data[0], data.size(),
sampling_stride_length,
num_histograms, histograms);
RefineEntropyCodes(&data[0], data.size(),
sampling_stride_length,
num_histograms, histograms);
// Find a good path through literals with the good entropy codes.
std::vector<uint8_t> block_ids(data.size());
size_t num_blocks;
const size_t bitmaplen = (num_histograms + 7) >> 3;
double* insert_cost = new double[kSize * num_histograms];
double *cost = new double[num_histograms];
uint8_t* switch_signal = new uint8_t[data.size() * bitmaplen];
uint16_t* new_id = new uint16_t[num_histograms];
for (size_t i = 0; i < 10; ++i) {
num_blocks = FindBlocks(&data[0], data.size(),
block_switch_cost,
num_histograms, histograms,
insert_cost, cost, switch_signal,
&block_ids[0]);
num_histograms = RemapBlockIds(&block_ids[0], data.size(),
new_id, num_histograms);
BuildBlockHistograms(&data[0], data.size(), &block_ids[0],
num_histograms, histograms);
}
delete[] insert_cost;
delete[] cost;
delete[] switch_signal;
delete[] new_id;
delete[] histograms;
ClusterBlocks<Histogram<kSize> >(&data[0], data.size(), num_blocks,
&block_ids[0], split);
}
void SplitBlock(const Command* cmds,
const size_t num_commands,
const uint8_t* data,
const size_t pos,
const size_t mask,
BlockSplit* literal_split,
BlockSplit* insert_and_copy_split,
BlockSplit* dist_split) {
{
// Create a continuous array of literals.
std::vector<uint8_t> literals;
CopyLiteralsToByteArray(cmds, num_commands, data, pos, mask, &literals);
// Create the block split on the array of literals.
// Literal histograms have alphabet size 256.
SplitByteVector<256>(
literals,
kSymbolsPerLiteralHistogram, kMaxLiteralHistograms,
kLiteralStrideLength, kLiteralBlockSwitchCost,
literal_split);
}
{
// Compute prefix codes for commands.
std::vector<uint16_t> insert_and_copy_codes(num_commands);
for (size_t i = 0; i < num_commands; ++i) {
insert_and_copy_codes[i] = cmds[i].cmd_prefix_;
}
// Create the block split on the array of command prefixes.
SplitByteVector<kNumCommandPrefixes>(
insert_and_copy_codes,
kSymbolsPerCommandHistogram, kMaxCommandHistograms,
kCommandStrideLength, kCommandBlockSwitchCost,
insert_and_copy_split);
}
{
// Create a continuous array of distance prefixes.
std::vector<uint16_t> distance_prefixes(num_commands);
size_t pos = 0;
for (size_t i = 0; i < num_commands; ++i) {
const Command& cmd = cmds[i];
if (cmd.copy_len() && cmd.cmd_prefix_ >= 128) {
distance_prefixes[pos++] = cmd.dist_prefix_;
}
}
distance_prefixes.resize(pos);
// Create the block split on the array of distance prefixes.
SplitByteVector<kNumDistancePrefixes>(
distance_prefixes,
kSymbolsPerDistanceHistogram, kMaxCommandHistograms,
kCommandStrideLength, kDistanceBlockSwitchCost,
dist_split);
}
}
} // namespace brotli